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2. Abbreviations 

 

ACSM2A/2B Acyl-CoA Synthetase Medium-Chain Family Member 2A/2B 

ACSM5 Acyl-CoA Synthetase Medium-Chain Family Member 5 

ALDH3A2 Aldehyde dehydrogenase 3 family, member A2 

ANOVA Analysis of Variance 

ANXA9 Annexin A9 

bGFR  becsült glomeruláris filtrációs ráta 

BMI  Body Mass Index 

BUN  Blood Urea Nitrogen 

cDNA  Complementary deoxyribonucleic acid 

CELA2A/B Chymotrypsin Like Elastase Family Member 2A/B 

CELSR2 Cadherin EGF LAG Seven-Pass G-Type Receptor 2 

CERS2 Ceramide synthase 2 

ChIP-Seq Chromatin Immunoprecipitation followed by next-generation 

Sequencing 

CI  confidence interval 

CKD  Chronic Kidney Disease 

CLTB  Clathrin, light chain B 

CRAT  CKD risk associated transcript 

CTSS  Cathepsin S 

DAB2  Disabled homolog 2 

DAVID Database for Annotation, Visualization and Integrated Discovery 

DKD  Diabetic kidney disease 

DNA   Deoxyribonucleic acid 

DNase  Deoxyribonuclease 

eGFR  estimated Glomerular Filtration Rate 

ENCODE Encyclopedia of DNA Elements 

eQTL  Expression Quantitative Trait Loci 

ERBB2 Erb-B2 Receptor Tyrosine Kinase 2 

ESRD  End-stage renal disease 

FAM47E Family with sequence similarity 47, member E 
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FPKM  Fragments Per Kilobase of transcript per Million mapped reads 

FYB  FYN binding protein 

GFR  Glomerular Filtration Rate 

GNAT2 G Protein Subunit Alpha Transducin 2 

GP2  Glycoprotein 2 

GRCh37/hg19 Genome Reference Consortium Human Build 37, synonym: Human 

Genome version 19 -human reference sequence, February 2009 

GWAS  Genome wide association study 

HGNC  Human Genome Organization Gene Nomenclature Committee 

IF  Interstitial fibrosis 

IPA  Ingenuity Pathway Analysis 

IRB  Institutional Review Board 

JAG1  Jagged1 

kbp  kilobase pair 

KDIGO Kidney Disease: Improving Global Outcomes 

MAGI2 Membrane-associated guanylate kinase 2 

Mbp  Megabase pair 

mRNA  Messenger Ribonucleic Acid 

MuTHER  Multiple Tissue Human Expression Resource 

NF-κB  Nuclear factor kappa-light-chain-enhancer of activated B cells 

Ph.D.  Doctor of Philosophy 

Pcorr Corrected P value after Benjamini-Hochberg-based multiple testing 

correction 

PDILT  Protein disulfide isomerase-like, testis expressed 

PLXDC1 Plexin domain containing 1 

PSRC1 Proline and Serine Rich Coiled-Coil 1 

QRT-PCR Quantitative real time polymerase chain reaction 

RELA Nuclear factor NF-κB p65 subunit 

RIN  RNA integrity number 

RMA16  Robust Multi-Array Average 

RNA  Ribonucleic acid 

SD  Standard deviation 
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SLC7A9 Solute Carrier Family 7 Member 9 

SLC34A1 Solute Carrier Family 34 Member 1 

SLC47A1 Solute Carrier Family 47 Member 1 

SNP  Single nucleotide polymorphism 

SORBS1 Sorbin and SH3 Domain Containing 1 

SORT1 Sortilin 1 

TGF-β1 Transforming growth factor beta 1 

TNF  Tumor necrosis factor 

UCSC  University of California Santa Cruz 

UMOD Uromodulin 

VEGFA Vascular endothelial growth factor A  

WDR72 WD Repeat Domain 72  
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3. Introduction 

 

3.1. Chronic kidney disease, as a gene environmental disease 

 Chronic kidney disease (CKD) is defined as abnormalities of kidney structure or 

function with implications for health, which is present for more than 3 months - according 

to the Kidney Disease: Improving Global Outcomes (KDIGO) guideline (1). Kidney 

function is mostly measured by the filtration capacity of the kidneys (glomerular filtration 

rate - GFR), based on the plasma clearance of endogenous creatinine. CKD is classified 

based on cause, GFR category (G1-5), and albuminuria category (A1-3). Based on the 

estimated glomerular filtration rate (eGFR, calculated by GFR estimating equations), 

CKD is classified in five stages: stage 1 (eGFR > 90 ml/min/1.73m2), stage 2 (eGFR 

between 60 and 89 ml/min/m2), stage 3 (eGFR between 30 and 59 ml/min/1.73m2), stage 

4 (eGFR between 15 and 29 ml/min/1.73m2) and stage 5 (eGFR < 15 ml/min/1.73m2). 

The prevalence of chronic kidney disease (stages 1-4) is as high as 15.2% (95% 

confidence interval (CI): 14.1%-16.1%) in the United States, based on the data of the 

Chronic Kidney Disease Surveillance System of the Centers for Disease Control and 

Prevention (www.cdc.gov/ckd). CKD is ranked to the 9th leading cause of death in the 

United States in 2014 according to the National Center of Health Statistics 

(www.cdc.gov/nchs). A recent meta-analysis found a 13.4% global prevalence of CKD 

of all stages (95% CI: 11.7%-15.1%) and 10.6% of CKD stages 3-5 (95% CI: 9.2%-

12.2%), with a highest prevalence of CKD of all stages in Europe (18.38% (95% CI: 

11.57%-25.20%) compared to other geographical regions (2). A recent community-based 

study in the United States found that the risk of death increases as the eGFR decreases 

below 60 ml/min/1.73m2. The study revealed that the adjusted hazard ratio for death was 

1.2 with an eGFR of 45 to 59 ml/min/1.73 m2, 1.8 with an eGFR of 30 to 44 ml/min/1.73 

m2, 3.2 with an eGFR of 15 to 29 ml/min/1.73 m2, and 5.9 with an eGFR of less than 15 

ml/min/1.73 m2. The adjusted hazard ratio of cardiovascular events and hospitalization 

also increased inversely with the eGFR in this population (3). These epidemiological 

findings indicate that chronic renal insufficiency has a great impact on both quality of life 

and public health financial resources. 
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 Although there are CKD cases caused by monogenetic diseases, including 

polycystic kidney diseases and some glomerular diseases; chronic kidney disease is 

mostly a complex gene environmental disease, several environmental and genetic factors 

affect its development. Diabetes and hypertension are the two most important causes of 

chronic renal insufficiency, but CKD development clearly has a genetic component. 

Different studies found that heritability estimates of eGFR (based on serum creatinine 

levels) were between 0.41 and 0.75 in individuals with diabetes or hypertension, 

respectively (4,5), and 0.33 in a population-based sample (6). While previous genetic 

studies have identified rare genetic variants causing different forms of monogenetic 

kidney disease, common CKD susceptibility variants have been difficult to detect 

reproducibly by linkage analyses or candidate gene studies. Complex traits such as CKD 

often affected by multiple genetic factors, which should be examined in the general 

population that carry the disease, rather than by familial linkage analysis. 

 

3.2. Different genetic methods for understanding CKD development 

 

3.2.1. Genome-wide association studies (GWAS) 

 At present, one of the most powerful experiments to understand the genetics of a 

complex trait such as CKD is the genome-wide association study (GWAS). GWAS 

examines genetic variants across the human genome to identify associations between 

variants and phenotypes. To detect genetic variants that have small effects or appear with 

low frequency in complex-trait disease development requires very large study cohorts for 

sufficient statistical power. To avoid type I error (false positive results), a multiple-testing 

corrected p-value is used, most frequently the Bonferroni correction for multiple tests, 

where the cutoff p-value of 0.05 is corrected by the approximate one million independent 

tests to generate the threshold (7,8). 

The GWAS divides the population into two groups of individuals: one group with 

a disease/parameter (cases) and another group of otherwise similar people without the 

parameter (controls). If a variant (e.g. single nucleotide polymorphism [SNP]) is more 

frequent in people with the disease, the SNP is said to be associated with the disease. In 

the discovery phase of the GWASs, variants that have statistically significant allele 

frequency differences associated with disease phenotypes are identified. These 
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significantly associated markers from the discovery phase are evaluated for association 

in additional independent study samples. Replication serves to confirm association and to 

detect potential bias. 

 Several parameters of kidney dysfunction were used as a quantitative trait in 

GWASs examining chronic kidney disease: most of the studies use eGFR value as a 

continuous trait or chose patients as cases with eGFR below 60 ml/min/1.73m2, based on 

serum creatinine or cystatin C levels (9-17). However, other parameters were also used, 

such as the presence of end-stage renal disease (ESRD) (18-25), albuminuria (16,25-29) 

or proteinuria (21,22,30-33). A recently published meta-analysis of multiple cohorts with 

the largest sample size to date for kidney function included 175,000 individuals, and 53 

loci were identified (29 known and 24 novel loci). Most of these variants are associated 

with eGFR (based on serum creatinine levels), one with eGFR (based on serum cystatin 

C levels) and four with the diagnosis of CKD (34). 

 GWASs became possible, because the genetic information is inherited in large 

genetic blocks. Linkage disequilibrium (LD) is used to describe the likeliness of the non-

random association of alleles at different loci. If the coefficient value (r) of LD is 0, the 

variants are not inherited together, while the variants are always inherited together with 

r=1. In the haplotype or LD blocks, where r2≥0.8, there are several SNPs which are 

inherited together and one SNP, named leading or tagging SNP, represents that block. 

Therefore, we do not have to test the association with each of the 20 million genetic 

variations but can use fewer (about 1 million) SNPs representing the genetic variation in 

the entire genome. Although haplotype blocks made GWAS convenient and financially 

feasible, they also mean that we do not know which of the many variants within a single 

haplotype block is functionally relevant. To date, more than 88 million genomic variants 

have been cataloged in the 1000 Genomes Project. 

In summary, GWAS is a very important way to reveal genetic variants in the 

association with CKD, however, further investigations are needed to find the functionally 

relevant polymorphisms. 

 

3.2.2. Expression quantitative trait loci analysis (eQTL) 

 Genetic variants identified by GWASs explain only a small fraction of the 

heritability of CKD. To further understand the genetic basis of CKD, the variants 
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associated with CKD need to be tied to their target genes. Identifying quantitative 

phenotypes that are associated with these SNPs can facilitate the mechanistic studies for 

CKD development. Genomic loci which can contribute to the variation of gene expression 

levels are called expression quantitative trait loci. Loci located close (within 1 Megabase 

pair (Mbp) distance) to the transcription start site of the affected gene are called “cis-” 

eQTLs, while loci in a greater distance -even on other chromosomes- called “trans-” 

eQTLs. The examination of genetic variations and the transcriptome of the subjects 

simultaneously can reveal SNPs acting as eQTLs. Disease-associated genetic variants can 

alter binding sites for important transcription factors and influence the expression of 

nearby genes and act as an eQTL (35-39). Genetic variants can potentially alter steady-

state expression of genes, in which case they interfere with basal transcription factor 

binding or can alter the amplitude of transcript changes after signal-dependent 

transcription factor binding. One way to prioritize regions is to combine statistical 

association of genetic variants with complex trait (GWAS signals) and association of 

genetic variants with gene expression (eQTL signals). Trait-associated GWAS SNPs 

found to act significantly more likely as eQTLs than expected by chance (40).  

Usually the effect of the loci on the gene expression levels are examined in 

healthy, control subjects. For example, Musunuru et al. used the expression profiles of 

960 normal healthy liver tissues to find association between the locus rs646776 (Chr1p13) 

associated with both plasma low-density lipoprotein cholesterol and myocardial 

infarction and the expression of Cadherin EGF LAG Seven-Pass G-Type Receptor 2 

(CELSR2), Proline and Serine Rich Coiled-Coil 1 (PSRC1) and Sortilin 1 (SORT1) with 

microarray. The association between the locus and PSRC1 and SORT1 genes could be 

validated with quantitative real time polymerase chain reaction (QRT-PCR) in 62 normal, 

healthy samples. Finally, the research group demonstrated that Sort1 alters plasma low-

density and very low-density lipoprotein cholesterol particle levels in mice (36). In kidney 

research, the association between the UMOD protective haplotype and the expression of 

the UMOD gene were examined in kidney samples only with normal function (eGFR> 

90 ml/min/1.73m2) (37).  

Most eQTL analyses of human samples were performed in immortalized cell lines 

or circulating cells, because several other tissue types have been difficult to collect in 

large enough numbers to perform eQTL analysis (41). The transcriptome is tissue-type 
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specific, thus surrogate cell types cannot represent organ-specific regulation of gene 

expression by variants. On the other hand, there are clear examples in the literature for 

cross-tissue similarity when comparing results of eQTL studies conducted in large 

populations. Nica et al. found that 30% of the eQTLs are shared among three tissues 

(lymphoblastoid cell lines, skin and fat) (42). Also, major cross-tissue similarity was 

observed when eQTL analysis in whole blood was compared to other eQTL studies 

conducted in large population of B-cells, lung and liver tissue (40–70%) (43). Based on 

the possible cross-tissue similarity in eQTL results, there is a strong rationale for 

screening the SNPs of our interest in other eQTL databases to highlight potentially 

important genes. 

Taken together, eQTL analysis is a valuable tool to understand the connection 

between the polymorphisms and gene expression alterations, and CKD-associated SNPs 

can be more accurately understood by using eQTL to link to potential target genes, and 

could be studied for their relevant biological functions. 

 

3.2.3. Functional genomics 

 While descriptive genomics focuses on the structure of the DNA 

(deoxyribonucleic acid) with genetic mapping and DNA sequencing, functional 

genomics, part of genomics as a discipline, aims to understand the dynamic function of 

the genome. Functional genomics focuses on processes like transcription, translation, 

gene expression regulation, protein-protein interactions, etc. One of the important goals 

of this scientific field is to understand and find the function of the non-coding DNA 

regions. This so-called “junk” DNA is very important to be examined, since 83% of the 

disease-associated SNPs are localized to the non-coding region of the genome (35), and 

it is still unclear how they induce illness. 

In 2003, the Encyclopedia of DNA Elements (ENCODE) project started and drew 

the attention to the non-coding DNA regions. The aim of the project is to identify all the 

functional DNA elements of the genome, both in the coding and non-coding regions. The 

project examines DNA and protein interactions to identify transcriptional factor binding 

sites, such as promoter and enhancer regions. Novel technologies were developed to 

unravel the functional significance of these regions, such as chromatin 

immunoprecipitation followed by next-generation sequencing (ChIP-Seq) or DNaseI 
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(deoxyribonuclease I) footprints. The ENCODE project uses cultured human cell lines of 

endothelial, fibroblast, myocyte, stem cell, erythroid, epithelial and lymphoid origins. 

Reports from the project indicate that most complex trait polymorphisms are localized to 

gene regulatory regions in target cell types (44-46). 

Here, in this Ph.D. work several methods of functional genomics were used -

described below-, mainly to study the transcriptome (e.g. microarray, RNA-sequencing, 

QRT-PCR) and perform gene ontology and network analysis. 

In summary, GWASs can reveal the associations between a chosen parameter, 

such as renal function, and genetic variants, and can identify the disease-associated loci. 

The relationship between SNPs and gene expression can be examined by eQTL analysis, 

while functional genomics is applied in search for genetic basis (such as transcript level 

changes, gene expression regulation, etc.) of the functional changes (e.g. renal function). 

(Figure 1.) 
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Figure 1. Schematic representation of different experimental designs to understand 

CKD development. 

Genome-wide association studies (GWASs) examine the relationship between genetic variants 

(SNP, single nucleotide polymorphism) and disease state (CKD, chronic kidney disease). The 

eQTL (expression quantitative trait loci) analysis examines the relationship between transcript 

levels and genetic variations. The relationship between transcript levels around CKD risk variants 

and kidney function can be studied by functional genomics, by examining the contribution of 

genetic and environmental factors. CRAT: CKD risk associated transcripts 
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3.2.4. Other methods of CKD research 

 High-throughput omics datasets can be integrated to complex phenotypic disease 

signatures with the help of “top-down” systems biology approaches and reconstruct 

protein-protein interactions. Meanwhile, comprehensive molecular data from basic 

science (“bottom-up”) are also important to understand the development of a disease (47). 

In basic science, several methods can help to understand CKD development, from 

kidney cell cultures to animal models. For example, there are several animal models used 

to understand diabetic nephropathy (e.g. Streptozotocin-induced diabetic animals, Akita 

diabetic mice, db/db mice, Zucker diabetic fatty rats, Wistar fatty rats, etc.). The perfect 

animal model should exhibit progressive albuminuria and a decrease in renal function, as 

well as the characteristic histological changes that are observed in cases of human diabetic 

nephropathy. A rodent model that strongly exhibits all these features of human diabetic 

nephropathy has not yet been developed (48,49). Unilateral ureteral obstruction and folic 

acid induced nephropathy rodent models are also widely used to investigate interstitial 

fibrosis, beside several other animal models (50). 

 Recently a new and interesting field has become important part of CKD research: 

the epigenetics. Epigenetics is the heritable information during cell division other than 

the DNA sequence itself. The epigenome can be reshaped by environmental effects and 

as an “environmental footprint” contribute to the variation of phenotypes. The DNA in 

the nucleus has a highly-organized form wrapped around by proteins called histones. The 

state of its structure can guide transcriptional factor binding. Different stress factors from 

the environment can affect the epigenome through cytosine methylation (and other 

modification of cytosine) and histone-tail modifications. The presence of specific histone-

tail modifications can identify cell-type specific gene regulatory regions, such as 

promoters, enhancers, silencers and insulators. As mentioned above, with the ChIP-Seq 

method these specific histone-tail proteins can be found, providing a map of the potential 

localization of the gene regulatory regions (44). 

 While the ENCODE project did not include kidney cell lines, there are studies 

examining the epigenetics of the kidney in CKD. For example, a genome-wide cytosine 

methylation analysis of control and diseased kidney epithelial cells was performed by Ko 

et al., and more than 4000 differentially methylated regions were found in CKD samples, 
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most of them in developmental and fibrosis-related DNA regions. These differentially 

methylated regions were enriched not on promoter, but on enhancer regions (51).  

 In summary, understanding the development of chronic kidney disease and the 

underlying mechanisms are challenging. Chronic kidney disease is a very complex trait; 

therefore, CKD research requires complexity itself. The methodology of CKD research 

needs to include both basic science through cell lines and animal models and high-

throughput technologies with genome-, epigenome- and transcriptome-wide studies. In 

this Ph.D. work, I used functional genomic approaches to prioritize potentially important 

transcripts in CKD development. 
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4. Objectives 

 

We hypothesized that polymorphisms associated with renal disease will influence 

the expression of nearby transcript levels in the kidney. In this Ph.D. work, I mapped the 

expression of these transcripts in normal and disease human kidney samples. I used 

functional genomics and systems biology approaches to investigate tissue-specific 

expression of transcripts and their correlation with kidney function.  

 

The goals of the Ph.D. work were: 

1. Providing a dataset of potential causal and/or target genes in the vicinity of the CKD 

risk associated loci 

2. Identifying critical pathways associated with kidney function decline for further 

analysis 
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5. Methods 
 

5.1. Human kidney samples 

5.1.1. Tissue handling and microdissection 

The human kidney samples were obtained from routine surgical nephrectomies. 

For RNA sequencing analysis, leftover portions of diagnostic kidney biopsies were used 

(n=2). Only the normal, non-neoplastic part of the tissue was used for further 

investigation. Samples were de-identified, and corresponding clinical information was 

collected by an individual who was not involved in the research protocol. The tissue and 

data collecting procedure was approved by the institutional review boards (IRBs) of the 

Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA 

(IRB 2002–202) and the University of Pennsylvania, Philadelphia, PA, USA (IRB 

815796).  

The fresh kidney tissue was immediately placed and stored in RNAlater solution 

(Thermo Fisher Scientific, Ambion, Waltham, MA, USA) according to the 

manufacturer’s instruction: the tissue was cut into pieces -smaller than 0.5 cm in any 

dimension- and stored at 4 ℃ overnight, allowing the solution to penetrate the whole 

tissue. We stored the samples in RNAlater solution at -80 ℃ until the experiments. 

Before the RNA (ribonucleic acid) isolation, the kidney tissue in RNAlater 

solution was manually microdissected for glomerular and tubular compartment under a 

microscope. Using fine forceps, the glomeruli were removed from the kidney tissue and 

processed separately. We refer the rest of the kidney tissue as “tubules”, however, it 

contains not only tubules but other kind of tissues, e.g. vessels and connective tissue. 

(Figure 2.) 

 

5.1.2. Sample characteristics 

 To examine gene expression changes, we extracted RNA form 95 tubule samples 

and 51 glomeruli samples, furthermore, 41 tubule samples were used for external 

validation. The kidney samples were obtained from a diverse population, samples from 

patients of different age, gender, ethnicity with hypertensive or diabetic nephropathy were 

examined. Our dataset contains samples from non-Hispanic white,  
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Figure 2. Microdissection of human kidney samples stabilized in RNAlater 

Microscope and forceps used for microdissection (A). Intact human kidney sample -glomerulus 

(arrow) (B). Several glomeruli were removed (arrow) (C) 

 

African American, Asian, Hispanic and multiracial race, so we examined our dataset to 

exclude any ethnicity driven gene expression changes. We performed statistical analysis 

(one-way ANOVA – analysis of variance) to identify gene expression differences driven 

by ancestry in our database. We compared gene expression profiles of kidneys obtained 

from non-Hispanic white, African American and other ethnicities, and were unable to 

identify transcripts with statistically significant differential expression in our data. 

(Expression profiles of 95 tubule samples and 51 glomerular samples were examined.) 

(Table 1.). Review of the literature also failed to identify ancestry specific gene 

expression differences. Therefore, we believe that race is not a critical driver of gene 

expression differences in our dataset. 

 The main part of our analysis was examining gene expression correlation with 

renal function (based on estimated glomerular filtration rate (eGFR) according to the 

Chronic Kidney Disease Epidemiology Collaboration [CKD-EPI] determination (52)), 

therefore, we analyzed the correlation between eGFR and clinical and histopathological 

changes, to exclude any unexpected correlations in our dataset. As expected, we found 

significant correlation between eGFR and serum creatinine levels, blood urea nitrogen 

levels (BUN), the percentage of glomerulosclerosis and interstitial fibrosis. On the other 

hand, we failed to detect any significant correlation between renal function (eGFR) and 

age, serum glucose levels, serum albumin levels and body mass index (BMI). The 

demographics, clinical information and histopathological analysis of the samples are 

summarized in Table 2 (a-d).  
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Table 1. Gene expression is not driven by ancestry in our microarray data sets 

Statistical analysis (one-way ANOVA) between three ethnic groups (non-Hispanic white 

vs. African American vs. other ethnicity) was performed to search for differentially 

expressed transcripts. We failed to detect any significant gene expression changes among 

CRATs (CKD-risk associated transcripts) and among all entities (not shown). eGFR: 

glomerular filtration rate, SD: standard deviation, P: P-values after Benjamini-

Hochberg-based multiple testing correction, W: non-Hispanic white, AA: African 

American, O: Other ethnicity, GNAT2: G Protein Subunit Alpha Transducin 2, PSRC1: 

Proline and Serine Rich Coiled-Coil 1, CELA2A/B: Chymotrypsin Like Elastase Family 

Member 2A/B, JAG1: Jagged 1 

 

Data set 
Analyzed 

groups 

CRATs with 

lowest P value 

Gene expression 

values 

(Mean ± SD) 

P 

Tubule 

samples 
W: (n=19) GNAT2 W: 0.380 ± 0.659 0.93 

(n=95) AA: (n=35)  AA: -0.066 ± 0.441  

 O: (n=41)  O: 0.204 ± 0.531  

Tubule 

samples 
W: (n=12) PSRC1 W: -0.056 ± 0.511 0.99 

eGFR>60 

ml/min/1.73m2 
AA: (n=17)  AA: 0.330 ± 0.564  

(n=56) O: (n=27)  O: 0.113 ± 0.494  

Glomerular 

samples 
W: (n=10) CELA2A/B W: -0.115 ± 0.104 0.70 

(n=51) AA: (n=18)  AA: 0.059 ± 0.204  

 O: (n=23)  O: 0.140 ± 0.244  

Glomerular 

samples 
W: (n=5) JAG1 W: -0.557 ± 0.341 0.80 

eGFR>60 

ml/min/1.73m2 
AA: (n=11)  AA: -0.342 ± 0.775  

(n=27) O: (n=11)  O: 0.458 ± 0.670  
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Table 2. Demographics, clinical information and histological analysis of glomerular 

samples (a), tubule samples (b), tubule samples of the external microarray validation 

(c), tubule samples of the QRT-PCR validation (d) 

Data are presented as mean and standard deviation with the median values or percentage. 

Estimated Glomerular Filtration Rate (eGFR) was calculated according to the CKD-EPI 

equation. Pearson product moment correlation or Spearman correlation coefficient (R 

coefficient) was used to measure the strength of association between age, BMI (body 

mass index), serum-glucose, blood pressure (systole and diastole), serum-creatinine, 

BUN (blood urea nitrogen), serum-albumin, percentage of glomerulosclerosis and 

interstitial fibrosis and eGFR; depending on the results of the D'Agostino-Pearson 

normality tests. Asterisks (*) indicate when the two-tailed tests reached statistical 

significance (P < 0.05). 

 

Table 2.a. Patient Demographics (Samples from Glomeruli) 

Total: n=51 

 

% or mean ± 

SD (median) 

correlation 

with GFR (R 

coefficient) 

Gender Male 47.1 % 
 

  Female  52.9 % 
 

Race Non-Hispanic White 19.6 % 
 

  African American  35.3 % 
 

  Asian  5.9 % 
 

  Hispanic 15.7 % 
 

  Multiracial 9.8 % 
 

 
Unknown 13.7% 

 

Diabetes 
 

45.1 % 
 

Hypertension 
 

80.4 % 
 

Age (years) 

  

61.08 ± 12.9 

(63) 

-0.262 

BMI (Body Mass Index) 

(kg/m2) 
  

32.18 ± 15.7 

(29.2) 

-0.097 

Serum glucose (mg/dL) 

  

124.8 ± 51.3 

(115) 

-0.254 

Blood pressure - systole 

(mm Hg) 
  

136.52± 20.2 

(130) 

-0.153 

Blood pressure - diastole 

(mm Hg) 
  

81.24 ± 13.4 

(80) 

-0.081 
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eGFR (ml/min/1.73m2) 

  

58.53 ± 28.5 

(60.9) 

 

Serum creatinine 

(mg/dL) 
  

1.66 ± 1.4 

(1.2) 

-0.893 * 

BUN (Blood Urea 

Nitrogen) (mg/dL) 
  

21.59 ± 14.2 

(19) 

-0.653 * 

Serum albumin (g/dL) 
  

3.75 ± 0.8 (4) 0.219 

Glomerulosclerosis (%) 

  

11.45 ± 17.4 

(3.9) 

-0.511 * 

Interstitial Fibrosis (%) 

  

13.91 ± 13.6 

(10) 

-0.586 * 

 

Table 2.b. Patient Demographics (Samples from Tubules) 

Total: n=95 

 

% or mean ± 

SD (median) 

correlation 

with eGFR (R 

coefficient) 

Gender Male 57.9 % 
 

  Female 42.1 % 
 

Race Non-Hispanic White 20.0 % 
 

  African American 36.8 % 
 

  Asian 3.2 % 
 

  Hispanic 6.3 % 
 

  Multiracial 17.9 % 
 

 
Unknown 15.8% 

 

Diabetes    38.9 % 
 

Hypertension   76.8 % 
 

Age (years)   63.57 ± 13.5 

(65) 

-0.131 

BMI (Body Mass Index) 

(kg/m2) 

  29.77 ± 9.3 

(29) 

0.150 

Serum glucose (mg/dL)   135.4 ± 65.3 

(118) 

0.153 

Blood pressure - systole 

(mm Hg) 

  138.97 ± 24.8 

(136.5) 

-0.299 * 

Blood pressure - diastole 

(mm Hg) 

  78.05 ± 13.7 

(78.5) 

-0.174 

eGFR (ml/min/1.73m2)   60.08 ± 29.8 

(64.1) 
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Serum creatinine 

(mg/dL) 

  2.05 ± 2.5 

(1.1) 

-0.894 * 

BUN (Blood Urea 

Nitrogen) (mg/dL) 

  23.2 ± 13.7 

(19) 

-0.696 * 

Serum albumin (g/dL)   3.96 ± 0.7 

(4.1) 

0.228 * 

Glomerulosclerosis (%)   17.97 ± 27.3 

(5.5) 

-0.570 * 

Interstitial Fibrosis (%)   16.47 ± 21.6 

(10) 

-0.732 * 

 

Table 2.c. Patient Demographics (Samples from Tubules for Replication) 

Total: n=41 

 

% or mean ± 

SD 

(median) 

correlation 

with eGFR (R 

coefficient) 

Gender Male  41.5 % 
 

  Female  58.5 % 
 

Race Non-Hispanic White 19.5 % 
 

  African American  41.5 % 
 

  Asian  2.4% 
 

  Hispanic 14.6 % 
 

  Multiracial  4.9 % 
 

 
Unknown 17.1 

 

Diabetes    51.2 % 
 

Hypertension   78.0% 
 

Age (years)   60.2 ± 13.3 

(60) 

-0.177 

BMI (Body Mass Index) 

(kg/m2) 

  30.26 ± 6.5 

(30.5) 

0.042 

Serum glucose (mg/dL)   140.83 ± 65.9 

(129) 

0.072 

Blood pressure - systole 

(mm Hg) 

  142.44 ± 22.7 

(151) 

-0.504 

Blood pressure - diastole 

(mm Hg) 

  76.22 ± 13.8 

(75) 

-0.246 

eGFR (ml/min/1.73m2)   52.7 ± 28.2 

(55.7) 

 

Serum creatinine 

(mg/dL) 

  2.01 ± 1.8 

(1.2) 

-0.796 * 
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BUN (Blood Urea 

Nitrogen) (mg/dL) 

  25.0 ± 13.1 

(22) 

-0.749 * 

Serum albumin (g/dL)   3.69 ± 0.9 

(3.9) 

0.409 * 

Glomerulosclerosis (%)   17.97 ± 25.5 

(14.3) 

-0.641 * 

Interstitial Fibrosis (%)   19.93 ± 22.0 

(15) 

-0.769 * 

 

Table 2.d. Patient Demographics (Tubule samples with QRT-PCR validation) 

Total: n=46 

 

% or 

mean ± 

SD 

(median) 

correlation with 

eGFR (R 

coefficient) 

Gender Male  54.35 % 
 

  Female  45.65 % 
 

Race Non-Hispanic White 21.7 % 
 

  African American  41.3 % 
 

  Asian  4.35 % 
 

  Hispanic 4.35 % 
 

  Multiracial 8.7 % 
 

 
Unknown 19.6% 

 

Diabetes    52.2 % 
 

Hypertension   73.9 % 
 

Age (years)   62.2 ± 13.1 

(63.5) 

0.162 

BMI (Body Mass Index) 

(kg/m2) 

  28.4 ± 6.3 

(28.5) 

0.197 

Serum glucose (mg/dL)   145.8 ± 

79.6 

(117.5) 

0.015 

Blood pressure - systole 

(mm Hg) 

  139.47 ± 

29.9 (135) 

-0.377 * 

Blood pressure - diastole 

(mm Hg) 

  77.81 ± 

15.5 (76.5) 

-0.291 * 

eGFR (ml/min/1.73m2)   54.2 ± 32.8 

(58.1) 

 

Serum creatinine 

(mg/dL) 

  2.60 ± 3.1 

(1.2) 

-0.743 * 

BUN (Blood Urea 

Nitrogen) (mg/dL) 

  25.93 ± 

13.7 (21) 

-0.712 * 
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Serum albumin (g/dL)   3.94 ± 0.6 

(4) 

0.064 

Glomerulosclerosis (%)   23.7 ± 33.1 

(6.2) 

-0.748 * 

Interstitial Fibrosis (%)   21.53 ± 

25.3 (10) 

-0.737 * 

 

5.2. Sample processing and data analysis 

5.2.1. Microarray process and data analysis 

Dissected tissue was homogenized, and RNA was prepared using RNAeasy mini 

columns (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions: the 

tissue was placed in the lysis buffer and homogenized with an Omni Tissue Homogenizer 

(Omni, Kennesaw, GA, USA).  DNase (deoxyribonuclease) digestion was used as an 

additional step to improve RNA purification. RNA quality and quantity were determined 

using the Laboratory-on-Chip Total RNA PicoKit Agilent 2100 BioAnalyzer (Agilent 

Technologies, Santa Clara, CA, USA). Only samples without evidence of degradation 

were further used (RNA integrity number [RIN] >6). 

For microarray analysis, we prepared the first and second strand of the 

complementary DNA (cDNA) and after amplification, purification and cDNA 

fragmentation, we labelled the cDNA fragments. Purified total RNAs from 95 tubule 

samples were amplified using the Ovation PicoWTA SystemV2 (NuGEN Technologies, 

San Carlos, CA, USA) and labeled with the Encore Biotin Module (NuGEN) according 

to the manufacturer’s protocol. The purified total RNAs from 51 glomerular samples and 

41 tubule samples used for validation were amplified using the Two-Cycle Target 

LabelingKit (Affymetrix, Santa Clara, CA, USA) as per the manufacturer’s protocol. 

Transcript levels were analyzed using Affymetrix U133A arrays. 

After hybridization and scanning on microarray chips, raw data files were 

imported into GeneSpring GX software, version 12.6 (Agilent Technologies). Raw 

expression levels were summarized using the RMA16 (Robust Multi-Array Average) 

algorithm. Normalized values were generated after log transformation and baseline 

transformation. GeneSpring GX software then was used for statistical analysis.  

 



25 
 

5.2.2. RNA sequencing analysis 

RNA sequencing was carried out on microdissected kidney tubules from kidney 

biopsies. Total RNA was isolated using the RNeasy mini columns (Qiagen) according to 

the manufacturer’s protocol, as described above. An additional DNase digestion step was 

performed to ensure that the samples were not contaminated with genomic DNA. RNA 

purity was assessed using the Laboratory-on-Chip Total RNA PicoKit Agilent 2100 

BioAnalyzer (Agilent Technologies). Each RNA sample had an A260:A280 ratio 1.8 and 

an A260:A230 ratio 2.2, with an RIN>9.0. Single-end 100-basepair RNA sequencing was 

carried out an Illumina HiSeq2000 machine (Illumina, San Diego, CA, USA). RNA 

sequencing reads were aligned to the human genome (GRCh37/hg19, University of 

California Santa Cruz [UCSC]) with the software TopHat (version 2.0.9) and 

transcriptome (hg19 RefSeq from Illumina iGenomes) using the software Cufflinks 

(version 2.1.1 Linux_x86_64) (53,54). We counted the number of fragments mapped to 

each gene annotated in the UCSC hg19. Transcript abundances were measured in 

Fragments Per Kilobase of transcript per Million mapped reads (FPKM). Sequence data 

can be accessed at the National Center for Biotechnology Information’s Gene Expression 

Omnibus (Accession number: GSE60119). 

5.2.3. Quantitative real time polymerase chain reaction (QRT-PCR) analysis 

Using reverse transcriptase, 250 ng RNA was converted to cDNA using the cDNA 

Archive Kit (Thermo Fisher Scientific, Applied Biosystems, Waltham, MA, US) and 

QRT-PCR was run in the ViiA 7 System (Applied Biosystems) machine using SYBR 

Green Master Mix (Applied Biosystems) and gene-specific primers. The data were 

normalized and analyzed using the ΔΔCT method, ubiquitin was used as a housekeeping 

gene for normalization. 

 

5.2.4. Genotyping of human kidney samples 

 After the disruption and homogenization of the human kidney tissue as described 

above, DNA was extracted and purified with the DNeasy Blood and Tissue Kit (Qiagen), 

according to the manufacturer’s protocol. Genotyping for rs881858 and rs6420094 loci 

was run in the ViiA 7 System (Applied Biosystems) machine using TaqMan Genotyping 

Master Mix (Applied Biosystems) and specific TaqMan assay probes. 
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5.2.5. Histology 

Glomerular sclerosis and interstitial fibrosis were evaluated using periodic acid–

Schiff-stained kidney sections by two independent nephropathologists. 

Immunohistochemistry was performed on paraffin-embedded sections with the 

following antibodies: UMOD (AAH35975, Sigma Aldrich, St. Louis, MO, USA), 

VEGFA (Ab46154, Abcam, Cambridge, MA, USA) and ACSM2A (Ab181865, Abcam). 

We used the Vectastain Mouse on Mouse or anti-rabbit Elite ABC Peroxidase Kit and 

3,3’diaminobenzidine (DAB) for visualizations (Vector Laboratories, Burlingame, CA, 

USA). Antibody specificity was evaluated separately; secondary antibodies alone showed 

no positive staining. 

 

5.3. Bioinformatics 

5.3.1. Gene ontology and network analyses 

We performed gene ontology analysis on the CKD risk associated transcripts of 

interest, using the Database for Annotation, Visualization and Integrated Discovery 

(DAVID) Bioinformatics Resources, available on-line at david.abcc.ncifcrf.gov. (55,56) 

To perform network analysis on the transcripts with expression levels showing 

significant linear correlation with eGFR, the transcripts were exported to the Ingenuity 

Pathway Analysis (IPA) software (Ingenuity Systems, Qiagen). This software determines 

the top canonical pathways by using a ratio (calculated by dividing the number of genes 

in each pathway that meet cutoff criteria by the total number of genes that constitute that 

pathway) and then scoring the pathways using a Fisher exact test (P value < 0.05). 

 

5.3.2. Processing publicly available datasets 

 We compared absolute expression levels of the transcripts of interest by 

processing the data of the publicly available Illumina Body Map database (The European 

Bioinformatics Institute, www.ebi.ac.uk) which provides RNA sequencing results in 16 

different human organs. 

 For additional expression quantitative trait loci (eQTL) analysis, we examined 

multiple different datasets with the help of the publicly available eQTL browser at 

www.ncbi.nlm.nih.gov. These datasets included the MuTHER (Multiple Tissue Human 
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Expression Resource) and other studies, where transcript levels were available from liver, 

adipose, and lymphoblastoid samples (42,57-60).  

 For evaluation of the expressions of the genes of interest on protein level, 

additional to our own immunohistochemistry results, we reviewed the publicly available 

data of The Human Protein Atlas (www.proteinatlas.org) (61). 

 

5.4. Overview of the used statistical methods 

For statistical analysis of the demographic, clinical and histopathological 

parameters, Pearson product moment correlation or Spearman correlation coefficient (R 

coefficient) was used to measure the strength of association between age, BMI (body 

mass index), serum-glucose, blood pressure (systole and diastole), serum-creatinine, 

BUN (Blood urea nitrogen), serum-albumin, percentage of glomerulosclerosis and 

interstitial fibrosis and eGFR; depending on the results of the D'Agostino-Pearson 

normality tests. The statistical significance of the correlation was calculated with two-

tailed test (alpha=0.05). To compare the expression of the genotyped samples in our eQTL 

analysis, one-way ANOVA and Student’s t-test were used. The statistical analyses were 

performed using Prism 6 software (GraphPad, La Jolla, CA, USA). 

GeneSpring GX software was used for statistical analysis to process microarray 

data. Pearson product moment correlation was used to measure the strength of association 

between gene expression and eGFR. We used Benjamini–Hochberg multiple testing 

correction with a P value of 0.05. In the case of genes with more probe set identifications, 

the results with the lowest P values are represented.  
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6. Results 
 

6.1. Identifying CKD risk associated transcripts (CRATs) 
 

To identify CKD risk associated transcripts, we performed manual literature 

search to examine all genome-wide association studies - by the time of the beginning of 

our study- reporting genetic association for CKD-related traits (9-28,30-33). Many of 

these studies used different parameters as kidney disease indicators, such as the serum 

creatinine or cystatin C levels, the presence of CKD or end stage renal disease (ESRD) or 

albuminuria/proteinuria. In our investigation, the SNPs associated with eGFR (based on 

serum creatinine or cystatin C calculations) or the presence of ESRD were included. Our 

literature analysis identified 10 publications meeting these criteria (9-15,18-20). Coding 

polymorphisms and SNPs that did not reach genome-wide significance (P > 5 x 10-8) were 

excluded from our study. Finally, 44 leading SNPs meeting these criteria were used for 

further analysis (Table 3.). Most publications did not differentiate cases based on disease 

etiology and included cases with hypertensive and diabetic kidney disease, nevertheless, 

three SNPs associated only with diabetic nephropathy, so they were also analyzed 

separately. There were only two SNPs that reached genome-wide significance in multiple 

studies (rs12917707 and rs9895661), these two SNPs were counted only once.  

 

Table 3. List of single nucleotide polymorphisms (SNPs) that met our criteria  

The table shows the list of the single nucleotide polymorphisms (SNPs) which reached 

the genome wide significance (P < 5 x 10-8) in the association with eGFR (estimated 

glomerular filtration rate, based on creatinine (crea) or cystatin C (cys) levels) and/or the 

presence of chronic kidney disease (CKD) or end stage renal disease (ESRD). SNPs 

which reached the genome-wide significance in multiple studies were counted only once 

(marked with “X” in the table). Genes less than 250 kbp (kilobase pair) from the leading 

SNPs are listed. Color-coding shows the baseline expression of the transcripts based on 

human kidney RNA sequencing, red: high expression, yellow: medium expression, green: 

low expression, blue: no expression. Genes with available probe set IDs on the microarray 

chip are marked bold. Gene symbols are official symbols approved by the Human 

Genome Organization Gene Nomenclature Committee (HGNC). Chr: chromosome 
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Table 3. List of single nucleotide polymorphisms (SNPs) that met our criteria  
Leading 

SNPs 

Loca-

tion 

(chr) 

Position Leading 

SNP 

functional 

location 

Association 

parameter 

Association p-

value 

Genes within  

250-250kbp 

Jour-

nal 

1 rs10794720 10 1156165 Intronic eGFRcrea p=2.1 × 10−8 LARP4B, 

GTPBP4, 

1 

  

          
IDI2, IDI1, 

WDR37, 

 

  
      

ADARB2 
 

2 rs491567 15 53946593 Intronic eGFRcrea p=1.3 × 10−8 WDR72 1 

3 rs267734 1 150951477 Upstream eGFRcrea p=5.2 × 10−9 CTSS, CTSK, 

ARNT, 

SETDB1, 

1 

  
      

CERS2, 

ANXA9, 

FAM63A, 

 

  
      

PRUNE, 

MLLT11, 

BNIPL, 

 

  
      

C1orf56, 

GABPB2, 

SEMA6C, 

 

  
      

CDC42SE1, 

LYSMD1 

 

  
      

SCNM1, 

TMOD4, 

VPS72 

 

       
PIP5K1A, 

TNFAIP8L2 

 

4 rs347685 3 141807137 Intronic eGFRcrea p=7.0 × 10−9 ATP1B3, 

TFDP2, GK5, 

1 

  
      

XRN1 
 

5 rs4744712 9 71434707 Intronic eGFRcrea p=7.2 × 10−10 PIP5K1B, 

FAM122A, 

1 

  
      

PRKACG, 

FXN 

 

6 rs626277 13 72347696 Intronic eGFRcrea p=2.9 × 10−10 DACH1 1 

7 rs1394125 15 76158983 Intronic eGFRcrea p=3.7 × 10−10 SNUPN, 

IMP3, 

SNX33, 

1 

       
CSPG4, 

ODF3L1, 

UBE2Q2, 

 

       
NRG4, 

C15orf27 

 

8 rs9895661 17 59456589 Intronic eGFRcrea p=1.4 × 10−8 BCAS3, 

TBX2, 

1 

  
      

C17orf82, 

TBX4, 

NACA2 

 

9 rs10109414 8 23751151 Intergenic eGFRcrea p=1.0 × 10−8 NKX3-1, 

NKX2-6, 

STC1 

1 

10 rs911119 20 23612737 Intergenic eGFRcys p=2.3 × 10−138 NAPB, 

CSTL1, 

CST11, 

CST8,  

1 

  
      

CST9L, 

CST9, CST3, 

CST4,  

 

  
      

CST1, CST2, 

CST5 

 

11 rs6465825 7 77416439 Intergenic eGFRcrea p=3.5 × 10−9 PTPN12, 

RSBN1L, 

TMEM60, 

1 
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PHTF2, 

MAGI2 

 

12 rs653178 12 112007756 Intronic eGFRcys p=3.8 × 10−8 CUX2, 

FAM109A, 

SH2B3, 

1 

  
      

ATXN2, 

BRAP, 

ACAD10,  

 

       
ALDH2 

 

13 rs6420094 5 176817636 Intronic eGFRcrea p=3.8 × 10−12 NSD1, 

RAB24, 

PRELID1, 

1 

  
      

MXD3, 

LMAN2, 

RGS14, 

 

  
      

SLC34A1, 

PFN3, 

 

  
      

F12, GRK6, 

PRR7, 

 

  
      

DBN1, 

PDLIM7, 

DOK3, 

 

  
      

DDX41, 

FAM193B, 

TMED9, 

 

  
      

B4GALT7 
 

14 rs11959928 5 39397132 Intronic eGFRcrea p=1.8 × 10−11 FYB, C9, 

DAB2 

1 

15 rs12917707 16 20367690 Upstream eGFRcrea p=1.2 × 10−20 GP2, UMOD, 

PDILT, 

ACSM5, 

ACSM2A, 

ACSM2B 

1 

16 rs2453533 15 45641225 Intergenic eGFRcrea p=4.6 × 10−22 DUOX1, 

DUOXA2, 

DUOXA1, 

1 

  
      

SHF, 

SLC28A2, 

GATM, 

 

  
      

SPATA5L1, 

C15orf48,  

 

  
      

SLC30A4, 

BLOC1S6 

 

17 rs17319721 4 77368847 Intronic eGFRcrea p=1.1 × 10−19 SCARB2, 

FAM47E, 

1 

  
      

STBD1, 

CCDC158, 

 

  
      

SHROOM3 
 

18 rs1933182 1 109999588 Intergenic eGFRcrea p=1.3 × 10−8 SARS, 

CELSR2, 

PSRC1, 

1 

  
      

MYBPHL, 

SORT1, 

PSMA5, 

 

  
      

SYPL2, 

ATXN7L2, 

CYB561D1, 

 

  
      

AMIGO1, 

GPR61, 

GNAI3, 

 

  
      

AMPD2, 

GSTM2, 

GSTM4, 

 

  
      

GSTM1, 

GNAT2 

 

19 rs16864170 2 5907880 Intergenic CKD p=4.5 × 10−8 SOX11 1 

20 rs881858 6 43806609 Intergenic eGFRcrea p=2.2 × 10−11 POLH, 

GTPBP2, 

MAD2L1BP, 

1 
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RSPH9, 

MRPS18A, 

VEGFA, 

 

  
      

C6orf223 
 

21 rs7805747 7 151407801 Intronic CKD p=8.6 × 10−9 RHEB, 

PRKAG2 

1 

22 rs4014195 11 65506822 Intergenic eGFRcrea p=3.3 × 10−8 SCYL1, 

LTBP3, 

SSSCA1, 

1 

  
      

FAM89B, 

EHBP1L1, 

KCNK7, 

 

  
      

MAP3K11, 

PCNXL3, 

SIPA1, 

 

  
      

RELA, 

KAT5, 

RNASEH2C, 

 

  
      

AP5B1, 

OVOL1, 

SNX32, 

 

  
      

CFL1, 

MUS81, 

EFEMP2, 

 

  
      

CCDC85B, 

FOSL1, 

CTSW, 

 

  
      

FIBP, 

C11orf68, 

TSGA10IP, 

 

  
      

SART1, 

DRAP1 

 

23 rs12460876 19 33356891 Intronic eGFRcrea p=5.5 × 10−9 ANKRD27, 

RGS9BP,  

1 

  
      

NUDT19, 

TDRD12, 

SLC7A9, 

 

  
      

CEP89, 

C19orf40, 

RHPN2, 

 

  
      

GPATCH1 
 

24 rs2279463 6 160668389 Intronic eGFRcrea p=8.7 × 10−10 IGF2R, 

SLC22A1, 

SLC22A2, 

1 

  
      

SLC22A3 
 

25 rs10774021 12 349298 Intronic eGFRcrea p=6.7 × 10−9 IQSEC3, 

SLC6A12, 

SLC6A13, 

1 

  
      

KDM5A, 

CCDC77, 

 

  
      

B4GALNT3 
 

26 rs6431731 2 15863002 Intergenic eGFRcrea p=4.6 x 10-8 DDX1, 

MYCN 

2 

27 rs3925584 11 30760335 Intergenic eGFRcrea p=1 x 10-9 MPPED2, 

DCDC5, 

DCDC1 

2 

28 rs12124078 1 15869899 Intronic eGFRcrea p=9.8 x 10-10 FHAD1, 

EFHD2, 

CTRC, 

2 

  
      

CELA2A, 

CELA2B, 

CASP9, 

 

  
      

DNAJC16, 

AGMAT, 

DDI2, 

 

  
      

RSC1A1, 

SLC25A34, 

 

  
      

TMEM82, 

FBLIM1 
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29 rs2453580 17 19438321 Intronic eGFRcrea p=4.6 x 10-8 EPN2, B9D1, 

MAPK7, 

2 

  
      

MFAP4, 

RNF112, 

SLC47A1, 

 

  
      

ALDH3A2, 

ALDH3A1, 

 

  
      

SLC47A2, 

ULK2 

 

30 rs11078903 17 37631924 Intronic eGFRcrea p=2.4 x10-9 FBXL20, 

MED1, 

CDK12, 

2 

  
      

NEUROD2, 

PPP1R1B, 

 

  
      

STARD3, 

PNMT, 

PGAP3, 

 

  
      

ERBB2, 

TCAP 

 

31 rs4293393 16 20364588 Intronic eGFRcrea p=2.6 x10-10 GP2, UMOD, 

PDILT, 

3 

  
      

ACSM5, 

ACSM2A, 

ACSM2B 

 

X rs12917707 16 20367690 Intronic CKD p=2.9 x 10-9 GP2, UMOD, 

PDILT, 

4 

  
      

ACSM5, 

ACSM2A, 

ACSM2B 

 

32 rs6040055 20 10633313 Intronic eGFRcrea p=1 x 10-8 MKKS, 

SLX4IP, 

JAG1 

4 

33 rs1731274 8 23766319 Intergenic eGFRcys p=4.6 x 10-8 STC1, NKX3-

1, NKX2-6 

4 

34 rs13038305 20 23610262 Intronic eGFRcys p=2.2 x 10-88 NAPB, 

CSTL1, 

CST11, 

CST8,  

4 

  
      

CST9L, 

CST9, CST3, 

CST4,  

 

  
      

CST1, CST2, 

CST5 

 

35 rs10206899 2 73900900 Intronic eGFRcrea p=2.3 x 10-8 ALMS1, 

NAT8, 

NAT8B, 

5 

  
      

TPRKB, 

DUSP11, 

C2orf78, 

 

  
      

STAMBP, 

ACTG2 

 

X rs9895661 17 59456589 Intronic eGFRcrea p=4.8 × 10−11 BCAS3, 

TBX2, 

6 

  
      

C17orf82, 

TBX4, 

NACA2 

 

36 rs11864909 16 20400839 Intronic eGFRcrea p=3.6 × 10−10 GP2, UMOD, 

PDILT, 

6 

  
      

ACSM5, 

ACSM2A, 

ACSM2B, 

 

  
      

ACSM1 
 

37 rs13146355 4 77412140 Intronic eGFRcrea p=6.6 × 10−11 FAM47E, 

STBD1, 

6 

  
      

CCDC158, 

SHROOM3 

 

38 rs10277115 7 1285195 Intergenic eGFRcrea p=1.0 × 10−10 C7orf50, 

GPR146, 

GPER, 

6 
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ZFAND2A, 

UNCX, 

MICALL2, 

 

  
      

INTS1 
 

39 rs3828890 6 31440669 Unknown eGFRcrea p=1.2 × 10−9 HLA-C, 

HLA-B, 

MICA, 

MICB, 

6 

  
      

DDX39B, 

ATP6V1G2, 

LTA, 

 

  
      

NFKBIL1, 

LST1, NCR3, 

AIF1, 

 

  
      

PRRC2A, 

BAG6, 

C6orf47, 

 

       
GPANK1, 

CSNK2B, 

LY6G5B, 

 

       
ABHD16A, 

LY6G5C, 

APOM, 

 

       
LY6G6F, 

LY6G6C, 

DDAH2, 

 

       
C6orf25, 

LTB, TNF 

 

40 rs7208487 17 37543449 Intronic eGFRcrea p=5.6 x 10-9 PLXDC1, 

CACNB1, 

ARL5C, 

7 

  
      

RPL19, 

STAC2, 

FBXL20, 

 

  
      

MED1, 

CDK12, 

NEUROD2, 

 

  
      

PPP1R1B, 

STARD3 

 

41 rs4821469 22 36616445 Intergenic ESRD p=1.78 x  10-19 APOL3, 

APOL4, 

APOL2, 

8 

  
      

APOL1, 

MYH9, 

TXN2 

 

42 rs12437854 15 94141833 Intergenic ESRD p=2 x 10-9 no gene in 

<250 kbp 

distance 

9 

43 rs7583877 2 100460654 Intronic ESRD p=1.2 x 10-8 AFF3 9 

44 rs1617640 7 100317298 In promoter 

but not 

missence 

ESRD p=2.66 x 10-8 TSC22D4, 

NYAP1, 

AGFG2, 

SAP25, 

LRCH4, 

FBXO24, 

10 

  
      

PCOLCE, 

MOSPD3, 

TFR2, 

 

  
      

ACTL6B, 

GNB2, 

GIGYF1, 

 

  
      

POP7, EPO, 

ZAN, 

EPHB4, 

 

  
      

SLC12A9, 

TRIP6, 

SRRT, 

 

  
      

UFSP1, 

ACHE 
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We hypothesized that polymorphisms associated with renal disease will influence 

the expression of nearby transcript levels in the kidney, by altering transcriptional factor 

binding. Reports from the ENCODE project indicate that the majority (70%–80%) of the 

gene regulatory elements (promoters, enhancers, and insulators) are within 250 kbp of the 

gene (35). Using these criteria, we identified 306 genes within 500 kbp of 44 CKD SNPs. 

There was no gene within the 500-kbp window around the rs12437854 SNP; therefore, 

43 loci were examined. We called these transcripts CKD risk associated transcripts 

(CRATs). (Original Article I.) 
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6.2. Kidney-specific expression of CRATs 

 

 First, we investigated whether these CRATs near the CKD risk associated loci 

have kidney-specific expression. We hypothesized that these CRATs play important role 

in kidney function, therefore they should be expressed in the kidney. We used 

comprehensive RNA sequencing analysis in normal, healthy kidney tubule samples (n=2) 

to determine the baseline expression of the 306 CRATs. 

We found that 41% of the CKD risk loci-associated transcripts showed high 

(upper quartile), 32% showed medium, 21% showed low expression and only 6% of the 

transcripts were not detectable in healthy human kidney tubule samples (Figure 3A). 

Overall, we found that a large percentage of the CKD SNP neighboring transcripts (94%; 

287 of 306) were expressed in the human kidney. We compared the kidney specific 

expression of the genes near CKD risk associated loci with the expression of other genes 

near 44 randomly selected loci where the nearby genes were defined similarly, with a 

500-kbp window. Around the randomly selected loci, only 13% of the nearby transcripts 

showed high expression and 16% of the nearby transcripts were not expressed in the 

kidney, indicating that CRATs have a statistically significant kidney-specific enrichment 

(Chi-square test, P=1.25 x 10-9). (Figure 3B) 
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 Figure 3. Baseline expression of the CKD risk loci associated transcripts in 

kidney compared to transcripts around random loci 

Human kidney RNA sequencing data was used to examine the baseline expression of the 

transcripts. 41 % of the CKD risk loci neighboring transcripts are highly expressed in the kidney 

(red), 32 % showed medium expression (yellow), 21 % showed low expression in the kidney 

(green). 6% of the transcripts are not expressed (blue) (A). 

Human kidney RNA sequencing data was used to examine the baseline expression of the 

transcripts around 44 randomly selected loci. 13 % of the CKD risk loci neighboring transcripts 

are highly expressed in the kidney (red), 33 % showed medium expression (yellow), 38 % showed 

low expression in the kidney (green). 16% of the transcripts are not expressed (blue) (B). 

 

To confirm our results, we used publicly available datasets to examine the kidney-

specific expression of CRATs. We performed gene ontology analysis 

(david.abcc.ncifcrf.gov), which indicated that CRATs have specific and significant 

enrichment in the kidney and peripheral leukocytes (P=0.0082 and P=0.0014, 

respectively). Additionally, we compared absolute expression levels of CRATs by RNA 

sequencing in 16 different human organs using the Illumina Body Map database 

(www.ebi.ac.uk). The atlas confirmed the statistically significant kidney-specific 

expression enrichment of CRATs. The atlas highlighted the high and kidney-specific 
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expression of Uromodulin (UMOD) (Figure 4.). In summary, expression of CRATs was 

enriched in the kidney and peripheral lymphocytes, potentially indicating the role of these 

cells in kidney disease development. (Original Article I.) 

 

 

Figure 4. Comprehensive RNA sequencing map of the CKD risk associated 

transcripts in 16 different human tissues 

Expression levels of 306 CRATs were examined using the Illumina Body Map (www.ebi.ac.uk). 

The relative expression in each tissue of the first 16 genes with the highest expression level in the 

kidney is shown. High expression values (> 90 percentile) are marked red, low expression values 

(<10 percentile) marked blue, medium expression values marked as different tones of purple 

according to their expression value. Expression levels with FPKM values (Fragments Per 

Kilobase of transcript per Million mapped reads) lower than 0.1 are white. Gene symbols are 

official symbols approved by the Human Genome Organization Gene Nomenclature Committee 

(HGNC). 

 

6.3. Expression profile of CRATs in normal and disease human kidney samples 
 

 According to our hypothesis, the functionally important CRATs are not only 

expressed in relevant cell types (e.g. kidney tubule cells, leukocytes) but the expression 

levels of these CRATs should change in CKD. To test this hypothesis, we analyzed gene 

expression levels in a large collection of microdissected human glomerular (n=51) and 

tubule (n=95) samples. Transcript profiling was performed for each individual sample 
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using Affymetrix U133v2 microarrays, and they contained probe set identifications for 

226 transcripts from the 306 originals CRATs. (Original Article I.) 

 

6.3.1. Expression profile of CRATs in glomerular samples  

 The expression of 226 CKD risk associated transcripts were analyzed in 51 human 

glomerular samples: 27 samples with eGFR above 60 ml/min/1.73 m2 and 24 samples 

with reduced eGFR (eGFR < 60 ml/min/1.73 m2). (Table 2.a) This eGFR cutoff value 

was used in GWASs too, to distinguish “cases” and “controls”. To match our dataset to 

the cases of the GWASs, we included CKD samples from diabetic and hypertensive 

nephropathy. 

 First, following the method of the GWA studies, we compared the expression 

levels of the CKD loci neighboring transcripts in two groups: CKD cases and controls. In 

glomerulus samples, there were no differentially expressed CRATs in these two groups 

which were statistically significant. 

However, linear correlation analysis identified the significant association of 34 

CRATs with eGFR (P < 0.05) (Table 4.). The correlation between the expression of seven 

CRATs and eGFR remained significant, even after Benjamini–Hochberg-based multiple 

testing correction. The expression of multiple novel transcripts showed correlation with 

kidney function. For example, expression levels of Family with sequence similarity 47, 

member E (FAM47E), Plexin domain-containing 1 (PLXDC1), Vascular endothelial 

growth factor A (VEGFA) and Membrane-associated guanylate kinase 2 (MAGI2) 

correlated with eGFR. (Figure 5.) Immunostaining studies from the Human Protein Atlas 

(www.proteinatlas.org) showed that in non-disease human kidney tissue, proteins coded 

by FAM47E and VEGFA were highly expressed in glomeruli. The protein encoded by 

PLXDC1 (also known as Tumor endothelial marker 7 [TEM7]) has glomerular 

endothelial-specific expression in normal human kidney tissue, while MAGI2 seems to 

have a podocyte-specific expression pattern, potentially indicating its role in this cell type. 

Interestingly, FAM47E, PLXDC1, and MAGI2 have not been identified in GWASs as 

potential causal or target genes in the vicinity of CKD risk loci. In summary, the analysis 

highlighted that the expression of several CRATs in glomeruli correlates with renal 

function. 
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Table 4. Expression levels of 34 transcripts (CRATs) in glomeruli showed significant 

correlation with eGFR  

Pearson product moment correlation coefficient (Pearson R) was used to measure the 

strength of association between gene expression and eGFR. Two-tailed test was used to 

determine the statistical significance. With Benjamini-Hochberg multiple-testing 

correction, 7 transcripts showed significant correlation with eGFR (P corrected<0.05). 

Gene symbols are official symbols approved by the Human Genome Organization Gene 

Nomenclature Committee (HGNC). 

 

Table 4. eGFR correlating CRATs in Glomeruli 

Gene symbol 
Pearson 

R 

95% confidence 

interval 
P (two-tailed) 

P (corrected) 

CTSS -0.501 -0.682 to -0.261 1.8 x 10-4 0.0426 

FAM47E///STBD1 0.496 0.256 to 0.679 2.1 x 10-4 0.0426 

FYB -0.478 -0.666 to -0.233 3.9 x 10-4 0.0427 

LTB -0.471 -0.661 to -0.225 4.8 x 10-4 0.0427 

EHBP1L1 -0.466 -0.657 to -0.219 5.7 x 10-4 0.0427 

MFAP4 -0.462 -0.654 to -0.214 6.4 x 10-4 0.0427 

MICALL2 -0.457 -0.651 to -0.208 7.5 x 10-4 0.0428 

CTSK -0.428 -0.629 to -0.173 1.7 x 10-3 0.077 

PLXDC1 -0.417 -0.621 to -0.160 2.3 x 10-3 0.085 

F12 -0.390 -0.601 to -0.129 4.6 x 10-3 0.154 

VEGFA 0.372 0.107 to 0.587 7.2 x 10-3 0.222 

PCOLCE -0.369 -0.585 to -0.104 7.8 x 10-3 0.222 

MYCN 0.364 0.098 to 0.581 8.6 x 10-3 0.231 

GP2 0.356 0.090 to 0.575 0.010 0.235 

SLC34A1 0.356 0.089 to 0.575 0.010 0.235 

EFHD2 -0.355 -0.574 to -0.088 0.011 0.235 

LST1 -0.352 -0.572 to -0.085 0.011 0.236 

MICB -0.345 -0.566 to -0.076 0.013 0.25 

LRCH4 -0.336 -0.560 to -0.067 0.016 0.275 

ANXA9 0.334 0.065 to 0.558 0.017 0.275 

MAGI2 0.321 0.049 to 0.548 0.022 0.336 

ACSM5 0.313 0.041 to 0.54 0.025 0.375 

SLC22A3 -0.308 -0.538 to -0.035 0.028 0.387 

PSRC1 -0.304 -0.535 to -0.032 0.030 0.398 

UMOD 0.301 0.027 to 0.532 0.032 0.401 

ALDH3A2 0.298 0.024 to 0.530 0.034 0.401 

GATM 0.297 0.023 to 0.529 0.035 0.401 

SORT1 0.294 0.020 to 0.527 0.036 0.401 
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AGMAT 0.293 0.019 to 0.526 0.037 0.401 

DRAP1 0.293 0.018 to 0.526 0.037 0.401 

CASP9 0.289 0.014 to 0.523 0.040 0.401 

KDM5A -0.287 -0.521 to -0.012 0.041 0.401 

SLC6A13 0.286 0.011 to 0.520 0.042 0.401 

HLA-C -0.284 -0.519 to -0.009 0.044 0.406 
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Figure 5. Correlation between CRAT expression in glomeruli and renal function 

The y-axis shows the relative normalized glomerular expressions of FAM47E (family with 

sequence similarity 47, member E) (A), PLXDC1 (plexin domain containing 1) (B), VEGFA 

(vascular endothelial growth factor A) (C) and MAGI2 (membrane associated guanylate kinase) 

(D). The x-axis shows the eGFR (estimated glomerular filtration rate) for each sample. Each dot 

represents one individual miscrodissected glomerular sample.  Immunohistochemistry shows the 

protein expression in human glomeruli. (FAM47E (E), PLXDC1 (F), VEGFA (G), MAGI2 (H)) 

Scale bar: 100 μm. (Source: www.proteinatlas.org) 
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6.3.2. Expression profile of CRATs in tubule samples  

We also examined the expression of the 226 transcripts in 95 tubule samples from 

patients with normal and diseased renal function (Table 2.b). Samples were obtained from 

patients with a wide range of kidney function: 56 samples with normal eGFR (eGFR > 

60 ml/min/1.73m2) and 39 samples with kidney disease (eGFR < 60 ml/min/1.73 m2). 

Again, we performed a binary analysis by comparing the expression levels of 

CRATs in control versus CKD samples (eGFR cutoff value: 60 ml/min/1.73m2). Using 

statistical correction for multiple testing (Benjamini–Hochberg corrected P value < 0.05), 

73 CRATs showed differential expression when CKD tubule samples were compared to 

controls. (Table 5.) 

 

Table 5. List of CRATs showing differential expression in control vs. CKD tubule 

samples 

In tubules, 73 transcripts in the neighborhood of the CKD risk loci showed significant 

differences when CKD samples are compared to controls. Benjamini-Hochberg multiple-

testing correction was used with a P value < 0.05. Gene symbols are official symbols 

approved by the Human Genome Organization Gene Nomenclature Committee (HGNC). 

 

Table 5. Differentially expressed CRATs in chronic kidney disease 

Gene 

Symbol 

P value 

(corrected) 

Regulation Gene 

Symbol 

P value 
(corrected) 

Regulation 

LST1 6.40 x 10-8 up PLXDC1 3.63 x 10-3 up 

SLC7A9 4.56 x 10-7 down SLC30A4 4.33 x 10-3 down 

ALDH3A2 1.89 x 10-6 down GATM 5.84 x 10-3 down 

SLC34A1 2.04 x 10-6 down PGAP3 6.17 x 10-3 down 

CTSS 4.19 x 10-6 up SLC6A12 6.81 x 10-3 down 

FYB 4.19 x 10-6 up IGF2R 7.18 x 10-3 down 

ACSM5 1.85 x 10-5 down MICALL2 8.09 x 10-3 up 

LTB 2.55 x 10-5 up CTSK 0.011 up 

UMOD 2.70 x 10-5 down DDI2///RSC

1A1 

0.012 down 

ACSM2A/ 

ACSM2B 

3.81 x 10-5 down ATXN2 0.013 down 

SLC47A1 4.26 x 10-5 down CCDC85B 0.014 up 

ANXA9 4.54 x 10-5 down HLA-C 0.014 up 

DNAJC16 1.24 x 10-4 down TFDP2 0.015 down 

NAT8B 1.63 x 10-4 down AIF1 0.018 up 
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ACAD10 1.97 x 10-4 down DDX1 0.018 down 

GSTM4 2.55 x 10-4 down PRUNE 0.018 down 

VEGFA 4.05 x 10-4 down MFAP4 0.018 up 

CTSW 5.04 x 10-4 up DBN1 0.021 up 

NAT8/ 

NAT8B 

5.04 x 10-4 down CELA2A///

CELA2B 

0.024 up 

FAM89B 6.09 x 10-4 up DACH1 0.024 down 

AFF3 6.28 x 10-4 up TBX2 0.024 down 

MYCN 6.28 x 10-4 down ERBB2 0.027 down 

ALDH2 6.64 x 10-4 down GP2 0.030 down 

FAM47E/ 

STBD1 

6.70 x 10-4 down F12 0.031 up 

GNAI3 6.87 x 10-4 up PHTF2 0.031 up 

SLC22A2 8.54 x 10-4 down CDC42SE1 0.033 up 

DAB2 1.21 x 10-3 down LARP4B 0.033 down 

STC1 1.59 x 10-3 down PTPN12 0.035 up 

APOM 1.83 x 10-3 down PDLIM7 0.036 up 

GPER 1.93 x 10-3 down IDI1 0.037 down 

SLC22A1 1.96 x 10-3 down BRAP 0.039 down 

AGMAT 2.18 x 10-3 down DUOX1 0.045 up 

EHBP1L1 2.47 x 10-3 up FIBP 0.047 down 

SLC6A13 2.47 x 10-3 down MPPED2 0.048 down 

FAM193B 2.66 x 10-3 up MYH9 0.048 up 

CERS2 3.14 x 10-3 down WDR37 0.049 down 

LRCH4 3.38 x 10-3 up    

 

Besides comparing the expression levels in the two groups, we were searching for 

stronger associations between renal function and the expressions of the transcripts nearby 

CKD risk loci. We performed linear correlation tests between the gene expression arrays 

and eGFR in tubule samples. Pearson correlation identified 92 transcripts with 

statistically significant (P < 0.05) linear correlation with kidney function (Table 6.). The 

correlation between the expression of 70 CRATs and eGFR remained significant, even 

after Benjamini–Hochberg-based multiple testing correction.  

 

 

Table 6. In tubules, expression levels of 92 transcripts (CRATs) showed significant 

correlation with eGFR 

Pearson product moment correlation coefficient (Pearson R) was used to measure the 

strength of association between gene expression and eGFR. Two-tailed test was used to 
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determine the statistical significance. With Benjamini-Hochberg multiple-testing 

correction, 70 transcripts showed significant correlation with eGFR (P corrected<0.05). 

Asterisks (*) indicate when the gene expression significantly correlated with eGFR in the 

external validation microarray dataset containing 41 tubule samples, double asterisks (**) 

indicate when this correlation in the external data set remained significant after the 

multiple-testing correction. Gene symbols are official symbols approved by the Human 

Genome Organization Gene Nomenclature Committee (HGNC). 

 

Table 6. eGFR correlating CRATs in Tubules 

Gene Symbol 
Pearson 

R 

95% 

confidence 

interval 

P (two-

tailed) 

P 

(corrected) 

SLC34A1 ** 0.610 0.466 to 0.723 5.3 x 10-11 2.1 x 10-8 

SLC7A9 ** 0.588 0.439 to 0.706 3.6 x 10-10 7 x 10-8 

ACSM5 ** 0.551 0.393 to 0.677 7.3 x 10-9 9.6 x 10-7 

FYB ** -0.531 -0.662 to -0.370 3 x 10-8 2.4 x 10-6 

ACSM2A/ACSM2B * 0.526 0.363 to 0.658 4.3 x 10-8 2.4 x 10-6 

NAT8B * 0.518 0.354 to 0.652 7.4 x 10-8 3.3 x 10-6 

ALDH3A2 ** 0.517 0.352 to 0.651 8.3 x 10-8 3.3 x 10-6 

LTB ** -0.517 -0.651 to -0.352 8.3 x 10-8 3.3 x 10-6 

LST1 ** -0.514 -0.646 to -0.351 1 x 10-7 3.6 x 10-6 

UMOD ** 0.504 0.337 to 0.641 1.9 x 10-7 6.1 x 10-6 

ACAD10 * 0.485 0.314 to 0.625 6.5 x 10-7 1.8 x 10-5 

DNAJC16 0.478 0.306 to 0.620 9.7 x 10-7 2.5 x 10-5 

GSTM4 ** 0.474 0.301 to 0.617 1.2 x 10-6 3 x 10-5 

SLC6A13 * 0.469 0.295 to 0.613 1.7 x 10-6 3.3 x 10-5 

VEGFA ** 0.468 0.294 to 0.612 1.7 x 10-6 3.3 x 10-5 

CTSS ** -0.468 -0.612 to -0.294 1.8 x 10-6 3.3 x 10-5 

ANXA9 ** 0.464 0.289 to 0.609 2.2 x 10-6 3.9 x 10-5 

SLC6A12 0.454 0.278 to 0.601 3.8 x 10-6 6 x 10-5 

FAM47E/ STBD1 ** 0.444 0.267 to 0.593 6.5 x 10-6 9.5 x 10-5 

SLC47A1 ** 0.444 0.266 to 0.593 6.5 x 10-6 9.5 x 10-5 

NAT8/ NAT8B * 0.441 0.263 to 0.5901 7.7 x 10-6 1.1 x 10-4 

ALDH2 * 0.440 0.262 to 0.589 8.1 x 10-6 1.1 x 10-4 

CERS2 0.436 0.257 to 0.586 1 x 10-5 1.2 x 10-4 

STC1 * 0.431 0.251 to 0.582 1.3 x 10-5 1.6 x 10-4 

APOM ** 0.428 0.248 to 0.579 1.5 x 10-5 1.8 x 10-4 

DAB2 ** 0.410 0.227 to 0.565 3.7 x 10-5 3.9 x 10-4 

AGMAT ** 0.397 0.213 to 0.555 6.7 x 10-5 6.9 x 10-4 

GATM ** 0.393 0.209 to 0.551 8 x 10-5 7.8 x 10-4 
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SLC22A2 0.393 0.208 to 0.551 8.3 x 10-5 7.9 x 10-4 

FAM89B * -0.391 -0.549 to -0.206 8.9 x 10-5 8.1 x 10-4 

SLC30A4 0.382 0.196 to 0.542 1 x 10-4 1.1 x 10-3 

MYCN ** 0.376 0.188 to 0.537 2 x 10-4 1.4 x 10-3 

AIF1 * -0.352 -0.517 to -0.163 5 x 10-4 3.4 x 10-3 

TRIP6 * 0.352 0.162 to 0.517 5 x 10-4 3.5 x 10-3 

LARP4B 0.347 0.157 to 0.513 6 x 10-4 4 x 10-3 

GPER ** 0.347 0.157 to 0.513 6 x 10-4 4 x 10-3 

LRCH4 -0.342 -0.509 to -0.151 7 x 10-4 4.7 x 10-3 

SLC22A1 0.342 0.151 to 0.508 7 x 10-4 4.7 x 10-3 

FAM193B -0.338 -0.505 to -0.146 8 x 10-4 5.4 x 10-3 

CTSK ** -0.335 -0.502 to -0.143 9 x 10-4 5.9 x 10-3 

IGF2R 0.321 0.128 to 0.491 1.5 x 10-3 9.5 x 10-3 

DDI2/ RSC1A1 0.320 0.126 to 0.490 1.6 x 10-3 9.9 x 10-3 

PLXDC1 ** -0.315 -0.486 to -0.121 1.9 x 10-3 0.012 

TFDP2 * 0.313 0.119 to 0.484 2 x 10-3 0.012 

BAG6 0.311 0.117 to 0.483 2.1 x 10-3 0.013 

EHBP1L1 ** -0.311 -0.483 to -0.117 2.1 x 10-3 0.013 

CTSW -0.309 -0.481 to -0.115 2.3 x 10-3 0.013 

ATXN2 0.309 0.115 to 0.481 2.3 x 10-3 0.013 

ERBB2 * 0.308 0.113 to 0.479 2.4 x 10-3 0.013 

PHTF2 * -0.307 -0.479 to -0.112 2.5 x 10-3 0.013 

TBX2 0.305 0.110 to 0.477 2.7 x 10-3 0.014 

MICB ** -0.303 -0.476 to -0.108 2.8 x 10-3 0.014 

SIPA1 -0.298 -0.472 to -0.103 3.3 x 10-3 0.017 

PRUNE 0.298 0.102 to 0.471 3.4 x 10-3 0.017 

CCDC85B * -0.287 -0.460 to -0.094 4.9 x 10-3 0.023 

GRK6 -0.287 -0.461 to -0.090 4.9 x 10-3 0.023 

PIP5K1A 0.278 0.082 to 0.455 6.3 x 10-3 0.029 

LTBP3 * -0.276 -0.452 to -0.079 6.9 x 10-3 0.032 

CASP9 * 0.273 0.075 to 0.449 7.5 x 10-3 0.034 

NSD1 0.272 0.074 to 0.449 7.7 x 10-3 0.034 

SOX11 -0.271 -0.448 to -0.074 7.8 x 10-3 0.034 

DUOX1 -0.269 -0.447 to -0.072 8.4 x 10-3 0.036 

AFF3 -0.267 -0.445 to -0.070 8.8 x 10-3 0.036 

NCR3 -0.267 -0.445 to -0.070 8.8 x 10-3 0.036 

FIBP 0.265 0.067 to 0.443 9.6 x 10-3 0.039 

GNAI3 -0.263 -0.441 to -0.065 0.010 0.040 

FOSL1 0.261 0.063 to 0.439 0.011 0.042 

MPPED2 0.259 0.061 to 0.438 0.011 0.044 

MFAP4 ** -0.258 -0.437 to -0.059 0.012 0.045 

B9D1 -0.254 -0.434 to -0.056 0.013 0.049 

SLC12A9 0.254 0.055 to 0.433 0.013 0.050 
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CFL1 -0.250 -0.430 to -0.051 0.015 0.055 

CST8 -0.248 -0.428 to -0.050 0.015 0.057 

DBN1 ** -0.242 -0.423 to -0.042 0.018 0.067 

CDC42SE1 ** -0.242 -0.423 to -0.042 0.018 0.067 

GP2 ** 0.233 0.033 to 0.415 0.023 0.079 

MYH9 * -0.233 -0.415 to -0.033 0.023 0.079 

IDI1 0.233 0.033 to 0.415 0.023 0.079 

MLLT11 * -0.233 -0.415 to -0.033 0.023 0.079 

DACH1 0.229 0.029 to 0.412 0.026 0.087 

DDX1 0.226 0.025 to 0.409 0.028 0.093 

ACSM1 -0.225 -0.408 to -0.025 0.028 0.094 

PDLIM7 * -0.225 -0.408 to -0.024 0.029 0.094 

RELA -0.224 -0.407 to -0.023 0.029 0.096 

SORT1 0.221 0.021 to 0.405 0.031 0.10 

SLC28A2 ** 0.221 0.020 to 0.405 0.031 0.10 

EPN2 * -0.213 -0.398 to -0.012 0.038 0.119 

CELA2A/CELA2B ** -0.213 -0.397 to -0.012 0.039 0.120 

CUX2 -0.212 -0.396 to -0.010 0.040 0.122 

PTPN12 * -0.211 -0.396 to -0.010 0.040 0.122 

MICALL2 ** -0.206 -0.391 to -0.004 0.046 0.137 

MKKS 0.204 0.003 to 0.389 0.048 0.141 

 

More transcripts (58%) showed a positive correlation with renal function (their 

expression was decreased in samples with lower GFR), and 42% showed an inverse 

correlation. Renal function correlated with the expression of 25 CRATs both in glomeruli 

and tubules. Tubule-specific expression of solute carriers had the strongest correlation 

with renal function. For example, the levels of the Solute carrier family 34, member 1 

(SLC34A1), which codes a type II sodium/phosphate cotransporter, and SLC7A9 (Solute 

Carrier Family 7 Member 9), which codes the light chain of an amino acid transporter 

(Figure 6. A, B), correlated strongly with eGFR (with R values of 0.61 and 0.59, 

respectively). Based on the data of the Human Protein Atlas, both transcripts encode 

proteins that are highly and specifically expressed in renal tubule epithelial cells (Figure 

6. D, E). In addition to solute carriers, the expression of a metabolic enzyme, the Acyl-

CoA synthetase medium chain family member 5 (ACSM5), also highly correlated with 

renal function and showed high protein expression in tubule epithelial cells (Figure 6. C, 

F).  
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Figure 6. Correlation between CRAT expression in tubules and renal function 

Expressions of SLC34A1 (solute carrier family 34, member 1) (A), SLC7A9 (solute carrier family 

7, member 9) (B) and ACSM5 (acyl-CoA synthetase medium chain family member 5) (C) 

correlate with eGFR (estimated glomerular filtration rate) in tubule samples. The x-axis represents 

eGFR (ml/min/1.73m2), while the y-axis represents the normalized gene expression values of the 

transcript. Each dot represents transcript levels and eGFR values from a single kidney sample. 

The line is the fitted correlation value. Immunohistochemistry shows tubular specific expression 

of SLC34A1 (D), SLC7A9 (E) and ACSM5 (F). Scale bar: 100 μm. (Source: 

www.proteinatlas.org) 

 

For external validation, we used a gene expression dataset containing genome-

wide transcription profiling from 41 microdissected tubule samples (Table 2.c). The 

samples in this dataset were different from the primary dataset, and a slightly different 

method was used for microarray probe labeling (as described above). Although this 
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dataset was much smaller with a narrower eGFR range, we confirmed the significant 

linear correlation of 51 transcripts, highlighting the importance of these CRATs. 

In summary, the gene expression and kidney function correlation analysis 

revealed CRATs for future prioritization. 

 

6.4. Transcript levels around CKD risk associated loci 

 

6.4.1. Transcript levels around UMOD locus 

We specifically investigated expression changes of the UMOD transcript, because 

it is a potential causal or target gene underlying the polymorphism of some of the best 

characterized CKD associated loci on chromosome 16 (rs12917707, rs4293393 and 

rs11864909). This gene encodes one of the most abundant proteins in human urine: 

Uromodulin or Tamm–Horsfall protein. Furthermore, functional studies seem to link 

UMOD expression both as a biomarker and a causal gene for CKD development (37). We 

found that UMOD transcript levels showed a highly significant linear correlation with 

renal function (Pcorr=6.09 x 10-6) in tubule samples (Figure 7A). We also performed 

immunohistochemistry staining from samples used for the transcriptomic analysis: 

samples with low UMOD mRNA (messenger Ribonucleic Acid) expression and with high 

expression. The results of the staining indicate excellent correlation between uromodulin 

protein expression and its transcript levels (Figure 7. B-E).  
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Figure 7. UMOD expression correlates with renal function 

The expression of UMOD (uromodulin) (A) correlates with eGFR (estimated glomerular filtration 

rate) in tubule samples. The x-axis represents eGFR (ml/min/1.73m2), while y-axis represents the 

normalized gene expression values of the transcript. Each dot represents transcript levels and GFR 

values from a single kidney sample. The line is the fitted correlation value. Immunohistochemistry 

of the samples with low and high mRNA expression showed differences of the uromodulin (B-E) 

expression on protein level. Scale bar: 50 μm. 
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Although UMOD has emerged as an important causal gene for CKD, 

unexpectedly, we found that three other nearby genes were also highly expressed in renal 

tubules, and their expression strongly correlated with eGFR. To illustrate this observation, 

Figure 8 shows the “chromosome 16 locus”, including three leading SNPs (rs12917707, 

rs4293393 and rs11864909) that best correlate with CKD. Closest genes to these 

polymorphisms are UMOD and PDILT (Protein disulfide isomerase-like, testis 

expressed). The expression level of PDILT was nearly undetectable in normal kidney 

samples by RNA sequencing, but the analysis showed high UMOD transcript levels in 

human kidney samples. We observed that ACSM5 and ACSM2A/B were also highly 

expressed in human kidney tubule samples (Figure 8A). RNA sequencing data from the 

Illumina Body Map also confirmed the expression levels of these transcripts (Figure 8B).  

By linear correlation analysis, we found highly significant correlation between renal 

function and UMOD, ACSM5 and ACSM2A/2B transcript levels (Figures 7A, 6C, 9A). 

Unfortunately, PDILT probes were absent from the human U133 chips, and therefore, the 

correlation between PDILT and renal function could not be analyzed by microarray. 

However, we also validated the transcript expression of UMOD, Glycoprotein 2 (GP2), 

ACSM5, ACSM2A/B, ACSM1, and PDILT by QRT-PCR (Table 2.d) to confirm the 

microarray results, and PDILT did not show correlation with renal function (Figure 8C).  
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Figure 8. Correlation of tubule specific transcript levels with renal function near the 

UMOD locus (rs4293393, rs12917707 and rs11864909 polymorphisms) 

The x-axis represents the genomic position of each gene on chromosome 16 (A, C). The y-axis 

represents the negative logarithm of the corrected p-value (significance) between the expression 

of each gene and eGFR (estimated glomerular filtration rate, ml/min/1.73m2). Color coding 

represents the baseline expression of the transcripts in human kidney based on the RNA 

sequencing data. Red: high, yellow: medium, green: low expression in the kidney (A). Based on 

the results of the Illumina Body Map (www.ebi.ac.uk) a heat map was generated from the FPKM 

values of the CKD risk associated transcripts near these SNPs. High expression values (> 90 

percentile) are marked red, low expression values (<10 percentile) marked blue. Expressions with 

FPKM values lower than 0.1 are marked white. Asterisks indicate genes without probe set IDs on 

the Affymetrix arrays (B). Quantitative real-time PCR (qRT-PCR) validation confirmed the 

significant correlation with eGFR of the following transcripts: GP2 (glycoprotein 2), UMOD 

(uromodulin), ACSM5, ACSM2A, ACSM2B (acyl-CoA synthetase medium chain family 

members) (C). The chart on panel A shows a strong correlation between UMOD expression and 

eGFR, while the expressions of ACSM5, ACSM2A/2B also highly correlate with renal function. 
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We performed immunohistochemistry staining on samples with high and low 

ACSM2A/2B transcript expression and found the expression level changes on protein level 

as well (Figure 9. B-E). ACSM5 and ACSM2A/2B genes (ACSM family members) encode 

three genes in fatty acid oxidation pathways. However, these transcripts showed high 

expression in the kidney and their expression strongly correlated with renal function, they 

were not mentioned before in the GWASs as potential causal or target genes. Our results 

indicate a potential functional role of these transcripts. (Original Article I.) 
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Figure 9. ACSM2A expression correlates with renal function 

The expression of ACSM2A (acyl-CoA synthetase medium chain family member 2A) (A) 

correlates with eGFR (estimated glomerular filtration rate) in tubule samples. The x-axis 

represents eGFR (ml/min/1.73m2), while y-axis represents the normalized gene expression values 

of the transcript. Each dot represents transcript levels and GFR values from a single kidney 

sample. The line is the fitted correlation value. Immunohistochemistry of the samples with low 

and high mRNA expression showed differences of the ACSM2A (B-E) expression on protein 

level. Scale bar: 50 μm. 
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6.4.2. Transcript levels around other CKD risk associated loci 

We examined whether in the proximity of a single SNP changes in expression of 

a single gene or multiple genes could be observed. We found that, on 23 of 43 examined 

CKD risk loci, multiple neighboring transcripts correlated with renal function. For 

example, at the SLC47A1 locus (rs2453580), not only the SLC47A1 (Solute Carrier 

Family 47 Member 1, a multidrug extrusion protein) but also, the Aldehyde 

dehydrogenase 3 family, member A2 (ALDH3A2) correlated with eGFR (P=8 x 10-8). 

(Figure 10.)  

We found that, around the rs267734 polymorphism on chromosome 1, both 

Ceramide synthase 2 (CERS2; P=1.01 x 10-5) and Annexin A9 (ANXA9) (P=2.2x10-6) 

transcripts correlated with eGFR in tubule samples. In addition, transcript level of 

Cathepsin S (CTSS) correlated with renal function both in tubules and glomeruli (P=1.77 

x 10-6 and P=1.8 x 10-4, respectively) (Figure 11.)  
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Figure 10. Transcript level expression and correlation of tubule specific transcript 

levels with renal function around rs2453580 locus 

The x-axis represents the genomic position of each gene on chromosome 17. The y-axis represents 

the negative logarithm of the p-value (significance) between the expression of each gene and 

eGFR (estimated glomerular filtration rate, ml/min/1.73m2). The lower panel of the chart 

represents the expression of transcripts within the 250 kbp vicinity of the CKD SNP in 16 human 

organs. Asterisks indicate genes without probe set IDs on the Affymetrix arrays. Gene symbols 

are official symbols approved by the Human Genome Organization Gene Nomenclature 

Committee (HGNC). 
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Figure 11. Transcript level expression and correlation of tubule specific transcript 

levels with renal function around rs267734 locus 

The x-axis represents the genomic position of each gene on chromosome 1. The y-axis represents 

the negative logarithm of the p-value (significance) between the expression of each gene and 

eGFR (estimated glomerular filtration rate, ml/min/1.73m2). The lower panel of the chart 

represents the expression of transcripts within the 250 kbp vicinity of the CKD SNP in 16 human 

organs. Asterisks indicate genes without probe set IDs on the Affymetrix arrays. Gene symbols 

are official symbols approved by the Human Genome Organization Gene Nomenclature 

Committee (HGNC). 

 

On chromosome 5 at the rs11959928 polymorphism, both Disabled homolog 2 

(DAB2, a putative mitogen-responsive phosphoprotein) and FYN binding protein (FYB) 

showed strong correlation with renal function (P=3.68 x 10-5 and P=3 x 10-8, respectively) 

(Figure 12A). The correlation of these genes with eGFR were also validated by QRT-

PCR (Figure 12C). 
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Figure 12. Correlation of tubule specific transcript levels with renal function near 

the DAB2 locus (rs11959928) 

The x-axis represents the genomic position of each gene on chromosome 5 (A, C). The y-axis 

represents the negative logarithm of the corrected p-value (significance) between the expression 

of each gene and eGFR (estimated glomerular filtration rate, ml/min/1.73m2). Color coding 

represents the baseline expression of the transcripts in human kidney based on the RNA 

sequencing data. Red: high, yellow: medium, green: low expression in the kidney (A). Based on 

the results of the Illumina Body Map (www.ebi.ac.uk) a heat map was generated from the FPKM 

values of the CKD risk associated transcripts near these SNPs. High expression values (> 90 

percentile) are marked red, low expression values (<10 percentile) marked blue. Expressions with 

FPKM values lower than 0.1 are marked white (B). Quantitative real-time PCR (QRT-PCR) 

validation confirmed the significant correlation with eGFR of the following transcripts: FYB 

(FYN binding protein) and DAB2 (Dab, mitogen-responsive phosphoprotein, homolog 2) (C). At 

the rs11959928 locus, not only the transcript DAB2 but also the FYB shows high correlation with 

eGFR (A). 
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Based on renal expression and renal function association, we could prioritize 

potential target and/or causal genes for CKD development for 39 of 44 (89%) examined 

loci. As mentioned earlier, there was no gene around rs12437854, and the only nearby 

gene (WDR72, WD Repeat Domain 72) around rs491567 had no probe on the human 

U133 chips. On the other hand, WDR72 is highly expressed in human kidney by RNA 

sequencing analysis, so it still can be an interesting gene for further investigation. No 

nearby transcript showed association with renal function for three SNPs (rs1394125, 

rs7805747 and rs4744712). The correlation between these loci and kidney function would 

need to be re-evaluated.  

In summary, our observations showed that the expression of multiple genes 

around a single locus correlated with kidney function, potentially indicating that the 

regulation of these genes could be linked. 

 

6.5. Expression quantitative trait loci (eQTL) analysis 

6.5.1. eQTL analysis from published gene expression datasets 

Polymorphisms associated with kidney function can also directly control baseline 

transcript levels in disease-relevant types. Based on the possible cross-tissue similarity in 

eQTL results (42,43), we examined multiple different datasets where genotype and gene 

expression correlation data were available. These datasets included the MuTHER and 

other studies (42,57-60), where transcript levels were available from liver, adipose, and 

lymphoblastoid samples. We examined whether CKD risk SNPs influence local transcript 

levels (in cis; within 1-Mbp distance) in these datasets. We found that 4 SNPs from the 

previously identified 44 leading SNPs and 16 SNPs in their linkage disequilibrium (r2 ≥ 

0.8) acted as cis-eQTLs for 11 different transcripts (P < 0.05) (Table 7.). Four of these 

transcripts (33%) were outside of the 500-kbp window that we used to identify CRATs. 

All 11 transcripts were at least moderately expressed in human kidney tissue. Only one 

transcript CLTB (Clathrin, light chain B) showed significant linear correlation with eGFR 

in glomerulus samples (P=0.016). Another transcript, CERS2 showed variation in gene 

expression in lymphoblastoid tissue based on the rs267734 and rs267738 genotypes. 

Furthermore, CERS2 was differentially expressed in CKD and highly correlated with 

eGFR in tubule samples (Tables 5. and 6., Figure 11.), making it a potential candidate 

gene for CKD development. 
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Table 7. eQTL analysis of the CKD risk loci in external datasets 

SNPs associated with chronic kidney disease (CKD) acts as cis expression quantitative 

trait loci (eQTL) in other tissues. P-values indicate the strength of the association between 

the SNP (as eQTL) and the nearby gene. The sources of the analyses are marked and 

detailed on the bottom of the table (analysis ID: 1-4). The table shows the results of our 

study in the case of these genes: baseline expression in the kidney based on our RNA 

sequencing data indicated in the last column; transcripts which are differentially 

expressed in CKD and/or transcripts whose expression levels correlate with estimated 

glomerular filtration rate (eGFR) are marked in red. Gene symbols are official symbols 

approved by the Human Genome Organization Gene Nomenclature Committee (HGNC). 

Chr: chromosome 

Table 7. eQTL analysis of the CKD risk loci in external datasets 

Gene Symbol SNP Chr 

Dis-

tance 

from 

the 

SNP 

(kbp) 

Gene 

in the 

same 

LD 

block 

P-value 

(eQTL) 

Ana-

lysis 

ID 

Baseline 

expression 

in the 

kidney 

SYPL2 rs10857787 1 0 Yes 2.9 x 10-35 1 High 

ATXN7L2 rs10857787 1 16 Yes 1.5 x 10-3 1 Medium 

CERS2 rs267734 1 4 Yes 3.70 x 10-5 2 High 

CERS2 rs267738 1 0 Yes 7.51 x 10-5 2  

SHROOM3 rs17253722 4 243 Yes 7.32 x 10-6 3 Medium 

CLTB rs3812035 5 974 No 1.5 x 10-4 2 High 

CLTB rs6420094 5 974 No 1.5 x 10-4 2  

CLTB rs6862195 5 979 No 1.5 x 10-4 2  

RMND5B rs3812035 5 748 No 4.06 x 10-5 2 High 

RMND5B rs6420094 5 747 No 4.06 x 10-5 2  

RMND5B rs6862195 5 743 No 4.06 x 10-5 2  

SLC25A37 rs17786744 8 347 No 4.68 x 10-5 3 Medium 

AP5B1 rs11227299 11 0 Yes 2.39 x 10-6 4 Medium 

AP5B1 rs4014195 11 35 Yes 2.96 x 10-6 4  

AP5B1 rs9666878 11 66 Yes 4.03 x 10-6 4  

THUMPD1 rs13333226 16 379 No 8.99 x 10-5 2 High 

THUMPD1 rs13335818 16 385 No 8.99 x 10-5 2  

THUMPD1 rs4293393 16 380 No 8.99 x 10-5 2  

CDK12 rs11078895 17 217 Yes 2.0 x 10-11 1 Medium 
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PGAP3 rs8076494 17 311 Yes 7.87 x 10-7 1 High 

Type of the eQTL analysis 

I

D 
Title Tissue 

Expressi

on 

profiling 

Samples 

(n) 

1 
Mapping the genetic architecture of gene 

expression in human liver 
Liver Array 427 

2 

Transcriptome genetics using second 

generation sequencing in a Caucasian 

population 

Lymphoblastoid RNAseq 60 

3 
Mapping cis- and trans-regulatory effects 

across multiple tissues in twins 
Adipose Array 856 

4 
Population genomics of human gene 

expression 
Lymphoblastoid Array 210 

 

6.5.2. eQTL analysis of kidney samples 

To search for expression changes driven by CKD associated loci in our samples, 

we genotyped the kidney samples used for the QRT-PCR validation cohort for rs881858 

and rs6420094 SNPs. 

 Tubule-specific VEGFA transcript levels were lower in patients who were 

homozygous for the major allele on the rs881858 locus compared to heterozygous or 

minor allele homozygous samples (Figure 13A). However, this association was only true 

in healthy kidney samples (n=21, eGFR > 85 ml/min/1.73m2), but as mentioned above, 

eQTL analysis is mostly performed on tissues or cells from healthy, control samples. 

Glomerular or tubule-specific VEGFA transcript and protein expression levels also highly 

correlated with eGFR (Figures 5C, 13B-D). These results indicate that the rs881858 

polymorphism likely influences VEGFA transcript levels, however, this association 

cannot be observed in samples with kidney disease, because of the high influence of 

disease conditions on VEGFA expression.  These results indicate that VEGFA could be 

an important CKD candidate gene.  
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Figure 13. The expression of VEGFA correlates with renal function 

The expression of VEGFA (vascular endothelial growth factor A) is significantly lower (P=0.025) 

in samples homozygous for A alleles (A/A, n=7) at the rs881585 locus compering to samples with 

minor alleles (A/G, n=7 or G/G, n=7) at this locus. Only control samples (eGFR> 85 

ml/min/1.73m2) were used for the analysis (A). Microarray based transcript levels of VEGFA 

correlate with renal function in tubule samples (R2=0.219, P=1.7 x 10-6) (B). QRT-PCR-based 

VEGFA transcript levels (R2=0.228, P=7.8 x 10-4) confirm its correlation with kidney function 

(C). VEGFA protein expression (by immunohistochemistry) correlates with transcript levels 

(Scale bar: 50 μm, counterstained with Hematoxylin) (D). 

 

Additionally, we examined whether genetic polymorphism (rs6420094) on 

chromosome 5 around SLC34A1 will influence transcript expression. We found that 

tubule-specific SLC34A1 expression was significantly higher in patients who were 

homozygous for the major allele on the rs6420094 locus compared with heterozygous or 
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minor allele homozygous samples (n=18, eGFR > 85 ml/min/1.73m2, P=0.0305) (Figure 

14.).  (Original Article I.) 

 

Figure 14. Transcript level of SLC34A1 is different by rs6420094 genotype 

The expression of SLC34A1 (solute carrier family 34, member 1) is significantly higher 

(P=0.0305) in samples homozygous for A alleles (A/A, n=9) at the rs6420094 locus compering 

to samples with minor alleles (A/G, n=3 or G/G, n=6) at this locus. Only control samples (eGFR> 

85 ml/min/1.73m2) were used for the analysis (A). Microarray based transcript levels of SCL34A1 

correlate with renal function in tubule samples (R2=0.372, P=5.3 x 10-11) (B). QRT-PCR-based 

SLC34A1 transcript levels (R2=0.293, P=1.3 x 10-4) confirm its correlation with kidney function 

(C). 
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6.6. Network analysis of CRATs 

Taken together, we identified 104 transcripts of 226 CRATs showing significant 

correlation with eGFR at 39 out of the 44 loci. We examined whether the 104 renal 

function-correlating CRATs (either in tubule or glomerular samples) in the neighborhood 

of 39 CKD risk loci show relatedness and can form a network. The network analysis was 

performed separately on genes that showed positive or negative correlation with kidney 

function.  

Genes showing negative correlation with kidney function (higher expression in 

CKD) clustered at the TNF (tumor necrosis factor), TGF-β1 (transforming growth factor 

beta) and NF-κB/RELA (nuclear factor kappa B with p65 subunit) regulatory nodes 

(Figure 15A.). Most members of this cluster are known to play a role in immune function 

and regulation of inflammation. The second cluster (transcripts with expression that 

positively correlated with kidney function) centered at VEGFA and ERBB2 (Erb-B2 

Receptor Tyrosine Kinase 2) molecules (Figure 15B.). These molecules play important 

roles in maintaining epithelial and endothelial functions. In summary, network analysis 

highlighted the relatedness of the regulated genes and the potential role of epithelial cell 

biology and inflammation in CKD. (Original Article I.) 
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Figure 15. Kidney function correlating CKD risk associated transcripts form tight 

networks 

CKD risk associated transcripts (CRATs) showing negative correlation with estimated glomerular 

filtration rate (eGFR) (green with P corrected<0.05) clustered around TNF and TGFβ (A). CRATs 

showing positive correlation with eGFR (red with P corrected<0.05) centered around VEGFA 

and ERBB2 (B). (Ingenuity Systems, Inc.) 
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6.7. Transcript levels around loci associated with diabetic nephropathy 

 

We also specifically examined the correlation of the diabetic CKD-associated 

polymorphisms (rs12437854, rs7583877 and rs1617640) and transcript changes in 

glomerular and tubular samples only with normal renal function and diabetic kidney 

disease. After excluding the samples with hypertensive CKD, the analysis was performed 

on 42 glomerular and 76 tubule samples. The analysis highlighted that the expression of 

Procollagen C-endopeptidase enhancer (PCOLCE) and Thyroid hormone receptor 

interactor 6 (TRIP6) in the vicinity of diabetic CKD SNPs correlate with kidney function. 

(Table 8.) (Original Article I.) 

 

Table 8. The correlation between levels of diabetic CKD risk associated transcripts 

(D-CRATs) and kidney function in glomeruli (a) and tubules (b) 

We identified 18 D-CRATs in the neighborhood of three loci associating with diabetic 

kidney disease development (rs12437854, rs7583877 and rs1617640). Pearson product 

moment correlation coefficient (Pearson R) was used to measure the strength of 

association between gene expression and eGFR. Two-tailed test was used to determine 

the statistical significance. Four transcripts showed significant correlation with eGFR (P 

corrected<0.05) after Benjamini Hochberg based multiple testing correction and 10 

transcripts showed correlation with GFR with uncorrected p values. Gene symbols are 

official symbols approved by the Human Genome Organization Gene Nomenclature 

Committee (HGNC). 

 

Table 8.a eGFR correlation of DKD specific CRATs in Glomeruli 

Gene Symbol Pearson R 95% confidence 

interval 

P (two-

tailed) 

P 

corrected 

PCOLCE -0.4555 -0.667 to -0.176 0.0024 0.091 

LRCH4 -0.3602 -0.597 to -0.063 0.0191 0.363 

TFR2 0.2841 -0.022 to 0.541 0.068 0.864 

MOSPD3 0.1742 -0.137 to 0.454 0.270 0.993 

TSC22D4 0.1661 -0.145 to 0.448 0.293 0.993 

AGFG2 0.1561 -0.155 to 0.439 0.323 0.993 

TRIP6 0.1498 -0.161 to 0.434 0.343 0.993 

SRRT 0.1461 -0.165 to 0.431 0.356 0.993 

EPO 0.1256 -0.185 to 0.414 0.428 0.993 
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EPHB4 -0.1240 -0.412 to 0.187 0.434 0.993 

GNB2 -0.0958 -0.388 to 0.214 0.546 0.993 

ACHE -0.0864 -0.380 to 0.223 0.586 0.993 

LRCH4///SAP25 0.0805 -0.229 to 0.375 0.612 0.993 

AFF3 -0.0439 -0.343 to 0.264 0.783 0.993 

SLC12A9 -0.0265 -0.328 to 0.280 0.868 0.993 

POP7 0.0186 -0.287 to 0.321 0.907 0.993 

ACTL6B 0.0156 -0.290 to 0.318 0.922 0.993 

FBXO24 0.0036 -0.301 to 0.307 0.982 0.993 

 

 

    

Table 8.b eGFR correlation of DKD specific CRATs in Tubules 

Gene Symbol Pearson 

R 

95% confidence 

interval 

P (two-

tailed) 

P corrected 

TRIP6 0.5121 0.3241 to 0.6612 2.26 x 10-6 8.59 x 10-5 

LRCH4 -0.3761 -0.5545 to -0.1646 8.14 x 10-4 0.0155 

SLC12A9 0.3564 0.1423 to 0.5385 1.58 x 10-3 0.0200 

MOSPD3 0.320 0.1019 to 0.5087 4.84 x 10-3 0.0459 

AFF3 -0.2731 -0.4696 to -0.0507 0.017 0.100 

SRRT 0.2666 0.0438 to 0.4642 0.020 0.100 

ACHE -0.2642 -0.4621 to -0.0412 0.021 0.100 

AGFG2 0.2518 0.0279 to 0.4516 0.028 0.119 

TFR2 -0.2316 -0.4344 to -0.0065 0.044 0.167 

EPO -0.2036 -0.4103 to 0.0229 0.078 0.246 

EPHB4 0.1858 -0.0413 to 0.3948 0.108 0.316 

FBXO24 -0.1379 -0.3524 to 0.0904 0.235 0.558 

ACTL6B -0.0941 -0.3129 to 0.1342 0.419 0.728 

LRCH4///SAP25 -0.0763 -0.2966 to 0.1518 0.512 0.847 

POP7 -0.0682 -0.2892 to 0.1597 0.558 0.850 

PCOLCE 0.0429 -0.1844 to 0.2658 0.713 0.913 

TSC22D4 0.0284 -0.1983 to 0.2523 0.807 0.913 

GNB2 0.0140 -0.2121 to 0.2387 0.904 0.913 

 

Furthermore, genes in the vicinity of rs1326934 locus were examined. A multi-

stage based GWAS found associations between this locus and diabetic nephropathy in 

patients with type 1 diabetes (Original Article II.). However, none of the examined SNPs 

reached genome-wide significance in the discovery cohort, additional analysis drew the 

attention to this locus. In the discovery GWAS, the minor rs1326934-C allele was less 

frequent in cases than in controls (0.34 vs 0.43) and was associated with a decreased risk 

for diabetic nephropathy (OR 0.70 [95% CI 0.60, 0.82]; p=7.87 x 10−6). In an independent 

cohort, three SNPs demonstrated significant association with diabetic nephropathy: 
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rs11188343 (p=9.06 x 10−5) and rs4917695 (p=1.27 x 10−4) in addition to rs1326934 

(p=9.85 x 10−5). These other two SNPs on chromosome 10 are in near complete linkage 

disequilibrium with rs1326934 (r2~1) and mapped to the SORBS1 gene (Sorbin and SH3 

Domain Containing 1).  

We examined the expression of the SORBS1 gene in normal, non-diabetic samples 

and in samples with diabetic kidney disease (17 glomerular and 39 tubule samples). First, 

we performed binary analysis comparing cases versus controls, and found significantly 

higher expression of SORBS1 in tubule samples of diabetic nephropathy (P=6 x 10-4) 

(Figure 16A). Additional linear correlation analysis revealed a significant inverse 

correlation between SORBS1 expression values and eGFR in tubule samples (R=−0.493; 

p=1.44 x 10−3) (Figure 16B). According to the data of the Human Protein Atlas, SORBS1 

is also expressed in kidney tubule cells on the protein level. 

Furthermore, we examined the expression and correlation with eGFR of other 

nearby genes in the vicinity of rs1326934, where not only SORBS1 but other genes also 

correlated with eGFR. (Figure 16C) 
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Figure 16. Expression profile of SORBS1 in diabetic nephropathy 

The y-axis represents the relative expression of the SORBS1 (sorbin and SH3 domain containing 

1) transcript. Control samples: white bars, diabetic kidney disease (DKD): black bars. The tubular 

expression of SORBS1 is significantly up-regulated in DKD compared to control samples in 

tubules (P = 6 x 10-4) (A). The y-axis shows the relative normalized tubular expressions of 

SORBS1, while the x-axis represents eGFR (estimated glomerular filtration rate, ml/min/1.73m2) 

for each sample. Each dot represents transcript levels and eGFR values from a single kidney 

sample. The line represents the fitted linear correlation values (B). The x-axis represents the 

genomic position of each gene on chromosome 10 (q24.1) in the 500 kbp vicinity of rs1326934 

and rs11188343 loci (triangle). The y-axis represents the negative logarithm of the p-value 

(significance) between the expression of each gene and eGFR (ml/min/1.73m2). Not only the 

SORBS1 transcript, but also other transcripts correlate with renal function in the vicinity of 

rs1326934 and rs11188343 loci. Gene symbols are official symbols approved by the Human 

Genome Organization Gene Nomenclature Committee (HGNC) (C). (Original article II.) 
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7. Discussion 
 

Understanding complex trait development, such as chronic kidney disease, is a 

formidable challenge. As discussed above, CKD is a gene environmental disease with 

several genetic and environmental effects on its development. The first step to understand 

the development of CKD is to interpret the genetic architecture of the disease. Initial 

GWASs have provided the first impression of critical regions in the genome with 

variations that are associated with kidney function. The second step is to identify 

transcripts that are regulated by SNPs. The working hypothesis of the field is that causal 

polymorphisms alter transcription factor binding, causing changes in transcript levels in 

target cell types and inducing disease in specific organs. Because there are hundreds of 

genetic variants associated with disease development, analyzing variants individually is 

a daunting task.  

Recently, two complementary methods have been developed and successfully 

applied to identify genes that are targets of the polymorphisms. The first method uses the 

transcript levels as quantitative traits to identify polymorphisms that influence their levels 

(eQTL) (62). To perform such analysis, a large human tissue bank from target cell types 

is necessary where both genetic polymorphisms and transcript levels are analyzed. The 

second (newer) method uses the cell type specific cellular epigenome for regulatory 

element annotation and identifies target transcripts that are associated with genetic 

variants (51). A critical limitation of these methods is that they only identify transcripts 

that are influenced by a basal transcription factor, because these datasets are generated 

from control healthy samples. However, it is possible that polymorphisms control 

transcription factor binding sites for signal-dependent transcription factors. This would 

mean that the expression of a CKD causing gene is not altered at baseline but shows 

differences under stress conditions.  

In this Ph.D. work, I performed the initial level of such analysis by examining the 

correlation between transcripts in the vicinity of CKD SNPs and eGFR. Based on recent 

observations that close to 90% of target transcripts are within 250 kbp of the 

polymorphism, we defined 306 CRATs. Most prior studies focused only on the two 

flanking genes, ignoring transcripts that are farther away (12,13). These 306 CRATs 

could be important for future studies as potential candidates for CKD development. We 
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determined their baseline expression patterns using highly accurate RNA sequencing 

methods. Their strong enrichment in the kidney supports their functional role, although it 

also highlighted that two separate cell types are likely important for CKD development: 

the kidney and peripheral leukocytes. This finding is supported by both network analysis 

and tissue-specific gene expression analysis. Mechanistic studies shall determine the role 

of these cells in CKD development. While diabetic and hypertensive renal disease are 

considered non-immune-mediated renal diseases, this dogma might need to be revisited.  

The highlight of our work is the identification of novel genes in the vicinity of 

CKD-associated SNPs that show strong correlation with kidney function; thereby, they 

are potential candidates for CKD development (for example, FAM47E, PLXDC1, 

ACSM2A/B, ACSM5, and MAGI2). GWASs of Parkinson’s disease showed significant 

associations with loci at FAM47E, but the function of the protein coded by this gene is 

still unknown. PLXDC1 (previously known as tumor endothelial marker 7) is primarily 

associated with angiogenesis in the cancer field, including kidney cancers (63). Also, its 

increased expression in diabetic retinopathy has been reported (64). We found that the 

MAGI2 expression correlates with renal function in glomeruli. Although MAGI2 is 

expressed in the brain, MAGI2 expression is enriched in podocytes (65). Given the critical 

role of podocytes in kidney disease development, this gene could be an important 

candidate. ACSM2A/B and -5 are part of the fatty acid oxidation pathway, which 

emphasizes the importance of metabolic pathways in CKD development. This likely 

reflects the fact that the kidney is an organ with high-energy demand and fluctuations in 

energy levels are likely responsible for variations in function (66). Our results are in line 

with multiple recent publications indicating the importance of energy supply, including 

those highlighting the role of fatty acid metabolism and mitochondrial function in acute 

and chronic kidney disease (67,68). Overall, metabolic gene signature can have a critical 

role in kidney function alterations. 

The expression of CERS2 not only correlates with kidney function, but in other 

tissues, CERS2 levels are strongly influenced by a nearby polymorphism, making this 

gene a very attractive CKD candidate. Ceramide is a common precursor of sphingomyelin 

and glycosphingolipids in mammalian cells. CERS2 is responsible for the synthesis of 

very long chain fatty acid (C20-26 fatty acids)-containing ceramides (69). A recent study 

showed that there are strain-specific changes in sphingolipid acylation, closely related to 
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ceramide synthase 2 protein content and activity, with reduced CERS2 levels/activity 

observed in glucose intolerant strains and increased content in BALB/c mice which were 

protected from high fat diet induced glucose intolerance. Overexpression of CERS2 in 

primary mouse hepatocytes induced a specific elevation in very long-chain ceramide, but 

despite the overall increase in ceramide abundance, there was a substantial improvement 

in insulin signal transduction, as well as decreased ER stress and gluconeogenic markers. 

These findings suggest that very long-chain sphingolipid species exhibit a protective role 

against the development of glucose intolerance and hepatic insulin resistance (70). 

A critically important observation of this work is that the expression of more than 

one gene correlated with eGFR on a single genetic locus. We illustrated this observation 

on the chromosome 16 locus, where not only UMOD but also, a cluster of ACSM genes 

(ACSM2A/B and -5) showed association with eGFR. This interesting coregulatory pattern 

was present for most of the CKD GWAS SNPs, potentially indicating that a single 

polymorphism can control the expression of multiple genes. These observations suggest 

that a SNP may not only influence a single gene but may cause the differential regulation 

of an entire gene cluster.  

We specifically examined the top hits of GWAS conducted in diabetic kidney 

disease. Our first analysis revealed that the expression of PCOLCE and TRIP6 in the 

vicinity of diabetic CKD SNPs correlates with kidney function. Glomerular PCOLCE 

mRNA expression showed negative correlation with eGFR (higher mRNA levels in 

diseased kidney samples). This gene encodes a glycoprotein which binds and drives the 

enzymatic cleavage of type I procollagen and increases C-proteinase activity. While it 

has not been linked to kidney fibrosis in functional studies, its importance in organ 

fibrosis has been revealed for example in liver fibrosis induced by toxins (71). The protein 

encoded by TRIP6 localizes to focal adhesion sites and along actin stress fibers. It 

regulates lysophosphatidic acid-induced cell migration and it has been implicated in 

cancer progression (72). We also examined the genes in the vicinity of rs1326934 locus 

associated with diabetic nephropathy in patients with type 1 diabetes. Around this locus, 

SORBS1 showed high negative correlation with eGFR. The sorbin protein, coded by 

SORBS1, was found to be differentially upregulated in glomeruli of rats with diabetic 

nephropathy compared with rats without diabetic nephropathy (73). In our study, gene 

expression changes of SORBS1 were easier to detect in tubules, as SORBS1 has a higher 
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tubular expression. Although SORBS1 expression was significantly upregulated only in 

tubules, we cannot exclude the importance of glomerular SORBS1. Sorbin functions in 

the signaling and stimulation of insulin. While renal actions of sorbin are not fully 

established, we speculate that it plays a key role in several processes involved in diabetic 

nephropathy, including insulin resistance and cytoskeleton architecture. Sorbin acts in the 

genesis of stress fibers and might, therefore, be involved in podocyte alterations of the 

slit diaphragm barrier. 

Our analysis emphasized the importance of small expression differences in many 

genes in CKD, but these genes do not seem to be independent but instead, form organized 

clusters and pathways. We identified two major clusters. One of them centered at 

epithelial and VEGF signaling. These genes show a linear correlation with kidney 

function, likely indicating the relationship between epithelial and vascular integrity in 

progressive nephropathy. The second cluster highlighted TNF and TGF-b1; these genes 

are known to play important roles in inflammation and fibrosis. Expressions of these 

transcripts showed an inverse correlation with renal function, indicating an increased 

expression of these genes in CKD. Interstitial fibrosis (IF) is one of the main histological 

manifestations of CKD. IF correlates well with CKD and predicts its progression (74,75). 

It has also been suggested that in diabetic nephropathy, IF predicts eGFR decline better 

than proteinuria alone or baseline eGFR (76). In recent years the appreciation for fibrosis 

has increased and several large companies have launched programs aiming to selectively 

target fibrosis (77). Immune system activation has been consistently observed in non-

immune mediated kidney diseases such as hypertension and diabetic CKD (78). However, 

the enrichment for immune system genes in fibrosis likely represents the influx of 

inflammatory cells rather than increased expression of inflammatory genes by resident 

cells (79). This inflammatory cell influx is synonymous with the fibrotic stroma. Taken 

together, along with functional experiments from the literature, our findings also suggest 

that increased inflammation and destruction of functioning epithelial cells are 

cornerstones of fibrosis development. 

In summary, we performed a comprehensive functional genomic analysis of 

CKD-associated GWAS hits in a large set of microdissected human kidney samples. Our 

results highlighted several novel candidate genes which can have important role in CKD 

development. 
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8. Conclusions 
 

Recent GWASs have identified several SNPs associated with chronic kidney 

disease, however the functional role of these loci has not revealed yet.  

In this Ph.D. work: 

 

• We identified 306 CKD-risk associated transcripts (CRATs) in the vicinity of 44 

CKD-risk associated loci.  

• We examined the expression of these CRATs in a large set of human normal and 

diseased kidney samples and described the gene expression correlation with 

kidney function.  

• We could highlight genes for further prioritization for 39 of 44 loci (89%).  

• Using UMOD, ACSM2A, and VEGFA genes as examples, we showed that these 

expression changes likely correlate with protein levels.  

• Our results also suggest that not only the closest gene but also, several genes in 

the close vicinity correlate highly with renal function, indicating their potential 

importance and their potential co-regulation.  

• Network analysis of eGFR-correlating CRATs highlighted two major clusters; a 

positive correlation with epithelial and vascular functions and an inverse 

correlation with inflammatory gene cluster.  

 

Limitations of the work include the use of nephrectomies instead of kidney 

biopsies. However, as all samples were obtained from nephrectomies, this would 

represent a systemic bias and not a disease state-specific bias, and therefore would not 

change the differential expression analysis between the different groups. Unfortunately, 

comparable size expression data obtained from kidney biopsies are not available for 

diabetic and hypertensive CKD subjects. Furthermore, as with most human studies, the 

work mostly highlights associations that cannot fully establish causality. Changes of 

transcript levels do not fully indicate that they are functionally relevant. However, even 

if some of the identified genes are not causally linked to CKD development, the 

expression levels of these transcripts correlate with kidney function in a large collection 



74 
 

of human kidney samples. Therefore, these genes could be important potential candidate 

biomarkers for renal function decline. 

In summary, we performed a comprehensive functional genomic analysis of 

CKD-associated GWAS hits. These results highlight multiple new CKD risk associated 

candidate genes, that were not originally considered by GWAS experiments. Future 

molecular and cell biology experiments will be needed to understand the functional role 

of these CRATs. Our findings can direct the renal community toward identification of 

genes and pathways that may serve as disease biomarkers or causal pathways. 
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9. Summary 
 

Recent genome-wide association studies (GWAS) have identified multiple loci 

associated with the risk of chronic kidney disease (CKD) development. Most of these 

disease-associated single nucleotide polymorphisms are localized to the non-coding 

region of the genome; therefore, the functional role of these variants in CKD development 

is largely unknown.  

We hypothesized that polymorphisms alter transcription factor binding, thereby 

influencing the expression of nearby genes. The aim of the Ph.D. work was to map the 

expression of these transcripts in normal and disease human kidney samples using system 

biology approaches to identify potential causal and/or target genes for prioritization. 

We interrogated the expression and regulation of transcripts in the vicinity of the 

CKD risk loci using RNA sequencing and gene expression arrays from 95 microdissected 

control and diseased tubule samples and 51 glomerular samples. Gene expression analysis 

from 41 tubule samples served for external validation. 

In the main part of the work, we examined the expression of 226 transcripts in the 

vicinity of 44 single nucleotide polymorphisms. 92 transcripts in the tubule compartment 

and 34 transcripts in glomeruli showed statistically significant correlation with estimated 

glomerular filtration rate (eGFR). We observed that the expression of multiple genes in 

the vicinity of any single CKD risk allele correlated with renal function, potentially 

indicating that genetic variants influence multiple transcripts. Network analysis of eGFR-

correlating transcripts highlighted two major clusters; a positive correlation with 

epithelial and vascular functions and an inverse correlation with inflammatory gene 

cluster. We separately examined the correlation between gene expression and renal 

function near loci associated with diabetic nephropathy.  

In summary, our functional genomics analysis highlighted novel genes and critical 

pathways associated with kidney function for future analysis.  
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10. Összefoglaló 
 

Teljes genomra kiterjedő asszociációs vizsgálatok (GWAS) feltártak több, 

krónikus vesebetegség kockázatával járó egypontos nukleotid-polimorfizmust (SNP). 

Ezen SNP-k jelentős része a nem kódoló genetikai állományban helyezkedik el, ezért a 

krónikus vesebetegségek kialakulásában betöltött szerepükről még keveset tudunk. 

Feltételeztük, hogy ezek a polimorfizmusok módosítják a transzkripciós faktorok 

kötődését, ezzel befolyásolva a környező gének expresszióját. A Ph.D. munka célja az 

volt, hogy feltérképezzük ezen gének expresszióját egészséges és beteg humán 

vesemintákban. Rendszerbiológiai megközelítéssel vizsgáltuk ezen SNP-k körüli gének 

expresszióját, hogy azonosíthassunk a krónikus vesebetegség kialakulásában 

potenciálisan szerepet játszó géneket. 

A krónikus vesebetegséggel összefüggésbe hozható polimorfizmusok körüli 

gének expresszióját egészséges és beteg mikrodisszektált mintákban (95 tubulus és 51 

glomerulus) RNS-szekvenálás és génexpressziós array-k segítségével vizsgáltuk meg. Az 

eredmények megerősítésére további 41 tubulus minta génexpressziós profilja szolgált.  

A munka fő részében a 44 SNP körül elhelyezkedő 226 gén expresszióját 

vizsgáltuk meg. A tubulusokban 92, míg a glomerulusokban 34 gén expressziója mutatott 

szignifikáns összefüggést a becsült glomeruláris filtrációs rátával (bGFR). Egy-egy SNP 

körül több olyan gént is találtunk, amelyek expressziója korrelált a bGFR-val, jelezve, 

hogy egy polimorfizmus egyszerre akár több gén kifejeződését is befolyásolhatja. A 

vesefunkcióval korreláló gének hálózati elemzése gyulladás- (inverz korreláció) és 

epiteliális-vaszkuláris (pozitív korreláció) biológiai hálózatok jelentőségére mutatott rá. 

Külön vizsgáltuk a diabeteses vesebetegség kockázatával összefüggő lókuszok körüli 

gének expressziójának összefügéseit a vesefunkcióval.  

Összefoglalva, funkcionális genomikai elemzésünk új, vesefunkcióval 

összefüggő gének és jelátviteli pályák fontosságára hívja fel a figyelmet, ami további 

vizsgálatok alapja lehet. 
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