Participation of the HBTB in the NAP projectNAP

Hungary has launched a National Brain Research Program (Nemzeti Agykutatási Program = NAP) with a government subsidy to explore the most frequent diseases of the brain, including depression, migraine, cerebral metastases, Alzheimer’s and Parkinson’s disease.

Microdissection Researh Group within the HBTB: SE-NAP – Human Brain Tissue Bank Microdissection Laboratory

Head: Eva Dobolyine Renner, PhD

Specific aims for the participation:

  • Keep safety running of the activity of the HBTB requires an increase in human sources in the HBTB.
  • Extension of the donor program, the microdissection capacity and the scientific collaboration activity with Hungarian research laboratories participating in the NAP project (providing reasonable number of microdissected human brain samples) suitable for neurochemical, molecular biological, proteomic and genetic studies.
  • Start with the Lenhossék program in collaboration with the Department of Neurology, Debrecen University for country-wide collections of human brains for biological/medical research purposes. Collection of brains from persons died in neurodegenerative or psychiatric disorders is special important.
  • Increasing the repertoire of the HBTB by further selection of cortical subdivisions for microdissection. Recently, basic and clinical neuroscience information increased rapidly about the topographically and functionally characterized human cortical areas. However, this extension of the microdissection and banking may require an increase in human sources in the HBTB.
  • The next years, teach and train a postdoctoral or young scientist in the human microdissection technique is vital for the future of the HBTB.

Publications

  1. Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Palkovits M, Tarakanov AO, Ciruela F & Agnati LF (2014) Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G protein-coupled receptor field, Neuropsychopharmacology 39: 131-155.  IF: 7.048
  2. Du L, Merali Z, Poulter MO, Palkovits M, Faludi G & Anisman H (2014) Catechol-O-methyltransferase Val158Met polymorphism and altered COMT gene expression in the prefrontal cortex of suicide brains, Prog Neuropsychopharmacol Biol Psychiatry 50: 178-183.  IF: 3.689
  3. Dobolyi A, Ostergaard E, Bagó AG, Dóczi T, Palkovits M, Gál A, Molnár MJ, Adam-Vizi V & Chinopoulos C (2015) Exclusive neuronal expression of SUCLA2 in the human brain, Brain Struct Funct 220: 135-151.  IF: 5.811
  4. Dobolyi A, Bagó AG, Gál A, Molnár MJ, Palkovits M, Adam-Vizi V & Chinopoulos C (2015) Localization of SUCLA2 and SUCLG2 subunits of succinyl CoA ligase within the cerebral cortex suggests the absence of matrix substrate-level phosphorylation in glial cells of the human brain, J Bioenerg Biomembr 47: 33-41.  IF: 2.080
  5. Ádori C, Glück L, Barde S, Yoshitake T, Kovacs GG, Mulder J, Maglóczky Z, Havas L, Bölcskei K, Mitsios N, Uhlén M, Szolcsányi J, Kehr J, Rönnbäck A, Schwartz T, Rehfeld JF, Harkany T, Palkovits M, Schulz S & Hökfelt T (2015) Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer’s disease, Acta Neuropathol 129: 541-563.  IF: 11.360
  6. Durrenberger PF, Fernando FS, Kashefi SN, Bonnert TP, Seilhean D, Nait-Oumesmar B, Schmitt A, Gebicke-Haerter PJ, Falkai P, Grünblatt E, Palkovits M, Arzberger T, Kretzschmar H, Dexter DT & Reynolds R (2015) Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study, J Neural Transm 122: 1055-1068.  IF: 2.587
  7. Amy M, Staehlin O, René F, Blasco H, Marouillat S, Daoud H, Vourc’h P, Gordon PH, Camu W, Corcia P, Loeffler JP, Palkovits M, Sommer WH & Andres CR (2015) A common functional allele of the Nogo receptor gene, reticulon 4 receptor (RTN4R), is associated with sporadic amyotrophic lateral sclerosis in a French population, Amyotroph Lat Scl Fr 16: 490-496. IF: 2.677
  8. Hayley S, Du L, Litteljohn D, Palkovits M, Faludi G, Merali Z, Poulter MO & Anisman H (2015) Gender and brain regions specific differences in brain derived neurotrophic factor protein levels of depressed individuals who died through suicide, Neurosci Lett 600: 12-16. IF: 2.107
  9. Aschrafi A, Verheijen JM, Gordebeke PM, Olde Loohuis NF, Menting K, Jager A, Palkovits M, Geenen B, Kos A, Martens GJ, Glennon JC, Kaplan BB, Gaszner B & Kozicz T (2016) MicroRNA-326 acts as a molecular switch in the regulation of midbrain urocortin 1 expression, J Psychiatry Neurosci 41: 342-353. IF: 5.165
  10. Barde S, Rüegg J, Prud’homme J, Ekström TJ, Palkovits M, Turecki G, Bagdy G, Ihnatko R, Theodorsson E, Juhasz G, Diaz-Heijtz R, Mechawar N & Hökfelt TGM (2016) Alterations in the neuropeptide galanin system in major depressive disorder involve levels of transcripts, methylation, and peptide, P Natl Acad Sci USA 113: E8472-E8481. IF: 9.661
  11. Roy B, Wang Q, Palkovits M, Faludi G & Dwivedi Y (2017) Molecular insights of dysregulated microRNA network in the locus coeruleus of depressed suicide complements, Sci Rep 7: 4387. IF: 4.122
  12. Tombácz D, Maróti Z, Kalmár T, Csabai Zs, Balázs Zs, Takahashi S, Palkovits M, Snyder M & Boldogkői Zs (2017) High-coverage whole-exome sequencing identifies candidate genes for suicide in victims with major depressive disorder, Sci Rep 7: 7106. IF: 4.122
  13. Albert M, Barrantes-Freer A, Lohrberg M, Antel JP, Prineas JW, Palkovits M, Wolff JR, Brück W & Stadelmann C (2017) Synaptic pathology in the cerebellar dentate nucleus in chronic multiple sclerosis, Brain Pathol 27: 737-747. IF: 6.187
  14. Pálvölgyi A, Simpson J, Bodnár I, Bíró J, Palkovits M, Radovits T, Skehel P & Antoni FA (2018) Auto-inhibition of adenylyl cyclase 9 (AC9) by an isoform-specific motif in the carboxyl-terminal region, Cell Signal 51: 266-275. IF: 3.388
  15. Martin NA, Nawrocki A, Molnar V, Elkjaer ML, Thygesen EK, Palkovits M, Acs P, Sejbaek T, Nielsen HH, Hegedus Z, Sellebjerg F, Molnar T, Barbosa EGV, Alcaraz N, Gallyas F Jr, Svenningsen AF, Baumbach J, Lassmann H, Larsen MR & Illes Z (2018) Orthologous proteins of experimental de- and remyelination are differentially regulated in the CSF proteome of multiple sclerosis subtypes. PLoS One 13: e0202530. IF: 2.776
  16. Alpár A, Zahola P, Hanics J, Hevesi Z, Korchynska S, Benevento M, Pifl C, Zachar G, Perugini J, Severi I, Leitgeb P, Bakker J, Miklosi AG, Tretiakov E, Keimpema E, Arque G, Tasan RO, Sperk G, Malenczyk K, Máté Z, Erdélyi F, Szabó G, Lubec G, Palkovits M, Giordano A, Hökfelt TG, Romanov RA, Horvath TL & Harkany T (2018) Hypothalamic CNTF volume transmission shapes cortical noradrenergic excitability upon acute stress. EMBO J 37: e100087. IF: 11.227
  17. Tombácz D, Maróti Z, Kalmár T, Palkovits M, Snyder M & Boldogkői Z (2019) Whole-exome sequencing data of suicide victims who had suffered from major depressive disorder, Sci Data 6: 190010. IF: 5.541
  18. Mendonça CF, Kuras M, Nogueira FCS, Plá I, Hortobágyi T, Csiba L, Palkovits M, Renner É, Döme P, Marko-Varga G, Domont GB & Rezeli M (2019) Proteomic signatures of brain regions affected by tau pathology in early and late stages of Alzheimer’s disease, Neurobiol Dis 130: 104509. IF: 5.332
  19. Kardos J, Dobolyi Á, Szabó Z, Simon Á, Lourmet G, Palkovits M & Héja L (2019) Molecular plasticity of the nucleus accumbens revisited-astrocytic waves shall rise, Mol Neurobiol 56: 7950-7965. IF: 4.500
  20. Hertz H, Carstensen MB, Bering T, Rohde K, Møller M, Granau AM, Coon SL, Klein DC, Rath MF (2020) The Lhx4 homeobox transcript in the rat pineal gland: Adrenergic regulation and impact on transcripts encoding melatonin-synthesizing enzymes, J Pineal Res 68: e12616. IF: 13.007
  21. Carstensen MB, Hertz H, Bering T, Møller M, Rohde K, Klein DC, Coon SL & Rath MF (2020) Circadian regulation and molecular role of the Bsx homeobox gene in the adult pineal gland, J Pineal Res 68: e12629. IF: 13.007
  22. Dobolyi A, Bago A, Palkovits M, Nemeria NS, Jordan F, Doczi J, Ambrus A, Adam-Vizi V & Chinopoulos C (2020) Exclusive neuronal detection of KGDHC-specific subunits in the adult human brain cortex despite pancellular protein lysine succinylation, Brain Struct Funct 225: 639-667. IF: 3.270
  23. Kecskés A, Pohóczky K, Kecskés M, Varga ZV, Kormos V, Szőke É, Henn-Mike N, Fehér M, Kun J, Gyenesei A, Renner É, Palkovits M, Ferdinandy P, Ábrahám IM, Gaszner B & Helyes Zs (2020) Characterization of neurons expressing the novel analgesic drug target somatostatin receptor 4 in mouse and human brains, Int J Mol Sci 21: 7788. IF: 5.923
  24. Hevesi Z, Zelena D, Romanov RA, Hanics J, Ignácz A, Zambon A, Pollak DD, Lendvai D, Schlett K, Palkovits M, Harkany T, Hökfelt TGM & Alpár A (2021) Secretagogin marks amygdaloid PKCδ interneurons and modulates NMDA receptor availability, Proc Natl Acad Sci U S A 118: e1921123118. IF: 12.779
  25. Velásquez E, Szeitz B, Gil J, Rodriguez J, Palkovits M, Renner É, Hortobágyi T, Döme P, Nogueira FCS, Marko-Varga G, Domont GB & Rezeli M (2021) Topological dissection of proteomic changes linked to the limbic stage of Alzheimer’s disease, Front Immunol 12: 750665. IF: 8.786
  26. Samardžija B, Pavešić Radonja A, Zaharija B, Bergman M, Renner É, Palkovits M, Rubeša G & Bradshaw NJ (2021) Protein aggregation of NPAS3, implicated in mental illness, is not limited to the V304I mutation, J Pers Med 11: 1070. IF: 3.508
  27. Vitale-Cross L, Szalayova I, Scoggins A, Palkovits M & Mezey E (2022) SARS-CoV-2 entry sites are present in all structural elements of the human glossopharyngeal and vagal nerves: Clinical implications, eBioMedicine 78: 103981. IF: 11.205 (2021)
  28. Kormos V, Kecskés A, Farkas J, Gaszner T, Csernus V, Alomari A, Hegedüs D, Renner É, Palkovits M, Zelena D, Helyes Z, Pintér E & Gaszner B (2022) Peptidergic neurons of the Edinger-Westphal nucleus express TRPA1 ion channel that is downregulated both upon chronic variable mild stress in male mice and in humans who died by suicide, J Psychiatry Neurosci 47: E162-E175. IF: 5.699 (2021)
  29. Dóra F, Renner É, Keller D, Palkovits M & Dobolyi Á (2022) Transcriptome profiling of the dorsomedial prefrontal cortex in suicide victims, Int J Mol Sci 23: 7067. IF: 6.208 (2021)
  30. Hardwick SA, Hu W, Joglekar A, Fan L, Collier PG, Foord C, Balacco J, Lanjewar S, Sampson MM, Koopmans F, Prjibelski AD, Mikheenko A, Belchikov N, Jarroux J, Lucas AB, Palkovits M, Luo W, Milner TA, Ndhlovu LC, Smit AB, Trojanowski JQ, Lee VMY, Fedrigo O, Sloan SA, Tombácz D, Ross ME, Jarvis E, Boldogkői Z, Gan L & Tilgner HU (2022) Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue, Nat Biotechnol 40: 1082-1092. IF: 68.164 (2021)
  31. Zhong W, Barde S, Mitsios N, Adori C, Oksvold P, Feilitzen KV, O’Leary L, Csiba L, Hortobágyi T, Szocsics P, Mechawar N, Maglóczky Z, Renner É, Palkovits M, Uhlén M, Mulder J & Hökfelt T (2022) The neuropeptide landscape of human prefrontal cortex, Proc Natl Acad Sci U S A 119: e2123146119. IF: 12.779 (2021)
  32. Keller D, Láng T, Cservenák M, Puska G, Barna J, Csillag V, Farkas I, Zelena D, Dóra F,  Küppers S, Barteczko L, Usdin TB, Palkovits M, Hasan MT, Grinevich V & Dobolyi A (2022) A thalamo-preoptic pathway promotes social grooming in rodents, Curr Biol 32: 4593-4606. IF: 10.900 (2021)
  33. Renner É, Dóra F, Oszwald E, Dobolyi Á & Palkovits M (2022) Elevated glucagon-like peptide-1 receptor level in the paraventricular hypothalamic nucleus of type 2 diabetes mellitus patients, Int J Mol Sci 23: 15945. IF: 6.208 (2021)
  34. Kovács T, Szinyákovics J, Billes V, Murányi G, Varga VB, Bjelik A, Légrádi Á, Szabó M, Sándor S, Kubinyi E, Szekeres-Paracky C, Szocsics P, Lőke J, Mulder J, Gulyás B, Renner É, Palkovits M, Gulya K, Maglóczky Z & Vellai T (2022) A conserved MTMR lipid phosphatase increasingly suppresses autophagy in brain neurons during aging, Sci Rep 12: 21817. IF: 4.997 (2021)
  35. Vas S, Papp RS, Könczöl K, Bogáthy E, Papp N, Ádori C, Durst M, Sípos K, Ocskay K, Farkas I, Bálint F, Ferenci S, Török B, Kovács A, Szabó E, Zelena D, Kovács KJ, Földes A, Kató E, Köles L, Bagdy G, Palkovits M & Tóth ZE (2023) Prolactin-releasing peptide contributes to stress-related mood disorders and inhibits sleep/mood regulatory melanin-concentrating hormone neurons in rats, J Neurosci 43: 846-862. IF: 6.709 (2021)

Partners within the NAP project

  • Department of Anatomy, Histology and Embryology, Semmelweis University (Alán Alpár)
  • Institute of Physiology, University of Pécs Medical School (István Ábrahám†)
  • Department of Medical Biochemistry, Semmelweis University (Christos Chinopoulos)
  • Department of Physiology and Neurobiology, Eötvös Loránd University (Árpád Dobolyi)
  • Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School (Zsuzsanna Helyes)
  • Institute of Genomic Medicine and Rare Disorders, Semmelweis University (Mária Judit Molnár)
  • Department of Physiology, Anatomy and Neuroscience, University of Szeged (Gábor Tamás)
  • Neurodegenerative Disease Drug Discovery Group, Research Center for Natural Sciences (Gergely Tóth)

Number of samples we sent to NAP partners:

    • 2014: 133
    • 2015: 27
    • 2016: 609
    • 2017: 617
    • 2018: 171
    • 2019: 3
    • 2020: 130
    • 2021: 134

Hatvanezer mintát tárolnak a világszinten is egyedülálló Humán Agyszövet Bank és Laboratóriumban

 

Minden tudás c. tévéműsor (2017. március 3-i adása, M1 csatorna)