A titin óriásfehérje nanomechanikája

Doktori tézisek

Mártonfalvi Zsolt

Semmelweis Egyetem Elméleti Orvostudományok Doktori Iskola

Témavezető: Dr. Kellermayer Miklós egyetemi tanár, D.Sc.

Hivatalos bírálók: Dr. Geiszt Miklós egyetemi docens, D.Sc. Dr. Kovács Mihály, tudományos főmunkatárs, D.Sc.

Szigorlati bizottság elnöke: Dr. Röhlich Pál professor emeritus, D.Sc. Szigorlati bizottság tagjai: Dr. Vonderviszt Ferenc egyetemi tanár, D.Sc. Dr. Benyó Zoltán egyetemi tanár, D.Sc.

Budapest 2014

Bevezetés

A titin a harántcsíkolt izom szarkomer felét áthidaló óriásfehérje amely a Z-csíktól az Mcsíkig húzódva egy harmadik filamentum rendszert alkot a vékony és vastag filamentumok mellett. A titin elsősorban a harántcsíkolt izom passzív rugalmasságának kialakításáért felelős, azonban újabb megfigyelések szerint a szarkomer szerkezeti organizátoraként és erőszenzorként is működik. A jelenlegi elképzelések szerint csak a molekula I-szakaszbeli része nyúlik funkcionálisan, így ez felelős a fiziológiás szarkomer rugalmasságért. Ez a szakasz szerkezetét tekintve sorba kapcsolt globuláris domének ismétlődéséből, továbbá egyedi szekvenciákból, a PEVK, N2A és N2B doménekből épül fel. A legfontosabb egyedi szekvencia a PEVK domén, mely nevét a prolin (P), glutamát (E), valin (V) és lizin (K) aminosavak gyakori előfordulásáról kapta. A PEVK domén másodlagos és harmadlagos szerkezete csak kevéssé ismert, így tisztázásra vár még, hogy a PEVK domén esetleges szerkezetei milyen hatással vannak annak rugalmasságára és szerepet játszanak-e a titin és ezen keresztül a harántcsíkolt izom passzív mechanikájában. Az egyes izomszövetekben, alternatív splicing révén igen eltérő hosszúságú titin izoformák fejeződnek ki. Az alternatív splicingban leginkább érintett a proximális Ig-régió és a PEVK domén. Míg a m. soleus izoforma 2174 aminosav hosszúságú PEVK doménnel rendelkezik, a szívizom izoforma mindössze 163 aminosavas PEVK domént tartalmaz.

A titin *in situ* megnyúlásának jelenleg elfogadott modellje szerint a molekula egyes szakaszai eltérő rugalmasságuk miatt erő hatására hierarchikus sorrendben nyúlnak meg. A szarkomer nyújtása során az egyes szakaszok rugalmas elemként megnyúlnak és kiegyenesednek, azonban vitatott, hogy a fiziológiásnak tekintett 0-40 pN/titin erőtartományban bármilyen szerkezeti átmenet vagy domén kitekeredés fellép-e vagy sem.

A titin szarkomerikus elhelyezkedése felveteti annak lehetőségét, hogy az izomrostok erő és megnyúlás érzékelőjeként egy mechanoszenzor funkciót lásson el. Az izomrostok mechanikai állapotának titinen keresztüli érzékelése megköveteli, hogy a molekula valamilyen módon tükrözze a szarkomert ért tér- és időbeli mechanikai behatásokat. Emellett mechanoszenzor szereppel bírhat a titin C-terminális kináz doménje, amelynek ATP kötő zsebe erő hatására felnyílik, így fontos szerepet játszhat a mechanikai hatások jelátviteli utakra csatolásában.

Célkitűzések

Munkánk során a titinmolekula erőhatásra bekövetkező szerkezeti változásait kívántuk vizsgálni, különös tekintettel arra, hogy az élettanilag releváns erőknél a molekula mely szerkezeti elemeiben történik változás. Legfőbb kérdéseink a következők voltak: (i) Létrejönnek-e szerkezeti változások a titinmolekulában élettanilag releváns erőhatásokra? (ii) Ha igen, a molekula mely szerkezeti elemei felelősek ezekért? (iii) Hogyan befolyásolják a szarkomerikus mechanikai paraméterek a titinben külső erőhatásra létrajövő szerkezetváltozásokat? (iv) Kimutathatóak-e a nyújtási szerkezetváltozások a molekulában?

Ezek alapján célul tűztük ki:

- 1. Egyedi natív titinmolekulák izolálását nyúl *m. longissimus dorsi* vázizom mintából és szívizomból, majd a minta minőségének ellenőrzését.
- Egyedi natív titinmolekulák nyújtását lézercsipesszel, különös tekintettel az alacsony, élettanilag releváns erőtartományra.
- 3. Az élettani erőtartományban jelentkező nyújtási átmenetek jellemzését.
- 4. Az átmenetek hátterében álló titin szerkezetek feltérképezését.
- 5. Az erőhatásra bekövetkező szerkezetváltozások dinamikai vizsgálatát.
- Egyedi natív titinmolekulák megnyújtását és felületre fésülését visszahúzódó folyadék meniszkusz technikával.
- 7. Felületre fésült, megnyújtott titinmolekulák topográfiai analízisét.

Módszerek

Titinmolekulák izolálása

Natív titinmolekulák izolálása a munkacsoportunk által korábban kidolgozott protokoll szerint történt. A kísérleteinkben használt titin fehérjét nyúlból (*Oryctolagus cuniculus, New Zealand White*) izoláltuk. A kísérleti állatok tartása és leölése az Állatkísérleti Tudományos Etikai Tanács XIV-I-001/29-7/2012 számú engedélye alapján és az abban meghatározott feltételek szerint történt.

Titinmolekulák nyújtása lézercsipesszel

Kísérleteinkben az egyedi, natív titin molekulákat a Z-csík felőli végükön egy a proximális I-szakasz szekvenciára specifikus IgG típusú antitesttel (T12 antitest) ragadtuk meg, míg a molekula másik végét aspecifikusan, a Sulpho-SANPAH fotoreaktív keresztkötő, vagy egyes esetekben PEVK domén specifikus ellenanyag (9D10 antitest) segítségével kapcsoltuk a gyöngyhöz (**1.** ábra).

A kísérlet kezdeteként először a mikropipettához szippantott gyöngyöt hozzáérintjük a csapdázott, titin borítású gyöngyhöz. Ilyenkor a fotoreaktív mikrogyöngyök felszínéhez kötött sulpho-SANPAH keresztkötő fotoaktiválódik. Az így megragadott molekulát a pipetta gyöngy mozgatásával állandó sebességű nyújtási és erő-visszacsatolt üzemmódú mechanikai kísérletekben manipuláltuk. A kísérletben használt puffer összetétele: 25 mM Imidazol-HCl, pH: 7.4, 0.2 M KCl, 4 mM MgCl₂, 1 mM EGTA, 1 mM DTT, 0.01% NaN₃

Titinmolekulák nyújtása folyadék meniszkusszal

Egyedi titinmolekulák nyújtási szerkezetváltozásainak vizsgálatára a korábban kifejlesztett visszahúzódó meniszkusz módszert használtuk, melynek eredményeképpen túlnyújtott molekulák adszorbeálhatók egy szubsztrát felületre és így AFM-el vizsgálhatók. A módszer lényege, hogy egy titint tartalmazó folyadékcseppet cseppentünk egy csillám felületre, majd azonnal nagy sebességgel centrifugáljuk. Ahogy a folyadékcsepp a centrifugálás hatására lefut a felületről, a visszahúzódó folyadék-gáz határfelületi meniszkusz az oldatból részlegesen letapadt molekulákat megnyújtja és egyben kifésüli a felszínre (**2.** ábra). A kísérletben használt puffer összetétele: 50 % glicerin, 10 mM K-foszfát pH 7.4, 140 mM NaCl, 1M Urea, 0.02 % NaN₃.

2. ábra Titin nyújtása visszahúzódó folyadék meniszkusszal. **A kép:** A titinmolekula egyik végével (tipikusan Mcsík vég) letapad a csillám felszínre és a centrifugális erő (F_c) hatására visszahúzódó folyadékcsepp határréteg megnyújtja. **B kép:** A csepp mozgása közben a felületi feszültséggel és a molekula kerületével arányos erő (F_i) nyújtja a molekulát mielőtt az a felületre kitapadna. A felületi erővel ellentétes irányú rugalmas erő ébred a fehérjeláncban.

Az így felületre fésült molekulák topográfiáját nagy felbontású pásztázó atomerő mikroszkóppal vizsgáltuk (Cypher, Asylum Reasearch).

Eredmények

Kísérleteinkben nyúl hát- és szívizomból izolált egyedi titin molekulákat manipuláltunk lézercsipesszel, annak érdekében, hogy vizsgáljuk a molekula külső erőhatásra bekövetkező szerkezeti változásait élettanilag releváns idő és erőskálán. A fiziológiás körülmények között egyetlen titinmolekulára ható erő értékére pontos mérések nem, csak extrapolációk állnak rendelkezésre. Mivel az irodalmi becslések az *in situ* egyetlen titinre ható erőtartomány felső határát mintegy 5-20 pN-ra becsülik, kísérleteinkben elsősorban a titin nyújtási görbéjén az alacsony erőknél jelentkező szerkezeti átalakulásokat kívántuk vizsgálni. Ezek az alacsony erőknél jelentkező erő–megnyúlás-átmenetek hasonlóak a már korábbról ismert globuláris domén–kitekeredési eseményekhez, vagyis fűrészfogszerű átmenetként jelentkeznek az erő–megnyúlás-görbe felfutó szakaszán (**3. ábra**).

3. ábra Harántcsíkolt izomból izolált egyedi titinmolekula nyújtás-visszaengedési ciklusa során felvett erő– megnyúlás-diagram. A nyilak az alacsony erőknél jelentkező túlnyúlási átmeneteket mutatják. A betétábra mutatja a kísérletben alkalmazott mechanikai protokollt (Δx : piezo elmozdulás).

Ilyen átmenetek már tipikusan 10 pN erőnél észlelhetők és az erő növekedésével folyamatosan követik egymást a nyújtási görbén. A visszaengedési görbe ezzel szemben, alacsony erőtartományban is. mindig diszkrét átmenetektől mentes. А kontúrhossznövekmények méréséhez a "wormlike chain" polimer modell egyenletét illesztettük a fűrészfogak felszálló szakaszára. A szomszédos erőátmenetek illesztéséből kontúrhossz értékek különbsége az egyes szerkezeti kapott átmenethez tartozó kontúrhossznövekményeket adja. A kontúrhossznövekmények a hozzájuk tartozó tranzíciós erők függvényében két nagy csoportra oszthatók alacsony ($F \le 40$ pN) és magas (F > 40 pN) erőtartomány szerint. Vázizom titin izoforma esetében az alacsony erőknél a kontúrhossznövekmény eloszlása szélesebb, tíztől egészen a több száz nanométerig is találhatók értékek (**4. ábra**). Ezzel szemben a 40 pN feletti átmenetek viszont egyenletes, ~30 nm-es lépésekben növelik a molekulahosszt. Szívizom izoforma esetén az alacsony erők

4. ábra Titin izoformák nyújtási kontúrhossznövekményei a tranzíciós erő függvényében. A jobb oldali ábrarész a kontúrhossznövekmény-hisztogramot mutatja a teljes vizsgált erőtartományban **A**: Vázizom izoformán mért értékek. A betét ábra a 40 pN alatti erőknél mért kontúrhossznövekmény-hisztogramot mutatja. **B**: Szívizom izoformán mért értékek.

esetén mért kontúrhossznövekmények jóval keskenyebb tartományban oszlanak el, azok nem haladják meg a 80 nm-es értéket (**4. ábra**). Feltehetően a különbséget a két izoforma eltérő hosszúságú PEVK doménje okozza. Ennek további vizsgálatára olyan kísérleteket végzetünk, melyekben specifikus ellenanyaggal inaktiváltuk a teljes PEVK domént (9D10 antitest). Ezekben a kísérletekben T12 és 9D10 antitesttel borított mikrogyöngyökkel ragadtuk meg és manipuláltuk a titinmolekulát, így csak a két antitest által felismert epitóp régiók (I12 és PEVK domén) közötti proximális tandem Ig és N2A molekulaszakaszt vizsgáltuk. Ez alapján

5. ábra Titin nyújtása T12 és 9D10 antitest borítású mikrogyöngyökön keresztül. A két egymást követő nyújtásvisszaengedési ciklus között 10 másodperc a várakozási idő.

a nyújtási görbén 40 pN alatt jelentkező erőátmenetek kizárólag Ig-domén kitekeredés következményei. Megfigyelhető, hogy három domén az egymást követő ciklusokban konzisztensen 40 pN erő alatt tekeredett ki. A ciklusok közé iktatott tíz másodperc várakozás hatására az erő hiszterézis teljesen visszaépült.

Ahhoz, hogy az alacsony erőtartományban lezajló szerkezeti átmenetek kinetikáját vizsgáljuk, szükséges a két változó mechanikai paraméter (erő és megnyúlás) közül az egyiket rögzíteni. Ehhez erővisszacsatolt üzemmódban végeztünk méréseket, amelyben az erőt állandó értéken tartva csak a molekula megnyúlása változik. Ilyen mérésekben meghatározható az adott erőknél végbemenő szerkezeti változások sebességi állandója. különböző erőknél végeztünk erővisszacsatolt módban nyújtási kísérleteket (**6. ábra**). A titin már 7 pN erővel feszítve is folyamatosan nyúlik, bár diszkrét nyújtási lépcsők még nem figyelhetők meg a másodperces időskálán, azok csak 10 pN feletti erőknél jelentkeznek. Az így kapott vég–vég-hosszváltozás görbéket kettős exponenciális függvénnyel illesztettük és az illesztésből kapott sebességi állandókat a nyújtási erő függvényében ábrázoltuk (**6. ábra**). A kettős exponenciális illesztésből egy lassú (mechanikailag stabilabb) és egy gyors (mechanikailag kevésbé stabil) komponensre jellemző időállandót (*k*) kaptunk minden vizsgált nyújtási erőnél.

6. ábra Titin nyújtása erővisszacsatolt lézercsipesszel. **A ábra:** Különböző erőkkel nyújtott titin molekulák megnyúlása és az arra illesztett kettős exponenciális függvények. **B ábra:** Az illesztésekből kapott sebességi állandók a nyújtási erő függvényében és az illesztett Bell-modell függvénye. Piros: gyors komponens, kék: lassú komponens.

Az egyenlet illesztésével megkapjuk az adott szerkezeti átalakulás 0 erőre extrapolált, vagyis spontán sebességi állandóját (k_0) illetve a szerkezeti átalakuláshoz szükséges tranzíciós hosszt (Δx). Méréseinkben az $F \le 40$ pN erőtartományban a gyors komponensre $k_0 = 0.044$ s⁻¹, $\Delta x = 0.36$ nm, míg a lassú komponensre $k_0 = 0.013$ s⁻¹, $\Delta x = 0.18$ nm értékeket számoltunk.

A titinmolekula 40 pN erő alatt jelentkező szerkezeti átalakulásairól feltételezhető, hogy *in vivo* körülmények között is lezajlanak. Ahhoz, hogy a potenciális élettani jelentőségét vizsgáljuk ezeknek az átmeneteknek, komplex nyújtás-visszaengedési kísérleteket végeztünk. Ezekből a kísérletekből azt akartuk megtudni, hogy az egy nyújtási ciklusban lezajlott szerkezeti átalakulások hogyan befolyásolják a titin mechanikai viselkedését egy következő nyújtás során. A repetitív ciklusokban nyújtott titin hiszterézis visszaépülését vizsgálva, olyan kísérleteket végeztünk, melyekben két, egymást szünet nélkül követő nyújtási ciklus után adott várakozás elteltével egy harmadik próbanyújtást is végeztünk (**7. ábra**). Az hiszterézis a ciklusok közé iktatott várakozás hosszával arányos mértékben visszaépült, tehát a hiszterézis visszaépülésének mértéke annál nagyobb, minél több időt tölt a molekula a megrövidült állapotban. Vagyis elmondható, hogy a megrövidült állapotban eltöltött idő meghatározza a következő ciklus nyújtási átmeneteinek mintázatát.

7. ábra A relaxált konformációban töltött várakozási idő hatása a titin mechanikai fáradásra. A betétábrán a molekula vég-vég hosszának (Δz) változása látható a kísérlet ideje alatt. Fekete: Azonnali egymás utáni két nyújtás-visszaengedési ciklus, majd várakozás a kezdeti megnyúlás értéken. Piros: A várakozást követő próba nyújtás-visszaengedési ciklus. A számok az egyes mechanikai ciklusok sorrendjét mutatják. A kísérletekben a relaxált konformációban töltött várakozási idő 10 másodperc.

Annak vizsgálatára, hogy megrövidülés mértéke milyen módon befolyásolja a titin mechanikai fáradását, a megnyújtott molekulákat csak részlegesen engedtük rövidülni (**8.** ábra). Az egyedi vázizom titin molekulákat először állandó, 250 nm/s nyújtási sebességgel 2.8 µm-ig nyújtottuk, majd hirtelen, pillanatszerű ugrással 743 nm vég-vég hosszra visszaengedtük 20 másodpercig. Ezután ismételt próbanyújtást végeztünk, hogy vizsgáljuk a hiszterézis visszaépülés mértékét. Ahogy egyre hosszabb megnyújtásnál relaxáljuk a molekulát, a hiszterézis visszaépülés mértéke egyre csökken és a második nyújtási görbe egyre inkább a hosszabb megnyúlás értékek felé tolódik. Megállapítható, hogy az alacsony erőknél jelentkező szerkezeti átmenetek csak akkor képesek regenerálódni, ha a titint elegendően rövid vég-vég hossz értékre engedjük vissza.

8. ábra A megrövidülés mértékének hatása a titin mechanikai fáradására. Fekete: első nyújtás, piros: második nyújtás; a két nyújtás között 20 másodpercig 743 nm vég-vég hossz értéken relaxál a molekula. A betétábrákon a molekula vég-vég hosszának (∆z) változása látható a kísérlet ideje alatt.

A titinmolekula itt bemutatott mechanikai előzményfüggő szerkezet változásai akkor tölthetnek be valós mechanoszenzor funkciót, amennyiben az információ a titinről jelátviteli útvonalakhoz csatolt. Elképzelhető, hogy az alacsony erőknél végbemenő szerkezeti átalakulások megváltoztatják a molekula foszforilációs és ligandkötő helyeinek kitettségét. Az ilyen mechanizmus kulcsfontosságú lehet a szarkomert ért mechanikai szignálok jelátviteli utakhoz kapcsolásában.

A titin nyújtási szerkezetváltozásainak további vizsgálatához egyedi molekulákat nyújtottunk meg visszahúzódó folyadékmeniszkusszal. A túlnyúlt molekulákról atomerő mikroszkóppal készítettünk nagy felbontású felvételeket, melyek alapján topográfiai analízist végeztünk. A túlnyújtott molekulákról felvett magasságprofilokban repetitív globuláris struktúrák és hézagok egyaránt azonosíthatók . A globuláris struktúrák a titin Ig és Fn típusú doménjei, míg a hézagok a globuláris domének erőhatásra kitekert megfelelői. Topográfiai analízissel kimutattuk a molekula N-terminálisa közelében található kitekert kináz domént. Ez a konzisztensen kimutatható megnyúlt molekulaszakasz alátámasztja a felvetést, miszerint a az N-terminális β-láncainak erőhatásra történő kitekeredése titin kináz fontos szerkezetváltozási folyamat a mechanoszenzoros folyamatokban.

9. ábra Folyadékmeniszkusszal túlnyújtott titin molekulák topográfiai analízise. Hézagok a túlnyújtott molekulában (H). A nyíl a meniszkusz haladási irányát mutatja. **Betétábra:** A kontúrhézagok finomszerkezete. A nyilak finom filamentáris struktúrára mutatnak a hézagokban.

Következtetések

A titin alacsony erőknél jelentkező nyújtási átmenetei

A titinmolekula nyújtási erőgörbéjén erőátmenetek azonosíthatók már egészen alacsony, 5 pN-os erőktől kezdődően. Az alacsony erőtartományban (F < 40 pN) jelentkező átmenetek lépésekben növelik a molekula kontúrhosszát, melyek hátterében a molekula erőhatásra bekövetkező szerkezetváltozásai szerepelnek. Az átmenetekhez tartozó kontúrhossznövekmények eloszlásából arra következtetünk, hogy közelítőleg 30 nm-es kontúrhossznövekményeket okozó globuláris domén kitekeredés mellett egy másik szerkezetváltozási folyamat is lejátszódik, mely során jóval nagyobb mértékben nő a molekula kontúrhossza (50-400 nm).

Az ionerősség csökkentésének hatására csökken ezen hosszabb kontúrhossznövekménnyel járó átmenetek elfordulása, amit a polielektrolit tulajdonságú PEVK domén elektrosztatikus merevedése okozhat. A PEVK domén antitesttel való passziválása meggátolta a doménen belüli szerkezetek kialakulását, bár az így passzivált molekulában globuláris domének még kitekeredtek az alacsony erőtartományban. Összehasonlító erőspektroszkópiai vizsgálatainkban szívizom izoforma esetében is kimutattuk a 40 pN alatti diszkrét erőátmeneteket, bár ez esetben a hosszú kontúrhossznövekmények nem mutatkoztak, mivel a szívizom titin PEVK domén hossza mintegy tizede a vázizom izoformáénak.

Az 5-40 pN-os erőtartományban végzett erővisszacsatolt mérésekben a molekula diszkrét lépésekben nyúlik. A lépésnagyság eloszlás alapján a globuláris domének mellett más, szerkezeti elemek felnyílása is meghatározó a folyamatban. Az állandó erőknél mért megnyúlási görbék alapján egy gyors és egy lassú kinetikai komponenst azonosítottunk a kitekeredési folyamatban. A gyors komponens feltehetően mechanikailag kevéssé stabil szerkezetek erőhatásra történő felszakadásának, míg a lassú komponens, a stabilabb globuláris domének kitekeredésének eredménye.

Mindezek alapján arra következtetünk, hogy az alacsony erőknél bekövetkező szerkezeti átmeneteket mechanikailag gyenge globuláris domének kitekeredése és a PEVK doménen belüli tranziens szerkezetek illetve elektrosztatikus kölcsönhatások felszakítása együttesen okozza.

Repetitív nyújtási kísérleteinkből kitűnik, hogy az alacsony erőtartományban jelentkező szerkezeti átmenetek felelősek a titin mechanikai fáradásáért. Az ismételt mechanikai ciklusok között az alacsony erőtartomány átmeneteinek visszaalakulása függ a ciklusok között

eltelt időtől, a molekula megnyúlásától és a nyújtási sebességtől. Következésképpen a titin erő-megnyúlás görbéje érzékeny a korábbi mechanikai terhelésre. Eredményeinket egy új modellben összegeztük melyben a titin megnyúlásában a PEVK domén szerkezetváltozásai és néhány a proximális tandem Ig-régióból származó mechanikailag kevéssé stabil globuláris domén kitekeredése együttesen jelentkezik az alacsony erőtartományban. A titinmolekula mechanikai előzménytől függő szerkezetváltozásainak fontos szerepe lehet a szarkomert ért mechanikai szignálok jelátviteli utakhoz kapcsolásában

Túlnyújtott titinmolekulák szerkezetének topográfiai vizsgálata

A visszahúzódó folyadékmeniszkusszal túlnyújtott és csillámfelszínre kifésült titinmolekulák topográfiai kontúrján átlagosan 27.7 nm- hosszú hézagok figyelhetők meg, amelyek az erőhatásra kitekeredett globuláris domének topográfiai megfelelői. Emellett hosszabb, több száz nanométeres kontúr hézagok is megfigyelhetők, amelyek a megnyújtott PEVK domén megfelelői. A molekula hézagmentes szakaszain nagyfelbontású AFM képeken globuláris régiók mutathatók ki, a régiók átlagos távolsága 5.9 nm ami egy globuláris domén és az azt szegélyező linker szekvencia hosszából adódik. Az AFM-es felvételeken a titin C-terminális, M-csík felőli végén látható jellegzetes kontúrhézag helyzetéből és szélességének eloszlásából arra következtetünk, hogy az erőhatásra megnyúlt titin kináz domén részleges kitekeredése révén jött létre. A kináz domén N-terminális β-láncainak kitekeredése szabaddá teszi a domén ATP-kötő zsebét, így fontos szerepet tölthet be a mechanoérzékelési folyamatokban.

Új tudományos eredmények

- I. A titinmolekula már alacsony erők (5 pN < F < 40 pN) hatására is diszkrét lépésekben nyúlik, melyek hátterében a molekula erőhatásra lezajló szerkezetváltozásai állnak.
- II. Az alacsony erőhatásokra is bekövetkező szerkezetváltozásokat a mechanikailag gyenge globuláris domének kitekeredése illetve a PEVK domén harmadlagos szerkezeteinek felszakadása együttesen okozzák.
- III. Az alacsony erőknél jelentkező szerkezeti átmenetek felelősek a titin mechanikai fáradásáért. Mintázatuk és regenerációjuk mértéke tükrözi a titinmolekulát ért korábbi mechanikai hatásokat.
- IV. Visszahúzódó folyadékmeniszkusszal megnyújtott egyedi titinmolekulák topográfiai vizsgálatával kimutathatók az erőhatásra bekövetkező egyedi domén kitekeredések illetve a PEVK domén megnyúlása.
- V. A folyadékmeniszkusszal felületre fésült és megnyújtott molekulákon észlelt Mcsík vég felöli C-terminális kontúrhézag, mely feltehetően a részlegesen kitekert kináz domén, szélessége a nyújtási erővel arányos.

A disszertációhoz kapcsolódó közlemények

Martonfalvi Z, Bianco P, Linari M, Caremani M, Nagy A, Lombardi V, Kellermayer M. (2013) Low-force transitions in single titin molecules reflect a memory of contractile history. J Cell Sci. *in press* IF: 5.877

Mártonfalvi Z, Kellermayer M. (2014) Individual Globular Domains and Domain Unfolding Visualized in Overstretched Titin Molecules with Atomic Force Microscopy. PLoS One, 9:e85847. IF: 3.733