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1 LIST OF ABBREVIATIONS 

4-AP – 4-aminopyridine 

ACF – spatial autocorrelation function 

ACSF – artificial cerebrospinal fluid 

AHP – spike after-hyperpolarization 

AMPAR – α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

AP – affinity propagation clustering algorithm 

ARS – adjusted Rand score 

AZ – active zone 

BB – bridge balance 

BC – cerebellar basket cell (1) 

BC – Bayesian clustering algorithm (2) 

CA – cornu ammonis  

CC – coupling coefficient  

CF – climbing fibres of the cerebellum 

Cm – specific membrane resistance 

CNS – central nervous system  

Cp – pipette capacitance 

CV – coefficient of variation 

CVODE – variable time step integration method 

Cx36 – connexin 36 

D-AP5 – D(−)-2-Amino-5-phosphonopentanoic acid 

DAB – 3,3'-diaminobenzidine 

DB – DBSCAN clustering algorithm 

DCN – deep cerebellar nuclei 
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DG – dentate gyrus 

EC – entorhinal cortex 

Eh – reversal potential of the HCN channels 

Eleak – reversal potential of the leak channels 

EM – electron microscope 

FFT – fast Fourier transform 

FFT-1 – inverse fast Fourier transform 

GABA – γ-aminobutyric acid 

GCL – granule cell layer of the cerebellum 

GENESIS – GEneral NEural SImulation System 

Gh – HCN channel conductance 

Gleak – leak conductance 

GGJ – gap junctional conductance 

GJ – gap junction 

GoC – Golgi cell 

GrC – cerebellar granule cell 

GUI – graphical user interface 

HCN – hyperpolarization-activated cyclic nucleotide–gated channel 

I – binarized image 

IN – interneuron 

IO – inferior olivary nucleus of the cerebellum 

IR-DIC – infrared differential interference contrast  

L2/3 – cortical layer 2/3 

L5 – cortical layer 5 

LM – light microscope 
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M – binarized mask image 

ML – molecular layer of the cerebellum 

MS – mean shift clustering algorithm 

NA – numerical aperture 

NMDA – N-methyl-D-aspartate  

NND – nearest neighbour distance 

PB – phosphate buffer 

PC – pyramidal cell 

PCL – Purkinje cell layer of the cerebellum 

PF – parallel fibres of the cerebellum 

PP – perforant path of the hippocampus 

Pr – vesicular release probability 

PSD – postsynaptic density 

Ra – axial or intracellular resistance 

Raccess – access resistance of the patch pipette 

Rin – input resistance of the cell 

Rm – specific membrane resistance 

Rtip – tip resistance of the patch pipette  

S – subiculum 

SC – Schäffer collaterals of the hippocampus 

SD – standard deviation 

SDP – structure delineating polygon 

SDS-FRL – SDS-digested freeze-fracture replica immunolabeling  

SLM – stratum lacunosum-moleculare of the hippocampus 

SO – stratum oriens of the hippocampus 
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SP – stratum pyramidale of the hippocampus 

SR – stratum radiatum of the hippocampus 

TTX – tetrodotoxin 

VGCC – voltage-gated Ca2+ channels 

Vhalf – half activation voltage of voltage-gated ion channels 

Vm – membrane potential 

WC – whole cell patch clamp configuration 
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2 INTRODUCTION 

2.1 General introduction 

 The diversity of neurons in the central nervous system (CNS) originates from 

their distinct morphological build-up (the number, length and complexity of their 

dendrites and axon; Figure 2.1.1), the heterogeneity of voltage- and ligand-gated ion 

channels expressed in their cell membranes with different subcellular axo-somato-

dendritic distributions (Golding et al., 2005; Kerti et al., 2012; Kirizs et al., 2014; Hu 

and Jonas, 2014) as well as their passive electrical properties. This diversity leads to 

substantial differences in the information processing capabilities of the distinct cell 

populations. Another level of complexity is introduced by the broad variety of synaptic 

plasticity mechanisms. At the nanoscale level, synaptic plasticity can be manifested by a 

spatial reorganization of synaptic proteins (Tang et al., 2016; Pennacchietti et al., 2017). 

For example, distribution of voltage-gated Ca2+ channels (VGCC) governing Ca2+ 

influx necessary for presynaptic vesicle fusion and their spatial arrangement in relation 

to the docked synaptic vesicles within the active zone (AZ) critically affects vesicular 

release probability (Pr; Eggermann et al., 2012).  

Figure 2.1.1 

Morphological 

diversity.  

Neurons with 

dendritic trees exists 

in all sorts of shapes 

and sizes depending 

on which region of 

the brain they come 

from. Shown here are 

the dendritic trees of: 

a, a vagal 

motoneuron; b, an 

olivary neuron; c, a layer 2/3 pyramidal cell; d, a layer 5 pyramidal cell; e, a cerebellar 

Purkinje cell; and f, an α-motoneuron. Scale bars: 100 µm. (Adapted from Segev, 1998) 
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 These features of the CNS inspired my doctoral work and prompted me to 

investigate the diverse protein distributions governing information processing both at 

subcellular and subsynaptic spatial scales with a combination of experimental and 

computational tools. First, I aimed to develop a combined method to determine 

subcellular distributions of various voltage- or ligand-gated ion channels in 

hippocampal CA1 pyramidal cells (PC; Section 5.1). I continued with uncovering 

functional properties of dendritic gap junctions in cerebellar Golgi cells (GoC; Section 

5.2). The final project of my Ph.D. studies focused on pattern recognition techniques 

that can quantify nanoscale protein distributions in an objective manner (Section 5.3).  

 

2.2 Hippocampus 

The hippocampus is an archecortical structure located in the temporal lobe of the 

brain (Figure 2.2.1). Its laminated and quite simple organization made it ideal to 

investigate both cellular and network functions, therefore the hippocampus has become 

one of the most intensely studied region of the mammalian CNS. The hippocampal 

formation has several parts: the dentate gyrus (DG), the three cornu ammunis (CA) 

subregions (CA1, CA2, CA3), the subiculum (S), the presubiculum, the parasubiculum 

and the entorhinal cortex (EC).  

 The laminar organization of the hippocampal formation is most apparent in the 

CA regions, with stereotypical, functionally well-segregated layers, historically termed 

strata. All CA subregions of the hippocampus include a cellular layer, where the cell 

bodies of most pyramidal cells are located (stratum pyramidale, SP). These are 

excitatory, glutamatergic principal cells with their apical dendritic trees spreading 

towards the DG, through the mostly acellular layers of strata radiatum (SR) and 

lacunosum-moleculare (SLM). The CA3 region also houses a unique layer, the stratum 

lucidum between SP and SR. Finally, the tip of the basal dendritic tree of the PCs 

delineates the stratum oriens (SO). 
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Figure 2.2.1 Basic 

structure of the 

hippocampus and its 

trisynaptic circuit.  

The septotemporal (S–T) 

and transverse (TRANS) 

axis of the hippocampus 

(lower). Schematic of  

the trisynaptic loop of the 

hippocampus. pp: 

perforant path, mf: mossy fibres, sc: Schäffer collaterals, DG: dentate gyrus, S: 

subiculum. (Adapted from Shepherd, 2004) 

  

The basic synaptic circuit of the hippocampus is the trisynaptic loop (Andersen 

et al., 1971). Information arrives at the DG from layer II of the EC (through perforant 

path axons). In turn, axons of the DG granule cells (mossy fibres) excite hippocampal 

CA3 PCs. These neurons send their axons (Schäffer collaterals; SC) to CA1 PCs, which 

is considered the main output node of the hippocampus, projecting back to the EC. 

Although this is the main route of information flow through the hippocampus, there are 

other synaptic connections assisting network functions, such as auto-associative CA3 

PC – CA3 PC synapses, supporting pattern completion (Guzman et al., 2016). Besides 

the excitatory pyramidal cells of the CA subregions there are various types of local, 

inhibitory, mostly γ-aminobutyric acid (GABA) secreting interneurons (IN; Freund and 

Buzsáki, 1996) controlling local excitation-inhibition ratio for proper functioning of the 

hippocampus. These cells are located mostly in the acellular layers (SO, SR, SLM) of 

the CA subregions.  

Originating from its wiring properties and the autoassociative connections in 

multiple subregions, the hippocampus is highly vulnerable to excessive excitation if the 

inhibitory INs are malfunctioning, leading to epileptic seizures. The surgical removal of 

epileptic tissue shed light on the fact that the hippocampus also has a significant role in 



10 
 

memory formation (the case of the famous patient H. M.). Additionally, certain cells’ 

spiking activity is influenced by the animal’s spatial position (reviewed by Buzsáki and 

Moser, 2013).  

The CA1 subregion’s PCs are ideally positioned and structured to study both 

subcellular ion channel distributions along their dendritic trees, given their tightly 

organized layout and reasonably thick apical trunk dendrites, and their dendritic 

integrative properties. Taking advantage of these properties of CA1 PCs, both 

anatomical (Lőrincz et al., 2002; Lőrincz and Nusser, 2010; Kerti et al., 2012; Kirizs et 

al., 2014) and electrophysiological (Magee and Johnston, 1995; Hoffman et al., 1997; 

Magee, 1998) investigations were carried out in order to determine subcellular 

distributions of distinct ion channels expressed in the cell membrane of these neurons. 

However, when direct measurements are not available for certain reasons (e.g. thin 

oblique dendrites for patch-clamp recordings, or lack of specific antibody for a given 

ion channel subunit), a combination of a technical arsenal could be used to tackle the 

problem (e.g. Golding et al., 2005).  

This was my motivation to develop a framework able to determine subcellular 

distribution of different ion channels with in vitro dendritic patch-clamp recordings 

combined with pharmacological manipulations, morphological reconstruction of the 

recorded neurons and in silico computational modelling of the recorded membrane 

potential (Vm) responses in order to shed light on the previously inaccessible details of 

ion channel distributions of CA1 pyramidal neurons.  

  

2.3 Cerebellum 

 The cerebellum is evolutionarily one of the most conserved structures of the 

brain. Its basic functional design supports the interaction between the cerebellar cortex 

and deep cerebellar nuclei (DCN). The cerebellar cortex receives afferent inputs from 

two sources, the climbing fibres and the mossy fibres, while its single output is the 

axons of Purkinje cells (Figure 2.3.1). Purkinje cells are organized into a single cellular 

layer (Purkinje cell layer, PCL), while the cerebellar cortex has two additional layers: 

the molecular layer (ML) is located peripheral to the PCL and the layer towards the 
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white matter is the granule cell layer (GCL).  The DCN also receive collaterals from 

climbing and mossy fibres (Shinoda et al., 1992), as well as the Purkinje cells.  

Figure 

2.3.1 

Schematic 

circuit 

diagrams 

of the 

cerebellar 

afferent 

circuits.  

A: A 

climbing 

fibre (CF) 

axon from 

the inferior 

olive (IO) 

mounts 

and makes 

contacts 

over the 

extensive 

dendritic arborisation of a Purkinje cell (PC). B: In the glomeruli, mossy fibres (MF) excite 

granule cells (GrC), whose axons project toward the surface of the cerebellar cortex, where 

they from parallel fibres (PF) after bifurcation. These axon collaterals form excitatory 

synapses on PC dendrites. C: A and B combined with two additional cell types of the circuit 

of the cerebellar cortex: Golgi cells (GC in the figure, GoC hereafter in the text) and basket 

cells (BC), with their somata located in the granule cell layer and the molecular layer, 

respectively.  

 (Adapted from Shepherd, 2004) 

  

Besides chemical synapses (Figure 2.3.1), electrical synapses (gap junctions; 

GJ) are also present between GABAergic INs of the cerebellar cortex (Sotelo and 
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Llinás, 1972; Mann-Metzer and Yarom, 1999; Dugué et al., 2009; Alcami and Marty, 

2013). This connection between Golgi cells (GoC) is mediated by connexin36 (Cx36; 

Vervaeke et al., 2010) and shows large heterogeneity (Vervaeke et al., 2010). This 

variability of electrical synaptic connections between GABAergic INs are key 

determinants of spike desynchronization within the neuronal networks.  

It has previously been demonstrated that slow inhibitory potentials after spikes 

(afterhyperpolarization, AHP) can more effectively spread among gap junction-coupled 

cells due to their lower frequency (Vervaeke et al., 2010). These inhibitory potentials 

can either synchronize or desynchronize GoC networks, depending on the timing of 

synaptic excitation in relation to the phase of the ongoing oscillation (Vervaeke et al., 

2010). We therefore focused on determining the key factors regulating the strength of 

electrical coupling between cerebellar GoCs. We also aimed to quantify the functional 

properties of GJs and determine the contribution of passive dendritic properties to the 

coupling strength. We addressed these with a combination of in vitro dual soma-

dendritic and paired somatic patch-clamp recordings, light microscopic (LM) 

reconstruction of the recorded cells and electron microscopic (EM) quantification of the 

number and location of GJs together with multi-compartmental modelling to reveal the 

conductance of GJs (GGJ).   

 

2.4 Multi-compartmental modelling 

 In silico multi-compartmental modelling is a side branch of computational 

neuroscience. It is considered a useful complementary field of experimental 

neuroscience. Its practicality becomes increasingly conspicuous in cases when the 

experimental tools are not available to measure a given quantity or the experimental 

arrangement would be extremely hard to accomplish (e.g. simultaneous patch-clamp 

recordings from multiple dendritic or axonal regions).  

 There are a couple of multi-compartmental modelling simulation environments 

available, the most popular ones being NEURON (Carnevale and Hines, 2006) and 

GENESIS (GEneral NEural SImulation System; Bower and Beeman, 1994). Both of 

these simulators are based on cable theory (Rall, 1959), i.e. they build the morphology 

of a neuron from a set of cables, which are divided to equipotential, small compartments 
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and model the cell membrane as an equivalent RC circuit, having a specific membrane 

resistance (Rm) and specific membrane capacitance (Cm). The intracellular or axial 

resistance (Ra), which connects the equivalent RC circuits of the sequential 

compartments in the model, and the Rm of the cell jointly determine the attenuation of 

the voltage flowing along the cables. These three parameters are the passive electrical 

properties of the neuron.  

  

However, real neurons often have a plethora of ligand- and voltage-gated ion 

channels (e.g. Na+, K+, Ca2+ or Cl– channels) expressed in their cell membranes. For 

such case, the equivalent RC circuit of a compartment looks like the one depicted in 

Figure 2.4.1. The total current flowing through a given part of the cell membrane, I, is 

equal to the sum of capacitive and ionic currents: 

𝐼 = 𝐶!
!"
!"
+  𝐼!" +  𝐼!" +  𝐼! +  𝐼!"     (2.1). 

The traditional form of this equation is the following:  

Figure 2.4.1 

Equivalent RC 

circuit of a cell 

membrane expressing 

Na, Ca, K and Cl 

channels.  

C is the specific 

membrane capacitance 

(Cm), the capacitive 

membrane current is 

the product of C and 

the derivative of the 

membrane potential, IX denotes the ionic current produced by the different channels, gX is the 

average conductance of these channels, whereas EX stands for the reversal potential of the 

currents (X can be Na, Ca, K or Cl).  

(Adapted from Izhikevich, 2010) 
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𝐶!
!"
!"
= 𝐼 −  𝐼!" −  𝐼!" −  𝐼! −  𝐼!"     (2.2). 

For any ionic currents, IX is calculated by 

𝐼! = 𝑔!(𝑉 − 𝐸!)     (2.3), 

where gX is the conductance of the ionic channel (which could be constant (leak 

conductance) or voltage dependent (e.g. gINa, gCa, gK, etc.)), V is the membrane 

potential and EX is the reversal (or Nernst equilibrium) potential of the ion X. This 

equation is complicated further if there are other currents present in the model (which is 

often the case during realistic simulations), e.g. synaptic currents, currents injected via a 

patch-clamp electrode, or in classes of spatially expanded neurons (e.g. cortical L5 or 

hippocampal CA1 pyramidal neurons, cerebellar Purkinje cells), the contribution of the 

axial current can be substantial as well. Given the cable-like structure of dendritic and 

axonal processes, the partial differential equation to be solved to calculate V(x, t) 

(which depends on both space and time) for such spatially extended neurons is called 

the cable equation, which has the following form (Dayan and Abbott, 2001):  

𝐶!
!"
!"
=  − !

!!"!

!
!"

𝑟! !"
!"

− 𝑖! + 𝑖!       (2.4), 

where r is the radius of the compartment, ie is the electrode current injected into the 

compartment and im is the current per unit area of the membrane. 

 These simple models on their own can provide useful insights about basic 

conceptual questions, e.g. how signal attenuation is manifested along different dendritic 

branches before reaching the cell body of the neuron where they are integrated or how 

the different passive electrical parameter triplets influence the signal attenuation along a 

single cable (dendrite). However, models have to be sufficiently well constrained in 

order to be able to give realistic, biologically plausible predictions. To achieve this, 

thorough experimental work is needed to fine-tune multi-compartmental models on 

relevant, sufficiently rich and well-controlled biological data. To this end, I carefully 

designed and performed in vitro patch-clamp recordings in passive conditions in order 

to achieve highest possible quality of experimental data with the aim of having a 

reasonably accurate model description of data with fewest possible model variables. 
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2.5 Pattern recognition techniques for spatial point patterns 

 Chemical synapses of the central nervous system substantially differ in their 

structural, molecular and functional properties (O’Rourke et al., 2012; Atwood and 

Karunanithi, 2002). Robust diversity is apparent among synapses made by distinct pre- 

and postsynaptic cell types, which is likely to be the consequence of their distinct 

molecular makeups. Remarkable functional diversity is also found among synapses 

made by molecularly and morphologically homogeneous pre- and postsynaptic cells 

(e.g. hippocampal CA3 PCs on CA1 PCs; Dobrunz and Stevens, 1997; Shepherd and 

Harris, 1998). A plausible explanation for this is that different numbers, densities or 

distinct nanoscale distributions of the same molecules underlie the functional diversity 

among these synapses. Moreover, it has been shown that the spatial arrangement of 

VGCCs and their relation to the Ca2+ sensors has substantial influence over the 

probability with which synaptic vesicles are released (Eggermann et al., 2012). It is 

therefore of great importance to determine the underlying distribution patterns of the 

synaptic proteins (i.e. whether it is random, uniform or clustered). Numerous ways of 

analysing spatial point patterns have been introduced recently (Baddeley and Turner, 

2005; Jones et al., 2008; Veatch et al., 2012; Levet et al., 2015; Li et al., 2016), 

however, comparison of their data-dependent efficiency is not complete.  

 In order to test such metrics at sample sizes relevant to sub-AZ spatial scales 

(i.e. in the range of 101–102 number of localization points), I implemented simple, 

distance-based and more complex measures (spatial autocorrelation function, ACF; 

Veatch et al., 2012) to quantify the nanoscale distribution of proteins. I probed the 

implemented measures on simulated datasets covering the localization point density 

range of experimental data (100–1000 µm-2) to find the best performing ones that can be 

used to quantify the experimental data.  
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3 OBJECTIVES 

 

3.1 Develop and validate a combined methodological approach to determine subcellular 

ion channel distributions of neurons. I used in vitro dendritic patch-clamp recordings 

from acute brain slices of male Wistar rats, morphological reconstruction of the 

recorded cells and in silico multi-compartmental modelling of the recorded Vm changes. 

To validate this combined approach, I aimed to replicate the known subcellular 

distribution of hyperpolarization-activated cyclic nucleotide–gated (HCN) ion channels 

in hippocampal CA1 pyramidal neurons.  

 

3.2 Determine the contributions of dendritic and gap junctional filtering to signal 

processing in electrically coupled cerebellar Golgi cell networks and the factors that 

diversify the strength of electrical coupling between these inhibitory interneurons.  

 

3.3 Find and implement methods that are able to quantify the distribution patterns of 

distinct pre- and postsynaptic proteins.  

 

Contributions  

The second project (section 5.2) was a joint effort of Dr Andrea Lőrincz (LM 

and EM experiments), Dr Frederic Lanore (in vitro electrophysiology) and myself. Dr 

Tekla Kirizs contributed to the experimental and to the explorative part (by drawing 

complex-shaped clusters) of the third project (section 5.3). She also performed a subset 

of the statistical tests.  
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4 METHODS 

 

4.1 Electrophysiology and two-photon imaging of cerebellar GoCs 

Sagittal slices (230 µm) of the cerebellar vermis were prepared from both male 

and female P23 – P29 C57BL/6 mice in accordance with UK Home Office guidelines. 

Slices were prepared in a solution containing (in mM) 2.5 KCl, 4 MgCl2, 0.5 CaCl2, 

1.25 NaH2PO4, 24 NaHCO3, 25 glucose, 230 sucrose, bubbled with 95% O2 and 5% 

CO2. Recordings were made at 32–36 ºC from cerebellar slices perfused in ACSF 

containing (in mM) 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, 

and 25 glucose, 0.001 TTX, 0.01 D-AP5, 0.01 NBQX, 0.01 SR95531, 0.0005 

Strychnine, 0.01 ZD7288, 0.1 Ba2+, and in a subset of experiments, additional 0.01 4-

AP and 0.025 mefloquine; pH = 7.3, equilibrated with 5% CO2 and 95% O2. Data were 

recorded using the Neuromatic software (www.neuromatic.thinkrandom.com, written in 

IGOR, Wavemetrics) and analysed using Neuromatic and OriginPro (OriginLab). 

Membrane potentials are specified without correction for the liquid junction potential. 

Two-photon imaging was performed with a microscope consisting of a Mai-Tai laser 

(Spectra-Physics, tuned to 880 nm), a galvanometer-based scanhead (Ultima, Prairie 

technologies) and an Olympus BX51 microscope with a 60x water immersion objective 

(NA = 1). For two-photon targeted patching, GoCs were filled with 50 µM Alexa594 

(Invitrogen, Carlsbad, CA) through a somatic patch pipette containing (in mM) 120 K-

gluconate, 20 KCl, 2 MgCl2, 10 EGTA, 10 HEPES and 2 ATP-Na2, titrated to pH = 7.3 

with KOH, with 6 mM biocytin. A second patch pipette without Alexa594 and biocytin 

was used to patch one of the dendrites with the aid of an online overlay of the Dodt 

contrast and the fluorescence images  (Nevian et al., 2007). Pipettes were pulled from 

thick walled (outer diam.: 1.5 mm, inner diam.: 0.75 mm) borosilicate glass capillaries 

(Sutter Instruments) and had a resistance of 3–6 MΩ for somatic recordings and 9–20 

MΩ for dendritic recordings. To minimize pipette capacitance, tips of the dendritic 

patch pipettes were coated with wax and the bath level was kept as low as possible. The 

access resistance (Raccess) was 15 ± 5 MΩ for somatic and 67 ± 32 MΩ for dendritic 

recordings. Pipette capacitance compensation and bridge-balance were applied and 

adjusted, when necessary, during the experiments. The Rin at the soma and the steady-
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state voltage attenuation along the dendrites were measured by injecting 400 ms long 

hyperpolarizing current pulses of 50 pA (under control conditions) or 20 pA (in 

mefloquine). Voltage signals were recorded using a MultiClamp 700B amplifier 

(Molecular Devices), low-pass filtered at 10 kHz, digitized at 20–40 kHz. All of these 

measurements were performed by Dr Frederic Lanore in Prof. Angus Silver’s 

laboratory at University College London, London, UK.  

 

4.2 Neurolucida reconstructions of GoCs and correlated EM 

Slices containing recorded cells were placed in a fixative containing 4% 

paraformaldehyde and 1.25% glutaraldehyde in 0.1 M phosphate buffer (PB; pH=7.4). 

Slices were then cryoprotected in 10% and 20% sucrose solutions (in 0.1 M PB) for 45 

min followed by rapid freezing and thawing in 0.1 M PB. After several washes in PB, 

slices were embedded in 1% agarose and re-sectioned at 60 µm thickness. Biocytin was 

visualized using avidin–biotin–horseradish peroxidase complex and a diaminobenzidine 

reaction. Sections were then dehydrated and embedded in epoxy resin (Durcupan). 

Three-dimensional LM reconstructions of the cells were performed with the 

Neurolucida system (MicroBrightField, Williston, VT) using a 100x oil-immersion 

objective (numerical aperture (NA) = 1.4). Light micrographs of each close apposition 

were used for guiding the EM identification of the GJs. Serial sections of 70 nm 

thickness were cut with an ultramicrotome. All close appositions between the filled 

dendrites were checked in the EM (Tamás et al., 2000; Vervaeke et al., 2010). The EM 

investigations and a subset of the Neurolucida reconstructions of GoCs were performed 

by Dr Andrea Lőrincz.  

 

4.3 Computer simulations for cerebellar GoCs 

GoCs were filled with biocytin during the electrophysiological experiments 

through the recording pipette, and visualized later by a DAB reaction for detailed 

morphological reconstruction using the Neurolucida software. GoC models were 

constructed in either neuroConstruct (Gleeson et al., 2007) or NEURON (Carnevale and 

Hines, 2006) and simulations were run in NEURON (version 7.3).  
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To determine the specific axial resistance (Ra) of the cells, dual somato-dendritic 

recordings were performed from n = 29 cells (15 control and 14 in mefloquine), of 

which 5 recorded cells from each condition were reconstructed and their morphologies 

were imported into NEURON. Since these GoCs fulfilled our criteria of passiveness 

(i.e. their current injection-evoked Vm responses were linear and symmetric), only a leak 

conductance was inserted into all of the compartments with a uniform density. Then the 

Rm, Ra and Cm parameters of the cells were iterated simultaneously during the fitting 

procedure, to obtain the best fit to the somatic and dendritic current injection-evoked 

membrane voltage responses. Spatial discretization was applied as parameters changed 

according to the d_lambda rule (Carnevale and Hines, 2006), with a value of 0.1. We 

used the voltage responses generated by somatic current injections because the electrode 

Raccess was lower and pipette capacitance neutralization as well as bridge balance 

compensation was less prone to error than for the dendritic recordings. However, 

somatic voltage responses to dendritic current injections were used to cross-check the 

parameters obtained from the best fit to somatic current injections (Figure 5.2.2). 

To determine how the distribution of GJs influences the estimate of Ra, we 

modelled the GoCs in syncytia (i.e. in electrically interconnected networks; Figure 

5.2.4). The ‘central’ cell had 10 neighbouring cells, each coupled by 2 GJs (resulted in n 

= 20 GJs) to the dedicated one. These GJs were randomly distributed on the dendritic 

tree of the neurons. We generated 10 of such random syncytia and then iterated the Rm, 

Cm and Ra parameters on the somatic current injection-evoked somatic and dendritic 

membrane voltage responses. During the simulation, the average conductance of GJs 

(GGJ) was kept constant at 1 nS. The morphology of the cells was the same in each of 

the syncytia, as well as their passive electrical parameters.  

To determine GGJ based on our reconstructed GoC pairs (n = 4), we followed the 

same strategy described above by inserting a leak conductance with a uniform density to 

all compartments of the neurons. Based on EM data, the exact locations of the GJs were 

set in the model with an accurate spatial discretization. First, we used the mean Ra value 

from our previous modelling and a Cm of 1 µF/cm2 (a consensus value for biological 

membranes (Gentet et al., 2000; Larkum et al., 2009), and then fitted the Rm parameter 

of one of the GoCs of a pair to obtain the best fit to its own somatic current-evoked 

voltage response. Parallel with this, we fitted GGJ on the coupled cell’s attenuated 
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voltage response. Then we moved on to the other cell and repeated the same procedure. 

As the changes in Rm from the initial values also influenced GGJ, we iterated this 

process until the change in Rm and GGJ was less than 5%. We determined GGJ in both 

directions (from cell blue to red and red to blue) for the 4 cell pairs in 10 random 

syncytia (n = 80). To explore the dependence of GGJ on Ra as shown in Figure 5.2.6E, 

we followed the same fitting strategy described above fixing the Ra parameter of the 

cells at different values.  

The fitting of the model to the experimental data was performed with NEURON’s built-

in Praxis fitting algorithm. Simulations were run on a desktop PC under Windows 7 

using variable time step integration method ‘CVODE’. Simulations used to estimate the 

variability in CC arising from the dendritic location, GJ number and GJ strength were 

performed with simulations of a cell pair. Syncytia were not used because they would 

have introduced additional variation depending on the specific configuration. For these 

simulations an Rm value of 5 kΩ*cm2 was chosen to match the average Rin of the 

modelled cells and the other passive properties were fixed at our measured values (Ra = 

92 Ω*cm, Cm = 1 µF/cm2). The CC was determined as the ratio of the post- and 

presynaptic steady-state voltage responses upon long current injections. 

 The GoC models with the electrophysiological data I used for parameter fitting 

could be found at ModelDB (accession number: 189186).  

 

4.4 Electrophysiology of hippocampal CA1 pyramidal neurons  

Horizontal slices (300 µm) of the ventral hippocampus were cut from male 

Wistar rats (16–22 days old). Rats were deeply anesthetized by isoflurane (Abbott 

Laboratories) and killed by decapitation, in accordance with the Hungarian Act of 

Animal Care and Experimentation (1998, XXVIII, section 243/1998) and with the 

ethical guidelines of the Institute of Experimental Medicine Protection of Research 

Subjects Committee. The brain was quickly removed and placed into an ice-cold cutting 

solution containing (in mM): sucrose, 205.2; KCl, 2.5; NaHCO3, 26; CaCl2, 0.5; MgCl2, 

5; NaH2PO4, 1.25; glucose, 10; saturated with 95% O2and 5% CO2. Hippocampal slices 

were prepared using a Leica vibratome (VT1200S; Leica Microsystems), incubated in 

submerged holding chamber in ACSF containing (in mM): NaCl, 126; KCl, 2.5; 

NaHCO3, 26; CaCl2, 2; MgCl2, 2; NaH2PO4, 1.25; glucose, 10; saturated with 95% 
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O2 and 5% CO2 (pH = 7.2–7.4) at 34 °C that was then gradually cooled down to room 

temperature (~1 hour). Recordings were carried out in the same ACSF at 24 °C, slices 

were kept up to 5 hours in the holding and recording chambers. 

Cells were visualized with a Nikon Eclipse FN-1 microscope using infrared 

differential interference contrast (IR-DIC) optics and a water immersion objective (40x, 

0.8 NA, Nikon). Current clamp whole-cell recordings from the soma and apical dendrite 

of CA1 PCs were performed using a MultiClamp 700B amplifier (Molecular Devices). 

Traces were filtered at 10 kHz and digitized online at 50 kHz using a Digidata1440A 

interface (Molecular Devices). Patch pipettes were pulled (Zeitz Universal Puller; Zeitz-

Instrumente Vertriebs or P-1000 Micropipette Puller, Sutter Instruments) from thick-

walled borosilicate glass capillaries with an inner filament (1.5 mm outer diameter, 0.86 

mm inner diameter; Sutter Instruments). Tip resistance was 4–7 MΩ for somatic and 8–

14 MΩ for dendritic recordings when filled with intracellular solution containing 130 

mM K-Gluconate, 5 mM KCl, 2 mM MgCl2, 0.05 mM EGTA, 10 mM HEPES, 2mM 

NaATP, 1 mM NaGTP, 10 mM creatine phosphate titrated to pH = 7.3 with KOH, with 

7 mM biocytin. Access resistance was < 15 MΩ for somatic and ≤ 62 MΩ for dendritic 

(range: 17–62 MΩ, average: 37 ± 13 MΩ, n = 22) recordings. CA1 PCs were held 

between –65 mV and –70 mV (baseline Vm, without correction for the liquid junction 

potential), at both somatic and dendritic sites. For passive dendritic recordings, the 

standard ACSF contained additionally 3 mM kynurenic acid (Tocris), 20 µM SR95531, 

50 µM Cd2+, 1 µM TTX (Tocris), 5 mM 4-AP (Tocris) and 40 µM ZD7288 (Tocris). 

All drugs were purchased from Sigma unless stated otherwise. 

 

4.5 Neurolucida reconstructions of CA1 pyramidal cells 

The procedure was the same as detailed above for cerebellar GoCs except for the 

3D light microscopic reconstructions of the CA1 PCs were performed with the 

Neurolucida system (MicroBrightField, Williston, VT) using a 40x oil-immersion 

objective (NA = 1.3). 
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4.6 Computer simulations for hippocampal CA1 pyramidal cells 

CA1 PCs were filled with biocytin during the electrophysiological experiments 

through the recording pipette, and visualized by a DAB reaction for detailed 

morphological reconstruction using the Neurolucida software. Multi-compartmental 

models were constructed in NEURON (Carnevale and Hines, 2006) and simulations 

were run in NEURON (version 7.4).  

For fitting apical dendritic recordings of CA1 PCs individually, the Ra parameter 

was kept at 150 Ω*cm (lower bound of the range determined by Golding et al., 2005), 

while the Rm and Cm parameters were iterated until NEURON’s built-in Praxis fitting 

algorithm found the best fit of the experimental data. For simultaneous fitting of n = 6 

apical dendritic recordings of CA1 pyramidal neurons, NEURON’s MulRunFitter was 

used as in the individual case, but the summed error of all cells was used as a feedback 

for the fitting algorithm. Spatial discretization was applied as parameters changed 

according to the d_lambda rule (Carnevale and Hines, 2006), with a value of 0.1. 

Simulations were run on a desktop PC under Windows 10 using variable time step 

integration method ‘CVODE’.  

 

4.7 Data analysis and visualization  

Analysis of in vitro electrophysiology data was performed with custom written 

Python scripts (version 2.7, 64-bit) using numpy, scipy and matplotlib.  

 

4.8 Software for 2D spatial quantifications 

A software (GoldExt) was developed in Python (version 2.7, 64-bit), with which 

performed the generation of uniform and clustered patterns; their comparisons to 

random distributions; and cluster analysis were performed.  GoldExt uses the following 

dependencies: numpy, scipy, matplotlib, scikit-learn (Pedregosa et al., 2011), 

xlsxwriter, openpyxl and PyQt4 (the latter for graphical user interface (GUI), which was 

drawn using Qt Designer). GoldExt is developed, tested and ran on 64-bit Windows 

environment (Windows 10). The software is available at 

https://github.com/nusserlab/GoldExt.  
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4.9 Modelling and data analysis of spatial point patterns 

Four types of models were generated for testing different measures. First, 

models with different densities of multiple clusters within the structure delineating 

polygon (SDP) were created. Localization points were randomly distributed within 

circular areas with radii randomly chosen between 25 and 75 nm. The density of the 

clusters was either 30 µm-2 or 60 µm-2. The density of localization points was calculated 

for the whole SDP area (from 100 µm-2 to 600 µm-2 with an increment of 100 µm-2, and 

1000 µm-2) and not for the clusters. Two additional types of models were also 

implemented: ring- and T-shaped models. These shapes were hand-drawn within the 

SDPs and localization points were randomly placed within them. For the construction of 

uniform models, we first positioned localization points homogeneously on the nodes of 

a squared, triangular or hexagonal mesh. Then, we randomized the positions of all the 

localization points with a 2D Gaussian, having a covariance matrix [(122,0) (0,122)]. 

The values of the diagonal represent the experimentally constrained variance of the x 

and y coordinates (in nm, Lőrincz et al., 2002). All models were constructed as a 

Poisson hardcore process within the above-defined constraints having an inhibition 

radius of 10 nm (i.e. any two localization points cannot be closer to each other than 10 

nm). We categorize the distribution of a point pattern clustered if it is neither random 

nor uniform. 

The following four distance-based measures were implemented to compare 

experimental data or artificially generated distributions to random distributions: nearest 

neighbour distance, all-to-all distance, distance from the centre of gravity of localization 

points, distance from the nearest edge of the SDP. Once these values were calculated for 

every localization point, their mean was compared to the mean values of random 

distributions (200 random distributions per SDP). For individual SDP level 

comparisons, we considered a localization point distribution different from random, if 

the mean value of the artificially generated model data was smaller than the 2.5% or 

larger than the 97.5% of that of the random data (corresponding to 5% significance 

level). An error rate was calculated as the percentage of SDPs that were not found to be 

different from their corresponding random distributions.  

An additional, more complex measure was also implemented. A spatial 

autocorrelation function (sometimes referred to as pair autocorrelation function or radial 
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distribution function), g(r), was computed based on Veatch et al., 2012. Briefly, the 

image (I) was binarized (only the pixels which contain localization points become 1, 

every other pixel has a value of 0) and an image mask (M, which has pixel values of 1 

inside the measurement area and is also padded by an equal number of zeros) was 

created for the different SDPs as the smallest rectangle containing the whole SDP. Since 

normally the AZ covers only a minor fraction of the whole image, the normalization 

constant d, which is the overall localization density of the image, was calculated within 

the mask area. Then the g(r) function was computed as follows: 

𝑔(𝑟) = !!"!!( !!"(!) !)
!!!!"!!( !!" ! !)

     (4.1). 

FFT stands for Fast Fourier Transform and FFT–1 for inverse Fast Fourier Transform. 

Because of the nature of the g(r) function, it has a value of 1 in case of random 

distributions (Veatch et al., 2012; Tang et al., 2016). In the present case, the area of M is 

slightly bigger than the SDP area, therefore the localization density d becomes a bit 

lower than the real density inside the SDP, consequently g(r) is slightly higher than 1 in 

case of the random distributions within the SDP. As all SDPs had slightly different 

shapes, and the ratios of the area of the SDP and the area of the smallest rectangle 

containing the whole SDP determines the degree of deviation from 1 in every case, the 

absolute value of the g(r) was not used. Since this deviation is equally present in both 

the data and its corresponding randomizations, once the g(r) functions were computed 

for the experimental or artificially modelled data and the random distributions, the 

average values were calculated within the first 80 nm and these averages were 

compared to each other as detailed above to assess statistical significance. In case of the 

population-wise comparisons, a simulated dataset was declared clustered or uniform, if 

its 𝑔(𝑟) values were significantly larger or smaller, respectively, than that of its 

corresponding randomizations.  

 

4.10 Clustering of spatial point patterns 

Once a given set of experimental or artificially generated data was found to be 

statistically different from random, the number of clusters within the data was 

determined. Clustering was performed with a subset of clustering algorithms 

implemented in the scikit-learn site-package (Pedregosa et al., 2011) of Python. Three 
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algorithms were built into GoldExt, namely DBSCAN (DB, Ester et al., 1996), which is 

a density-based clustering algorithm, affinity propagation (AP, Frey and Dueck, 2007) 

and mean shift method (MS, Comaniciu and Meer, 2002). We also tested our modelled 

clustered distributions with a Bayesian clustering algorithm (BC; Rubin-Delanchy et al., 

2015; Figure 5.3.6H and 5.3.7). As suggested in the original publication (Rubin-

Delanchy et al., 2015; Figure S11a, b), parameters ‘α’ and ‘pbackground’ were set to 20 

and 0.5, respectively. We also set an extra 200-200 nm from the edges of the 

investigated SDPs, which increased the adjusted Rand score (ARS; Hubert and Arabie, 

1985) of the algorithm’s output (Figure 5.3.5). For BC, we used the original code 

provided by the authors, written in R, and ran it in Python using the rpy2 site-package. 

These algorithms were chosen because the user does not have to determine the number 

of desired clusters a priori.  

To evaluate the performance of clustering algorithms on simulated datasets, we 

computed the ARS, implemented in the scikit-learn Python site package (Pedregosa et 

al., 2011). Briefly, adjusted Rand score is the Rand score (Rand, 1971) adjusted for 

chance. Given N points, X1, X2, …, Xn, and two clusterings of them, Y and Y’, with 

arbitrary number of clusters in each clustering and nij is the number of points 

simultaneously in the ith cluster of Y and the jth cluster of Y’. The similarity between Y 

and Y’ is: 

𝑐 𝑌,𝑌! =
!
! ![ !! !!"!

!
 ! ! !!"!

!
 ! ! !!"

! ]
!
!

     (4.2). 

Rand score is 0 when the two clusterings have no similarities and 1.0 for identical 

clustering.  

Out of these four clustering algorithms, DB outperformed the others when tested 

on the artificially generated multiple-cluster models (quantified by the ARS; Figure 

5.3.5 – 5.3.7) with the following user-dependent parameters: ε = 50 nm, which is the 

maximum distance between two localization points to be assigned to the same cluster 

and each cluster has to have at least 3 members (DB); a ‘preference’ value of -30 (AP); 

and a minimum number of cluster-assigned localization points of 3 (MS). 
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4.11 Statistical tests 

Statistical significance was either assessed with unpaired t test (Figure 5.2.3A) 

or  the Wilcoxon signed-rank test (Figure 5.3.3B, 5.3.3D). For multiple comparisons, 

Kruskal-Wallis test was used, followed by Mann-Whitney U test with Bonferroni 

correction (Figure 5.3.3A, 5.3.3C and Figure 5.3.4D – 5.3.4F). Data are presented as 

mean ± standard deviation (SD). Dr. Tekla Kirizs performed a subset of statistical 

comparisons. 
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5 RESULTS 

 

5.1 Subcellular HCN and leak conductance distribution in hippocampal 

CA1 pyramidal cells 

  

5.1.1 Technical outlook: dual somatic recordings to measure the impact of accurate 

pipette capacitance neutralization and bridge balance compensation 

The accuracy and limitations of any kind of techniques must be known in order 

to be able to precisely measure the quantity in question. It is always a significant 

introductory step in experimental work to have a good control over the precision of the 

applied technique. In in vitro patch-clamp electrophysiology, especially when the 

amplifier is in current clamp mode, robust measurement artefacts can be introduced 

when current is injected into the neuron held in whole-cell (WC) mode resulting from 

the injecting electrode’s access resistance (Raccess) and capacitance (Cp). It is therefore 

essential to apply accurate bridge balance (BB) compensation and Cp neutralization to 

eliminate measurement artefacts to a maximal possible extent. To this end, I thoroughly 

investigated how these parameters’ settings influence the quality of the recordings with 

dual somatic patch-clamp recordings of hippocampal neurons (Figure 5.1.1). In this 

recording configuration, two electrodes were attached to the same cell body of the 

neuron in WC configuration: one is the current-injecting electrode, the other is the 

passive, reference electrode registering the ‘true’ Vm changes in the recorded neuron 

(Figure 5.1.1A). If the two signals are overlapping, the amplifier is tuned precisely and 

the measurement artefacts are minimal (Figure 5.1.1A).  
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Figure 5.1.1 

Importance of 

accurate pipette 

capacitance 

neutralization 

and bridge 

balance 

compensation on 

the quality of in 

vitro current 

clamp recordings. 

(A) Schematic of 

the recording 

configuration (top 

left). The filled 

circle represents the cell body of a neuron with two patch-clamp electrodes attached to it in 

whole cell (WC) configuration. Current injections were delivered through the green electrode, 

the black electrode was used as a reference for passive voltage measurements. When both the 

bridge balance compensation (12 MΩ) and the pipette capacitance neutralization (6.4 pF) 

were set accurately, the voltage signals measured by both electrodes overlap in case of the 

membrane potential (Vm) changes evoked by short (3 ms, 200 pA; bottom left) and long (600 

ms, 50 pA; right) current injections. The sharp green peaks in the beginning and the end of 

the current injections are the capacitive artefacts of the injecting electrode. (B) As in (A), the 

pipette capacitance was neutralized but the bridge balance was not compensated (i.e. 

undercompensated) during the recordings. Note the difference between the registered voltage 

signals of the injecting (green) and passive (black) electrodes. If the bridge balance is 

overcompensated, the registered voltage signal of the injecting electrode would be under that 

of the passive electrode. (C) As in (A), but neither bridge balance compensation nor pipette 

capacitance neutralization was applied during the recordings. Note that the capacitive artefact 

in the beginning and in the end of the recordings is almost completely disappeared.  

 

I applied a stimulation protocol of short (3 ms, 200 pA) and long (600 ms, 50 

pA) square current pulses to the cell and registered the resulting voltage changes at both 

the injecting (shown in green) and reference (black) electrodes. If both the BB 
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compensation and Cp neutralization parameters were set precisely (12 MΩ and 6.4 pF, 

respectively), the two registered signals were almost identical (Figure 5.1.1A). It is 

noteworthy that in the beginning and the end of the current injections, the injecting 

electrode’s recorded signal has sharp, short duration peaks, which are produced by 

charging and subsequent discharging the Cp. If BB compensation is not applied on the 

recording electrode (i.e. it is set to 0 MΩ), the amplitude of the recorded signal 

compared to the true voltage changes is increased (Figure 5.1.1B). This could lead to 

massively erroneous inferences about the recorded cell’s physiological parameters (e.g. 

input resistance (Rin)). On the other hand, if the BB is overcompensated, the effect is the 

opposite: the recorded voltage signal is smaller than the ‘true’ voltage signal (data not 

shown). If neither the BB nor the Cp is set precisely (Figure 5.1.1C), the resulting 

voltage traces are similar to those shown in Figure 5.1.1B, but the rising and falling 

phases of the current injection-evoked voltage changes are slightly different (i.e. Cp 

neutralization-evoked sharp peaks are missing).  

The importance of accurate BB compensation and Cp neutralization is even more 

pronounced when the recorded structure is small (e.g. subcellular compartments of 

neurons such as dendrites, axon terminals, axonal blebs, etc.). For such recordings, 

given the lower accessibility of the desired structure due to their smaller size, the tip 

diameter of the recording electrode has to be smaller than that of the traditional 

electrodes used to patch somatic compartments of neurons, consequently its tip 

resistance (Rtip) is higher. Generally, dendritic recordings from neurons having different 

calibre dendrites (e.g. cerebellar Golgi cells having submicron-diameter dendrites 

compared to cortical L5 PCs with apical dendrites of ~2 µm in diameter) are performed 

with electrodes having Rtip between 7–18 MΩ (e.g. Stuart and Spruston, 1998; Magee, 

1998; Roth and Häusser, 2001; Bittner et al., 2012; Sun et al., 2014; Delvendahl et al., 

2015; Basu et al., 2016; Szoboszlay et al., 2016), but it could be as high as 40 – 50 MΩ 

(in vitro patch-clamp recordings from basal dendrites of cortical L5 pyramidal neurons; 

Nevian et al., 2007) while somatic electrodes are usually around 3–6 MΩ. The higher 

the Rtip of the electrode, the higher the Raccess of the recording will be (ranging from 10 

MΩ up to 200 MΩ), therefore the introduced error by the injecting electrode can also 

increase drastically. Since patching a dendrite with two pipettes (injecting and 

reference) within isopotential distance is reasonably demanding (but see Williams and 
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Mitchell, 2008; Harnett et al., 2012), finding the appropriate experimental arrangement 

for the desired measurement is quintessential.  

 

5.1.2 Dendritic nonuniformities of CA1 PCs  

One of the most intensively studied  cells in the CNS are the hippocampal CA1 

PCs. Numerous studies investigated their subcellular ion channel distributions with 

either anatomical (Lőrincz et al., 2002; Lőrincz and Nusser, 2010; Kerti et al., 2012; 

Kirizs et al., 2014) or physiological (Magee and Johnston, 1995; Hoffman et al., 1997; 

Magee, 1998) methods, which contributed largely to the mechanistic understanding of 

main output node of the hippocampus at both cellular and network levels. 

Nonuniformities in dendritic ion channel distributions were uncovered by anatomical 

and physiological experiments, although their conclusions were sometimes different 

(e.g. Kerti et al., 2012 and Hoffman et al., 1997), indicating a further need of conceptual 

and technical refinements of such investigations.  

Our idea was that instead of performing outside-outside patch-clamp recordings 

(like Hoffman et al., 1997: Kv4.2 (a subunit of the voltage-gated K+ channel family); or 

Magee, 1998: HCN) or immunohistochemistry, to combine in vitro dendritic patch-

clamp recordings with pharmacology, morphological reconstruction of the recorded 

neurons and computational modelling to reveal the subcellular distribution of ion 

channels. This multidisciplinary approach can be useful when the protein cannot be 

visualized with specific antibodies (e.g. leak K+ channels) or when the investigated 

structure is too small for accurate patch-clamp measurements (e.g. oblique dendrites of 

CA1 PCs).  

First, I performed dual soma-dendritic patch-clamp recordings from CA1 PCs in 

acute rat hippocampal slices to ensure that the nonuniformities observed in e.g. Magee, 

1998 are present in my preparation as well (Figure 5.1.2). After selecting a seemingly 

healthy dendrite in the SR of the CA1 subregion of the hippocampus, which could be 

traced back to its somatic origin, the dendrite was patched (Figure 5.1.2A, red (Davie et 

al., 2006)), and WC configuration was obtained. A second pipette (Figure 5.1.2A, blue) 

was positioned either to the soma or to the origin of the apical dendritic trunk of the 

neuron (if the soma was inaccessible because of the tight arrangement of cell bodies of 



31 
 

PCs in SP). After establishing WC configuration at the somatic site as well, an 

alternating test pulse of 5 mV at 50 Hz (seal test) was applied at one electrode while the 

other was in ‘I = 0’ mode of the amplifier (passive electrode). If the attenuated version 

of the seal test signal could be detected at the passive electrode, both electrodes were 

attached to the same neuron (which was regularly not the case).  

 
5.1.2 Dendritic nonlinearities of hippocampal CA1 pyramidal cells. 

(A) Infrared differential interference contrast (IR-DIC) image of the hippocampal CA1 

subregion of a P17 male Wistar rat. The blue lines highlight the somatic pipette at the apical 

dendritic trunk proximal to the somata of a CA1 pyramidal cell (PC) at the border of stratum 

pyramidale (SP) and stratum radiatum (SR), while the red lines represent the location of the 

dendritic pipette at ~200 µm from the cell body of the PC in the outer 2/3 of the SR. (B) 

Schematic of the experimental setup (left). Vm changes evoked by short (3 ms, ±200 pA; 

middle) and long (600 ms, ±10 pA; right) current injections delivered to the apical dendritic 

trunk of the neuron (blue traces). The propagated dendritic voltage signals were registered with 

the dendritic electrode (red traces). (C) The same stimulation protocol was applied through the 

dendritic electrode. Note that by injecting the same current into the dendrite, the evoked steady 

state voltage change (0.54 mV, red trace) is smaller than that of the soma at (0.69 mV, blue 

trace in (B)). Furthermore, the ratio of the propagated steady state voltage signal and the 

voltage change evoked locally at the injection site (ΔVpropagated/ΔVlocal) is larger in case of 

dendritic current injections (ΔVpropagated/ΔVlocal = 0.74) than when the current was injected into 

the cell body (ΔVpropagated/ΔVlocal = 0.59). These two observations are suggestive of a 

nonuniform dendritic conductance (either active or passive) distribution. The scale bar 

represents 50 µm in (A).  
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After successfully establishing dual soma-dendritic patch-clamp recordings of a 

CA1 PC in WC configuration, short (3 ms, ±200 pA) and long (600 ms, ±10 pA) current 

injections were delivered to either the somatic (Figure 5.1.2B) or dendritic (Figure 

5.1.2C) compartment of the cell and the Vm changes were monitored at both electrodes. 

Two signs of dendritic nonuniformities were observed at both somatic and dendritic Vm 

changes evoked by current injections at either site: (1) at the initial phase of the long 

pulse, a voltage dependent conductance is activated, which tries to repolarize the cell 

membrane to the resting Vm, resulting in a ‘sag’ potential (see also Figure 5.1.3) and (2) 

the asymmetric signal propagation of the long pulse in the centrifugal (soma-to-

dendrite) and centripetal (dendrite-to-soma) directions. Uniform distribution of the total 

leak conductance (passive and active conductances together) of the cell membrane 

would have two consequences: (1) injecting a square pulse current with a given 

amplitude to a relatively small dendrite would result much larger Vm deflections than 

the same current would cause at the soma due to their different impedance profiles and 

(2) the centripetal signal attenuation would be more substantial than the centrifugal (see 

Figure 5.2.1C). I observed the contrary of these two aforementioned phenomena (in 

accordance with Magee, 1998), which suggested that nonuniformities are present in the 

dendritic cell membrane of CA1 PCs (London et al., 1999).  

Figure 5.1.3 Definition of sag ratio in 

current clamp recordings. An example 

somatic current clamp recording of a 

hippocampal CA1 PC (the same as on 

Figure 5.1.2). The sag ratio is defined as 

(Sag Vm – Baseline Vm)/(Steady state Vm – 

Baseline Vm). Baseline Vm was determined by averaging the first 300 ms of the recordings, 

Steady state Vm was the average of the last 100 ms of the long (600 ms, ±10 pA) current 

injections evoked Vm changes. 

 

Since the signal attenuation in both directions is modest in control conditions in 

CA1 PCs, we reasoned that by applying a cocktail of antagonists and ion channel 

blockers to the control solution, the cell would be more compact, leading to even less 

pronounced signal attenuation along the dendrites. This prompted me to the omission of 
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the somatic electrode from the experimental arrangement for the remaining of the study 

and investigate the subcellular distribution of ion channels with a single dendritic 

electrode positioned on the recorded dendrites at different distances in the SP.  

To test the hypothesis that this combined methodological approach is capable of 

determining subcellular ion channel distributions, I first sought to validate it with an ion 

channel whose subcellular distribution in CA1 PCs has been described before: HCN 

channels (Magee, 1998; Lőrincz et al., 2002). To this end, after establishing conditions 

under which the dendritic cell membrane fulfils the criteria of passiveness (see Methods 

and Section 5.1.4), I excluded the HCN channel blocker ZD7288 from the recording 

solution to investigate HCN channels effect on dendritic membrane properties in intact 

(control) and blocked (ZD7288) conditions (see sections 5.1.4 and 5.1.6) and infer their 

distributions along the main apical dendrite of CA1 PCs.  

 

5.1.3 Stability of dendritic recordings 

 The designed approach is based on in vitro dendritic patch-clamp recordings 

with the application of pharmacological agents to block ion channels. It is therefore of 

great importance to maintain stable dendritic recordings long enough to acquire the 

voltage signal in control conditions and after drug application. I monitored the stability 

of the recordings by the Raccess of the dendritic pipette (≤ 62 MΩ) and two physiological 

parameters: the changes in sag ratio (Sag Vm – Baseline Vm)/(Steady state Vm – 

Baseline Vm; Figure 5.1.3 and Figure 5.1.4B) and normalized Rin (measured at the last 

100 ms of the long current pulse-evoked Vm responses; Figure 5.1.4A) as a function of 

time. The Raccess was carefully monitored and adjusted throughout the duration of the 

recordings, if needed. The two measured physiological parameters changed on average 

by 4.1% (normalized Rin, SD = 0.124%) and 1.3% (normalized sag ratio, SD = 0.042%), 

indicating stable recording conditions within the monitored period. The recordings were 

maintained on average for ~14 minutes, because the applied drug for blocking HCN 

channels (ZD7288) exerted its maximal effect within ~8 minutes (indicated by 

disappearance of the ‘sag’ potential and stable baseline Vm without current injections) 

and the remaining ~6 minutes were enough to acquire control and drug condition 

voltage signals.  
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 Figure 5.1.4 Two measures for 

assessing the stability of 

dendritic patch-clamp 

recordings.  

(A) The change of normalized 

input resistance (Rin) of recorded 

CA1 PC dendrites as a function 

of time. Rin was measured for both depolarizing and hyperpolarizing current injections 

evoked Vm changes. The average change after ~14 minutes from the start of the dendritic 

recording was 4.1%. (B) The same as in (A), but for normalized sag ratio. The average 

change after ~14 minutes from the start of the dendritic recording was 1.3%. Both of these 

measures indicate that the dendritic recordings were stable within the investigated time 

window.  

 

5.1.4 Rendering the dendritic cell membrane of CA1 PCs passive  

 In order to be able to model dendritic current injection-evoked Vm changes of 

hippocampal CA1 pyramidal neurons with the fewest possible variables, I included a set 

of antagonists and ion channel blockers in the ACSF to render the dendritic cell 

membrane passive. This cocktail included 3 mM kynurenic acid and 20 µM SR95531 to 

block non-N-methyl-D-aspartate (NMDA)-tpye glutamatergic and GABAA receptor 

mediated neurotransmission, respectively (to eliminate synaptic noise and therefore 

increase signal-to-noise ratio of the recordings), 50 µM Cd2+ to block voltage-gated 

Ca2+ channels, 1 µM TTX and 5 mM 4-AP to block voltage-gated Na+ and K+ channels, 

respectively and 40 µM ZD7288 to block HCN channels. 

Figure 5.1.5 

Rendering the 

dendritic cell 

membrane of 

CA1 PCs 

passive.  

(A) Dendritic current injections (1000 ms, ±30 pA) evoked membrane voltage responses of a 

CA1 PC in the presence of a cocktail of antagonists and ion channel blockers. The 
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hyperpolarizing current injection evoked voltage traces were inverted for easier comparison 

with its depolarizing counterparts. The control solution lacks the HCN channel blocker 

ZD7288, but contains 3 mM kynurenic acid, 20 µM SR95531, 50 µM Cd2+, 1 µM TTX and 5 

mM 4-AP. After perfusion of the control solution with 40 µM ZD7288, the dendritic cell 

membrane became passive (almost identical blue and orange traces without nonlinearities of 

the control traces). The baseline Vm was –65 mV. (B) Linearity curves of the recorded 

voltage traces shown in (A). The membrane shows rectification under control conditions 

(black dots), while inclusion of 40 µM ZD7288 in the control solution rendered the dendritic 

cell membrane passive (blue dots). The slopes of the linear fits were 0.87 and 1.00 for control 

and ZD7288 conditions, respectively.  

 

Acute brain slices were bathed in normal ACSF including the aforementioned 

cocktail in the recording chamber, that allowed me to record the dendritic Vm changes in 

passive conditions, i.e. for a given square pulse current injection, the cell membrane 

responded in a symmetric and linear fashion (Figure 5.1.5A, blue and orange traces). 

Linear Vm responses lack the ‘sag’ potential in ZD7288 conditions (Figure 5.1.2 and 

5.1.3). Symmetry is defined as following: the same square pulse current is injected into 

the cell with positive and negative amplitudes. Inverting the negative current injection-

evoked Vm response of the cell should overlap with that of its depolarizing counterpart. 

For a quantitative investigation of these properties, I plotted the depolarizing and 

hyperpolarizing current injection-evoked Vm responses against each other. Passiveness 

of the cell membrane is confirmed if the slope of linear regression of these curves is 

close to one (Figure 5.1.5B, blue curve).  

As described in the last paragraph of section 5.1.2, the control solution in which 

the cells were recorded lacked the HCN channel blocker ZD7288, and the same current 

was injected into the dendrite with positive and negative amplitudes (Figure 5.1.5A, 

black and grey traces). The representative example illustrates the voltage dependence of 

HCN channels.  
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5.1.5 Morphological reconstruction of recorded cells and identification of pipette 

location 

 During the in vitro electrophysiological experiments, the recorded cells were 

filled with biocytin for 3D morphological reconstruction with the Neurolucida system 

(see Methods). To determine the exact location of the recording pipette on the patched 

apical dendrites of CA1 PCs, the IR-DIC image acquired during the recordings was 

superimposed to the reconstructed morphology of the neuron (Figure 5.1.6). After 

matching the curvature of the border of SP and SR on the two images (approximate 

border is shown by red line in Figure 5.1.6), the position of the dendritic pipette could 

be determined on the dendrite (which was ~300 µm away from the somata of the 

recorded cell shown in Figure 5.1.6; pipette contour is enhanced by black lines).  

  

5.1.6 Determining the absolute position of the recording pipette on the ‘blindly’ patched 

dendritic tree of CA1 PCs. All recorded dendrites were filled with biocytin during the in 

vitro patch-clamp recordings and fixed for procession with DAB (bottom, brownish layer, see 

Methods). 3D morphological reconstruction of the whole neuron was performed with the 

Neurolucida software (middle layer, the cell is visualized with blue, red lines represent the 

borders of stratum SLM, SR and SP). Overlaying the IR-DIC image acquired during the in 

vitro patch-clamp recordings and matching curvature of the border of SP and SR provides a 

good estimate of the dendritic pipette’s location on the dendritic tree of the recorded neuron. 

The path distance between the origin of the apical dendrite and the site of the dendritic 

recording is 297 µm for the representative example. The scale bar represents 50 µm. 



37 
 

5.1.6 Modelling in vitro recorded Vm responses of individual CA1 PCs 

 Using the in vitro electrophysiological experiments and 3D morphological 

reconstructions of the recorded neurons, as the last step of the proposed combined 

approach, I sought to determine the distance-dependent subcellular distribution of HCN 

channels along the apical dendritic tree of CA1 PCs with multi-compartmental 

modelling. The 3D morphology and Vm traces of the cells were imported into the 

NEURON simulation environment to first determine the passive electrical properties 

(Rm, Cm and Ra) of individual neurons. To this end, I fitted the passive Vm responses 

(i.e. those recorded in ZD7288 conditions) of the cells with a purely passive model, 

which had a leak conductance (Gleak) inserted into the cell membrane with a uniform 

density. The equation in this case is simplified to the following: 

𝐶!
!"
!"
= 𝐼 −  𝐺!"#$(𝐸!"#$ − 𝑉)     (5.1), 

where Gleak is in reciprocal relationship with Rm (Gleak = 1/Rm), Eleak is the reversal 

potential of the Gleak (set independently for all n = 6 cells, as their recorded baseline Vm) 

and V is the actual transmembrane voltage of the dendrite and I is the total 

transmembrane current. The Ra was 150 Ω*cm for all simulations. I fitted the 

experimental data recorded in ZD7288 conditions with NEURON’s built-in Praxis 

fitting algorithms by letting Rm and Cm iterating freely to obtain the best fit of the model 

to the data (Figure 5.1.7A, grey and red traces for experimental and model data, 

respectively). The representative example on Figure 5.1.7A shows that the experimental 

data in control conditions could be fitted properly with a passive model with a Rm of 

25.3 kΩ*cm2 and Cm of 3.85 µF/cm2.  

To estimate the local conductance of HCN channels (Gh), I also fitted Gh on the 

experimental data recorded in control conditions. During this fitting procedure, the 

previously obtained values of Rm and Cm were fixed and only Gh was iterated, which 

was inserted into the model cell membrane with a uniform density. In this case, the 

equation had an extra expression compared to eq. 5.1:  

𝐶!
!"
!"
=  𝐼 − 𝐺!"#$ 𝐸!"#$ − 𝑉 − 𝐺!(𝐸! − 𝑉)     (5.2). 

Additional small amounts of holding current was injected into the model if needed to set 

baseline Vm properly, to match that of the experimental data. Gh was modified as in 
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Golding et al., 2005: Eh was –35 mV and the half activation voltage (Vhalf) was –88 mV 

(adapted from Ih measurements of Magee, 1998). The model fit was in good agreement 

with the experimental data (Figure 5.1.7A, black and orange traces for experimental and 

model data, respectively).  

Figure 5.1.7 Fitting the passive 

electrical parameters and 

conductance of HCN channels 

of individual CA1 PC 

dendrites.  

(A) Dendritic Vm responses of the 

same CA1 PC shown in Figure 

5.1.5 and 5.1.6, evoked by 

current injections (1000 ms, ±30 

pA) and their corresponding 

model fits for control and 

ZD7288 conditions. The dendritic 

recording location was 297 µm away from the cell body of the neuron and the baseline Vm 

was –65 mV. The model traces are in good agreement with the experimental data. (B–D) 

Summary data of the fitting procedure for Rm (B), Gh (C) and Cm (D) for n = 6 CA1 PC apical 

dendrites.  

 

 Fitting of six recorded and reconstructed cells revealed some interesting 

findings: the Rm of the cells shows a decrease as a function of distance from the soma 

(Figure 5.1.7B), which justified the hypothesised presence of nonuniformities in the 

Gleak distribution of the dendrites of these cells (see also section 5.1.2). Parallel with 

this, the Cm increases as a function of distance from the soma (Figure 5.1.7D). At this 

point, it has to be noted that the morphological reconstructions of the neurons do not 

include spines, which provide additional surface to the neurons. Instead of scaling 

uniformly with a spine factor of 1.5 (Golding et al., 2005), I let freely iterate the Cm 

parameter to obtain the best possible fit to experimental data. Although the value ~ 4 

µF/cm2 obtained at ~300 µm away from the soma may seem high, anatomical 

investigations of spine density along the dendrites of CA1 PCs show a considerable 
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increase of spine density from the proximal to distal SR (0.03 and 6.98 µm-2, 

respectively; Megías et al., 2001). I do not argue that accurate scaling for the increasing 

spine density in the model would uniformize the distance dependence of Cm (and to 

some extent, that of Rm as well, since the theoretical membrane time constant τm = 

Rm*Cm; Dayan and Abbott, 2001), however, for explorative investigations, I decided to 

fit these parameters to obtain the best model fit to the data. The distribution of Gh was in 

good agreement with previously reported range (1–2 pS/µm2 in perisomatic regions and 

8–10 pS/µm2 in distal dendrites (Magee, 1998)) as it also shows a distance-dependent 

increase from the cell body of the neurons towards the apical dendritic tuft (Figure 

5.1.7C). These results strengthened my hypothesis that the above detailed combined 

approach could be applied to determine subcellular distribution of ion channels.  

  

5.1.7 Simultaneous fitting of Vm responses of all recorded cells  

 After being able to fit accurately single cells individually, I next tested whether 

simultaneous fitting of six recorded cells with a single Gleak distribution is possible. In 

my initial trials, after importing all the cells and their corresponding passive recordings 

into the NEURON simulation environment, I tested two scenarios: a uniform and a 

linearly increasing Gleak configuration (based on single cell modelling results; Figure 

5.1.8). During these simulations, the total error of the six cells were minimized in order 

to find the best possible model fit to the experimental data. The representative example 

in Figure 5.1.8A shows that the linearly increasing Gleak model produced smaller error 

than its uniform counterpart (supporting the validity of the single cell modelling 

predictions; blue and green traces, respectively), but both models failed to reproduce the 

experimental data as accurately as the individually fitted ones (Figure 5.1.7A). The 

uniform models had a single parameter (Gleak) to iterate during the fitting procedure, 

while the linear models had two parameters (initial Gleak and slope of its increase as a 

function of distance). Figure 5.1.8B shows the results of the simultaneous fitting 

procedure for uniform and linear Gleak models (green and blue curves, respectively). 
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Figure 5.1.8 Simultaneous 

fitting of leak 

conductance (Gleak) on 

CA1 PC dendrites.  

(A) Vm recordings in 

ZD7288 (i.e. passive) 

conditions for the same CA1 PC apical dendrite shown in Figures 5.1.5–5.1.7. The 

experimental data was fitted simultaneously for n = 6 recorded CA1 PC dendrites with two 

models: the first had uniform Gleak distribution along the dendrites (green trace), while the 

second had a linearly increasing Gleak distribution along the dendrites as a function of distance 

from the somata of the cells (blue trace). Note that neither the uniform nor the linearly 

increasing Gleak model produced acceptable fits to the experimental data, although the error 

was somewhat smaller in case of the linear Gleak model. (B) Summary data for n = 6 CA1 PC 

apical dendrites. Black circles represent the Gleak values fitted individually for the dendrites, 

the green and blue lines are the distributions as a function of distance for uniform and linearly 

increasing Gleak models, respectively. Note that the circles dots are in reciprocal relationship 

with the ones presented in Figure 5.1.7B (Gleak = 1/Rm).  

 

 The failure of recapitulating the experimental recordings with a single Gleak 

distribution in the models could be because the CA1 PCs are heterogeneous cell 

population (superficial and deep, dorsal and ventral differences in ion channel 

expressions (Maroso et al., 2016; Malik and Johnston, 2017)). To circumvent this 

possible source of error, the next set of simulations were performed with one more 

degree of freedom, that is I let the cells have a different baseline Gleak, only the slopes 

were the same with which the Gleak increased as a function of distance from the soma of 

the neurons (Figure 5.1.9B). A similar strategy was applied in case of the Gh (Figure 

5.1.9C). In some cases, as the one depicted in Figure 5.1.9A, top, this fitting procedure 

resulted in models which could replicate the experimental data with great accuracy. 

These models are indistinguishable from the ones fitted individually (Figure 5.1.9A, 

top, blue (simultaneous fitting) and orange (individual fitting) traces). However, in 

another set of cells (n = 3), simultaneous fitting resulted in models, which could not 

reproduce the experimental data (Figure 5.1.9A, bottom, summary of the fitted 

parameters on Figure 5.1.9B (Gleak) and C (Gh)).  
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 The diversity present among hippocampal CA1 PCs could be the reason why the 

simultaneous fitting of neurons failed to recapitulate experimental results (or just to a 

limited extent). However, single cell fitting was able to accurately reproduce the 

recorded Vm responses with a Gh distribution in accordance with previous published 

data (Magee, 1998).  

Figure 5.1.9 Simultaneous fitting of Gleak 

and Gh of CA1 PC dendrites. 

(A) Two representative CA1 PC dendrites 

recorded in control conditions. 

Simultaneous fitting the voltage traces of n 

= 6 CA1 PC apical dendrites with the same 

slope of Gleak and Gh, but with different 

offsets (as seen on panels B, C) produced 

either excellent (top) or poor (bottom) 

quality model fits to experimental data 

(blue traces). The results of individual fits 

(orange trances) were superimposed as 

well for easier visual inspection of the 

quality of model fits of the different fitting 

conditions. The recording on the top is the 

same cell shown in Figures 5.1.5–5.1.8, the 

bottom one was performed at 230 µm from 

the somata of the cell at a baseline Vm of –

70 mV. (B, C) Gleak (B) and Gh (C) summary data for the models (blue traces, n = 6). Orange 

dots correspond to the results of individually fitted dendritic recordings.  
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5.2 Functional properties of dendritic gap junctions in cerebellar Golgi cells 

 

5.2.1 Characterization of passive electrical properties of GoC dendrites 

 The coupling strength of electrical connections between cerebellar GoCs is 

highly variable and decreases as a function of distance between the two coupled cells’ 

somata (Dugué et al., 2009; Vervaeke et al., 2010). However, prominent heterogeneity 

in coupling strength is also present among GoCs having similar intersomatic distances 

(Vervaeke et al., 2010). A possible explanation for this variance could be that the 

number of GJs between coupled GoCs was found to be substantially different (between 

1 and 9; Vervaeke et al., 2010).  

In this chapter, I aimed to determine the underlying mechanisms of the diversity 

observed in the electrical coupling between these inhibitory cerebellar INs. The strength 

of electrical coupling is quantifiable using the coupling coefficient (CC), which we 

determined with in vitro paired somatic patch-clamp recordings as the ratio of the post- 

and presynaptic voltage changes evoked by long (400 ms; 50 pA) current injections into 

the presynaptic cell. Since active conductances in the perisomatic region of GoCs 

(Vervaeke et al., 2012) can introduce voltage dependence in the CC (Dugué et al., 2009; 

Haas et al., 2011), the recordings were performed in the presence of a cocktail of 

antagonists and channel blockers (see Methods, referred to as passive conditions 

hereafter) rendering the GoCs’ cell membrane passive.  

In order to be able to determine the contribution of different factors (e.g. number 

of GJs between coupled cells, their distance from the cell bodies, their distribution and 

size along the dendrites) to the substantial variability observed in coupling strength 

between these neurons, we first aimed to dissect the filtering effect of GJs and 

dendrites. First, we characterized passive electrical properties (Rm, Cm, and Ra) of GoCs, 

since these parameters, together with the geometry of the cell shape the amplitude and 

waveform of postsynaptic potentials (review by Spruston, 2008). This process has been 

accomplished by in vitro two-photon targeted dual soma-dendritic patch-clamp 

recordings in passive conditions (Figure 5.2.1A; performed by Dr. Frederic Lanore in 

Prof. Angus Silver’s laboratory at University College London, London, UK) combined 



43 
 

with the morphological reconstruction of the recorded neurons (Figure 5.2.1B) and in 

silico multi-compartmental modelling, as has been described in chapter 5.1.  

 
Figure 5.2.1 Characterization of passive voltage propagation in Golgi cell (GoC) 

dendrites. 

(A) A two-photon maximum intensity projection image of an Alexa 594-filled GoC. A second 

pipette without Alexa 594 was used to simultaneously patch a dendrite (indicated by the 

cartoon). The dashed circles represent Purkinje cell somata. (B) Neurolucida reconstruction of 

the cell shown in (A) with dendrites coloured in blue and the axon in gray. The patched 

dendrite is red. The arrow indicates the site of dendritic recording. The green cross indicates a 

neighbouring dendritic branch and is present in both (A) and (B) for clarity. (C) 

Simultaneously recorded somatic (blue traces) and dendritic (red traces) voltage responses in 

the GoC shown in (A) evoked by somatic (top traces) and dendritic (bottom traces) short (left, 

± 200 pA, 2 ms) and long (right, ± 50 pA, 400 ms) current injections in the presence of a 

cocktail of antagonists and channel blockers. (D) Linearity curves from the recorded voltage 

traces shown in (C), indicating no rectification of the somatic voltage responses to short (left) 

and long (right) 

somatic current injections. The slopes of the linear fits were 0.96 for short and 1.04 for long 

pulses (identity line: red). (E, F) Summary of all control somato-dendritic recordings showing 

the normalized changes in the voltage responses to somatic (E) and dendritic (F) current 

injections as a function of distance of the dendritic pipettes from the soma. (G) Simultaneously 

recorded somatic (top, blue) and dendritic (bottom, red) voltage traces in response to somatic 

current injections from the cell shown in (A–C). The multi-compartmental model of the 
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reconstructed cell was fitted (black traces) to the experimental traces. The best fit was obtained 

with a Rm of 3.2 kΩ*cm2, a Ra of 188.9 Ω*cm, and a Cm of 3.3 µF/cm2 (Abbreviations: 

molecular layer, ml; Purkinje cell layer, pcl; and granule cell layer, gcl). The scale bars 

represent 20 µm in (A) and 50 µm in (B). 

    

Simultaneous somatic and dendritic voltage responses were recorded during 

short (2 ms, ± 200 pA) and long (400 ms, ± 50 pA) current injections (Figure 5.2.1C). 

The symmetry of the depolarizing and hyperpolarizing responses to either somatic or 

dendritic current injections indicated that the membrane was linear (Figure 5.2.1C). 

Moreover, the slopes of linear regression to short and long current injection-evoked 

voltage responses were close to one (0.96 and 1.04; Figure 5.2.1D). The steady-state 

dendritic signal attenuation was then quantified by plotting the relative changes in the 

voltage at somatic and dendritic sites as a function of distance. Unlike in CA1 PCs, 

centripetal attenuation was substantially larger than centrifugal attenuation as expected 

from the impedance mismatch between the large soma and fine dendrites (Figures 

5.2.1E and 5.2.1F). This observation also suggests a uniform Gleak distribution 

throughout the dendritic tree of these neurons.   

 To determine passive electrical properties of GoCs, we carried out post hoc LM 

reconstructions of those cells where the morphology was sufficiently preserved (Figure 

5.2.1B) and built multi-compartmental models of the recorded cells in the NEURON 

simulation environment to fit the model to the electrophysiological data. As these 

neurons fulfilled the criteria of passiveness, a single Gleak was inserted into the model 

cells’ membrane with a uniform density, since the results of dual soma-dendritic patch-

clamp recordings are consistent with a uniform distribution. I iterated freely the Rm, Cm 

and Ra parameters to obtain the best fit of the experimental data (Figure 5.2.1G), 

resulting in an Rm of 5.5 ± 2.3 kΩ*cm2, an Ra of 206 ± 81 Ω*cm and a Cm of 2.7 ± 0.7 

µF/cm2 (n = 5).  

 Because of the small calibre dendrites (often less than 1 µm in diameter) of 

GoCs, the relatively high Raccess (mean: 67 MΩ) of the dendritic recordings could 

potentially introduce additional errors of the recordings (see section 5.1.1), I only used 

the somatic current injection-evoked Vm traces during the fitting procedure to obtain 
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passive electrical parameters (Figures 5.2.1G and 5.2.2A). However, to crosscheck the 

passive electrical parameters obtained by this fitting procedure, I also used the dendritic 

current injection-evoked somatic Vm responses (Figure 5.2.2B). With the same set of 

Rm, Cm and Ra, when current is injected into the dendrite, the local voltage change of the 

model substantially underestimates the experimental data (Figure 5.2.2B, bottom), 

whereas the Vm traces recorded by the reference electrode at the soma, which is not 

prone to the error caused by the high Raccess, shows excellent agreement with the model 

(Figure 5.2.2B, top). This observation strengthened our notion, that the high Raccess 

dendritic recordings should be omitted from the fitting procedure, but the somatic 

recordings could be used as a reference to check the quality of the fit when current is 

injected into the dendrite.  

Figure 5.2.2 Validating the model fitting 

procedure of passive electrical 

parameters of GoCs.  

(A) Simultaneously recorded somatic (blue 

traces) and dendritic (red traces) voltage 

responses evoked by somatic (top traces) 

and dendritic (bottom traces) short (left, ± 

200 pA, 2 ms) and long (right, ± 50 pA, 

400 ms) current injections in the presence of a cocktail of antagonists and channel blockers. 

Green (soma) and black (dendrite) traces were produced by fitting a multi-compartmental 

model to the experimental data. (B) As in (A), but the current was injected into the dendrite. 

To model trace is in good agreement with the experimental data at the somatic site (top), but 

at the injection site, the difference is substantial (bottom, note the different scale bars). The 

large difference could be accounted for the technical difficulty of compensating the bridge 

balance of high access resistance (Raccess) recordings of small structures (in this case, Raccess 

was 112 MΩ, see also Figure 5.1.1). 

  

5.2.2 Cm measurements of GoCs  

 These values of Ra and Cm are considerably larger than those obtained from 

other neurons (Stuart and Spruston, 1998; Roth and Häusser, 2001; Norenberg et al., 

2010), suggesting that either GoC passive properties are different or that these 
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properties are influenced by the electrically coupled syncytium within which the GoCs 

are embedded (Alcami and Marty, 2013). To distinguish between these possibilities, 

GoC membrane properties were directly examined by Dr. Frederic Lanore using a 

method described by Gentet et al., 2000. As a reference, cortical L5 PCs were also 

tested and similar values were obtained (1.03 ± 0.06 µF/cm2 (n = 4) compared to 0.9 

µF/cm2 (Gentet et al., 2000) and 1.2 µF/cm2 (Larkum et al., 2009)). Repeating these 

experiments in GoCs yielded a Cm of 1.01 ± 0.12 µF/cm2 (Figure 5.2.3A; n = 6). These 

results demonstrate that the Cm of GoCs are similar to that of other central neurons.  

Figure 5.2.3 Measurement of the Cm of GoCs.	

 (A) Summary graph of the Cm of layer 5 PCs (L5 PCs, n = 4), 

cerebellar GoCs in control condition (red, n = 6), and in 25 µM 

mefloquine (blue, n = 7). (B) Relationship between apparent Cm 

and number of GJs computed from GoC syncytium models. A 

central GoC was connected to increasing numbers of GoCs with 

two GJs per connected cells. When the central cell was connected 

to nine neighbouring GoCs with 18 GJs, the apparent Cm was close 

to the single cell approximated Cm of 2.7 µF/cm2. The black open 

circles represent individual syncytia (n = 5) and the red open 

circles represent mean ± SD. * indicates unpaired t test, p = 

0.002.  

 

To examine the effect of syncytium on the ‘apparent Cm’, I simulated networks 

with 1 to 12 cells coupled to a central GoCs by two GJs, each having a conductance of 1 

nS. I fixed Cm to 1 µF/cm2 and the Rin to 120 MΩ in all GoCs based on the population 

average of control cells. Current was injected into the central neuron and the resulting 

voltage trace was recorded. Next, I determined the apparent Cm of the central neuron 

following its disconnection from the electrical syncytium by setting the GGJ to 0 nS. 

This was achieved by letting Rm and Cm values iterating freely during the fitting 

procedure until the central neuron’s voltage response matched that obtained when it was 

embedded within the syncytium. The apparent Cm increased monotonically as a function 

of GoC syncytium size and, when nine GoCs were connected to the central neuron via 

18 GJs, the apparent Cm matched the value obtained experimentally (2.7 µF/cm2, Figure 
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5.2.3B). These results demonstrate that the large apparent Cm could arise from the 

electrical coupling to the GoC syncytium and suggest that well established methods for 

estimating neuronal passive electrical properties are not directly applicable to 

electrically interconnected networks.  

 

5.2.3 Determining Ra of GoC dendrites 

 I next examined whether the presence of electrical synapses on GoC dendrites 

could also influence the estimate of Ra. To do this, I generated ten electrically coupled 

GoC syncytia, each modelled as a central cell with ten neighbouring cells coupled by 

two GJs of 1 nS each, randomly placed over the dendritic tree. I then iterated Rm, Cm 

and Ra to fit the somatic and dendritic Vm responses evoked by somatic current 

injections. Different GJ distributions resulted in a large variability in the estimate Ra 

values (Figure 5.2.4). Four GJs in the vicinity of the dendritic recording pipette resulted 

in the lowest Ra (62 Ω*cm; Figure 5.2.4B), whereas the highest Ra (318 Ω*cm) was 

obtained from a syncytium in which not a single GJ was present on the recorded 

dendrite (Figure 5.2.4C). These results illustrate that the dendritic location of GJs have a 

profound influence on the estimated Ra.  

Figure 5.2.4 Dependence of the apparent specific axial resistance on the exact locations of 

GJs.  
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(A) Top: Simultaneously recorded somatic (blue traces) and dendritic (red traces) voltage 

traces in response to somatic current injections from the cell shown below. Multi-

compartmental model of the reconstructed cell was fitted (black traces) to the experimental 

voltage traces. The best fit was obtained with a specific membrane resistance (Rm) of 3.2 

kΩ*cm2, a specific axial resistance (Ra) of 188.9 Ω*cm and a specific membrane capacitance 

(Cm) of 3.3 µF/cm2. Inset: The estimated Ra from the 10 syncytia (black open circles are 

individual syncytia; filled circle is mean ± SD) revealed that randomly distributed gap 

junctions on the dendritic tree of GoCs strongly influence the estimated Ra. The Ra estimate of 

the single cell fitting is shown in red. Bottom: Neurolucida reconstruction of the GoC. The 

dendrite targeted by the dendritic patch pipette is shown in red, the other dendrites and the 

soma are in blue, the truncated axon is in gray. The arrow indicates the location of the 

dendritic patch pipette. (B, C) Top traces are the best fits obtained with 2 syncytia (out of 10 

random syncytia) that produced the lowest (B) and highest (C) Ra estimates. GJ conductance 

(GGJ) was kept constant at 1 nS in all simulations (20 GJs, connecting 10 other cells). Dots 

indicate the locations of GJs on the dendritic tree (black dots on the red dendrite targeted by 

the dendritic patch pipette (arrow), red dots on the remaining part of the dendritic tree shown 

in blue). Scale bars: 50 µm in (A–C).  

 

	
Figure 5.2.5 Estimation of the Ra of GoC dendrites. 

(A) Neurolucida reconstruction of five recorded and biocytin filled GoCs with partially 

reconstructed axons (blue: soma and dendrites; red: patch pipette targeted dendrites; and black: 

truncated axons). Dual somato-dendritic recordings were performed in the presence of a 

cocktail of antagonists and channel blockers plus 25 µM mefloquine and 10 µM 4-AP. The 
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arrows indicate the position of the dendritic patch pipettes. (B) Somatic (top) and dendritic 

(bottom) voltage traces (red) in response to somatic current injections (100 pA, 2 ms and 20 

pA, 400 ms) recorded from the cells shown in (A). Rm, Ra, and Cm were fitted (black). (C–E) 

Values of Rm (C), Cm (D) and Ra (E) obtained from fitting models of the 5 GoCs shown in (A) 

and (B). Filled symbols are means ± SD. The scale bars represent 50 µm in (A). 

 

 Because we could not determine the exact location and strength of each GJ on 

the recorded and reconstructed GoCs, we estimated Ra following the pharmacological 

blockage of GJs with 25 µM mefloquine, (Cruikshank et al., 2004; Vervaeke et al., 

2010). Similarly to control conditions, two-photon targeted dual soma-dendritic patch-

clamp recordings were performed from GoCs (by Dr. Frederic Lanore). Five of the 

recorded cells were then post hoc reconstructed morphologically and were used for 

modelling (Figure 5.2.5A). In these models, the Rm, Cm and Ra were iterated to obtain 

the best fit to the somatically and dendritically recorded traces upon somatic current 

injections (Figure 5.2.5B), resulting in an Rm of 3.5 ± 1.6 kΩ*cm2, a Cm of 4.3 ± 1 

µF/cm2 and an Ra of 92 ± 115 Ω*cm (Figures 5.2.5C – 5.2.5E). Interestingly, even 

though the majority of Cx36 channels were blocked by mefloquine (~80%), the Cm 

estimate remained high (Figure 5.2.5D). To investigate this unexpected result, nucleated 

patch-clamp recordings were performed by Dr. Frederic Lanore from GoCs 

preincubated in 25 µM mefloquine (Figure 5.2.3B). These experiments revealed that in 

the presence of mefloquine, the Cm was 2.01 ± 0.5 µF/cm2 (n = 7), significantly higher 

than obtained under control conditions (p = 0.002, unpaired t test). This suggests that 

mefloquine binds to the membrane and increases Cm, consistent with a previous study 

showing that mefloquine indeed binds to membrane phospholipids (Chevli and Fitch, 

1982).  

 

5.2.4 Estimation of GJ plaque conductance by modelling GoC pairs embedded 

within an electrically interconnected syncytium 

 Classical methods of estimating GGJ from experimentally measured Rin and CCs 

are based on single compartmental models connected by a resistor to represent the 

electrical synapse (Bennett, 1966; Devor and Yarom, 2002; Fortier and Bagna, 2006). 
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This approach lumps together the voltage attenuation along the dendrites and through 

the GJs into a single value. To directly address their individual contributions and to 

estimate GGJ, I constructed multi-compartmental models of the reconstructed cell pairs 

(in vitro paired somatic patch-clamp recording by Dr. Frederic Lanore, post hoc LM and 

EM reconstructions by Dr. Andrea Lőrincz) using the experimentally determined GJ 

locations (Vervaeke et al., 2010 and Figure 5.2.6), Ra (92 Ω*cm, Figure 5.2.5) and Cm 

values (1 µF/cm2; Figure 5.2.4) and embedded them into two syncytia with each central 

cell being connected to ten other GoCs through 20 GJs randomly distributed on their 

dendritic tree (Figure 5.2.6A). I generated ten syncytia for the four reconstructed pairs. I 

then fitted the Rm in one of the cells to match its somatic voltage and the GGJ to obtain 

the best fit of the membrane response in the connected cell (Figures 5.2.6B and 5.2.6C). 

The sequential fitting of Rm and GGJ was iterated until their values changed by less than 

5%. This approach resulted in a mean Rm of 32 ± 7 kΩ*cm2 (Figure 5.2.6D, top) and a 

mean GGJ of 0.94 ± 0.35 nS (Figure 5.2.6D, bottom; n = 4 reconstructed GoC pairs).  
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Figure 5.2.6 

Determining 

GGJ with paired 

recordings and 

modelling of 

electrically 

coupled GoC 

networks. 

(A) Schematic 

of the modeled 

GoC syncytium 

in which the red 

and blue cells 

are embedded 

for determining 

the GGJ. (B) 

Attenuation of 

the voltage 

response from 

the somata of 

the blue to red 

cell along the dendrites and through the GJs  obtained from the modelled GoC pair. Each 

GoC was part of a syncytium (ten other GoCs were connected to the red and blue cell through 

20 GJs). The locations of the randomly distributed GJs forming the syncytium are indicated 

by black dots on the perisomatic dendrites. (C) Voltage responses to short (200 pA, 2 ms) and 

long (50 pA, 400 ms) current injections in the connected cells shown in (B). Rm and GGJ 

were iterated to obtain the best fit (black and green traces) to the recorded traces, while Cm 

and Ra were kept constant (1 µF/cm2 and 92 Ω*cm, respectively). (D) Rm (upper) and GGJ 

(lower) values obtained from simulations. For each pair, ten randomly connected  syncytia 

were created and Rm and GGJ were determined from the red to the blue and from the blue to 

the red cell, resulting in a total of 80 Rm and GGJ estimates (open circles). The filled symbols 

are means ± SD. (E) Dependence of GGJ on Ra. The small open circles indicate GGJ of ten 

random syncytia. The large open circles are means ± SD. The red circles correspond to the 

mean Ra estimate of the five GoCs shown in Figure 5.2.5 (92 Ω*cm), and the green circles 

correspond to the average Ra estimate (40 Ω*cm) of four GoCs excluding the outlier cell in 
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Figure 5.2.5E. The scale bar represents 10 µm in (B). 

 

 To determine the robustness of our estimate of GGJ, I also tested the dependence 

of GGJ on the Ra parameter using the fitting procedure detailed above (Figure 5.2.6E). 

These simulations showed that within a biologically plausible range of Ra values, GGJ 

showed a systematic, yet relatively small change. When I compared the GGJ estimates 

obtained with an Ra of 92 Ω*cm (mean of the five soma-dendritically recorded GoCs; 

Figure 5.2.5E) versus 40 Ω*cm (average Ra value of these cells without one outlier 

cell), only a 34% reduction in GGJ was found (Figure 5.2.6E, red and green symbols, 

respectively).  

  

5.2.5 Factors contributing to the variability in the strength of electrical coupling 

between cerebellar GoCs 

 Data from Vervaeke et al., 2010 and our present study establish that the number 

(1–9, CV = 0.74) and size (0.009–0.065 µm2, CV = 0.68) of GJs, as well as their 

dendritic locations (9–152 µm, CV = 0.57) are highly variable in electrically coupled 

GoCs. To estimate the relative contributions of these factors to the variability in the CC, 

I modelled GoC pairs, keeping their passive electrical parameters constant (Figure 

5.2.7). First, I randomly selected a distance from the EM identified GJ distances (51.3 ± 

29 µm, n = 58 distances from 29 GJs in 8 GoC pairs; Vervaeke et al., 2010 and our 

present study) and placed a GJ with a 1 nS conductance into a randomly selected 

dendrite of a GoC at this distance. The CC was then measured in both directions and the 

simulation was repeated ten times for each of the four GoC pairs, resulting in a mean 

coefficient of variation (CV) of the CC of 0.12 ± 0.03 (n = 8; Figure 5.2.7A). Next, I 

tested the variability in CC due to different number of GJs between GoC pairs. The 

number of GJs between the eight EM analysed GoC pairs range from one to nine, with a 

mean of 3.6 ± 2.7 (Vervaeke et al., 2010 and our present study). In these simulations, I 

placed different number of GJs (all with a GGJ of 1 nS) at ~50 µm distance from the cell 

bodies of both neurons and calculated the CC for each pair. The mean CV of the CC 

was 0.56 ± 0.03 (n = 8; Figure 5.2.7B). Finally, I tested how the variability in GGJ 
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affects variations in the CC. Here, I placed four GJs (rounded from the mean GJ number 

of the eight EM analysed GoC pair from Vervaeke et al., 2010 and our present study) at 

~ 50 µm distance from the somata on random selected dendrites (one dendrite on GJ) 

and randomly selected four GGJ values from a population that was created from the 

distribution of GJ sizes. The mean GJ size distribution was normalized to the mean GGJ, 

resulting in a distribution of GGJs that had a shape and variance of the distribution of the 

GJ areas with a mean of 0.94 nS. Ten repetitions of each simulation resulted in a mean 

CV of the CC of 0.24 ± 0.10 (n = 8; Figure 5.2.7C). Assuming that these three 

parameters are independent, CV2 should add linearly, allowing calculation of their 

contributions to the total variation in the CC. Calculating the relative contributions of 

the CV2 due to the different dendritic locations, numbers and sizes of GJs resulted in 

4%, 81% and 15% contributions, respectively.  

Figure 5.2.7 

Contribution of 

dendritic 

location, number 

and strength of 

GJs to the 

variability in the coupling coefficient estimated with modelling of GoC pairs.  

(A) Relationship between coupling coefficient (CC) and the summed dendritic locations of 

the GJs. Red line is a linear regression fit (R = -0.57, p < 0.001, Pearson’s correlation). The 

mean CV of the CCs was 0.12 ± 0.03 (n = 8). (B) Relationship between CC and the number 

of GJs between two connected GoC. Red line is a linear regression fit (R = 0.96, p < 0.001, 

Pearson’s correlation). The mean CV of the CCs was 0.56 ± 0.03 (n = 8). (C) Relationship 

between CC and the sum of the conductance from 4 GJs with different strengths (determined 

from the measured distribution of GJ plaque area). Red line is a linear regression fit (R = 

0.86, p < 0.001, Pearson’s correlation). The mean CV of the CCs was 0.24 ± 0.10 (n = 8).  
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5.3 Objective quantification of nanoscale protein distribution patterns 

 

5.3.1 Comparing different measures for distinguishing clustered patterns from 

random distributions 

 The nanoscale organizational principles of proteins in small subcellular 

compartments (e.g. AZ or postsynaptic density (PSD)) of neurons are of major interest 

of synaptic neuroscience. It has previously been shown that the distribution of voltage-

gated Ca2+ channels (VGCC) compared to Ca2+ sensors substantially influences the 

probability of vesicular release (Pr; reviewed by Eggermann et al., 2012). It has also 

been demonstrated that the Cav2.1 subunit of VGCCs are not randomly distributed 

within hippocampal (Althof et al., 2015; Holderith et al., 2012) and cerebellar (Indriati 

et al., 2013; Baur et al., 2015) synapses and subtle alterations in their sub-AZ 

localizations is sufficient to induce robust changes in synaptic transmission (Grauel et 

al., 2016). Similarly, in inhibitory synapses, nanoscale reorganization of gephyrin is a 

determinant of GABAergic synaptic potentiation (Pennacchietti et al., 2017). It is 

therefore of great importance to quantify the distribution (whether it is random, 

clustered or uniform) of synaptic proteins in an objective manner. These observations 

prompted me to search for appropriate metrics for such purposes.  

 To this end, I started to investigate the efficacy of five different measures in 

distinguishing clustered patterns of localization points from random distributions. 

Because many proteins have apparently clustered distributions in the PSD or the AZ 

(Althof et al., 2015; Tang et al., 2016), I generated clustered distributions of localization 

points at two different cluster densities (30 µm-2: Figure 5.3.1A; and 60 µm-2: Figure 

5.3.1B) by randomly placing circular areas (randomly selected radii within the range of 

25–75 nm) within structure delineating polygons (SDPs) and randomly distributing the 

localization points within these circular areas (referred to as ‘multiple-cluster’ 

hereafter). With a mean SDP area of ~0.1 µm2, these cluster densities resulted in an 

average of 3 or 6 clusters per SDPs. Visual inspections of hundreds of electron 

micrographs of presynaptic AZs immunolabelled for VGCCs or AZ-associated proteins 

revealed many complex labelling patterns, some of which looked like the letter T or a 

ring. To mimic such patterns, T- (Figure 5.3.1C) and ring-shaped (Figure 5.3.1D) areas 
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were drawn within the SDPs (by Dr Tekla Kirizs) and localization points were 

distributed within these areas at different densities. In all four cases, twenty SDPs with 

somewhat different shapes and sizes were used (mimicking variability of synapses), for 

which the overall density of localization points (densities are calculated for the whole 

SDP areas) were varied from 100 µm-2 to 600 µm-2, with an increment of 100 µm-2, and 

1000 µm-2, covering the range of immunogold densities for synaptic proteins as 

visualized with SDS-digested freeze-fracture replica immunolabeling (SDS-FRL; 

performed by Dr. Tekla Kirizs).  

	
Figure 5.3.1 Assessing different measures for discriminating clustered patterns of 

localization points from random distributions using Monte Carlo simulations.  

(A) Representative multiple-cluster models with localization densities ranging from 100 µm-2 

to 600 µm-2, from left to right. The cluster density is 30 µm-2. The dashed grey line delineates 

the circular areas within which localization points are placed randomly. (B) As for (A), but the 

density of the clusters is 60 µm-2. (C) Representative T-shaped models with localization 

densities ranging from 100 µm-2 to 600 µm-2, from left to right. (D) As for C, but for ring-

shaped models. (E–I) Error rates calculated from 20 models, which are individually compared 

to 200 random distributions. Models with their computed parameter of the applied measure 

<2.5% and >97.5% of that of the random distributions were considered significantly different 

from random. The error rates are plotted as a function of localization densities and are shown 

for the 5 different measures on the 4 different clustered patterns: ‘2D ACF’: 2D autocorrelation 
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function (E); ‘NND’: nearest neighbour distances (F), ‘all-to-all’: distance of all localization 

points to all other localization points (G); ‘centroid’: distance of each point from the center of 

mass of the localization points (H); ‘closest edge’: distance of each point from the closest edge 

of the structure delineating polygon (SDP, I). Scale bars represent 200 nm in (A–D). 

 

For each of the 560 models (4 patterns, 20 SDPs each, 7 different localization 

point densities), I performed Monte Carlo simulations by creating 200 corresponding 

randomizations of localization points and computed five different measures at the level 

of individual SDPs. Spatial autocorrelation function (g(r); Figure 5.3.1E; Veatch et al., 

2012) quantifies the probability of finding additional localization points at a certain 

radius (r) from a given localization point. g(r) values close to 1 indicate random 

distribution of points, (see Methods and Tang et al., 2016; Veatch et al., 2012; Figure 

5.3.2). Since the shapes of the AZs are highly variable, I did not use absolute values of 

the g(r) functions to determine the underlying distribution of the point pattern, because 

randoms can still have a different value than 1 (see Methods). To this end, I compared 

each population of models to their corresponding randomizations to determine whether 

they are clustered or not (i.e. their mean g(r) (𝑔 𝑟 ) values are higher than that of the 

randoms).  

Four distance-based measures were also probed: nearest neighbour distance 

(‘NND’, Figure 5.3.1F), all-to-all distances (‘all-to-all’, Figure 5.3.1G), the distance of 

each point from the centre of gravity of the point pattern (‘centroid’, Figure 5.3.1H) and 

the distance of each point from the closest edge of the SDP (‘closest edge’, Figure 

5.3.1I). The proportion of the 20 SDPs not identified as different from random was then 

calculated (defined as the error rate; see Methods and Figure 5.3.1). From these five 

measures, ACF and NND outperformed the others, resulting in an error rate of 0% at all 

localization point densities above 300 µm-2 in case of the multiple clusters. Their 

performance was also remarkably good for the T- and ring-shaped patterns above the 

localization point density of 400 µm-2. Taken together, these data demonstrate that both 

ACF and NND measures are ideal for distinguishing between random and clustered 

patterns at the level of individual SDP. 
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Figure 5.3.2 g(r) functions of individual models presented in Figure 1 and that of their 

corresponding random distributions (n = 200).  

(A, B) Multiple-cluster models with a localization point density of 100 µm-2 and cluster 

densities of 30 µm-2 (A) and 60 µm-2 (B). (C, D) T-shaped (C) and ring-shaped (D) models with 

a localization density of 100 µm-2. (E–H) Same as in A–D, but with a localization point density 

of 600 µm-2. At the localization point density of 100 µm-2 (A–D) the g(r) function often drops 

back to zero (i.e. the probability of finding another localization point at such distance is zero) 

with high intermittent peaks. In contrast, the g(r) function of models with higher localization 

densities (e.g. 600 µm-2; E–H) shows smaller, but more frequent peaks. In all cases, the average 

g(r) functions of random distributions are around one. Data of the random distributions are 

presented as mean ± SD. 

 

I also performed population-wise comparisons of the simulated datasets with the 

corresponding random distributions (see Methods) and found highly significant 

differences (p < 0.001, Kruskal-Wallis test followed by Mann-Whitney U post hoc test 

with Bonferroni-corrected p values) between the 𝑔 𝑟  and mean NNDs (NND) of the 

simulated data and that of the 200 random distributions even at the lowest tested 

localization point density of 100 µm-2 (Figure 5.3.3 and Table 5.3.1). I found that 

population-wise comparisons are more powerful in detecting differences at low 

localization point densities than individual SDP level analysis.  
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Figure 5.3.3 Comparison of 

multiple-cluster models with 

their corresponding 

randomizations.  

(A) Comparing NND values for 

multiple-cluster models (n = 20 

for each localization point 

density, cluster density: 30 µm-2) 

with the mean of their 

corresponding random 

distributions (n = 200 for each). 

(B) Comparison of individual 

multiple-cluster models (n = 20, 

localization density of 400 µm-2, 

filled circles in A) to their 

corresponding random distributions (from n = 200 randomizations). (C, D) As in A and B, 

respectively, but the comparison was made with 𝑔(𝑟) function. Data are presented as mean ± 

SD. Wilcoxon signed-rank test was used for statistical comparison. In A and C * indicates 

Bonferroni corrected p < 0.007. In B and D *** indicates p < 0.001. 
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Table S1. Population level statistical comparisons of simulated data with random 

distributions.  

Kruskal-Wallis test (5 independent groups) was used to test for significant differences between 

random and clustered distributions in case of the seven densities and five measures. In case of p 

< 0.05 (shown with bold), post hoc Mann-Whitney U test was applied to compare the four 

clustered distributions to the random distribution. Red indicates Bonferroni corrected p < 

0.0125. (Continued on next page.) 

		 Density 
(µm-2) 

Kruskal–
Wallis test p 

values 

Mann-Whitney U test p values 

30d cl. 60d cl. Ring T-shape 

2D
 A

C
F 

100 0.000000002 0.0000003 0.0012300 0.3104000 0.0000086 
200 0.000000000 0.0000001 0.0000001 0.0025600 0.0000001 
300 0.000000000 0.0000001 0.0000001 0.0000059 0.0000001 
400 0.000000000 0.0000001 0.0000001 0.0000012 0.0000001 
500 0.000000000 0.0000001 0.0000001 0.0000021 0.0000001 
600 0.000000000 0.0000001 0.0000001 0.0000005 0.0000001 

1000 0.000000238 0.0000001 0.0000001 0.0000003 0.0000001 

N
N

D
 

100 0.000000001 0.0000001 0.0002469 0.0029200 0.0000097 
200 0.000000000 0.0000001 0.0000001 0.0000003 0.0000001 
300 0.000000062 0.0000001 0.0000001 0.0000001 0.0000001 
400 0.000000000 0.0000001 0.0000001 0.0000001 0.0000001 
500 0.000000000 0.0000001 0.0000001 0.0000001 0.0000001 
600 0.000000000 0.0000001 0.0000001 0.0000001 0.0000001 

1000 0.000000000 0.0000001 0.0000001 0.0000001 0.0000001 

A
ll-

to
-a

ll 

100 0.000000024 0.0000230 0.0083500 0.0858500 0.0001037 
200 0.000000002 0.0000204 0.0123400 0.1404200 0.0000059 
300 0.000000002 0.0000170 0.0123400 0.1135500 0.0000067 
400 0.000000003 0.0000230 0.0192900 0.2976800 0.0000052 
500 0.000000002 0.0000181 0.0105800 0.2732900 0.0000076 
600 0.000000006 0.0000204 0.0143600 0.3234800 0.0000097 

1000 0.000000001 0.0000141 0.0128200 0.3234800 0.0000045 

C
en

tr
oi

d 

100 0.000000001 0.0000008 0.0000525 0.7149800 0.0000001 
200 0.000000001 0.0000104 0.0036400 0.2393200 0.0000016 
300 0.000000001 0.0000181 0.0071100 0.0909100 0.0000040 
400 0.000000001 0.0000230 0.0123400 0.1719300 0.0000035 
500 0.000000001 0.0000141 0.0090500 0.1264300 0.0000040 
600 0.000000003 0.0000181 0.0055600 0.2393200 0.0000035 

1000 0.000000001 0.0000181 0.0105800 0.1719300 0.0000031 
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C
lo

se
st

 e
dg

e 
100 0.000052190 0.0047000 0.0638900 0.0060400 0.1805800 
200 0.000009368 0.0039700 0.1332800 0.0065600 0.0810300 
300 0.000006415 0.0047000 0.1516500 0.0033400 0.0764300 
400 0.000020388 0.0055600 0.1636000 0.0071100 0.0531000 
500 0.000014837 0.0051200 0.0909100 0.0105800 0.0638900 
600 0.000012603 0.0083500 0.1198600 0.0055600 0.0438800 

1000 0.000015151 0.0071100 0.1135500 0.0080200 0.0294400 
	

 

5.3.2 Performance of ACF and NND measures on uniform patterns 

 ACF and NND seem to be the most powerful measures to differentiate between 

clustered patterns and random distributions at both single SDP and population levels. 

Next, I tested how these measures perform when uniform patterns need to be 

distinguished from random distributions (Figure 5.3.4). I started by simulating one of 

the most basic uniform patterns, where the localization points are generated by 

randomizing the location of the nodes of a square grid with a 2D Gaussian having a 

covariance matrix of [(122,0) (0,122)] (see Methods, Figure 5.3.4A). Motivated by the 

fact that in immunoreactions, the labelling efficiency is rarely 100%, I tested the metrics 

on uniform patterns from which 0%, 20%, 40% or 60% of the localizations points were 

randomly removed (Figure 5.3.4A; n = 20 for each ‘labelling efficiency’) and the NND 

(Figure 5.3.4B) and 𝑔(𝑟) (Figure 5.3.4C) values were then computed. My results 

revealed that the NND and 𝑔(𝑟) values were not too sensitive to decreasing the 

‘labelling efficiency’ (full pattern: NND = 36.5 nm, -60%: NND = 50.3 nm, Figure 

5.3.4B; full pattern: 𝑔(𝑟) = 0.68, -60%: 𝑔(𝑟) = 0.60, Figure 5.3.4C). Population-level 

comparison showed that NND values of the uniform patterns are significantly larger 

than those obtained from random distributions (Figure 5.3.4D) for localization point 

densities ranging from ~100 µm-2 to ~800 µm-2, irrespective whether 20%, 40% or 60% 

of the localization points were removed or not. I also obtained similar findings for 

triangular (Figure 5.3.4E) and hexagonal (Figure 5.3.4F) patterns. Furthermore, the 

NND values of the clustered distributions are consistently smaller for the entire tested 

localization point density range than those of random distributions (Figures 5.3.3A and 

5.3.3B). As described previously (Veatch et al., 2012; Tang et al., 2016) and shown in 

my simulations, the  𝑔(𝑟) values are close to 1 for random patterns and significantly 
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smaller than 1 for uniform patterns (Figure 5.3.4D–5.3.4F). For clustered patterns, the 

individual 𝑔(𝑟) values are substantially higher than 1 (Figure 5.3.3D), and when 

statistically analysed at the population level, they are significantly larger than those 

computed from random distributions (Figure 5.3.3C). 

 
Figure 5.3.4 Assessing the effectiveness of NND and ACF measures on distinguishing 

regular patterns from random distributions.  

(A) Point patterns are generated by randomizing the localization points of a regular squared 

grid (two leftmost panels, see Methods). Different labelling efficiencies are modelled by 

randomly taking away 0%, 20%, 40% and 60% (from left to right) of the localizations points. 

The 100% ‘labelling efficiency’ has an overall density of 387 µm-2. (B, C) NND (B) and 𝑔(𝑟) 

(C) values show weak dependency with the ‘labelling efficiency’. (D) Population level 

comparison of squared regular patterns (n = 20) and their corresponding randomizations with 

NND (left) and 𝑔(𝑟) (right). To cover the previously tested localization point density range, 

the initial full patterns had a density of either ~400 µm-2 (e.g. Rand in A) or ~800 µm-2. The 

point pattern distributions originating from the two full patterns are marked by the connected 

dots. (E, F) Same as in D, but for triangular (E) and hexagonal (F) patterns. The color-coding 

in B–F corresponds to the different ‘labelling efficiency’ cases as shown in A. Blue symbols 

represent random distributions. Data are presented as mean ± SD. Wilcoxon signed-rank test 

was used for statistical comparison. * indicates Bonferroni corrected p < 0.00625. Scale bar 

represents 200 nm in (A).  
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5.3.3 Performance evaluation of clustering algorithms 

After analysing the localization point distribution patterns based on the methods 

detailed above, an obvious expectation is to investigate whether clusters could be 

identified or not in clustered distributions. Numerous clustering algorithms have been 

developed, out of which I applied four, in which the number of expected clusters does 

not need to be pre-defined: DBSCAN (DB; Ester et al., 1996), affinity propagation (AP; 

Frey and Dueck, 2007), mean shift (MS; Comaniciu and Meer, 2002) and a recently 

published algorithm based on Bayesian statistics (Bayesian clustering (BC); (Rubin-

Delanchy et al., 2015). In all of these methods, however, there are user-defined 

parameters; therefore I started by exploring the parameter space using the above 

described simulated clustered distributions (Figure 5.3.5). To evaluate the performance 

of these algorithms on the aforementioned dataset of multiple-cluster models, I 

calculated the adjusted Rand score (ARS; Hubert and Arabie, 1985), which computes 

similarity measures between two clusterings element-wise. ARS values close to 0 

indicate random cluster assignments, whereas an ARS value of 1.0 indicates identical 

cluster assignments. The whole range of localization point densities of the models was 

explored, and the data at density of 400 µm-2 is highlighted (Figure 5.3.5), because that 

represents the average density of Rim1/2 and Neurexin-1α labelling (data from Dr Tekla 

Kirizs).   
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Figure 5.3.5: Exploring user-defined variables of different clustering algorithms.  

(A) DBSCAN (DB): mean adjusted Rand scores (ARS) as a function of ε (in nm), which is the 

maximum distance between two localization points to be assigned to the same cluster. Dots are 

color-coded based on the densities of the corresponding models (mean of n = 20 SDPs). The 

line highlights the localization point density of 400 µm-2. Red open symbol indicates the 

maximum mean ARS (0.94) at ε = 50 nm. The cluster density is 30 µm-2. (B) Mean adjusted 

Rand scores as a function of the ‘preference’ value of the affinity propagation (AP) clustering 

algorithm. The maximum mean ARS (0.83) occurs at ‘preference’ value of –30 (red open 

symbol). (C) The number of minimum localization points within a single cluster has relatively 

little effect on the maximum ARS (0.69 (3–5), 0.68 (6), red open symbols) using the mean shift 

(MS) clustering algorithm. Based on this finding, the same criterion (n = 3 as minimum 

localization point) was used in case of the DB method as well. (D) For Bayesian clustering 

(BC), multiple user-defined parameters are available, however, we only explored the 

dependence of the mean ARS on the x-y spatial dimensions of the region of interest (ROI), 

since the authors of the original publication (Rubin-Delanchy et al., 2015) detailed the 

dependence of the number of detected clusters on parameters ‘α’ and ‘pbackground’ (see figure 

S11a–b of the original publication), which were set to 20 and 0.5, respectively in this study as 

suggested by Rubin-Delanchy et al. (2015). In the original paper, the analyzed ROIs were 3000 

* 3000 nm. In our preparations, the ROIs were an order of magnitude smaller, so we 

systematically increased the ROI with additional distances of 0, 100, 200, 500 and 1000 nm 

outside the SDP borders to explore the dependence of ARS on the size of the ROI. We found 

that with an extra distance 100 and 200 nm, the mean ARS peaked at 0.78. 200 nm extra space 

was used for the clustering of experimental data for this algorithm. (E–H) Same as in A–D, 

with a cluster density of 60 µm-2. Note that the performance of the algorithms, excluding DB, 

drops substantially, when the cluster density in the models was doubled. 

 

Using the MS method, the ARS has a flat relationship with the minimum 

number of localization points of the cluster (Figure 5.3.5C) and therefore I applied a 

minimum number of points of three not only for the MS, but also for the DB. In 

addition to the minimum number of localization points, DB has another user-dependent 

parameter: ε, which is the maximal distance between two localization points to be 

considered in the same cluster. The ε vs. ARS curve peaked at 50 nm with a value of 

0.94 (indicating almost perfect performance) at the cluster density of 30 µm-2 (Figure 

5.3.5A), therefore I used an ε of 50 nm throughout the study. AP produced the highest 
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ARS value (0.83) at a ‘preference’ value of -30 (Figure 5.3.5B). For BC, the ARS 

heavily depends on the parameter ‘extra space’ peaking around 200 nm (Figure 5.3.5D), 

therefore I added 200 nm extra space to the edges of the SDPs. I also investigated these 

parameters in multiple-cluster models with a cluster density of 60 µm-2 (Figure 5.3.5E–

5.3.5H), and found that the performance of all algorithms, but DB, substantially 

dropped.  

 

5.3.4 Clustering of localization point patterns 

The four clustering algorithms with user-defined parameters producing highest 

ARSs were tested on simulated multiple-cluster distributions and their performances 

were compared first at a cluster density of 30 µm-2 (Figure 5.3.6). Representative 

example of the same SDP with localization point densities ranging from 100 µm-2 to 

1000 µm-2 is shown from left to right for DB, AP, MS and BC in Figure 5.3.6 with their 

corresponding ARS values (Figures 5.3.6B, 5.3.6D, 5.3.6F and 5.3.6H for DB, AP, MS 

and BC, respectively). In case of the representative example, for DB and AP, the 

performance of the clustering algorithms showed an inverted U shape; the ARS values 

were low at high and low localization point densities and peaked at localization point 

densities between 300 and 600 µm-2 (Figure 5.3.6, second and third columns). The 

performance of MS peaked at 300 µm-2 and remained high for higher localization point 

densities and the BC produced consistently high ARS throughout the whole density 

range tested (Figures 5.3.6F Figure 5.3.6H). I continued by repeating the same analysis 

on the artificial multiple-cluster models with a higher cluster density (60 µm-2; Figure 

5.3.7), with the same user-defined parameters detailed above. Here, there were more 

clusters for the same SDP areas resulting in less cluster separation. As expected, the 

performance of most clustering algorithms dropped with the exception of DB and MS at 

low localization point densities (<300 µm-2; Figures 5.3.7A and 5.3.7B). The highest 

ARS value was obtained with DB at localization point densities of 200 µm-2 (~0.8), but 

this was still considerably lower than that obtained with cluster density of 30 µm-2. 
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Figure 5.3.6 Evaluating the performance of different clustering algorithms.  

(A) Performance of DBSCAN (DB) on a modelled clustered distribution (cluster density: 30 

µm-2) with different localization point densities. Dashed grey circles demarcate the areas within 

which the localizations points were randomly distributed. Localization points are color-coded 

based on their cluster assignment (grey points represent noise). (B) Adjusted Rand scores 

(ARS) computed from 20 different SDPs. (C–H) Same as in A and B, but for the affinity 

propagation (AP; C, D), mean shift (MS; E, F), and Bayesian clustering (BC; G, H) algorithms. 

Open black symbols correspond to individual SDPs (n = 20), solid black symbols are the ARS 

values of the examples shown on the left, red symbols represent mean ± SD. Scale bars 

represent 100 nm in A, C, E and G.  
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Figure 5.3.7: Evaluating the performance of different clustering algorithms.  

(A) Adjusted Rand score (ARS) values of multiple-cluster models (n = 20, open black circles) 

as a function of localization point density for DB, AP, MS and BC. The cluster density 

throughout these simulations was 60 µm-2. (B) Mean ARS comparison between two cluster 

densities (30 µm-2: red from Figure 5.3.6B, D, F and H; 60 µm-2: blue). Note the decrease in 

clustering performance upon doubling the number of clusters. Data are presented as mean ± 

SD.	
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6 DISCUSSION 

 I have detailed the three main projects I have participated in during my Ph.D. 

studies, which are all related to a one- (Sections 5.1 and 5.2) or two-dimensional 

(Section 5.3) distribution of proteins at the subcellular (Sections 5.1 and 5.2) or sub-AZ 

(Section 5.3) levels. In Section 5.1, I aimed to develop a combined approach to 

determine subcellular ion channel distributions in CA1 PCs by performing in vitro 

dendritic patch-clamp recordings with pharmacological manipulations, morphological 

reconstruction of the recorded neurons and in silico multi-compartmental modelling.  

At first, I tested the approach with an ion channel with previously described 

subcellular distribution, the HCN channels (Magee, 1998; Lőrincz et al., 2002; Golding 

et al., 2005). In individual cells, I was able to reproduce the formerly published results 

of HCN channel density along the apical dendrite of CA1 PCs (Magee, 1998) with 

remarkably accurate model fits, indicating that both the experimental paradigm, the 

quality of the experimental data and the model fitting strategy was well designed and 

suitable for such purposes. However, at the population level, I failed to reproduce 

experimental data with simultaneous model fitting approach, which could be the 

consequence the highly heterogeneous CA1 PC cell population. A higher number of 

recording locations on neurons and a further constrained fitting procedure could solve 

this issue, indicating that the proposed method is applicable to determine subcellular ion 

channel distributions on the neuronal surface. 

 Furthermore, in a joint effort with Dr Andrea Lőrincz and Dr Frederic Lanore, 

we sought out determine the functional properties of dendritic gap junctions in an 

electrically coupled cerebellar IN network formed by GoCs (Section 5.2). During this 

project, we discovered that the size of the GJs are independent of their dendritic location 

(corresponding to a uniform distribution over the dendritic tree as a function of distance 

from the soma), however, their strengths are highly variable. With a combination of in 

vitro dual soma-dendritic and paired somatic patch-clamp recordings, LM 

reconstruction of the recorded neurons combined with EM identification of the dendritic 

location of GJs, computational modelling determined that the main factor determining 

the highly variable coupling strength among these inhibitory INs is the number of GJs 

between a coupled GoC pair. In addition, we revealed that the mean conductance of a 
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GJ plaque mediated by Cx36 is 0.94 nS, dendritic GJs have 340 Cx36 channels on 

average, from which only 18% are open at a given time point assuming a single channel 

conductance of 16 pS. These results also shed light to the fact that voltage attenuation 

through the small diameter dendrities of GoCs is more pronounced than that occuring 

through GJs.  

 My third project aimed to find, test and implement pattern recognition 

algorithms in order to quantify nanoscale protein distributions (Section 5.3). With an 

extended set of Monte Carlo simulations covering the whole density range (100 – 1000 

µm-2) of the experimental results of Dr Tekla Kirizs, it turned out that from the tested 

metrics, ACF and NND are the best performing ones at the individual synapse level. At 

the population level, these two statistics can efficiently distinguish between random, 

uniform and clustered patterns with a simple rule: if the mean NND of a given point 

pattern of a protein is smaller (or larger) than that of the corresponding random 

distributions, the sampled point pattern of the protein is clustered (or uniform). In case 

of the ACF, the opposite was true, i.e. if the mean ACF of a given point pattern of a 

protein is smaller (or larger) than that of the corresponding random distributions, the 

sampled point pattern of the protein is uniform (or clustered).  

Once a point pattern is determined to be clustered, I applied a set of clustering 

algorithms (DBSCAN, affinity propagation, mean shift, and Bayesian clustering), which 

have a common property that the number of clusters is not a parameter has to be set a 

priori. After fine tuning their user-dependent parameters on the previously mentioned 

clustered models, I observed that DBSCAN was the most efficient algorithm, with on 

average 94% correct cluster assignments, determined by the adjusted Rand score of 

twenty simulated synapses at all tested localization point densities. These algorithms 

were then applied to experimental data, which is not part of the current dissertation, but 

results can be found in Szoboszlay et al., 2017. Finally yet importantly, all of the above 

listed algorithms were implemented in an open source Python software with a user-

friendly GUI (https://github.com/nusserlab/GoldExt), which helps the potential naïve 

users to investigate their own protein of interest.  

 Determining the sub-AZ spatial distribution of different proteins could also help 

to develop and tweak computational models investigating synaptic functions such as 
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vesicle priming, vesicle docking and releasing, and the factors contributing to these 

events, which can provide experimentally testable predictions. Combining experimental 

and theoretical tools at multiple spatial scales can lead to exceptional insights to brain 

function. A simple example is how the nanoscale spatial rearrangement of protein 

molecules evoked by a biological stimulus leading to some kind of potentiation in a set 

of synapses could alter the cellular or even the network functions. It has been shown 

that GABAergic synaptic potentiation is altered by the nanoscale molecular 

reorganization of the inhibitory PSD (Pennacchietti et al., 2017). The mutual 

coenrichment of key proteins in the presynaptic AZ mediating vesicle priming and 

fusion has also been demonstrated (Tang et al., 2016), further supporting the 

significance of nanoscale protein reorganization. Determining the behaviour of a given 

protein at the nanoscale level to potentiating stimuli (e.g. high frequency spike train-

evoked clustering) could then be easily incorporated into a multi-compartmental model 

of an in vitro recorded, synaptically connected neuron pair. Instead of modelling the 

change of synaptic connections with simply increasing or decreasing vesicular release 

probability, direct evidence of molecular reorganization could be linked to synaptic 

remodelling manifested at cellular level. With the recent development and availability 

of high-performance cluster computers, computational modelling at such precision can 

bridge the gap between molecular, cellular and network functions. Such detailed and 

experimentally constrained simulations could help to identify protein-protein 

interactions or protein reorganizational rules that promote e.g. memory formation, 

information processing or development of neurodegenerative characteristics within a 

reasonably short time.  
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7 CONCLUSIONS 

To conclude, I would like to emphasize the unprecedented details and 

possibilities of the investigated phenomena provided by the combination of the applied 

techniques, i.e. in vitro physiological, pharmacological, anatomical and in silico 

computational tools. This led us to compute the mean GGJ of a GJ plaque (0.94 nS), the 

average fraction of open Cx36 channels (18%) in a GJ plaque between cerebellar GoCs, 

as well as the fact that dendritic filtering is more substantial than that of the GJs in these 

electrically coupled cerebellar INs. We also determined that the main source of the large 

variability in the coupling strength is the different number of GJs occurring between 

GoCs.  

The same technical arsenal allowed me to determine the subcellular HCN 

channel distribution along the main apical dendrite of hippocampal CA1 PCs, which is 

in accordance with previous electrophysiological (Magee, 1998) and anatomical 

(Lőrincz et al., 2002) results. However, at the population level, I failed to reproduce the 

experimental data with high quality model fits, such as those produced by fitting the 

data individually in each cell. This could be accounted for the pronounced diversity 

present in the hippocampal CA1 PC population. However, fine-tuning the fitting 

procedure or measuring from multiple locations from the same neuron (e.g. with voltage 

imaging) could improve the model quality population-wise.  

Finally, with finding, implementing and testing pattern recognition algorithms, I 

was able to quantify nanoscale distribution of point patterns (i.e. proteins). With two 

simple measures, ACF and NND, both of which are computationally efficient, I could 

distinguish random, uniform and clustered point patterns from each other. These 

observations could lead to in silico modelling investigations of synaptic functions with 

the known organizational principles of synaptically relevant proteins (such as VGCCs, 

Ca2+ sensors, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

receptors, etc.). Furthermore, these metrics, along with clustering algorithms to further 

dissect the underlying organizational principles of clustered protein distributions were 

implemented in an open source Python software to provide an integrated surface for 

proteins distribution analysis for the wider neuroscience community. 
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8 SUMMARY 

 I have been participated in three main projects during my Ph.D. studies. All 

three have a common property that a multidisciplinary approach was applied to tackle 

the questions. The first project aimed to develop a method with which the subcellular 

distribution of ion channels could be determined. It is based on in vitro dendritic patch-

clamp recordings combined with pharmacological manipulations of the ion channels of 

interest, morphological reconstruction of the recorded neurons and in silico multi-

compartmental modelling of the recorded membrane voltage responses. To validate the 

hypothesis, I tested this method against the subcellular distribution of HCN channels in 

the apical dendritic region of hippocampal CA1 pyramidal neurons. The results showed 

similar distribution as has previously been reported (Magee, 1998; Lőrincz et al., 2002), 

and the models with linearly increasing Gh were in good agreement with the 

experimental data.  

 During the second project, we determined the GJ plaque conductance (0.94 nS), 

open channel probability of a GJ plaque (18%) and the number of GJs between coupled 

GoC pairs as the main source of variability observed in coupling strength in a joint 

effort with Dr Andrea Lőrincz and Dr Frederic Lanore. We have also determined that 

signal attenuation is more severe along the dendrites than through GJs. These 

investigations implied the collective need of physiological, anatomical and 

computational tools as well. 

 A third project was about to find and test (on simulated datasets) pattern 

recognition algorithms that can objectively quantify the nanoscale distribution patterns 

of proteins. Two simple metrics, spatial autocorrelation function and the nearest 

neighbour distance distribution of the sample were able to distinguish between random, 

uniform and clustered patterns. Four clustering algorithms were also tested on clustered 

patterns to further investigate the organizational principles of the protein in question. I 

have implemented these algorithms in an open source Python software to provide an 

integrated surface for protein distribution analysis to a wider neuroscience community.  
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9 ÖSSZEFOGLALÓ 

Doktori munkám során három kutatási programba kapcsolódtam be. Mindhárom 

megegyezett abban, hogy multidiszciplináris megközelítést követeltek meg a felvetődő 

kérdések megválaszolására. Elsőként egy módszert kívántam kifejleszteni, melynek 

alkalmazásával különböző ioncsatornák sejtfelszíni eloszlását lehet meghatározni. In 

vitro túlélő patkány agyszeletben végzett, dendritikus patch-clamp elektrofiziológiai 

elvezetéseket kombinálva a megfelelő farmakológiai ágensek alkalmazásával, az 

elvezetett idegsejtek háromdimenziós morfológiai rekonstrukciójával majd a kísérleti 

membránválaszok számítógépes modellezésével sikerült hippokampális CA1 

piramissejtek HCN csatorna eloszlását meghatározni, amely összhangban volt korábban 

publikált eredményekkel (Magee, 1998; Lőrincz és mtsai., 2002). Egyedi sejtek esetén a 

modellek megfelelően leírták a kísérleti adatokat. 

 A második kutatási feladat során Dr Lőrincz Andrea és Dr Frederic Lanore 

munkatársaimmal sikerült meghatározunk kisagyi Golgi interneuronok közötti 

elektromos szinapszisok konduktanciáját (0.94 nS), ezen idegsejtek közötti elektromos 

szinapszisok csatornáinak nyitási valószínűségét (18%), valamint a Golgi sejtek közötti 

rendkívül változatos elektromos kapcsolati erősség elsődleges forrásaként azonosítottuk 

a kapcsolt idegsejtek között fellelhető elektromos szinapszisok számát. Az említett 

munkafolyamatok során élettani, anatómiai és számítógépes módszerek kombinált 

alkalmazásával nyertük eredményeinket.  

 A harmadik munkafázis során mintázatfelismerő algoritmusok kutatása és 

alkalmazása volt a feladatom abból a célból, hogy különböző szinaptikus fehérjék 

nanoskálájú szerveződését objektív módon tudjuk jellemezni. Két egyszerű eljárás, egy 

térbeli autokorrelációs függvény illetve a legközelebbi szomszédtól való távolság 

eloszlása képes volt különbséget tenni véletlenszerű, egyenletes és csoportosult 

ponteloszlások között. Négy csoportosító algoritmussal további betekintést nyerhetünk a 

csoportosult eloszlást mutató fehérjék szerveződési elveibe. Az összes kipróbált 

algoritmus egy nyílt forráskodú, Python alapú program formájában került 

megvalósításra.  
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