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Introduction 

The brain forms a complex system in its anatomical structure as 

well as its functional organization. This system is composed of 

relatively simple elements, however due to their interactions it 

becomes able to perform higher-level functions as well. On this 

basis, in recent decades the investigation of how different regions 

of the brain interact recieved ever increasing attention. Functional 

connectivity (FC) studies – aimed at describing and understanding 

connection patterns, networks and principles of organization in 

the brain – became one of the leading fields of neural science in 

a short period of time. 

Several approaches from many fields of research can be 

utilized when analyzing functional connectivity. One of the most 

widely used among those is the network theory approach that 

considers the brain as a network, where nodes represent regions 

of the brain while links represent the functional interactions, 

connections between them. These networks than can be 

characterized quantitatively through several network measures, 

which describe different topological aspects of the given network. 

Until recently, most FC studies followed a ’static 

approach’, implicitly assuming that functional connections (and 
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thus functional networks) of the brain are time invariant i.e. 

stationary. A dynamc aprroach, however – that takes into account 

the fluctuating/intermitting nature of functional cooperation 

between neuronal populations – could provide a more detailed 

and probably more realistic description of brain function. Studies 

of the latter kind investigating the dynamic functional 

connectivity (DFC) of the brain shifted into focus only recently, 

when several studies confirmed the fluctuating (instead of 

stationary) nature FC even in the resting state. Utilizing a 

dynamic network theory approach to investigate DFC would 

allow for monitoring the temporal evolution of functional brain 

network topology, thus yielding a description of the spatio-

temporal dynamics of the brain as a complex system. 

Several physiological processes – such as heart rate 

variability, ion channel kinetics or resting-state neural activity – 

were shown to express scale-free (fractal) dynamics. Such 

processes do not have a characteristic timescale, instead their 

statistical properties follow a power-law relationship with respect 

of the scale of observation. For several processes – including 

neural dynamics – the scaling itself can vary in time yielding 
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multifractal (MF) dynamics. In this case the scaling cannot be 

captured in a single but a set of scaling exponents. 

Previous studies, using methods other than dynamic graph 

theoretical analysis demonstrated the scale-free nature of DFC. 

Nonetheless, most DFC studies focus on a more detailed, time-

dependent description of network topology – e.g. identifying 

reoccurring, characteristic connectivity states – while the 

dynamics itself is characterized through simple second order 

statistical measures as the standard deviation. Therefore, these 

studies disregard the known scale-free and possible multifractal 

nature of DFC. Verifying the true multifractal nature of DFC 

would not only reveal a previously unknown aspect of brain 

function but it could provide potential new biomarkers for clinical 

studies in the future. 
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Objectives 

Although previous studies demonstrated the scale-free 

(monofractal) nature of DFC, these studies either i) ignored its 

potential multifractality, or ii) with the applied methodology the 

fluctuations of DFC appeared as strictly monofractal. A dynamic 

graph theoretical approach provides a simple, yet robust tool for 

monitoring and investigating DFC. Therefore, I set the following 

goals for my PhD studies: 

 Creating a dynamic graph theoretical analysis framework in 

order to investigate the possible multifractal nature of DFC. 

 Verify the true multifractal nature of DFC. 

 Compare different topological aspects of dynamic brain 

networks based on their (multi)fractal properties. 

 Verify the true multifractal nature of individual dynamic 

functional connections between various brain regions. 

 Explore, if individual functional connections show any 

particular spatial distribution over the cortex in their 

(multi)fractal properties.   
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Materials and methods 

Data acquisition, subjects, experimental paradigms 

In our first study 13 young, healthy volunteers (mean age 23±2 

yrs., 7 female) participated. Resting-state neural activity of the 

prefrontal cortex (PFC) was monitored for 20 minutes using 

functional near-infrared spectroscopy (fNIRS). The fNIRS 

system allowed for a 3Hz temporal resolution over 16 regions of 

the PFC. In our second study 24 young, healthy volunteers (mean 

age 24±2 yrs., 12 female) participated. We performed resting-

state electroencephalography (EEG) measurements for 5-5 

minutes in eyes open and eyes closed states. Measurements were 

carried out using a commercial Emotiv Epoc+ system (Emotiv 

Systems Inc., San Francisco, CA, USA). The device had a 

sampling frequency of 128Hz and it allowed for monitoring 

neural activity of 14 regions of the whole cortex according to the 

international 10-20 system. Both studies were approved by the 

Semmelweis University Regional and Institutional Committee of 

Science and Research Ethics and all subjects provided written 

informed consent prior to measurement.  



6 

 

Data preprocessing 

First- and second-order trends were removed from raw fNIRS 

signals. Then, a band-pass filter with cutoff frequencies of 0,01 

and 0,1Hz was applied to remove systemic periodic components. 

Finally, correlation based signal improvement (CBSI) was 

applied to simultaneously eliminate motion artefacts while also 

separate a signal component related more closely to neural 

activity. All subsequent analysis steps were done on total 

hemoglobin (HbT) signals acquired as the sum of oxygenated and 

deoxygenated hemoglobin concentrations. 

 Raw EEG signals were preprocessed using the freely 

available EEGLAB toolbox. Artefacts related to eye movement, 

blinking or other sources (e.g. muscle contraction) were removed 

using independent component analysis (ICA), then the data was 

band-pass filtered to the traditional frequency bands used in EEG 

analysis (delta, theta, alpha, beta and gamma). All subsequent 

analysis steps were performed for all frequency bands as well as 

broadband EEG data. 

Dynamic functional connectivity analysis 

Sliding window correlation (SWC) analysis was performed on 

preprocessed fNIRS data. In that, a time window (with the width 
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of 30, 45, 60, 75 and 90s) was shifted along the signal and for 

every time point, the Pearson correlation coefficient for all 

possible pairs of channels were calculated. The resulting 

connection matrices – that define a weighted, undirected dynamic 

network – were thresholded (using several values between 0,05 

and 0,7) to exclude weak, non-significant connections. Finally, 

for every time point the actual topology of the network was 

characterized through three different network measures (see 

below), yielding the network metric time series capturing the 

spatio-temporal dynamics of the PFC. 

 DFC analysis of EEG data was done using the 

Synchronization Likelihood (SL) method that captures the degree 

of synchronization between two temporal processes in a time 

resolved manner. SL is ideal for EEG analysis as it is able to 

identify non-linear relationships while it is not affected by the 

non-stationarity of the signals. Starting parameters of SL were 

tuned to match each frequency band. SL time series were 

calculated for all possible combinations of the channels and 

sorted into a dynamic connection matrix. Subsequently, network 

measures were calculated for every time point, similarly to our 

fNIRS study. 
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 In both studies, three network measures were used to 

characterize network topology, namely Density (D), Clustering 

coefficient (C) and Efficiency (E). Each of these captures a 

different, important aspect of network topology. Moreover, in our 

second study the SL time series – capturing the dynamics of 

individual functional connections between brain regions – were 

also made subject to further analysis. 

Multifractal time series analysis 

Multifractal properties of network metric time series and SL time 

series were estimated using focus-based multifractal signal 

summation conversion (FMF-SSC) method. During FMF-SSC 

analysis the standard deviation (𝜎) of the process is calculated 

along a set of different scales (𝑠) as well as generalized statistical 

moments (𝑞), yielding the unified scaling function, 𝑆𝜎(𝑞, 𝑠) =

{
1

𝑁𝑠
∑ {𝜎(𝑣, 𝑠)}𝑞𝑁𝑠

𝑣=1 }
1 𝑞⁄

. The generailzed Hurst exponent, 𝐻(𝑞) 

for every 𝑞 can be estimated form 𝑆𝜎(𝑞, 𝑠) with linear regression. 

In monofractal signals 𝐻(𝑞) is independent from 𝑞, while in the 

case of multifractality values of 𝐻(𝑞) decrease monotonously 

with increasing 𝑞. Multifractal properties of the dynamic 

functional networks and individual connections were 
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characterized with two end-point parameters, namely i) 𝐻(2), 

that is the monofractal scaling exponent, which captures global 

scaling and ii) Δ𝐻15, that is the difference between the 𝐻(𝑞) 

values acquired at a minimal (𝑞𝑚𝑖𝑛 = −15) and a maximal 

(𝑞𝑚𝑎𝑥 = 15) moment thus capturing the degree of multifractality 

(which for monofractal signals Δ𝐻15 =̃ 0). Starting parameters 

of the FMF-SSC method (𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥, range of 𝑞, number of 

different scales) were set according to the length and sampling 

rate of each time series. 

Statistical testing for true multifractality 

True multifractality of the time series were tested against 

appropriately generated surrogate datasets in three aspects: 

1. Global power-law scaling. Presence of sacale-invariance was 

verified through the power spectrum. In that, goodness-of-fit 

statistics of a power-law function on the spectrum of the original 

signals were compared to those acquired from data generated with 

known power-law spectra. 

2. Multifractality due to long-range correlations. Presence of 

long-range correlations were verified through shuffling the values 

of the original time series. If the repeated FMF-SSC analysis of 
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shuffled data yielded 𝐻(𝑞)  =̃ 0,5 (white noise), the previously 

observed multifractality was considered as a consequence of 

long-range correlations. 

3. Verifying true multifractality. Δ𝐻15 values of the original time 

series were compared to those acquired from similar, but strictly 

monofractally generated signals, excluding the possibility of 

multifractal background noise. 

Statistical analysis 

In our first study, true multifractal nature of the network metrics 

time series was verified through the three-step testing framework 

described above. MF properties of the different network measures 

were compared using repeated measures ANOVA. The possible 

effect of window size used in SWC analysis was also investigated 

using repeated measures ANOVA. 

 In our second study, true multifractality of network metric 

time series and SL time series was verified using the same testing 

framework as previously described. MF properties of dynamic 

networks were compared using two-way repeated measures 

ANOVA, taking into account the possible effect of state (eyes 

open/closed), gender (male/female) and network measure (D, C 
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and E). Spatial distribution of individual connections based on 

their multifractal properties were plotted as a network after 

standardization and described qualitatively. The spatial 

correlation between 𝐻(2) and Δ𝐻15 was also calculated.  

Results 

Multifractal DFC in the prefrontal cortex 

Over 91% of the Density and Clustering coefficient time series 

passed all three tests and qualified as true multifractals when 

analyzing DFC with 60s time window. This fraction was still over 

82% when analyzing the Efficiency time series. Similar results 

were obtained using different window sizes, therefore it could be 

stated that DFC of the prefrontal cortex express true multifractal 

dynamic in the vast majority of the cases. 

Differences between network measures 

𝐻(2) and Δ𝐻15 values of D, C and E time series showed a 

characteristic difference, in that MF parameters of C were 

significantly smaller than those of D and E (𝐻𝐷(2) > 𝐻𝐶(2) <

 𝐻𝐸(2) and Δ𝐻𝐷15 >  Δ𝐻𝐶15 <  Δ𝐻𝐸15). This pattern appeard 

independently of the threshold applied during DFC analysis. 
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Effect of window size on multifractal parameters 

Both 𝐻(2) and Δ𝐻15 of all three network measures increased 

with the applied window size, however the characteristic 

difference observed at 60s window size (D > C < E) persisted. It 

has to be noted that over 75s window size we found a saturation 

of both 𝐻(2) and Δ𝐻15. 

Multifractal DFC in the whole cortex 

We found a similarly high fraction (over 90%) of true multifractal 

time series when investigating DFC over the whole cortex with 

EEG. Similar results were found in all frequency bands, 

regardless of network measure, state and gender. 

Effect of network measure, state and gender 

Results similar to those found in our first study were found 

regarding the effect of network measure on 𝐻(2) (𝐻𝐷(2) >

𝐻𝐶(2) <  𝐻𝐸(2)) in all frequency band. When investigating 

Δ𝐻15, this charateristic difference only occurred in the delta 

band. We found significantly higher 𝐻(2) values during eyes 

closed state in the alpha and beta bands, nevertheless the state had 

no effect on Δ𝐻15. Effect of gender was mostly tendential, with 

higher values in the male group for both MF measures. 
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Multifractal dynamics of individual connections 

Over 90% of connections were found to be true multifractals in 

the delta, theta and alpha bands, however this fraction was found 

slightly lower in the higher frequency bands as well as for 

broadband EEG. 

Topology of connections regarding their MF properties 

Higher 𝐻(2) values were generally found in connections linking 

spatially and functionally proximal regions of the brain. This 

could be observed the most prominently in the frontal and 

prefrontal regions, where highest 𝐻(2) values were found. A 

similar topology appeard when investigating Δ𝐻15 of the 

connections except for the delta band, where basically the 

opposite results occurred. In that, the highest Δ𝐻15 values were 

found in connections between distant regions such as the frontal 

regions and the occipital cortex. Investigating the spatial 

correlation of 𝐻(2) and Δ𝐻15 therefore we found a strong 

anticorrelation in the delta band, while strong positive correlation 

in the rest of the frequency bands. In case of broadband EEG data 

the two multifractal parameters were independent. 
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Conclusions 

Multifractal nature of dynamic functional connectivity 

In our studies we found that resting-state dynamic functional 

connectivity of the brain (in the vast majority of cases) expresses 

multifractal dynamics. We demonstrated this phenomenon in the 

prefrontal cortex and with whole-brain measurements as well, 

with two fundamentally different imaging techniques. Moreover, 

similarly high fraction true multifractality was found in all cases 

regardless of subjective parameters (window size, threshold, 

frequency band). Thus, based on our results it can be reasonably 

assumed that multifractal dynamics is indeed a fundamental 

property of DFC. 

Strong multifractality occured when investigating the 

dynamics of individual functional connections instead of global 

network topology. Fraction of true multifractality was the highest 

in the delta, theta and alpha bands, while this fraction was slightly 

lower in the higher frequency bands. It is important to note 

however, that the sampling frequency of the EEG device used in 

the study allowed only for an imperfect reconstruction during SL 

analysis in these frequency bands, therefore the possible 

implementation of these results is certainly limited. Nevertheless 



15 

 

it could be concluded that dynamic functional networks of the 

brain – those global topology fluctuates according to MF 

dynamics – are constructed from connections that express true 

multifractal dynamics themselves. 

Multifractal properties of global network measures 

Investigating DFC in the prefrontal cortex we found that different 

global network topological measures expressed different MF 

characteristics. Comparing the MF parameters of D, C and E we 

found a characteristic pattern. In that, global (as captured in 𝐻(2)) 

and the variability of scaling property (as captured in Δ𝐻15) of 

Clustering coefficient – describing network segregation – could 

be characterized with lower values than those of Density and 

Efficiency – capturing network wiring cost and integration, 

respectively. This tendency was found the same in whole-brain 

measurements regarding 𝐻(2) in all frequency bands, however 

the same difference was found only in the delta band (0,5-4Hz) 

when investigating Δ𝐻15. Measurements performed over the 

PFC were also filtered to a low-frequency (0,01-0,1Hz) range, 

therefore it is possible that differences found in the degree of 

multifractality are only characteristic for low-frequency neural 

activity. The higher 𝐻(2) values found in the alpha and beta 
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bands during eyes closed state were also demonstrated (for a 

density-like measure) in an earlier study. Therefore our results are 

consistent with previous findings in the literature, extending their 

validity to other aspects of network topology as well (segregation 

and integration). 

Our results suggest that the brain presents itself as a 

complex system where global and local information processing 

can be characterized with different levels of complexity. This is 

well in line with previous observations where large-scale (global) 

neural activity could be characterized with scale-free ((1 𝑓𝛽⁄ -

like) dynamics, while locally the activity of neuronal populations 

became even more synchronized. 

Finally, the scale-free nautre of global connectivity 

dynamics can indicate a possible self-organized critical (SOC) 

state behind resting-state brain function. To further extend on this 

we investigated the waiting times between similar connectivity 

states and found that these show an exponential distribution. The 

dynamic connection network of the brain therefore bears two 

fundamental properties of critical systems – scale-free dynamics 

and an exponential distribution of waiting times between events 
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–, thus our results support the hypothesis that the brain is in a 

possible self-organized critical state in the resting state. 

Multifractal dynamics of individual connections 

Investigating the spatial distribution in the MF parameters of 

individual connections we found a characteristic topology, where 

strongly autocorrelated connections (i.e. with high 𝐻(2)) were 

found mostly in the frontal and prefrontal areas, while 

connections with lower autocorrelation were found between 

anatomically and functionally distant regions. A similar topology 

appeared when investigating the degree of multifractality in all 

frequency bands except for delta, where an opposite pattern 

occurred. Investigating the dependence of the two parameters – 

that is indeed not trivial, as they describe two independent 

property of (multi)fractality – we found strong correlation (or in 

the delta band, strong anticorrelation). Based on the results of an 

in silico simulation we performed in one of our previous studies, 

the positive correlation found between 𝐻(2) and Δ𝐻15 suggests 

that the self-organized critical nature can not only be captured in 

global network dynamics, but in individual connections as well. 

Moreover, in case of strong correlation between 𝐻(2) and Δ𝐻15, 

higher values are produced by larger SOC systems. This is further 
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supported by the fact that 𝐻(2) values represent the relative 

dominance of slow oscillations, that can only produced by larger 

neuronal populations. On this basis our results are well grounded 

from a physiological perspective as well, as the highest 𝐻(2) and 

Δ𝐻15 values were found in the prefrontal and frontal areas, that 

is known as the highest level association cortex and is very 

densely connected both anatomically and functionally, making it 

able to perform higher-order functions. Implementing results 

found in the delta band requires further investigation. 

In summary, based on the results of the two studies 

described previously I could draw the following conclusions: 

 The dynamic functional connectivity of the prefrontal cortex 

expresses true multifractal spatio-temporal dynamics as 

captured in global network measures, namely Density, 

Clustering coefficient and Efficiency. 

 Various topological aspects of the functional network of the 

PFC – as captured in D, C and E – can be characterized with 

different multifractal properties. 

 The dynamic connection network of the PFC shows the 

characteristics of a self-organized critical system. 
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 DFC express true multifractal dynamics not only in the PFC 

but over the whole cortex as demonstrated by EEG 

measurements. 

 The difference in MF characteristics found between various 

network topological aspects in the PFC appeared similar in 

networks of the whole cortex. 

 In the alpha and beta bands, DFC can be characterized with 

higher 𝐻(2) values of D, C and E during eyes closed state. 

 Individual connections linking various regions of the brain 

show not only mono-, but indeed true multifractal nature. This 

property holds especially well for connections of the lower 

frequency bands (delta, theta and alpha). 

 Individual functional connections show a characteristic 

topology in their multifractal properties. 

  



20 

 

List of publications 

 

Publications related to the theme of the PhD thesis: 

 Racz, F.S., Mukli, P., Nagy, Z., and Eke, A. (2018) 

Multifractal dynamics of resting-state functional 

connectivity in the prefrontal cortex. Physiol Meas. IF: 

2,006 

 Racz, F.S., Stylianou, O., Mukli, P., Eke, A. (2018) 

Multifractal dynamic functional connectivity in the 

resting-state brain. Front Physiol 9. IF: 3,394 

 

Publications unrelated to the PhD thesis: 

 Racz, F.S., Mukli, P., Nagy, Z., and Eke, A. (2017) 

Increased prefrontal cortex connectivity during cognitive 

challenge assessed by fNIRS imaging. Biomed Opt 

Express 8(8), 3842-3855. IF: 3,344 

 Mukli, P., Nagy, Z., Racz, F.S., Herman, P., Eke, A. 

(2018) Impact of Healthy Aging on Multifractal 

Hemodynamic Fluctuations in the Human Prefrontal 

Cortex. Frontiers in Physiology 9. IF: 3,394 


