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1. LIST OF ABBREVIATIONS 

 

ANOVA  analysis of variance 

AP-1   activator protein 1 

bp   base pair(s) 

BSA   bovine serum albumin 

cAMP   cyclic adenosine monophosphate 

CBP   CREB-binding protein 

cDNA   complementary deoxyribonucleic acid 

cD2   chicken type 2 deiodinase 

CpG   cytidine-phosphateguanosine 

CREB   cAMP response element binding protein 

cRNA   complementary ribonucleic acid 

CSF   cerebrospinal fluid 

D1   type 1 deiodinase 

D2   type 2 deiodinase 

D3   type 3 deiodinase 

DBD   DNA binding domain 

DIG   digoxigenin 

DMEM  Dulbecco’s Modified Eagle Medium 

DNA   deoxyribonucleic acid 

DRIP/TRAP vitamin D receptor interacting protein/thyroid receptor associated 

protein 

DTT   dithiothreitol 

E   embryonic day, day of incubation 

EDTA   ethylenediaminetetraacetic acid 

EFsec   selenocysteine specific elongation factor 

ER   estrogen receptor 

FBS   fetal bovine serum 

fmol   femtomole(s) 

FSH   follicle stimulating hormone 

GFAP   glial fibrillary acidic protein 

HAT   histone acetyltransferase 

HDAC   histone deacetylase 



 

5 
 

HPT   hypothalamo-pituitary-thyroid 

HRE   hormone response element 

kb   kilobase(s) 

Km   Michaelis-Menten constant 

LBD   ligand binding domain 

LH   luteinizing hormone 

MCT   monocarboxylate anion transporter  

µl   microliter 

µM   micromole(s), micromolar 

mRNA   messenger ribonucleic acid 

mTRα   mouse thyroid receptor α 

NCoR   nuclear receptor co-repressor 

NGF   nerve growth factor 

NLS   nuclear localization signal 

nM   nanomole, nanomolar 

nTRE   negative thyroid response element 

OATP1C1  organic anion transporting polypeptides 1 

PBS   phosphate buffered saline 

PCAF   p300/CBP associated factor 

PCR   polymerase chain reaction 

PTU   propyl thiouracil 

PVN   paraventricular nucleus 

RNA   ribonucleic acid 

rT3   reverse T3, 3,3’,5’-triiodothyronine 

RTH   resistance to thyroid hormone 

RT-PCR  reverse-transcription-polymerase chain reaction 

RXR   retinoid X receptor 

SBP   selenocysteine binding protein 

SEAP   secretory alkaline phosphatase 

SEM   standard error of the mean 

SECIS   selenocysteine inserting sequence 

SMRT   silencing mediator of retinoid and thyroid receptors 

sORF   short open reading frame 

SRC   steroid receptor co-activator 
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SSC   standard sodium citrate 

SUN-CoR  small ubiquitous nuclear co-repressor 

SV   simian virus 

T2   diiodothyronine 

T3   triiodothyronine, 3,5,3’-triiodothyronine 

T4   thyroxine, 3,5,3’,5-tetraiodothyronine 

TBP   TATA-binding protein 

TH   thyroid hormone 

TK   thymidine kinase 

TRE   thyroid hormone response element 

TRH   thyrotropin releasing hormone 

TRα   thyroid receptor α 

TRβ   thyroid receptor β 

tRNA   transfer ribonucleic acid 

TSH   thyroid stimulating hormone, thyrotropin 

UTR   untranslated region  
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2. INTRODUCTION 

Thyroid hormone (TH) plays a fundamental role in the development and function of 

various organ systems. TH is especially important for the development and function of 

the brain (Bernal et al., 2003). Thyroxine (T4) is the most abundant (~80%) secretory 

product of the human thyroid gland. However, the presence of 3,5,3’-triiodothyronine 

(T3) was also revealed in the human plasma by Gross and Pitt-Rivers (1952). T3 is a 

deiodinated form of T4 and it was established that T3 is the compound responsible for 

most known TH-dependent biological effects despite its less than 20% presence in the 

thyroidal secretory output. Importantly, the existence of T4 to T3 conversion was proved 

by Sterling et al. (1976) indicating that not only the thyroid but also the prohormone T4 

can give rise to T3. 

The regulation of circulating TH levels is governed by the hypothalamo-pituitary-

thyroid (HPT) axis (Fekete and Lechan 2014). The HPT axis is programmed to keep 

serum T3 levels in the physiological range that is predominantly achieved by controlling 

the release of TH from the thyroid gland, especially via regulating the output of the 

long-lived T4 prohormone. However, TH action occurs in tissue/cell compartments and 

its regulation requires quick and tissue-specific costumization (Gereben et al., 2015). 

Thus, the impact of the HPT axis on tissue TH levels is limited. According to the 

current consensus, a complex and tissue-specific regulatory system is responsible for 

the control of tissue TH action. The crucial players of this system are the members of 

the deiodinase enzyme family that catalyze TH activation and inactivation, the TH 

transporters, and the nuclear machinery of TH action (Gereben et al., 2008; Visser 

2000). 

 

2.1. Thyroid hormones are crucial factors of development 

TH is essential for the development and differentiation of various cell types and exerts a 

striking impact on the developing central nervous system. A classical study established 

the correlation between iodine deficiency and cretinism (Ord 1888). It is well-known 

that congenital hypothyroidism is accompanied with detrimental effects. Therefore 

serum thyroid stimulating hormone (TSH) levels are subjected to routine screening in 

human neonates to ensure that TH supplementation will be performed in the critical 
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time window after birth to avoid the devastating and irreversible consequences (Fisher 

et al., 1979). 

It took decades to accumulate data allowing a deeper understanding of the underlying 

mechanisms. TH was found to be crucial in the regulation of later neuron differentiation 

events: proper myelination (Balázs et al., 1969a and 1969b), dendrit and axon 

development and synaptogenesis. It was also demonstrated that suboptimal TH levels 

affect the expression of genes controlling myelin formation in rats, e.g. the ones 

encoding myelin basic protein, proteolipid protein and myelin associated glycoprotein 

(Farsetti et al., 1991; Rodriguez-Pena et al., 1993). Under prolonged hypothyroidism, 

the number of myelinated axons decreased and axons of lower diameter were found to 

be not myelinated in neonatal rats. These changes were also observed in cortical regions 

involved in visual, auditory and motoric activities. THs are inevitable for proper cell 

migration and formation of the layers of the cerebral cortex. Purkinje cells in the 

cerebellum and the pyramidal cells in the cortex were found highly sensitive to 

appropriate TH availability. Purkinje cells are unable to develop their dentritic tree in 

hypothyroidism (Legrand 1967a and 1967b) and this was underlain by affected 

cytoskeletal organization (Silva and Rudas, 1990) while the late migration of granular 

cells in the cerebellum was also severely affected. THs also affect glial cell 

differentiation (oligodendrocytes, astrocytes and microglia) (Gharami and Das 2000; 

Lima et al., 2001). The underlying mechanisms involve biochemical changes related to 

glucose-amino acid conversion, glutamine-dehidrogenase activity, decreased activity of 

oxidative enzymes (Balázs et al., 1971; Cocks et al., 1970) and also yet not fully 

revealed mechanisms governed by cell-cycle modulators such as cyclin D1, E2F-1 or 

p27 (Garcia-Silva et al., 2002). It was shown that the number of matured astrocytes and 

oligodendrocytes is reduced in the white matter tracts of hypothyroid rats (Schoonover 

et al., 2004; Martínez-Galán et al., 1997). Furthermore, THs also impact the 

development of the cytoskeleton via the upregulation of glial acidic fibrillary protein 

(GFAP) and F-actin, as demonstrated both in animal and cell culture models (Paul et al., 

1996). THs enhance the secretion of different extracellular matrix proteins like laminin 

and fibronectin via growth factor secretion (Trentin et al., 1995 and 2001). Importantly, 

nerve growth factor (NGF) secreted by astrocytes has a crucial role in the control of 

neurit growth (Lindsay 1979; Charrasse et al., 1992). The abovementioned effects of 
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TH on glia cells also impact neurons. The role of TH played in neural development is 

summarized in Figure 1. 

 

Figure 1. Role of thyroid hormones during different stages of brain development (based on 

Bernal 2015). 

 

2.2. The structure and function of the HPT axis 

The HPT axis is governed by hypophysiotropic thyrotropin releasing hormone (TRH) 

expressing neurons of the hypothalamic paraventricular nucleus (PVN). Axons of these 

neurons project to the external zone of the median eminence, located below the floor of 

the third ventricle where TRH is released from axon varicosities (Lechan and Fekete 

2006). TRH reaches the anterior pituitary via the portal system and binds to the 7 

transmembrane domain containing Gq/11 protein coupled TRH receptors of thyrotropes 

followed by the increase of thyrotropin (TSH) production and secretion. TSH is a 

glycoprotein that is formed by an -subunit consisting of 92 amino acids (Salvatore et 

al., 2011). This subunit is very similar to those of the follicule stimulating hormone 

(FSH) and luteinizing hormone (LH) (Gray 1988). In contrast, the 110-amino acid-long 

-subunit of TSH is specific for this molecule. TSH reaches the thyroid gland by the 

circulation and binds to the 7 transmembrane domain containing TSH receptors on 

thyrocytes. In contrast to the TRH receptor, the TSH receptor is coupled to Gs protein 

and acts via the activation of adenylate cyclase and consequently evokes cyclic 

adenosine monophosphate (cAMP) release. The capacity of a given amount of TSH to 

induce cAMP release is regulated by TSH bioactivity, a phenomenon dependent on 

TRH-promoted glycosylation of the TSH molecule (Salvatore et al., 2011). TSH 

promotes various steps of TH formation and release. These include the iodide uptake of 

the thyrocytes in the thyroid gland, synthesis and iodination of the thyroglobulin, 
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endocytosis of the colloid and activation of peroxidase. TSH is also able to increase the 

rate of cell division in the thyroid gland (Portulano et al., 2014). 

TH regulates the HPT axis by negative feedback. Increased serum T4 and T3 levels 

decrease TSH and TRH secretion, while a decrease of circulating TH stimulates the 

hypothalamus and the anterior pituitary to release TRH and TSH, respectively. 

Tanycytes of the mediobasal hypothalamus play a very important role in the feedback 

mechanism. These specialized glial cells are located in the floor and the ventrolateral 

walls of the third ventricle (Bruni 1974, Krisch et al., 1978). Numerous tanycyte 

processes, especially those of -tanycytes located in the floor of the third ventricle end 

in the median eminence and contact capillaries and axon terminals of neurosecretory 

neurons (Lechan and Fekete 2007). Importantly, the median eminence is located outside 

of the blood-brain barrier and its TH content originates both from local, tanycyte-

generated sources and from the periphery (Kakucska et al., 1992). TRH expression in 

the PVN of hypothyroid rats could be normalized with exogenous T3 only with a dose 

evoking hyperthyroidism in the periphery. This finding clearly underlines the functional 

importance of hypothalamic T4 to T3 activation in the regulation of TRH (Kakucska et 

al., 1992). Tanycytes are able to uptake T4 either from the fenestrated capillaries of the 

median eminence, the intercellular space of the basal hypothalamus or from the 

cerebrospinal fluid (CSF). They actively convert T4 to T3 since these cells contain high 

amounts of deiodinase type 2 (D2) enzyme (for more details of D2 see Section 2.3). The 

generated T3 is released either to the mediobasal hypothalamus, the CSF or the median 

eminence into the microenvironment located between tanycyte processes and axonal 

segments of parvocellular neurosecretory neurons. Hypophysiotropic TRH neurons 

contain monocarboxylate anion transporter 8 (MCT8) protein in the plasmamembrane 

of their axons that enables them to uptake T3 in the median eminence and consequently 

this allows the regulation of TRH expression by T3 of the median eminence (Kalló et al., 

2012). This could work via an anticipated retrograde axonal transport of T3 to reach the 

PVN but this remains to be proved. This is an important point to be revealed since TRH 

neurons in the PVN rely on external T3 due to their inability to generate T3 is underlain 

by the lack of D2 in these cells. Furthermore, a significant portion of TRH neurons do 

not contain the TH degrading deiodinase 3 enzyme (D3), thus their ability to actively 

regulate their intracellular T3 content is limited, indicating that these cells are 
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programmed to accurately translate the hypothalamic T3 levels into TRH expression 

(Kalló et al., 2012). Thus, in the mediobasal hypothalamus, D2-mediated local 

regulation of T3 availablity functionally interacts with the regulation of the HPT axis. 

See Figure 2 for summary. 

 

 

Figure 2. The hypothalamo-pituitary-thyroid axis and its interaction with local D2-mediated T3 

generation. TRH: thyrotropin releasing hormone, TSH: thyroid stimulating hormone, T4: 

thyroxine, T3: triiodothyronine, DIO1: deiodinase type 1, DIO2: deiodinase type 2 (modified 

from Gereben et al., 2015). 

 

While TH is a major regulator of hypophysiotropic TRH neurons, these cells also 

receive afferents from different brain regions to allow proper response of the axis to the 

changing environment. Metabolic signals are transmitted from the arcuate nucleus, 
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circadian signals come from the suprachiasmatic nucleus while catecholaminergic 

afferents from the brainstem transmit information on changes of the external 

temperature (Fekete and Lechan 2014). 

Set-point formation of negative feedback during ontogeny is a fundamental process for 

the regulation of the HPT axis and its consequences persist through the entire lifespan. 

However, only limited information is available on the onset of the negative feedback 

mechanism. 

Both the development of the brain and the ontogeny of the HPT axis show marked 

species-specific differences. Rats are altricial animals, their brain is not well developed 

at birth and their hypothalamo-pituitary-thyroidal gland axis is not fully matured 

(Schwartz 1983, Legrand 1986). In contrast, the precocious sheep (Fisher 1991) and 

chickens have well developed HPT axes at the date of birth or hatching (Oppenheimer 

and Schwartz, 1997). Children at birth represent an intermediate state between these 

examples with an immature central nervous system but a fully developed axis. Thus 

rodents do not serve as appropriate model for the regulation of the development of the 

human HPT axis while the related mechanisms of hypothalamic feedback cannot be 

studied in humans due to ethical reasons. Therefore, chickens represent an invaluable 

model for these studies, since the developmental kinetics of the chicken HPT axis is 

rather similar to that of humans. In addition, the chicken embryo allows to study 

developmental phenomena in the absence of interfering maternal regulatory circuits. In 

contrast, data obtained from rats should be handled with care because of the significant 

differences exisiting between the development of the HPT axes of rodents and humans 

(Taylor et al., 1990). 

In birds THs control piping, hatching, thermogenesis and growth, but also play a role in 

the neurulation of the chicken embryo (Flamant and Samarut 1998; Decuypere et al., 

1990; Beckett and Arthur 1994). The onset of the thyroid function in chickens starts 

from embryonic day 9.5 (E9.5), T4 and T3 can be detected in the yolk and serve as 

maternal thyroid hormone supply (Prati et al., 1992). The thyroid gland starts to secrete 

its hormones in increasing amounts, but the TSHβ mRNA is increasing further until E19 

as the negative feedback is not yet functional at this developmental stage (Gregory et 

al., 1998). 
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2.3. Regulation of tissue TH action by deiodination 

Many organs can customize their TH action independently from circulating TH levels 

and deiodinase enzymes play a striking role in this event (Gereben et al., 2008). 

Thyroxine can be activated by 5’ deiodination by removing iodine from the outer 

phenolic ring of thyroxine (activation pathway) while inner ring 5 deiodination results 

in the inactivation of T4 or T3 (Figure 3). Historically, the tissues were categorized 

based on their capability of utilizing TH. Tissues contributing to serum TH levels were 

considered as TH exporters while those tissues which do not, were considered as TH 

importers (Crantz et al., 1982). While this nomenclature properly recognized the 

importance of tissue-specific differences in TH economy, in light of recent data it falls 

short to address that i) tissue specific contribution to systemic TH levels is not constant 

but dependent on TH status and ii) in organs with complex cellular composition it also 

depends on cell-type specific events. For example, the rodent heart is not capable of 

producing T3 locally and it is fully dependent on the circulating T3 in the serum. The 

liver is TH importer in euthyroidism and TH exporter in hyperthyroidism. Importantly, 

the brain generates most of its T3 locally, but does not contribute significantly to the T3 

level of the serum. Furthermore, striking compartmentalization exists inside the brain, 

as the glial compartment performs T3 generation and the neuronal compartment 

consumes T3. Thus, cell-type specific events ensure the cellular export and import of 

TH within the same tissue (see Section 2.4). In humans, T3 originates predominantly 

from D2-mediated outer ring deiodination of the prohormone thyroxine in tissues (Maia 

et al., 2005). While biochemically both D2 and type 1 deiodinase (D1) can catalyse this 

process, due to its high Km, D1 is not capable of generating T3 under euthyroid 

conditions. Consequently, in vivo, D2 is the predominant activating deiodinase. 

These enzymes belong to the selenodeiodinase enzyme family and contain the rare 

amino acid selenocysteine in their active center. In the deiodinase encoding mRNA 

selenocysteine is encoded by an in-frame UGA codon that serves otherwise as a stop 

codon in proteins that do not belong to the selenoprotein family. The translational 

readthrough of UGA is ensured by a specific mRNA secondary structure, the 

selenocysteine inserting sequence (SECIS) element, located in the 3’ untranslated 

region (3’UTR) of the selenoprotein encoding mRNA (Berry et al., 1991a; Gereben et 

al., 1999). The SECIS binds the SECIS binding protein (SBP2) that interacts with 
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selenocysteine specific elongation factor (EFSec). The latter binds selenocysteine 

transfer RNA (tRNA) allowing cotranslational selenocysteine incorporation at the UGA 

on the ribosome (Bianco et al., 2002). Although this process is very complex and energy 

consuming, the resulting selenocysteine-containing deiodinase enzyme has much higher 

substrate affinity than the cysteine-containing version. This is because selenium can be 

ionized more easily at physiological pH than the sulphur of cysteine, turning the formed 

protein into a much more powerful oxido-reductase. On the other hand, this comes to 

the cost of the efficiency of translation that is ~50-100 times lower for the 

selenodeiodinase D2 than for its cysteine mutant version (Steinsapir et al.; 2000). 

Therefore, selenocysteine incorporation results in a low level of selenoenzyme that is 

highly efficient (Berry et al., 1991b). 

D1 is capable of removing the iodine from both the outer and inner rings, while D2 is an 

exclusive outer ring deiodinase. An important difference between the two enzymes is 

that the in vitro Km of D1 for T4 deiodination is much higher (1-2 µM) compared to D2 

(1-2 nM). D1 has low affinity and high capacity, at the same time D2 has high affinity 

and low capacity for T4. While D1-mediated deiodination is strongly inhibited by 6n-

propyl-thiouracil (PTU), D2 deiodination is not. This feature helped to discover the 

PTU-resistant 5’ deiodination and as a consequence to identify D2 in the pituitary of 

hypothyroid rats (Silva and Larsen, 1977). D2 is the enzyme that can efficiently 

generate T3 in vivo, while D1-mediated T3 generation can only occur under 

hyperthyroid conditions. Although D1 predominantly inactivates reverse T3 in vivo, the 

special kinetics of D2 enables this protein to activate thyroxine even at low substrate 

levels. 

D1 was identified in several tissues. In rats liver, kidney, thyroid gland and the pituitary 

contain D1. Its 2.1 kb long cDNA was cloned by Berry et al. (1991a). D1 is anchored to 

the plasmamembrane (Baqui et al., 2000). 

D2 is present in the glial compartment of various brain regions and in the pituitary 

(Silva and Larsen, 1977). It can also be found in brown adipose tissue, placenta, 

keratinocytes, myocardium, skeletal muscle and in the thyroid gland (Salvatore et al., 

1996b; Croteau et al., 1996, Bianco et al., 2002). The first full length D2 cDNA of 

higher vertebrates was isolated from chicken (Gereben et al., 1999). The D2 mRNA 
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contains a SECIS element close to the end of 3’UTR. The coding region is of average 

size (840 bp) but the whole RNA is unusually long (6094 bp) due to the long 

untranslated regions and the distance between the SECIS and the UGA of the active 

center is almost 5 kb. D2 is localized in the endoplasmic reticulum (Gereben et al., 

2008). 

D3 represents the third known member of the family. This enzyme removes iodine from 

the inner ring of TH and its main role is to inactivate T4 and T3. D3 is expressed in the 

brain, palcenta, skin and fetal liver. D3-mediated T3 inactivation is crucial in the 

regulation of TH availability in neurons and also prevents the fetus from high levels of 

maternal T3 in specific phases of ontogeny (Tu et al., 1999; Gereben et al., 2008). D3 is 

localized in the plasmamembrane and in the dense core vesicles of neurosecretory 

neurons (Baqui et al., 2003; Kalló et al., 2012). 

 
Figure 3. Deiodinase-mediated metabolism of iodothyronines. T4: thyroxine, T3: 

triiodothyronine, T2: diiodothyronine, reverse T3: reverse triiodothyronine (Gereben et al., 

2008). 

 

2.4. Regulation of thyroid hormone availability in the brain 

T4 and T3 concentrations in the brain are strictly governed by complex, locally 

controlled mechanisms. This process is tightly regulated by deiodination-dependent TH 
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metabolism and neuro-glial TH transport (Freitas et al., 2010; Gereben et al., 2008). It 

was demonstrated that in the brain of rat fetuses T3 is exclusively generated from local 

T4 deiodination and the circulating T3 virtually does not reach the brain and a high 

proportion of T3 (>80% in the cerebral cortex) was shown to be locally generated in the 

adult rat brain (Crantz et al., 1982). As it was discussed in details in Section 2.2, the 

median eminence is a unique region of the brain which lies outside of the blood-brain 

barrier, so T3 from the periphery can reach this area. In contrast, other tissues like the 

liver are readily accessed by serum T3 (Calvo et al., 1990; Grijota-Martinez et al., 2011). 

Due to the presence of D3 in the axonal compartment of the external zone of the median 

eminence, T3 availability is subjected to cell-type specific regulation in this crucial 

sensor region (Kalló et al., 2012). 

In the brain, D2 and D3 are responsible for the regulation of TH availability. D2 is 

expressed in astrocytes in various brain regions and in tanycytes located in the floor and 

infralateral wall of the mediobasal hypothalamus (Tu et al., 1997). In contrast, D3 is 

expressed in neurons (Tu et al., 1999). Astrocytes generate T3 from the T4 by taking it 

up from the brain capillaries and provide activated TH to neurons (Freitas et al., 2010). 

This cell compartment regulates its intracellular TH levels via D3-mediated degradation 

of T4 to rT3 and T3 to and T2. 

As it was discussed in details in Section 2.2, the highest D2 expression in the brain can 

be found in the tanycytes and this phenomenon has a crucial role in the feedback 

regulation of the hypophysiotropic TRH neurons. Cell-type specific ablation of D2 

activity in astrocytes and in the pituitary of transgenic mice revealed that the astrocytic 

D2 pool exerts no impact on the regulation of the HPT axis. It also shed light on the 

complex functional interactions allowing the hypothalamus to keep the systemic TH 

economy in balance even in the absence of pituitary D2 (Werneck de Castro et al., 

2015). Perivascular glial cells take up thyroxine from the blood vessels while a smaller 

fraction of TH is transported through the choroid plexus and the cerebrospinal fluid. TH 

passes the plasmamembrane via membrane transporters like the monocarboxylate anion 

transporter 8 and 10 and the natrium independent organic anion transporting 

polypeptides 1 (OATP1C1). MCT8 transporters are specific to iodothyronines and 

transport both T3 and T4. The transporter is expressed in the blood-brain barrier, choroid 

plexus, neurons, tanycytes and astrocytes (Heuer et al., 2005). OATP1C1 transports 
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mainly T4 and it can be found in the endothelial cells of the blood-brain barrier and 

choroid plexus and in the astrocytes (Roberts et al., 2008). L-type amino acid 

transporters were also described in the astrocytes and neurons (Jansen et al., 2005). 

Mutations in the MCT8 transporter protein are manifested in an X chromosome-linked 

psychomotor retardation, the Allan-Herndon-Dudley syndrome that is hallmarked in 

neonates by neurological symptoms, global developmental delay and mental deficiency 

due to the defects in the T3 transport in critical development phases (Bernal 2005). 

However, MCT8-deficient mice show only negligible neurological impairments (Liao et 

al., 2011). This is underlined by a compensatory effect of OATP1C1 that was elegantly 

demonstrated by the severe phenotype of the double MCT8/OATP1C1 double knock-

out (Mayerl et al., 2014). In parallel, it was demonstrated that the level of the OATP1C1 

transporter is much lower in humans compared to rodents allowing less compensation 

for MCT8 deficiencies (Heuer et al., 2005). 

 

2.5. Machinery of nuclear thyroid hormone action: thyroid hormone receptors 

and thyroid hormone response elements 

In principle, hormones act in two different ways on their target cells: a group of 

hormones (polypeptides, monoamines, prostaglandins) do not enter the cells and bind to 

receptors on the cell surface, while another large group of hormones (small lipophilic 

molecules) enter the target cells and display their effects through intracellular receptors 

(Lazar 2011). TH receptors (TRs) belong to the nuclear hormone receptor superfamily 

and represent the cellular homologues of the v-erbA oncogen of the avian 

erythroblastosis retrovirus (Weinberger et al., 1986; Sap et al., 1986). Other members of 

this superfamily are receptors of  

 other classical hormones (e.g.: glucocorticoid, mineralocorticoid, estrogen, 

androgen) 

 vitamins (vitamin D, retinoic acid, retinoic X) 

 metabolic intermediates and products (that ligand peroxisome proliferator-

activated, liver X, bile acid receptor, Rev-Erb receptor) 

 xenobiotics (that ligand pregnane X and constitutive androstane receptor) 

(Mangelsdorf et al., 1995) 
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Orphan receptors with unknown ligand were also described. A good example of this is 

the Rev-erb A receptor (Yen 2001). 

The nuclear hormone receptors are hormone dependent transcription factors having a 

molecular weight in the range of ~100 kDa. For nuclear trafficking, a nuclear 

localization signal (NLS) is required to be attached to the receptor upon translation 

(Lazar 2011). Members of the nuclear receptor superfamily share a similar domain 

structure and contain separated domains for DNA binding and ligand binding (see 

Figure 4). The DNA binding domain (DBD) and the ligand binding domain (LBD) are 

located at the amino and carboxy-terminal portion of the protein, respectively. Despite 

the structural similarity of this domain (with 12 α helical segment), slight molecular 

differences in the region account for the ligand specificity. The DNA binding domain is 

able to recognize specific DNA sequences (hormone response elements, HREs) in the 

promoter region of a responsive target gene. The DBD contains zinc fingers that contact 

the DNA, the region responsible for the recognition of the specific DNA hexamer is the 

P box that is basically a small stretch of amino acids (Lazar 2011). TR binds the 

AGGTCA hexamer, also called as half-sites (see Figure 5), while glucocorticoide 

receptors bind to AGAACA. In some cases the receptor binds to extended half sites 

with C-terminal extension of the DNA-binding domain. TR predominantly binds the 

DNA heterodimerized with Retinoid X receptor (RXR). The dimers bind to the two half 

sites and the number of bases and the sequence between the half sites determine the 

target gene specificity. TRs usually bind to direct repeats separated by 4 bases between 

them (Umesono et al., 1991), but in some cases the orientation of the half-sites and their 

spacing is different (Williams and Brent 1995). RXR and TR bind to the 5’ and 3’ half 

site sequences, respectively. Upon ligand binding, TR undergoes a conformational 

change which alters its capacity to recruit coactivators or corepressors. This event is a 

prerequisite of the TR-dependent alteration of gene transcription. Whether the resulting 

effect will be manifested in activation or repression is primarily dependent on the TRE 

characteristics of a specific gene (see Section 2.6). 
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*nuclear localisation signal 

Figure 4. General structure and functions of the nuclear receptors 

 

 

Figure 5. Binding of thyroid hormone receptors to DNA. Thyroid (TR) and retinoid X receptor 

(RXR) heterodimers bind to DNA half site sequences called TH response element (TRE). 

 

2.5.1. Thyroid hormone receptor isoforms 

Two TR isoforms have been identified. TRα was first isolated from chicken liver (Sap 

et al., 1986) and at the same time also from rat brain (Thompson et al., 1987). The TRβ 

was isolated from human placenta (Weinberger et al., 1986), chicken (Forrest et al., 

1990 and 1991) and rat (Obregon et al., 1986). TRα and TRβ are encoded by two 

separate genes: TRα on the human chromosome 17, while TRβ on chromosome 3. TRα 

has two main subtypes, α1 and α2. TRα2 is an alternatively spliced variant, which is 

unable to bind thyroid hormones because some critical amino acids are replaced in the 

carboxy-terminal (Lazar et al., 1989b) and the dimerization properties of this receptor 

isoform are also changed. Some further protein products encoded by the TRα gene were 

also described such as TRα3 and the truncated ΔTRα1 and ΔTRα2 proteins. The 

function of the isoforms that do not bind the hormone is not clear, although these might 

have a role in attenuating the physiological effects of T3 by competing with the T3 

binding variants (Lazar et al., 1989a). 

The TRβ gene encodes four different types of proteins: TRβ1, TRβ2, TRβ3 and ΔTRβ3. 

All of them are able to bind T3 but the truncated ΔTRβ3variant cannot bind to the DNA. 
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The A and B domains of the TRβ receptors are different from each other but their DNA 

and ligand binding domains are very similar. 

The tissue distribution of TR isoforms shows tissue-specific differences and their 

physiologic role depends on the given tissue in which they are expressed. It was e.g. 

demonstrated that TRα is important in the regulation of cardiac function, body 

temperature, intestinal and lymphocyte development. This receptor is also widely 

expressed in the brain (Morte et al., 2002). Some studies in mice confirmed the role of 

TRα in behaviour as it is responsible for the specification of the hippocampal neural 

circuits (Guadano-Ferraz et al., 2003). TRβ can be found in the pituitary, liver and 

cochlea. TRβ2 is the predominant TR isoform in the PVN (Bernal et al., 2003; Abel et 

al, 2001) and this subtype is responsible for the differentiation of the Purkinje cells in 

the cerebellum. For the different receptor types and their functions see Table 1. 

Table 1. Thyroid hormone receptor isoforms, their tissue distribution and functions 

 

 (Based on Ortiga-Carvalho et al., 2014) 

TRs are expressed in humans and in sheep well before the formation of the thyroid 

gland and the onset of thyroid hormone synthesis. In the human fetus the receptors can 

be detected from the 10
th

 week of gestation while in sheep from the 50
th

 day. TRα1 

isoform is responsible for the vast majority of the total T3 binding in the fetal brain 

(Schwartz et al., 1992; Strait et al., 1991). In the adult rat brain distribution of T3 
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binding in the brain is approximately 60% α1, 30% β1 and 10% β2 (Schwartz et al., 

1994). 

Several types of thyroid hormone receptor mutations were described and TR knockout 

murine models provided novel insights into the physiological roles of the different 

receptor types (Ortiga-Carvalho et al., 2014). It was shown in mice that in the absence 

of TRβ neither behavioural nor neuroanatomical abnormalities were observed (Forrest 

et al., 1996b). The TRβ knockout mice are deaf, their colour vision is impaired 

indicating the role of this receptor type in the development of the cochlear cell and the 

retinal photoreceptor. Human patients without TRβ have normal mental development 

(Takeda et al., 1992), but the cochleo-vestibular development may be affected (Forrest 

et al., 1996a; Refetoff et al., 1967). Resistance to thyroid hormone syndrome (RTH) is 

typically caused by mutations in the TRβ gene (Jones et al., 2003). Patients with 

mutated TRβ have severe learning difficulties and reduced intelligence quotient. Their 

TSH and thyroid hormone levels are increased, goitre is developed accompanied with 

an impaired negative feedback of the HPT axis. The vision and hearing of these patients 

are also affected and heart defects, such as tachycardia, exacerbate the homeostatic 

functions (Refetoff and Dumitrescu 2007, Pazos-Moura et al., 2000). In general, 

mutations in TRβ manifest in more severe clinical signs than the complete absence of 

the receptor. 

More recently, TRα1 mutant RTH patients have also been identified without presenting 

major disturbances in parameters of TH economy; in these cases TSH and circulating 

thyroid hormones are only mildly affected. On the other hand, the syndrome is 

represented by growth retardation, delayed bone development, cognitive deficits, severe 

constipation and impaired neuronal development (Van Mullem et al., 2012; Vennström 

et al., 2008). 

It needs to be mentioned that the lack of TR function and hypothyroidism are 

manifested in different consequences since the deletion of TRs in knock-out mice do not 

lead to brain hypothyroidism. This is supported by the fact that the unliganded TRs can 

also act on their target gene, either in a positive or a negative manner, depending on the 

positive or negative regulation of the gene by T3. This removal of TR function also 

abolishes the regulatory function of unliganded TRs (Chassande 2003). 
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2.6. Assessment of thyroid hormone action 

Binding of TH to TR exerts either activating or repressory effect on TH responsive 

target genes (Glass and Rosenfeld 2000). 

2.6.1. Positive regulation of gene expression by thyroid hormones 

In contrast to the other nuclear homone receptors, e.g. the estrogen receptor (ER), the 

TR-RXR heterodimers are predominantly located in the nucleus even in the absence of 

ligand and even the unliganded TR can bind to TRE. Under uninduced conditions of a 

positively regulated TH sensitive gene the TR/RXR heterodimers bind co-repressor 

molecules. Binding of T3 triggers a conformational change of TR that will release co-

repressors and bind co-activators. This TH-mediated activation of a positively regulated 

gene consists of derepression followed by activation. See Figure 6 for a schematic 

depiction of positively regulated genes (Lazar 2003). 

 

 

Figure 6. Activation and repression of positively regulated genes by thyroid hormone receptors. 

(Based on the model described by Lazar, 2003). (RXR: retinoid X receptor, TR: thyroid 

hormone receptor, CoR: co-repressor, CoA: co-activator, TRE: thyroid hormone response 

element, TH: thyroid hormone). 

 

Several co-activators were identified that enhance the transcriptional activation of TH-

responsive genes after TR binds to its ligand. Two important members of TH co-

activators are the steroid receptor co-activator complex (SRC) and the vitamin D 

receptor interacting protein/thyroid receptor associated protein complex (DRIP/TRAP 

complex). SRCs have three subtypes: SRC-1, SRC-2 and SRC-3. Beside their capability 

to associate with TR they can also interact both with the CREB-binding protein (CBP) 

and p300. The CBP/p300 complex is able to interact with p300/CBP associated factor 
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(PCAF) that possesses histon acetylase (HAT) activity. Histon acetylases promote 

loosening the chromatin structure allowing transcription of the TH-responsive gene 

(McKenna et al., 1999). PCAF and CBP are able to interact with TATA-binding protein 

(TBP) associated factors and RNA polymerase II. Co-activators are able to bind to the 

helices 3, 5 and 6 of the ligand binding pocket of TR with their consensus LXXLL 

amino acid sequence. The components of the DRIP/TRAP pathway are able to associate 

with RNA polymerase II but they do not possess histone acetylase activity. 

Major co-repressors of TH action are represented by the nuclear receptor co-repressor 

(N-CoR) and the silencing mediator of retinoid and thyroid receptors (SMRT). The 

latter is capable of anchoring further large multiprotein complexes that contain histon 

deacetylase (HDAC) activity. Histon deacetylases play a crucial role in maintaining the 

chromatin structure in a form that does not favour the basal transcription. DNA 

methylation may also attribute to basal repression since methyl-CpG-binding proteins 

associate with Sin3 containing co-repressor complex and HDAC (Nan X et al., 1998; 

Wade et al., 1999). Small ubiquitous nuclear co-repressor (SUN-CoR) was also 

described (Zamir et al., 1997). The nuclear receptor co-repressor (NCoR) and the 

SMRT are approximately 50% homologue based on their amino acids and have similar 

structural domains. In the interaction domain of NCoR and SMRT consensus sequences 

(I/L)xx(I/V)I were found, similarly to that of the co-activators described above (Lazar 

2011). 

2.6.2. Negative regulation of gene expression by TH 

Mechanisms underlying TH-dependent negative regulation of gene expression are still 

incompletely resolved and different models have been worked out to explain the 

phenomenon. According to one of these models, TR binds to a negative TRE (nTRE). It 

means that in the case of hormone binding the receptor anchors to co-repressors (with 

HDAC activity), on the other hand in unliganded state the receptor binds to co-

activators (with HAT activity). One of the in vivo examples for this model is 

represented by the negative effect of the TH bound receptor on TSH expression in the 

pituitary (Shibusawa et al., 2003) and on the regulation of TRH (see Figure 7). 
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Figure 7. Activation and repression of negatively regulated genes by thyroid hormone receptors 

(Model 1). (Based on the model described by Shibusawa et al., 2003) (RXR: retinoid X 

receptor, TR: thyroid hormone receptor, CoR: co-repressor, CoA: co-activator, nTRE: negative 

thyroid hormone response element, TH: thyroid hormone). 

 

It was also suggested that on negatively regulated target genes co-repressor complexes 

are recruited in the absence of TH. After T3 binding co-activators are recruited, but at 

the same time the transcription is repressed (Astapova and Hollenberg 2013) (Figure 8). 

 

 

Figure 8. Activation and repression of negatively regulated genes by thyroid hormone receptors 

(Model 2). (Based on the model described by Astapova and Hollenberg 2013). (RXR: retinoid 

X receptor, TR: thyroid hormone receptor, CoR: co-repressor, CoA: co-activator, TRE: negative 

thyroid hormone response element, TH: thyroid hormone). 
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It was also suggested, that TR binding to DNA is not a prerequisite of the TH-mediated 

negative regulation (Zhang et al., 1991; Pfahl 1993). In this case, an activator protein 1 

(AP-1) heterodimer (consisting of Jun and Fos) is involved in the process. Upon AP-1 

binding TR recruits co-activators in the absence of the ligand and binds to co-repressor 

if T3 is present (Figure 9). 

 

 

Figure 9. Activation and repression of negatively regulated genes by thyroid hormone receptors 

(Model 3). (Based on the model described by Zhang et al., 1991 and Pfahl, 1993). (RXR: 

retinoid X receptor, TR: thyroid hormone receptor, CoR: co-repressor, CoA: co-activator, AP-1 

site: activator protein 1 binding site, TH: thyroid hormone). 
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This model can also involve regulation by non-T3 dependent pathways, indicating that 

TR can compete with other nuclear receptors for co-activators or co-repressors (Figure 

10). Without the ligand they bind (“steal”) co-repressors, while in the presence of TH 

they bind to co-activators (Kamei et al., 1996 and Tagami et al., 1997). 

 

 

Figure 10. Activation and repression of negatively regulated genes by thyroid hormone 

receptors (Model 4) (Based on the model described by Kamei et al., 1996 and Tagami et al., 

1997). (RXR: retinoid X receptor, TR: thyroid hormone receptor, CoR: co-repressor, CoA: co-

activator, AP-1 site: activator protein 1 binding site, TH: thyroid hormone, GR: glucocorticoid 

receptor). 

 

2.7. Posttranscriptional mechanisms regulating biological activity 

2.7.1. Alternative splicing 

Alternative splicing is a phenomenon in eukaryotes which increases the biodiversity of 

proteins encoded by the genome (Black 2003). Precursor messenger RNAs (or primary 

transcripts) can be modified by post-transcriptional processes. Alternative splicing can 

generate different mRNAs and as a consequence, different protein subtypes can be 

encoded by the same gene. There are two distinct mechanisms of alternative splicing, 

the exon skipping/switching and the intron slippage (Habener 2011). During exon 

skipping some exons are included while some of them may be excluded from the 
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primary transcript. Intron slippage is a process in which part of an intron is used in an 

exon, thus part of the intron becomes a coding region. Various examples are known 

when alternative splicing affects TH signaling. As it has been already highlighted in 

Section 2.5.1 the TRα2 is an alternatively spliced variant of the TRα1 isoform which is 

not able to bind T3 (Lazar et al., 1989b). 

2.7.2. The 5’ untranslated region of the D2 mRNA 

The 5’ untranslated region (5’UTR) of a specific mRNA is located between the 5’ 

proximity of the mRNA and the translational initiator ATG of the protein encoding 

region. The 5’UTR of the chicken D2 mRNA is unususally long (~600 bp). It contains 

short open reading frames (sORF) (Gereben et al., 1999). The sORFs are small 

alternative coding regions flanked by start and stop codons separated by an RNA 

segment consisting of bases in a number divisible by 3. Presence of the “Kozak 

consensus sequence” is the prerequisite of an efficient translational initiation of an 

eukaryotic open reading frame, represented by purine nucleotides (adenine or guanine) 

in the -3 position, where +1 is the first base of the ATG start codon (Kozak 1986). 

According to the scanning model of translation, the 40S ribosomal subunit moves 5’ to 

3’ along the mRNA and upon reaching an ATG embedded into a Kozak consensus gets 

charged with methionine and by the help of additional factors recruits the 60S subunit in 

order to initiate translation (Alberts et al., 1994). Thus, sORFs in the 5’UTR of D2 may 

be subjected to translation. 

 

2.8. Measurement of TH-dependent gene expression with promoter assays 

2.8.1. Luciferase assays in general 

Accurate measurement of gene transcription is a critically important tool to study 

genomic events underlying modulation of cell function. This is especially important for 

studies on TH-mediated events since most of the known effects of this hormone involve 

TH-induced transcriptional events. Taking advantage of bioluminescence is a state of 

the art approach to study transcriptional events. Bioluminescence, by definition, is the 

production and emission of visible light by a living organism as a result of a natural 

chemical reaction (McElroy et al., 1969). Several organisms are capable of producing 

light such as bacteria, insects, fungi and different marine organisms. During the 
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chemical reaction, the photon emitting luciferin gets oxidized by the luciferases. 

Luciferins are conserved but the luciferase enzymes are species-specific. The best 

established firefly luciferase originates from the North American firefly Photinus 

pyralis and is a 61 kDa protein. Renilla luciferase originating from Renilla reniformis 

represents another luciferase protein which was isolated from corals of coastal waters of 

North America (Lorenz et al., 1991). Recently, a novel luciferase enzyme Nano 

luciferase has been isolated from deep sea shrimp Oplophorus gracilirostris. It contains 

two smaller 19kDa and two larger 35 kDa subunits. This luciferase was used to develop 

the engineered luciferase NanoLuc in which the furimazine is used as a coelenterazine 

analogue. For cellular analytical assays this new luciferase has the advantage that it is 

more stable, showing brighter luminescence with sustained signal duration, has greater 

thermal, pH and urea stability, smaller size (19kDa) and monomeric structure. Its 

emission maximum is at 460 nm (Hall et al., 2012). Luciferase assays are rapid, 

sensitive and require non-radioactive substrates. In general, they are approximately 30-

1000 times more sensitive than the classical chloramphenicol acetyltransferase reporter 

system (de Wet et al., 1987). It was also confirmed that luciferin is able to enter the cells 

enabling to conduct the luciferase expression studies in intact cells. 

2.8.2. Investigation of thyroid hormone response elements 

It is a crucial requirement of accurate gene expression studies that the reporter itself 

should not be affected by the factor used to modulate the promoter and its flanking 

region. However, in CV1 mammalian cells expression of the classical firefly luciferase 

was down-regulated by T3 in a TR-dependent but promoter-independent manner 

(Tillman et al., 1993). Consequently, the CV1 cells cannot be reliably used for TRE 

structure or activity studies. This phenomenon was further evaluated with the analysis 

of unliganded thyroid hormone receptors on the Luc expression in HEK-293, COS-7 

and JEG-3 cells (Maia et al., 1996). Among these cell lines the choriocarcinoma cell 

line JEG-3 was found to be the most sensitive for these studies. The authors suggested 

that an unidentified negative TRE should be present in the luciferase coding region and 

concluded that firefly luciferase cannot accurately measure the T3-dependent gene 

expression. 

Later, a cautionary note has been issued by Chan et al. (2008) regarding the use of the 

pBi-L (Clontech, Mountain View, CA, USA) dual expression plasmid for the generation 
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of transgenic mice. In these studies the expression of both TRα1 and luciferase were 

negatively regulated by T3. This was independent of both the cis introduction of TR in 

the vector and the trans expression of TR from another vector. The negative regulation 

could be observed only in the presence of TRs and only in those vectors that contained 

the luciferase reporter. All these data above demonstrate that the use of firefly luciferase 

has its limitations in the T3-dependent gene expression studies. 
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3. OBJECTIVES 

 

Regulatory factors of thyroid hormone mediated effects were studied using 

molecular and cell biological approaches. We focused on the following issues. 

 

I. Investigation of thyroid homone availability in the developing chicken 

hypothalamus 

II. Understanding the RNA-dependent post-transcriptional regulation of the type 2 

deiodinase (D2) encoding dio2 gene 

III. Identification of authentic reporter proteins for studies on T3-dependent gene 

transcription 

 

We intended to address the following specific questions: 

1. What is the distribution pattern of the D2 mRNA in the developing and adult 

chicken brain? 

2. Do alternative splicing and the D2 5’UTR play a role in the post-

transcriptional regulation of D2 activity? 

3. Are novel luciferase reporters more accurate to assess T3-mediated 

transcriptional changes than the classical firefly luciferase? 
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4. METHODS 

4.1. Animals 

Eight-week-old specific pathogen-free White Leghorn chickens and chicken embryos 

on the embryonic day (E)7, E8, E9, E10, E11, E13, E15 and E17 were obtained from 

the Central Veterinary Institute and Ceva-Phylaxia (Budapest, Hungary). The 

incubation was started at E0. Animal tissue samples were collected in accordance with 

the legal requirements of the Animal Care and Use Committee of the Institute of 

Experimental Medicine (Hungarian Academy of Sciences, Budapest). 

 

4.2. Generation of expression constructs 

4.2.1. Constructs prepared for the analysis of RNA-dependent post-transciptional 

regulation of D2 

The backbone of the chicken D2 (cD2) reporter construct contained a cD2 coding 

region between EcorI-HindIII and a rat D1 minimal SECIS element between HindIII-

NotI (Gereben et al., 1999). Constructs were prepared with different UTR fragments 

cloned between the SacII site of the D10 vector and EcoRI. To generate the cD2 5’UTR 

construct, SacII-EcoRI fragment of the full-length cD2 cDNA was inserted between the 

corresponding sites of the cD2 reporter. The cORF(Wt)-cD2 construct was prepared by 

using oligonucleotides: sense tccccgcggG CCGAGAAACA ATGGGATAGC 

GCgaattcc and antisense, ggaattcGCG CTATCCCATT GTTTCTCGGC ccgcgggga. 

Oligonucleotides were annealed to generate double stranded DNA. For the cORF(Mut-

ATG)-cD2 construct, the following oligonucleotides were used for annealing (sense, 

tccccgcggG CCGAGAAACA tTGGGATAGC Gcgaattcc; antisense, ggaattcGCG 

CTATCCCAaT GTTTCTCGGC ccgcgggga). The resulting inserts were cloned after 

SacII-EcoRI digestion into the cD2 reporter. The cDNA encoding the Δ77cD2 protein 

was isolated as described in Section 4.4. The spliced cDNA was inserted between SacII 

and NotI of the D10 mammalian expression vector using the same approach as 

described before for the wild-type cD2 mRNA (Gereben et al., 1999). The generated 

constructs were confirmed by automated sequencing. 

4.2.2. Generation of expression constructs for the analysis of luciferase reporters  

The thymidine kinase-luciferase (TK-Luc) construct was generated by removing the 

TRE triplet of pTRE-TK-Luc by digestion with BamHI and BglII followed by religation 
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and confirmation of the final construct by sequencing. The original plasmid backbone, 

pTRE-TK-Luc contains the thymidine kinase minimal promoter of the herpes simplex 

virus and was kindly provided by Dr. AM Zavacki (Boston, MA, USA). 

The TK-(dCpG)Luc was prepared using the TK-Luc plasmid backbone as follows. The 

pMOD Luc-ShS v02 plasmid (InvivoGen, San Diego, CA, USA) was used as a template 

to amplify the (dCpG)Luc coding region with Vent PCR (oligonucleotides: sense, 

catgcc ATGGAGGATGCCAAGAATATTAAGAA; antisense, ggaattc 

TTATTTGCCACCCTTCTTGGCCTTGATCA). The amplicon was cut with NcoI and 

inserted into the NcoI - and the blunted EcoNI sites of TK-Luc. The construct was 

confirmed by sequencing. 

The TK-NanoLuc was prepared by isolating the TRE lacking the minimal TK promoter 

from the pTRE-TK-Luc through digestion with BglII and HindIII and subsequent 

cloning of the released fragment into the corresponding sites of the pNL1.1 vector 

(Promega, Madison, WI, USA) followed by confirmation of the final construct by 

sequencing. 

The TK-Renilla-Luc was generated by truncating the 760 bp-long TK promoter of pRL-

TK (Promega) using BglII and EcoRI digestion followed by blunting with Klenow 

polymerase and subsequent religation. This resulted in a minimal TK promoter between 

EcoRI and HindIII that is 31 bp shorter than the 128 bp-long minimal TK promoter of 

TK-Luc. 3’ to the TK promoter, this construct also contains a 136 bp chimeric intron 

originating from pRL-TK. The construct was confirmed by restriction mapping. 

The constructs are shown in Figure 22. 

The mouse TRα (mTRα) expression construct was generated using the TRαCDM 

plasmid (Prost et al., 1998) (kindly provided by Dr. AM Zavacki, Boston, MA, USA) as 

a template to amplify mTRα coding region with Vent PCR (oligonucleotides sense: 

ggaattccat tATGGAACAG AAGCCAAGCA AGGT, antisense: ataagaatgc 

ggccgcTTAG ACTTCCTGAT CCTCAAAGA). The amplicon was cut with EcoRI and 

NotI and inserted into these sites of a pCI-Neo vector (Promega) and confirmed by 

sequencing. 

The secreted embryonic alkaline phosphatase (SEAP) encoding pSEAP2-Promoter 

plasmid (Clontech) was used for transfection control. 
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4.3. DNA transfections 

For studies on the post-transcriptional regulation of D2 HEK-293 cells were transfected 

with calcium phosphate precipitation as described earlier (Brent et al., 1989). 10 

micrograms of D10 based vector encoding the deiodinase was transiently transfected in 

the presence of 4 µg D15 helper vector required for the transcriptional activation of the 

promoter of D10 (Gossen and Bujard 1992). Results are given as the mean  SEM of 

D2 activities of duplicate plates of at least three separate experiments as the percentage 

of the cD2 control. 

For the investigation of the luciferase reporters, JEG-3 human choriocarcinoma cells 

(kindly provided by Dr. J. Szekeres, Pécs, Hungary) were cultured in 24-well plates in 

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine 

serum (FBS). When ~70% confluency was reached, cells were transfected with 800 ng 

DNA/well (including 200 ng Luciferase reporter, 100 ng mouse TRα, 10 ng pSEAP2 

and 490 ng pUC as inert DNA) using Lipofectamine® 2000 (Life 

Technologies/Thermo, Carlsbad, CA, USA). After ~6 hours the transfection media was 

replaced with DMEM containing 10% hormone-free fetal bovine serum (FBS) and 

incubated for 40 hours (Egri and Gereben, 2014). Briefly, 100 mg charcoal (Sigma, St. 

Louis, MO, USA) and 50 mg dextran (Sigma) were preincubated overnight in 0.01 

mol/l Tris buffer (pH=7.6). After centrifugation 40 ml FBS was added and incubated for 

1 hour. The suspension was recentrifugated and the supernatant was used to supplement 

DMEM. The media was replaced with DMEM with 10% hormone-free FBS containing 

either 50 nM 3,5,3’-triiodothyronine (+T3) or NaOH vehicle (-T3). After 24 hours, the 

culture media was collected for SEAP measurement (see Section 4.7.2). The cells were 

washed with phosphate buffered saline (PBS) and harvested in 100 µl Passive lysis 

buffer (Promega). 

 

4.4. RNA isolation and RT-PCR 

For the investigation of the ontogenic redistribution of D2, brain samples of E7, E8, E9, 

E10, E11, E13, and E15 chicken embryos were dissected in duplicates, and total RNA 

was isolated with Trizol (Life Technologies, Inc.). E13 and E15 brains were separated 

for telencephalon+diencephalon (A) and brainstem+cerebellum (B) parts. RNA was 

subjected to first strand cDNA synthesis using an oligonucleotide-dT primer and 
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amplified with D2-specific primers, as described earlier (Gereben et al., 2002). The cD2 

oligonucleotides were as follows (5’-3’): sense, CTG AAT TCA TCC GGC AGA AGA 

GAG; antisense, AGC TTC TCC TCC AAG TTT GA. The nonquantitative D2 

amplification was performed using the following program: 94 °C for 2 min; 35 cycles of 

94 °C for 30 sec, 58 °C for 30 sec, and 72 °C for 1 min; and then 72 °C for 4 min. 

For the studies on post-transcriptional regulation of D2 adult chicken telencephalons 

and livers were used. Total RNAs isolated from the telencephalon and liver were 

reverse transcribed using the antisense oligonucleotide CTCACCAGAA 

GGCCTGAAGA G and amplified by Taq polymerase (Sigma) by oligonucleotides, 

sense: CTGAATTCAT CCGGCAGAAG AGAG; antisense: AGCTTCTCCT 

CCAAGTTTGA. The amplicons generated on the brain cDNA were cloned into 

pGEM-T and subjected to automated sequencing. The amplifications were performed in 

two separate reactions. 

 

4.5. Northern blots 

The Northern blot for the ontogenic D2 distribution study was performed as previously 

described (Gereben et al., 1999). Briefly, total RNA was isolated with Trizol from the 

brains of E7, E8, E9, and E10 and hemispheres of E13, E15 and E17 chicken embryos 

as described in Section 4.4. A digoxigenin (DIG)-labelled single stranded cDNA probe 

complementer to 450 bp of the cD2 coding region was used to detect D2 in 30 µg of 

total RNA. The probe was labelled by linear PCR using the (5’-3’) 

TGCACAATGCACACTCGCTC antisense oligonucleotide and DIG-deoxyuridine 5-

triphosphate. As denominator for densitometry, the density of the 28S subunit of 

ethidium bromide stained gels was used. 

 

4.6. In situ hybridization 

The technique was used for the analysis of D2 mRNA ontogenic redistribution of the 

brains of E8 and E15 chicken embryos and 8-week-old chickens. The heads of three E8 

embryos and the brains of three E15 embryos and three 8-week-old chickens were 

quickly frozen on dry ice and stored at –80 C until used. Serial 12-µm-thick coronal 

sections were cut on cryostat, mounted on gelatine-coated slides, and dried at 42C 
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overnight. The sections were fixed with 4% paraformaldehyde in PBS (pH 7.4) for 30 

minutes washed in 2-fold concentration of standard sodium citrate (2X SSC), acetylated 

with 0.25% acetic anhydride in 0.9 % triethanolamine for 20 min; and then treated in 

graded solutions of ethanol (70, 80, 96, 100%), chloroform and a descending series of 

ethanol (100, 96%) for 5 minutes each and hybridized with an approximately 840 bp 

single-stranded DIG-11-uridine 5-triphosphate (Roche Diagnostics GmbH, Mannheim, 

Germany)-labelled cRNA probe for the entire coding region of cD2. The hybridizations 

were performed under plastic coverslips in a buffer containing 50% formamide, 2-fold 

concentration of standard sodium citrate, 10% dextran sulfate, 0.5% sodium dodecyl 

sulfate, 250 µg/ml denatured salmon sperm DNA, and the DIG-labelled probe, diluted 

at 1:100 for 16 h at 56C. The slides were washed in 1X SSC for 15 min and then 

treated with RNase (25 µg/ml) for 1 h, at 37C. After additional washes in 0.1X SSC (2 

X 30 min) at 65C, sections were washed in PBS and treated with the mixture of 0.5% 

Triton X-100 and 0.5% H2O2 for 15 min and then with 2% bovine serum albumin 

(BSA) in PBS for 20 min to reduce the nonspecific antibody binding. The sections were 

incubated with a mixture of sheep anti-DIG-alkaline phosphatase Fab fragments 

(1:1000, Roche Diagnostics) overnight at 4C. The alkaline phosphatase signal was 

detected using 5-bromo-4-chloro-3-indolyl-phosphate/4-nitroblue tetrazolium 

chromogen system (Roche Diagnostics) according to the manufacturer’s instructions. 

The reaction was developed for 6 hours, and then, the sections were rinsed in Tris buffer 

(pH 7.6). The sections were coverslipped using Aquatex mounting medium (Merck, 

Darmstadt Germany), and the images were taken with an Axiophot microscope (Carl 

Zeiss Inc, Göttingen, Germany) equipped with real-time spot digital camera (Diagnostic 

Instruments Inc., Sterling Heights, MI, USA). For semiquantitative analyses all samples 

were treated simultaneously. Three 20X field of the hypothalamus of each E15 and 

adult brain from three different anterior-posterior levels were analysed using ImageJ 

software (public domain from National Institutes of Health, USA). Background density 

points were removed by thresholding the image. The sum of integrated density values 

(density X area) was calculated for each animal. The specificity of hybridization was 

confirmed using a sense cD2 coding region probe, that resulted in the total absence of 

specific hybridization signal in the brain at all stages studied. 
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4.7. Assays 

4.7.1. Deiodinase assay 

For the investigation of the ontogenic redistribution of D2, brain samples of chicken 

embryos (E7, E8, E9, E10, E11, E13, and E15; n=5) were dissected and rapidly 

removed. The E13 and E15 brains were separated for telencephalon+diencephalon (A) 

and brainstem+cerebellum (B) parts. Samples were homogenized in ice-cold PE buffer 

[100 mM potassium phosphate, 1 mM ethylenediaminetetraacetic acid (EDTA) (pH 

6.9)] with 0.25M sucrose and 1 mM dithiothreitol (Gereben et al., 1999) and kept frozen 

at -80C until used. The assays contained approximately 150-600 µg homogenate 

proteins in 300 µl PE buffer [100 mM potassium phosphate, 1 mM EDTA (pH 6.9)] 

supplemented with various amounts of cold T4 (1 or 100 nM) and about 30,000 cpm of 

Sephadex LH-20 purified, labelled T4 and 20 mM DTT (Larsen et al., 1979). 

Measurements using 100 nM T4 were used to confirm the D2 nature of the measured 5’ 

deiodinase activity (Salvatore et al., 1996a). Additional incubations were performed 

with 1 nM T4 + 100 nM T3 + 1 mM 6-n propylthiouracil (PTU) added to the reaction 

buffer to inhibit D1 and D3 activity. Incubation was carried out at 37C for 2 hours. 

The amount of protein used for assays was set to keep the percent of deiodination 

between 5 and 30%. The reactions were stopped by adding 200 µl horse serum 

(Invitrogen, Carlsbad, CA, USA) and 100 µl of 50% trichloroacetic acid for 

precipitation (Berry et al., 1990). A fraction of supernatant (400 of 600 µl) was applied 

on ion exchange chromatography through self-made Dowex 50WX (Amersham 

Pharmacia Biosciences, Uppsala, Sweden) columns to further separate iodine from other 

thyroid hormone metabolites. The fraction of supernatant containing the iodine but not 

thyroid hormones was eluted with 2 ml of 10 % acetic acid and counted in a γ-counter 

(Wizard-1470, PerkinElmer Life and Analytical Sciences, Inc., Boston, MA, USA). 

Assays were carried out in duplicates at least twice, and the activity level was expressed 

in femtomoles released (Larsen et al., 1979) per hour per milligram of protein. Total 

count and background were calculated from several blank tubes containing no 

homogenate. The Δ77cD2 protein and the cD2 reporter based 5’UTR constructs were 

expressed in HEK-293 cells and assayed for D2 activity in the presence of 2 nM T4 

according to the method described earlier (Gereben et al., 1999). 
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4.7.2. Luciferase assay 

Luciferase activity was measured from 20 µl cell lysate with the Dual-luciferase 

Reporter Assay System (firefly luciferase for pTRE-TK-Luc, TK-Luc, TK-(dCpG)Luc; 

Renilla luciferase for TK-Renilla-Luc) as previously described (Zeold et al., 2006). 

Activity of the TK-NanoLuc was determined from 20 µl cell lysate with the Nano-Glo 

Luciferase Assay System (Promega) according to the manufacturer’s instructions. 

Luciferase activity of each transfected well was assayed separately. Measurements with 

the Dual-luciferase Reporter Assay System were performed in duplicates that were 

averaged to express luciferase activity of each well. Duplicates were closely agreeing 

with an average difference of 7%±1.62 and 5.9%±1.2 (mean±SEM; n=14) for –T3 and 

+T3 groups of pTRE-TK-Luc, respectively. All measurements were performed with a 

Luminoskan Ascent Luminometer (Thermo, Waltham, MA, USA). 

4.7.3. SEAP assay 

SEAP activity was determined from 25 µl media with Nova Bright™ SEAP Enzyme 

Reporter Gene Chemiluminescent Detection system 2.0 (Invitrogen/Thermo) as 

previously described (Egri and Gereben 2014). SEAP was used for normalization by 

calculating Firefly luciferase (Luc)/SEAP light unit or Renilla luciferase 

(Renilla)/SEAP light unit ratios for each well. Experiments were performed at least 

eight times and presented as mean ± SEM. 

 

4.8. Statistics 

Statistical analysis on deiodinase activity data were performed using one-way analysis 

of variance (ANOVA) followed by Newman-Keuls test. The sums of integrated density 

values of in situ hybridization reactions were compared by unpaired t test. 

Statistical analysis on luciferase assay data was performed with an unpaired two-

sample t-test using a 95% level of confidence. 

 

4.9. Sequences 

The sequence of the 77cD2 coding region was deposited into the GenBank under 

accession no. AF401753.  
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5. RESULTS 

5.1. Investigation of thyroid hormone availability in the developing chicken 

hypothalamus 

Our aims were to determine: 

 the expression of D2 mRNA in the brain of chicken embryos before and after 

the onset of the function of the thyroid gland 

 thyroid hormone activating capacity of the developing chicken brain reflected by 

the activity of the D2 enzyme 

 cell-type specific distribution of D2 mRNA expression in the brain of embryonic 

and adult chickens 

 

5.1.1. Assessment of D2 mRNA expression in the developing chicken brain using 

RT-PCR and Northern blot 

The D2 encoding mRNA transcript could be detected at all stages of the studied E7-E15 

period with RT-PCR using intron spanning oligonucleotides amplifying the coding 

region of the mRNA. The telencephalon-diencephalon could be separated from the 

brainstem-cerebellum in samples of E13 and E15 allowing the isolated analysis of these 

regions. The D2 transcript could be detected in all studied brain regions (Figure 11). 

The size of the PCR amplicon matched exactly the deducted size calculated from the 

clones of the wild-type cD2 transcript (GenBank AF125575, Gereben et al., 1999) 

indicating that no D2 mRNA splice variant was expressed in a detectable amount using 

a sensitive PCR-based approach during this period of brain development. 
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Figure 11. D2 mRNA expression in the developing chicken brain can be detected with RT-

PCR. The D2 mRNA was detected with RT-PCR at all stages studied. Only the wild type but 

not the spliced 77cD2 variant transcript (see Section 5.2.1) could be detected. In the negative 

control (neg. ctr.) amplification was performed in the absence of template by replacing the 

cDNA with water. E: embryonic day; A: Telencephalon + diencephalon; B: Brainstem + 

cerebellum, bp: base pairs. 

 

We then used Northern blot to quantify the amount of cD2 mRNA during chicken brain 

development from E7 to E17. A single transcript of expected size (~6 kb, GenBank 

AF125575) could be detected from E10 using a digoxigenin-labelled probe specific for 

the coding region of the cD2 mRNA (Figure 12). D2 expression underwent a robust 

increase during the studied period as represented by elevating D2/28 S density ratios 

(0.5, 2.1, 5.2, and 7.3 for E10, E13, E15 and E17, respectively) using density of 

ethidium bromide stained 28S ribosomal RNA fraction as denominator. 
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Figure 12. Ontogenic increase of D2 mRNA expression in the developing chicken brain. 

Northern blot using labelled cDNA probe was used to detect the D2 transcript. The lower panel 

demonstrates the ethidium bromide stained ribosomal RNA subunits as control for integrity and 

loading. The D2 mRNA was detected from E10 and increased robustly to stage E17. E: 

embryonic day, kb: kilobases 

 

5.1.2. D2 activity in the developing chicken brain (E7-E15) 

In order to gain a more direct insight into the TH activating capacity of the developing 

brain, we also measured the activity of the D2 enzyme. D2 activity could be detected 

from E7 (54 fmol/h/mg). From E13 a significant increase was found (p <0.001 by one 

way ANOVA followed by Newman Keuls posthoc-test) reaching a maximum of 148 

fmol/h/mg at E15 (Figure 12). In the E13 and E15 samples (where the 

telencephalon+diencephalon and brainstem+cerebellum samples could be measured 

separately), no significant difference was found between D2 activities. In order to 

confirm the D2-dependent nature of the measured 5’ deiodinase activity, we performed 

a fractional deiodination approach taking advantage from the highly different substrate 

sensitivity of types 1 and 2 deiodinases. Due to this highly different Km(T4), D2 activity 

can be suppressed by 100 nM T4 while this does not affect D1 enzyme activity. We 

found that only a very limited fraction of the measured 5’ deiodinase activity could be 

attributed to D1, since in the T4 saturation assay the deiodination of [125I]T4 by the 
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brain homogenate was heavily suppressed at all investigated stages by the addition of 

100 nM cold T4 (Table 2). In addition, when 100 nM T3 and 1 mM PTU were added to 

the assays (to exclude D3 activity) deiodination was only moderately affected. The 

inhibition of 1 nM T4 outer ring deiodination was tested by adding 100 nM T3 and 1 

mM PTU and found to be slightly lower in E13-E15 samples compared to the E7-E8 (p 

< 0.01 by one way ANOVA followed by Newman-Keuls, Table 2). The activity was 

the highest in E13 and E15 samples (by one way ANOVA followed by Newman-Keuls, 

p < 0.01 when compared with E7 or E8). Thus the presented enzyme activity studies 

clearly confirmed the presence of authentic D2 activity in the brain of chicken embryos 

that increased during development. 

  

Figure 13. D2 activity in the brain of chicken embryos from E7 to E15. Specific low Km D2 

activity was present in the developing chicken brain from E7 to E15. Activity is expressed as 

femtomoles of iodine release /hour/mg protein. The increase of D2 activity was highly 

correlated with time during the whole investigated period (correlation coefficient 0.91, p < 

0.001). From stage E13 D2 activity was significantly higher, compared with the earliest tested 

period (one way ANOVA followed by Newman-Keuls, p < 0.001). The whole brains of E7, E8, 

E9, E10, and E11 embryos were used, whereas at E13 and E15, the brains were separated for 

telencephalon + diencephalon (A) and brainstem + cerebellum (B) parts. *, p < 0.001 vs. E7; **, 

p < 0.0001 vs. E7 by one way ANOVA followed by Newman-Keuls (mean ± SEM, n = 5). 
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Table 2. Fractional deiodination in the chicken embryonic brain 

 

Samples 

Fractional [
125

I]T4 deiodination relative to that  

at 1 nM concentration (%) 

100 nM T4 1 nM T4 + 100 nM T3 + 1 mM PTU 

E7 0 67.5 ± 6.7 

E8 0.5 ± 0.8 60.9 ± 2.4 

E9 1.8 ± 0.5 83.7 ± 6.8 

E10 0.7 ± 0.5 67.9 ± 2.5 

E11 3.4 ± 0.5 68.2 ± 1.4 

E13A 0.7 ± 0.2 72.4 ± 2.8 

E13B 3.1 ± 0.5 75.8 ± 3.4 

E15A 5.2 ± 0.7 80.8 ± 1.8 

E15B 5.1 ± 0.1 85.1 ± 1.5 

Fractional inhibition of [
125

I]T4 deiodination by different assay conditions. For the given sample, 

T4 deiodination at 1 nM concentration represents 100%. Assay conditions are shown above the 

columns. Data are given as mean ± SEM (n = 5). E, Day of incubation; A, telencephalon + 

diencephalon; B, brainstem + cerebellum. 

 

5.1.3. Distribution of D2 mRNA in the brain of developing chicken 

In order to study D2 expression at the cellular level, we used in situ hybridization to 

identify D2 mRNA in the developing brain. In the brain of E8 chicken embryos a rather 

weak D2 hybridization signal could be observed in scattered cell clusters (Figure 14A) 

using a digoxigenin-labelled probe specific for the D2 coding region. Signal intensity 

increased in perivascular like cell clusters throughout the brain of E15 embryos 

compared to the E8 stage (Figure 14B-D). No D2 hybridization signal was found in the 

ependymal cells lining the wall of the third ventricle (Figure 14B). 
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Figure 14. Distribution of D2 mRNA in the brain of E8 and E15 chicken embryos using in situ 

hybridization. The D2 hybridization signal is only very weak in the E8 brain sections (A). 

Arrows indicate modestly labelled cell clusters. The hybridization signal is markedly increased 

in the E15 brains (B–D). Low-magnification photomicrograph illustrates the D2 hybridization 

signal in the E15 hypothalamus (B). Arrowheads indicate the wall of the third ventricle. Note 

the lack of hybridization signal in the ependymal layer and the strong signal associated with 

elongated cell clusters (arrows). Strong hybridization signal in elongated cell clusters (arrows) 

in the E15 neostriatum (C) and hypothalamus (D). No signal was detected using a sense D2 

probe (E). Scale bar, 200 μm in A corresponds to A and B; scale bar, 100 μm in C corresponds 

to C–E. E8, E15: embryonic days 8 and 15.  
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5.1.4. Distribution of D2 mRNA in the brain of adult chicken 

In the adult chicken no hybridization signal could be observed in the wall of the rostral 

part of the third ventricle (Figure 15A) and the lateral ventricles. A subset of the 

ependymal cells lining the floor of the third ventricle at the rostral pole of the median 

eminence were positive for D2 (Figure 15B). However, in the more posterior segment, 

the D2-expressing cells covered the ventral one half to two-thirds of the ventricular wall 

(Figure 15C and D). The distribution pattern of the labelled ependymal cells was 

reminiscent of that of tanycytes. The D2 hybridization signal in other parts of the brain 

was in similar cell clusters as in the E15 brains but the intensity of hybridization signal 

was markedly decreased [E15 vs. adult (integrated density units) 15.90 ± 0.23 vs. 3.34 ± 

1.23, p = 0.0043] (compare Figure 15A-D and G with Figure 14). Strong D2 signal 

could be observed in isolated cells of the neostriatum (Figure 15E, F, and H). 
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Figure 15. Distribution of D2 mRNA in the brain of adult chicken. The density of D2 

hybridization signal associated with cell clusters is markedly decreased in the brain of adult 

chicken (A–H). A, No hybridization signal can be detected in the wall of the third ventricle 

rostral to the median eminence (arrowheads indicate the wall of the third ventricle, whereas 

arrows indicate modest signal in hypothalamic cell clusters). B, At the rostral pole of the 

median eminence, the hybridization signal was localized to the floor of the third ventricle 

(arrows). C, More caudally D2-expressing cells covered the ventral half of the ventricular wall 

(arrows). D, Higher-magnification micrograph illustrates the localization of D2 mRNA in the 

ependymal layer of the third ventricle (arrows). Arrows indicate examples for D2 hybridization 

signal in the adjacent hypothalamic tissue (open arrows). E, Low-magnification micrograph 

demonstrates the D2 hybridization signal in the cerebellum, hippocampus, and neostriatum 

caudale. F, Medium-power magnification of the same region is seen; arrows indicate D2 

hybridization signal in isolated cells. G, High-power image of an elongated cell cluster in the 

hypothalamus. H, The D2 hybridization signal is also present in isolated cells (arrows) in the 

neostriatum. Cb, Cerebellum; Hp, hippocampus; NC, neostriatum caudale; OC, optic chiasm. 

Scale bar, 400 μm in A corresponds to A–C and E; scale bar, 200 μm in D corresponds to D 

and F; scale bar 100 μm in G corresponds to G and H. 
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5.2. Understanding the RNA-dependent post-transcriptional regulation of the 

type 2 deiodinase (D2) encoding dio2 gene 

Our aim was to analyse the role of mRNA structure in the post-transcriptional 

regulation of D2 gene in thyroid hormone activation. Specifically, we studied the role of 

i) the alternative splicing and ii) the 5’UTR of the D2 mRNA in the regulation of D2 

activity. 

 

5.2.1. Cloning and characterization of an alternatively spliced chicken D2 

encoding transcript 

D2 mRNA levels and enzyme activity are discrepant in specific tissues which is 

strikingly represented by the finding that the same amount of a ~6.1 kb D2 mRNA 

species results in a 2.6-fold higher D2 activity in the brain than in the liver of chicken 

(408 vs. 156 fmol T4/h mg protein) (Gereben et al., 1999 and 2002). Therefore, we 

speculated whether post-transciptional events such as alternative splicing could play a 

role in the modulation of D2 activity. We hypothesized that a D2 mRNA species of 

slightly different size that would not appear on a routine screen could impact tissue-

specific D2 activity by encoding a D2 protein of altered activity. Therefore, we isolated 

D2 encoding mRNAs from the telencephalon and liver of adult chickens using RT-PCR. 

The amplified fragments were cloned into plasmids and subjected to sequencing. This 

approach allowed us to identify a cD2 mRNA containing a 77-bp deletion in the coding 

region in the proximity of the exon/intron junction of the D2 encoding dio2 gene 

(Figure 16A). The sequence of the novel cD2 splice variant was deposited into the 

GenBank under accession #AF401753. We subjected the 77cD2 encoding mRNA to 

experimental testing to determine its activity by inserting the spliced coding region into 

a D10 expression vector 5’ to SECIS element. The resulting construct was transiently 

transfected into HEK-293 cells. 77cD2 mRNA encoded an inactive D2 enzyme. The 

splicing-induced deletion resulted in the resetting of the reading frame of the cD2 

coding region. The deduced amino acid sequence of the 77cD2 protein indicated a 

truncated D2 protein that is terminated N-terminal to the active center (Figure 16B). 
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Figure 16. Sequence analysis of the 77cD2 transcript. A, Alignment of the coding region of 

the chicken and human D2 coding regions (GenBank Acc. #AF125575 and U53506, 

respectively) to the sequence of the cD2. 77 bps (underlined) are missing from the cD2-clone#2. 

5’ and 3’ nucleotides of the spliced region are indicated in bold. A polymorphism of cD2-

clone#1 is shown in italics. The insertion site of the hdio2 intron is marked by an arrow, kbp: 

kilobase pair. B, Nucleic acid and deduced amino acid sequences of the alternatively spliced 

cD2 mRNA. The wild-type cD2 amino acid sequence is underlined and bold, the new junction 

is underlined and shown in bold italics. Numbers show positions in the cD2 mRNA GenBank 

Acc. #AF125575. 

  

A 
 
 

                 701                                                750 

cD2-AF125575     CACATGGTGC TGTTTCTGAG CCGCTCCAAG TCTGCGCGCG GCGAGTGGCG  

cD2-clone#1      CACATGGTGC TGTTTCTGAG CCGCTCCAAG TCTGCGCGCG GTGAGTGGCG  

cD2-clone#2      CACATGGTGC TGTTTCTGAG CCGCTCCAAG TCTGCGCGCG .......... 

hD2 coding       CACGTGGTGC TGCTGTTGAG CCGCTCCAAG TCCACTCGCG GAGAGTGGCG  

 

                 751                                                800 

cD2-AF125575     GAGGATGCTG ACCTCGGAGG GGCTGCGCTG CGTCTGGAAC AGCTTCCTCC  

cD2-clone#1      GAGGATGCTG ACCTCGGAGG GGCTGCGCTG CGTCTGGAAC AGCTTCCTCC  

cD2-clone#2      .......... .......... .......... .......... ..........  

hD2 coding       GCGCATGCTG ACCTCAGAGG GACTGCGCTG CGTCTGGAAG AGCTTCCTCC  

 

                 801                                     

cD2-AF125575     TGGACGCCTA CAAGCAGGTC AAACTTGGAG GAGA 

cD2-clone#1      TGGACGCCTA CAAGCAGGTC AAACTTGGAG GAGA 

cD2-clone#2      .......... .......GTC AAACTTGGAG GAGA  

hD2 coding       TCGATGCCTA CAAACAGGTG AAATTGGGTG AGGA 

   

 ~8 kbp hdio2 intron  

B 
 

 
    ATGGGTCTGTTAAGTGCGGATTTGCTGATCACGCTTCAGATCTTGCCGGTCTTTTTCTCC 

596 ----+---------+---------+---------+---------+---------+----- 655 

    M  G  L  L  S  A  D  L  L  I  T  L  Q  I  L  P  V  F  F  S   - 

 

 

    AATTGCCTCTTCCTTGCGCTGTATGACTCTGTGATCCTCCTGAAGCACATGGTGCTGTTT 

656 ----+---------+---------+---------+---------+---------+----- 715  

    N  C  L  F  L  A  L  Y  D  S  V  I  L  L  K  H  M  V  L  F   - 

 

 

    CTGAGCCGCTCCAAGTCTGCGCGCGGTCAAACTTGGAGGAGAAGCTCCGAACTCCAGTGT 

716 ----+---------+---------+---------+---------+---------+----- 775 

    L  S  R  S  K  S  A  R  G  Q  T  W  R  R  S  S  E  L  Q  C   - 

 

 

    AATCCACATAGCCAAGGGCAACGATGGCAGCAATAGCAGCTGGAAGAGTGTTGGT 

776 ----+---------+---------+---------+---------+---------+ 830 

    N  P  H  S  Q  G  Q  R  W  Q  Q  *                           - 
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Then we aimed to determine the expression of the 77cD2 mRNA in the liver and brain 

compared to the wild-type cD2 mRNA. We set up a PCR-based detection system that 

specifically amplified the spliced region to allow simultaneous detection of the wild-

type and spliced transcript in the same reaction. This approach can be used for 

semiquantitative detection of the wild-type and spliced amplicons due to their 

amplification by the same oligonucleotides in the same PCR (Figure 17). Using this 

system the coexpression of the wild-type and the 77cD2 mRNA could be confirmed in 

the telencephalon and liver of adult chicken. Compared to the wild-type, a higher 

amount of the splice variant could be detected in the liver, while this ratio was the 

opposite in the telencephalon (Figure 18). 

 
Figure 17. Schematic representation of the RT-PCR screening system allowing simultaneous 

detection of 77cD2 and wt cD2 mRNAs in chicken tissues. 

 
Figure 18. Expression of the 77cD2 transcript. Agarose gel electrophoresis of the PCR 

products from wild-type cD2 mRNA from telencephalon (T) and liver (L) from an adult chicken 

using oligos described in Section 4.2.1. The expected 277 bp band and a second ~200 bp 

product were generated. The products indicated by arrows were cloned and their sequences are 

shown in Figure 16A as cD2-clone#1 (wt) and cD2-clone#2 (77cD2). The positive control 

(pos. ctr.) clones were plasmids containing the wild-type (cD2wt) and spliced (77cD2) cD2 

coding regions. As a negative control (neg. ctr.) cDNA was replaced by water in the PCR. 
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5.2.2. Investigation of the functional role of the 5’UTR of chicken D2 mRNA 

The 5’UTR of the D2 mRNA is unusually long and we hypothesized that it could play a 

role in the regulation of D2 activity. We used a chicken D2-containing reporter to assess 

whether this mRNA region can modulate the activity of the D2 enzyme in HEK-293 

cells. The chicken D2 5’UTR exerted a robust suppressory effect on the activity of the 

cD2 enzyme by decreasing its activity by 5-fold (Figure 19). 

 

 

Figure 19. Effect of the chicken 5’UTR on D2 activity. The cD2 5’UTR was inserted 5’ to the 

cD2 reporter containing the cD2 coding region followed by the rat D1 minimal SECIS element. 

Plasmids were transiently transfected into HEK-293 cells as described in Section 4.3. Chicken 

D2 5’UTR decreased the activity of the cD2 enzyme by 5-fold. Data are the mean  SEM of 

relative D2 activities corrected for transfection efficiency of duplicate plates as a percentage of 

the activity of the cD2 reporter (n = 3; *, p< 0.001 vs. cD2 by t-test). 

 

We aimed to understand the molecular mechanism underlying this inhibitory effect. The 

D2 5’UTR contains sORFs, a feature shared by the known D2 5’UTR of different 

species. First we performed sequence analysis to determine which of the sORFs 

contains a -3 purine (A or G) representing the Kozak consensus sequence, a prerequisite 

of efficient translational initiation in eukaryotes. 
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Figure 20. The cD2 5’UTR contain sORFs. The presence of a strong translational initiation 

sequence (-3 purine base where position 1 is the A of the ATG start codon) is indicated by + 

(Kozak 1986). Unambiguous stop codons (UAA, UAG) and in frame UGAs followed by 

purines were considered as translational terminators. In-frame UGAs in possible readthrough 

position (codon followed by a pyrimidine base) are indicated by an asterisk (McCaughan et al., 

1995). Deduced amino acid sequences of the putative peptides are presented. 

 

Sequence analysis revealed that among the four sORFs of the chicken 5’ UTR only the 

second sORF from the direction of the transcriptional start site (cORF-B) met the set 

criterion (Figure 20). Therefore, we functionally tested the inhibitory potency of the 

isolated cORF-B on D2 activity using the abovementioned expression system in HEK-

293 cells. The cORF-B caused a 2.5-fold suppression in D2 activity. Importantly, a 

point-mutation evoked deletion of the ATG initiation codon completely abolished the 

cORF-B-dependent inhibition of D2 activity (Figure 21). This finding proved that 

translational initiation occurs at the cORF-B and as a consequence this mechanism is 

involved in the 5’UTR-dependent decrease in D2 activity. 

 

Figure 21. Role of cORF-B related translational initiation in the 5’UTR-dependent regulation 

of D2 activity. The cORF-B sequence was inserted into the cD2 reporter and transiently 

transfected into HEK-293 cells. The cORF-B caused a 2.5-fold suppression in D2 activity. ATG 

was mutated to TTG as shown in red. The point mutation completely abolished the cORF-B- 

dependent inhibition of D2 activity. Data are the mean  SEM of relative D2 activities of 

duplicate plates as a percentage of the activity of the cD2 reporter (n = 3; * p<0.05 vs. cORF-

B(Wt)-cD2 by unpaired t-test). 
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5.3. Identification of authentic reporter proteins for studies on T3-dependent 

gene transcription 

The T3-evoked promoter independent downregulation of firefly luciferase is a 

phenomenon that undermines studies on TH-dependent transcriptional regulation. Our 

aim was to find different luciferase reporters that are less susceptible to promoter 

independent T3-induced downregulation compared to the classical firefly luciferase. 

Mammalian expression constructs were generated containing the same minimal TK 

promoter as shown in Figure 22. This allowed to perform the experiments with the 

promoter type that proved to be unaffected by T3 treatment (Tillmann et al., 1993). In 

addition, this harmonized promoter design helped to eliminate differences in promoter-

dependent T3-response of different constructs. 

 

Figure 22. Schematic depiction of the generated mammalian expression constructs encoding 

different types of luciferase reporters driven by a minimal thymidine kinase (TK) promoter. The 

harboring plasmid backbone is indicated. The firefly luciferase cDNA of TK-Luc was replaced 

with the coding region of dCpG firefly luciferase. Thus, TK-Luc and TK-(dCpG)Luc are 

identical except for the regions encoding luciferase. 

 

As controls, we used JEG-3 cells transfected either with pTRE-TK-Luc or with TK-Luc 

firefly luciferase in the presence of co-transfected mTRα. The luciferase activity of the 

pTRE-TK-Luc was induced approximately 3-fold with 50 nM T3, while as expected, the 

same treatment suppressed luciferase activity of the no canonic TRE-containing TK-Luc 

reporter ~2.6-fold (Figure 23). We also tested the responsiveness of the SEAP construct 

used to monitor transfection efficiency. Importantly, T3 treatment did not affect the level 

of the SEAP internal control (SEAP level in pTRE-TK-Luc wells -T3: 0.97± 0.078 vs. 

+T3: 0.79±0.084) /mean±SEM; n=14, p=0.13 with t-test/; SEAP level in TK-Luc wells -

T3: 0.86±0.105 vs. +T3: 0.76±0.057 /mean±SEM; n=8, p=0.4 with t-test/). 
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Figure 23. Response of pTRE-TK-Luc and TK-Luc control firefly luciferase reporters to 50 nM 

T3 in JEG-3 cells. Reporters were co-transfected with mouse TRα. T3 induced the luciferase 

activity of the pTRE-TK-Luc around 3-fold (n = 14; p < 0.001). The activity of TK-Luc was 

suppressed by 2.6-fold (n = 8; p < 0.05). Results are expressed as firefly luciferase (Luc)/SEAP 

light unit ratios as mean  SEM. 

 

Using this characterized system, we tested the responsiveness of various luciferase 

reporters to T3 using the generated constructs that did not contain TRE in the canonical 

position 5’ to the promoter sequence. Notably, the TK-(dCpG)Luc encoding a synthetic 

firefly luciferase was not affected by the addition of 50 nM T3. The luciferase activity of 

the TK-NanoLuc showed a slight tendency of decreased activity, but it did not reach the 

level of statistical significance (Figure 24). On the other hand, T3 treatment 

significantly decreased (by approximately 30%) the activity of cultures expressing the 

TK-Renilla-Luc (Figure 24). 

 

 

Figure 24. Response of TK-(dCpG)Luc, TK-NanoLuc and TK-Renilla Luc luciferase reporters 

to 50 nM T3 in JEG-3 cells. Reporters were co-transfected with mouse TRα. T3 did not 

significantly affect luciferase activity encoded either by the TK-(dCpG)Luc (n = 28; p = 1) or 

TK-NanoLuc (n = 12; p = 0.27). T3 significantly reduced the activity of the TK-Renilla-Luc 

reporter (n = 11; p < 0.005). Results are expressed as firefly, Nano, or Renilla luciferase (Luc, 

NLuc, or Ren, respectively)/SEAP light unit ratios as mean  SEM. 

-T3                     +T3-T3                     +T3 -T3                     +T3

*



 

53 
 

 
 

 
Figure 25. Alignment of the 5’ 360 bp-long fragment of the coding region of firefly luciferase 

to the (dCpG) Luciferase. The DNA sequences of the full coding regions are only 77% identical 

(upper panel) but due to the silent nature of mutations they encode the same amino acid 

sequence (lower panel). 
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6. DISCUSSION 

6.1. Investigation of thyroid hormone availability in the developing chicken 

hypothalamus 

TH promotes cell differentiation during development by decreasing cyclin-D1 levels 

and inducing the expression of Nerve Growth Factor, thus consequently TH inhibits 

proliferation and promotes differentiation in the developing brain at the same time 

(Furumoto et al., 2005; Alvarez-Dolado et al., 1994). Therefore, the tight regulation of 

T3 levels is one of the events essential to keep cell proliferation and differentiation 

under strict control. We aimed to study how D2, the enzyme responsible for TH 

activation is expressed in different brain regions during chicken development. In 

contrast to rodents, chickens have a relatively well developed HPT axis at hatching 

which makes the kinetics of their axis development similar to that of humans (Taylor et 

al., 1990). TH is already present in the egg yolk as maternal hormone supply thus the 

substrate of the D2 enzyme is available (Prati et al., 1992). Furthermore, TRα is already 

expressed in the neural plate and tube well before the blastula stage that would allow 

TH action taken that activated TH is present (Forrest et al., 1991). 

Studies on the developmental regulation of TH availability in human embryos face 

ethical limitations. While no models are without shortcomings, still chickens provide a 

more useful approach with human relevance than rodents with respect to gain insight 

into the mechanisms regulating the TH economy in the developing brain. We addressed 

D2-mediated TH activation from different perspectives. RT-PCR was used to detect the 

presence of the D2 transcript in the developing chicken brain which allowed the 

detection of D2 expression from as early as E7. This was followed by Northern blot 

assisted quantification that revealed increasing D2 expession in the brain during 

ontogeny. The detected D2 mRNA encoded a functional enzyme as we demonstrated it 

by deiodinase assays. We also studied the fractional deiodination in the brain of chicken 

embryos to exclude the presence of D1 or D3 in the detected activity. The used 100 nM 

T4 saturation assay took advantage of the low Km nature of D2 activity. The finding that 

the overwhelming majority of 5’ deiodinase activity of the developing chicken brain 

was suppressed by 100 nM T4 demonstrated that the detected activity is authentic D2. 

We also performed PTU inhibition, a drug that inhibits D1 but not D2, while T3 excess 

was used to exclude D3 activity (Bianco et al., 2014). These results proved that D2 is 
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the predominant deiodinase enzyme in the developing chicken brain. The presence of 

D2 activity at early stages of chicken brain development is in accordance with findings 

that the cortex of the human fetus is able to perform D2-mediated TH activation already 

after 7-8 weeks of development (Chan et al., 2002). It was also demonstrated, that even 

in older chicken embryos (from E16 to hatching) D2 is the predominant activating 

deiodinase in the developing chicken brain (Van der Geyten et al., 2002).  

Our data indicating a fractional decrease of 100 nM T3 evoked suppression during the 

investigated period suggested that D3 activity decreased during development. This 

finding is in good agreement with previous data demonstrating lower D3 activity in the 

brain of hatched chickens compared to the second half of embryonic development 

(Reyns et al., 2003). More work need to be done to understand which factors can 

directly initiate D2 mRNA expression during brain development. It was recently 

suggested that Nkx2.1 could also play a role in this process (Mohácsik et al., 2016). Our 

Northern blot study indicated an increase in the D2 mRNA levels from E10. It should 

be noted that this approach is far less sensitive than PCR which clearly explains the 

difference between the appearance of D2 signals observed with the two distinct 

approaches. The appearance of the D2 signal in an amount detectable with Northern blot 

coincided with the onset of thyroidal secretion on E9.5 (Thommes et al., 1977) and it is 

in parallel with the period of intense glial cell proliferation (Rogers 1995). To better 

understand D2 expression at the cellular level during brain development, we used in situ 

hybridization in E8, E15 and adult chicken brains. D2 expression was found in 

elongated cell clusters with an appearance resembling perivascular cells. Since D2 is a 

glial enzyme (Mohácsik et al., 2011) we speculate that these D2 expressing cell clusters 

could be formed by perivascular astrocytes. D2 expression in this compartment 

increased from E8 and E15 that demonstrates with an independent approach that D2 

expression increases during brain development. Importantly, we did not observe the 

presence of the Δ77cD2 alternatively spliced D2 splice variant in the developing brain 

indicating that the entire amount of the expressed D2 mRNA is capable of encoding a 

functional D2 enzyme at these developmental stages. 

Remarkably, we observed D2 expression in the wall and the floor of the third ventricle 

of adult chickens in a distribution pattern reminiscent of tanycytes. Since D2 expression 

was earlier found in tanycytes of the rodent hypothalamus (Tu et al., 1997), our data 
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indicated that D2 expression, which is phylogenetically conserved in this cell type, 

plays a crucial role in the regulation of the HPT axis. 

As already highlighted in Section 2, the onset of the negative feedback regulation of the 

HPT axis is poorly studied despite the fundamental impact of this phenomenon that 

persists throughout the entire lifespan. Interestingly, there is a gap between the onset of 

HPT feedback and the appearance of important factors of TH signalling. This suggests 

the need for a missing limiting factor. In chickens, the thyroid gland is functional from 

E9.5 while the anterior pituitary starts the stimulation of the secretion of the thyroid 

gland from E11.5 (Thommes et al., 1977). TRH is expressed well before the formation 

of the hypothalamus from E4.5 in the infundibulum and its level increases from E16 

during the embryonic development (Thommes et al., 1983; Geris et al., 1998). In 

addition, TRβ2 receptors required for TH action in the PVN can already be detected 

from E14 in the chicken brain (Grommen et al., 2008). Recently, TH injection studies in 

chicken embryos demonstrated that the onset of negative feedback evolves from E19 

until P2 in a D2-dependent manner (Mohácsik et al., 2016) suggesting that the intense, 

coordinated increase of D2 in the hypothalamus is the most important factor in the 

creation of the T3 gradient. Our data demonstrated that the increase of D2 activity, 

which builds up the T3 concentration required for hypothalamic feedback, starts already 

in the first half of embryonic development in chicken. On the other hand, D2 expression 

in tanycytes at embryonic stages did not exceed the detection level in our experiments 

that can be well explained by the lower sensitivity of a DIG-labelled cRNA probe 

compared to 35S-labelled probes. However, the question of the presence or absence of 

D2 expression in developing tanycytes between E8 and E15 is not a really relevant one 

in light of novel data demonstrating that not the tanycytic appearance of D2 but rather 

the increasing hypothalamic T3 gradient is the key factor in the onset of TH-mediated 

negative feedback (Mohácsik et al., 2016). 

In summary, we provided evidence that during brain development there is a profound 

ontogenically regulated increase in D2-mediated TH activation accompanied with 

ontogenic changes in the D2 mRNA expression. The developing chicken brain is able to 

generate T3 locally via D2 well before the onset of the thyroidal secretion. This 

challenges the dogma of minimized TH action in the proliferative developmental stages. 
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6.2. Understanding the RNA-dependent post-transcriptional regulation of the 

type 2 deiodinase (D2) encoding dio2 gene 

Typically, the increase of an mRNA results in increased level or higher activity of the 

encoded protein. In the case of the D2 enzyme this correlation is far less tight. While D2 

mRNA level and D2 activity increase in parallel by adrenergic mechanisms in the pineal 

gland or during its development (Tanaka et al., 1986; Kamiya et al., 1999; Campos-

Barros et al., 2000), in other tissues a remarkable complexity of D2 regulation can be 

observed manifested in discrepancies between the amount of D2 mRNA and D2 

enzyme activity. For example, the same amount of a ~6.1 kb D2 mRNA species results 

in 2.6-fold higher D2 activity in the brain than in the liver of chicken (408 vs. 156 fmol 

T4/h mg protein) (Gereben et al., 1999). This phenomenon also occurs under 

pathological conditions. D2 activity ratios reflecting activity in hyperfunctioning human 

thyroid adenomas vs. normal tissues is ~5-fold in contrast to the 3-fold ratio of D2 

mRNA expression of the two types of thyroid tissues (Murakami et al., 2001). 

Therefore, we speculated whether post-transciptional events such as alternative splicing, 

a process known to interfere with protein encoding capacity of a given D2 mRNA could 

play a role in the modulation of D2 activity. The D2 mRNA is unusually long, it is ~6-7 

kb in chicken and human, respectively (see Section 2.3). At least three types of mRNA 

transcripts differing by 500-700 nucleotides were detected in human thyroid, brain and 

other tissues (Croteau et al., 1996; Salvatore et al., 1996b; Bartha et al., 2000). 

However, the length of these mRNAs makes the identification of small changes quite 

difficult, despite their potential impact on the activity of the encoded protein. We 

speculated whether tissue-specific alteration in the ratio of D2 mRNA and activity could 

be underlain by the tissue-dependent presence of a D2 mRNA species which has a 

slightly different size and encodes an inactive D2 protein. We could identify a novel, 

alternatively spliced D2 transcript in the chicken brain and liver that encodes an inactive 

D2 protein. The mRNA encoding this inactive D2 protein lacks 77 nucleotides in the 

coding region. The deletion is adjacent to the conserved exon/intron junction of the D2 

encoding dio2 gene indicated by the finding that the 3’ end of the deleted region maps 

exactly to the exon/intron junction of the dio2 genes of human and mouse (Figure 16) 

(Bartha et al., 2000; Davey et al.; 1999; Song et al., 2000). Based on our PCR results, 

both the wild type and the Δ77cD2 transcripts are expressed in the chicken 
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telencephalon and liver. The different ratio of the two transcripts may account for the 

different D2 activity and mRNA ratios. 

Alternative transcripts were also detected in human tissue samples, e.g. in thyroid 

tissue. However, in this case instead of deletion of nucleotides the insertion of a 108 bp 

long intronic region could be observed after codon 74 (Gereben et al; 2002). In contrast 

to Δ77cD2, the reading frame remained unchanged in the hD2+108 human D2 

transcript. Interestingly, the derived hD2+108 protein is also inactive but this was 

achieved via a splicing mechanism different from the one generating the Δ77cD2 

mRNA. 

Other human D2 splice variants were also observed (GenBank Accession#AB041843) 

from a human cell line ECV304 (Ohba et al., 2001) and found to be present in the 

human brain, lung, kidney, heart and trachea. A truncated D2 coding region followed by 

the 3’UTR was also identified in a mouse cochlear cDNA library (GenBank AF177197) 

(Campos-Barros et al., 2000). In this case the divergence point was 35 bp 3’ to the 

conserved exon/intron junction. No details are known about the translation of this 

transcript. In the human thyroid an alternatively spliced intron of the 5’UTR of human 

D2 was described (Bartha et al., 2000). 

Our findings and the cited examples indicate that alternative splicing is an important 

mechanism to regulate the D2-mediated TH activation and tissue specific differences in 

the ratio of wild-type and spliced D2 transcript could affect D2 activity expressed by a 

specific amount of D2 mRNA. This phenomenon is phylogenetically conserved; it gives 

rise to differently spliced D2 mRNAs via different mechanisms. Further studies will be 

required to explore whether D2 alternative splicing can be regulated in an inducible 

manner or it is programmed to allow a tonic adjustment of D2 mRNA level in a given 

tissue. 

In addition to the alternative splicing of the D2 mRNA we also tested how its unusually 

long 5’UTR impacts activity of the D2 enzyme and demonstrated that this region of the 

D2 mRNA massively suppress D2 activity. We aimed to understand the mechanism 

underyling this suppressory effect therefore studied the role of sORFs embedded in the 

5’UTR region. 3-5 sORFs can be found in the 5’UTR of D2 mRNAs of different 

species including chicken, human, rat and mouse (Figure 20). In eukaryotes the 

presence of the Kozak consensus sequence is required to surround an ATG codon to 
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allow efficient translational initiation (see Section 2.7.2). We used this as a selection 

criterion to find sORF that can be potentially translated. Among chicken sORFs, only 

the second sORF (sORF-B) fulfilled this criterion, therefore, this was selected for 

functional studies. The sORF-B was able to cause a 2.5-fold decrease of D2 activity but 

only in the case when its initiator ATG was intact indicating that translational initiation 

occurs at the sORF-B. Thus the cORF-B in the 5’UTR serves as a translational 

roadblock to keep the translation of the D2-encoding reading frame low. This roadblock 

works via compromising ribosomal scanning of the D2 mRNA. Upon the small 40S 

ribosomal subunit reaches the initiator ATG of the sORF-B in the 5’UTR, it recruits the 

large 60S subunit to bind the complex and evoke the translational initiation. After 

translation of the sORF-B the ribosomal complex falls apart and only a limited number 

of 40S ribosomal subunits will be heading for further scanning of the more 3’ located 

reading frame encoding the D2 enzyme. The gain of this mechanism is manifested in 

the facilitation of tight regulation of the catalytically highly active D2 enzyme. While 

the sequence and the appearance of the sORF encoded peptide seems to be unrelevant 

for the cells, the initiation process itself plays an important role in D2 regulation. We 

can conclude that the D2 mRNA behaves in a functionally polycistronic manner. It is 

presently unknown whether 5’UTR based suppression of D2 activity can be modulated 

by specific factors or conditions. 

The 5’UTR and sORF based regulation is not unprecedented but uncommon and sORFs 

can be found only in 10% of the 5’UTR of vertebrate mRNAs (Kozak 1987). A few 

examples are represented by the Angiotensin II type IA receptor (Mori et al., 1996), the 

2 adrenergic receptor (Parola and Kobilka 1994) and HER-2 receptor (Child et al., 

1999). Among these the 5’UTR of the 2 adrenergic receptor is relatively well 

characterized and shows some similarity with D2 mRNA. Still, the sORF-based control 

is poorly understood in higher vertebrates. 5’UTR based translational control was also 

observed in yeasts and viruses (Hinnebusch 1994; Jackson and Kaminski 1995). It was 

also suggested that beyond sORFs other factors e.g. a secondary structure may also 

account for the translational inhibition (Kozak 1986). 

In summary, our results confirmed that the alternative splicing of the D2 mRNA and the 

sORF based translation inhibition of the 5’UTR control the activity of D2 enzyme. It 

also needs to be kept in mind that beyond the studied posttranscriptional events 
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important post-translational mechanisms are also involved in the complex regulation of 

D2 protein level and activity. Importantly, the substrate-induced ubiquitination of the 

enzyme leads to rapid proteasomal degradation by reducing the half-life of the D2 

protein (Gereben et al., 2000; Gereben et al., 2015). The multiplicity of regulatory 

mechanisms for D2 protein indicates that there is meticulous control of the deiodinative 

activation of T4 to T3. Therefore the correlation between D2 mRNA and activity is often 

weak and interpretation should be handled with care. 

 

6.3. Identification of authentic reporter proteins for studies on T3-dependent 

gene transcription 

TH can impact gene transcription both in a positive and negative manner (see Section 

2.6). While mechanism of T3-mediated positive regulation of gene expression is well 

understood, the mechanism of T3-mediated repression is more ambiguous and several 

molecular models exist to address this phenomenon. Studies on the effect of TH on a 

specific promoter are typically studied by luciferase reporters in transient expression 

systems. This is a fundamental approach to study the TH-mediated regulation of a 

specific gene. The assay is based on the fact that TH act predominantly via nuclear 

receptors and binding of T3 to TR can either activate or repress the transcription of the 

target gene. In reporter assays it is crucial that the reporter itself should not be affected 

by the factor to be studied. Importantly, it has been demonstrated that the firefly 

luciferase reporter protein is downregulated by T3 in a promoter and plasmid vector 

independent manner (Tillman et al., 1993; Maia et al., 1996). This phenomenon 

significantly undermines the accuracy of T3 dependent luciferase assays therefore we 

aimed to develop a working alternative to overcome this problem. 

It was revealed that T3-mediated downregulation of luciferase remained constant even 

in different vectors if the same thymidine kinase promoter fragment was used. Applying 

mutant receptors revealed that the suppressive effect of T3 was not observed if the DNA 

binding domain of the receptor was inactivated proving that the phenomenon is TR-

dependent. In parallel, usage of mutant promoters with modified TR binding sites also 

justified that the suppression remained. Simian virus (SV) promoters were also involved 

in the investigation but the negative effect after T3 addition remained unchanged. After 

further analysis of the effect of strong cis-linked positive TREs on the luciferase activity 

it was proven that only strong positive TREs are able to diminish the negative effect of 



 

61 
 

T3 and TR on the luciferase activity (Tillman et al., 1993). In other studies, the effect of 

unliganded thyroid hormone receptors on luciferase activity was tested in HEK-293, 

COS-7 and JEG-3 cells and while the phenomenon was not cell-line dependent, JEG-3 

cells proved to be the most sensitive to T3-mediated downregulation (Maia et al., 1996). 

It was concluded that a negative TRE should exist in the luciferase coding region. 

Similarly to Tillman’s group they also drew the conclusion that for studies on TH action 

the classical firefly luciferase does not provide an accurate reporter (Maia et al., 1996). 

The importance of this problem was also underlined by a cautionary note (Chan et al., 

2008) regarding the use of pBi-L dual expression plasmid for the generation of 

transgenic mice (Clontech) and the vector was also suggested to contain an unwanted 

and not identified negative TRE. This negative regulation could be observed only in the 

presence of TR and only in vectors that contained luciferase marker. This phenomenon 

did not show cell line-dependent features. It was suggested that each individual vector 

should be evaluated on a case by case basis before applying them in TH-related studies. 

The suitability of the pGL-2 reporter series (Promega) for transient T3-dependent 

expression studies was also questioned (Liu and Brent 2008) as the pGL-2 version 

contains numerous potential transcription sites. 

Since the luciferase reporter based assay is a widely used, convenient and extremely 

sensitive non-radioactive approach, we attempted to identifiy alternative luciferase 

reporters lacking the susceptibility of T3-mediated downregulation. Despite the well 

characterized positive TREs only very limited information is available regarding the 

negative TREs. Negative TRE was described in the TSHβ subunit (Shibusawa et al., 

2003), in the CD44 (Kim et al., 2005) and CYP7A1 genes (Drover et al., 2002), but 

these vary in DNA sequence, position and configuration thus computer-assisted 

prediction of negative TREs is not feasible based on sequence data. Therefore, we 

performed the experimental testing of the T3-responsiveness of various luciferase 

reporters. 

Previously, the herpes simplex TK minimal promoter was proven to be unaffected by T3 

(Tillmann et al., 1993) therefore we designed the constructs with the same minimal TK 

promoter. We used JEG-3 human choriocarcinoma cell line, as it was shown in former 

transient expression studies to be the most sensitive cell line for T3-mediated 

downregulation of the firefly luciferase gene (Maia et al., 1996). We set up controls by 
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using the pTRE-TK Luc that is upregulated after T3 treatment and TK-Luc where we 

removed the classical TRE and observed the expected up and downregulation after T3 

treatment, respectively. We used this controlled system to test the response of various 

luciferase proteins to T3. Testing of the dCpG luciferase revealed a complete resistance 

to T3-mediated downregulation. The dCpG luciferase is a codon-optimized modified 

luciferase reporter containing silent mutations that remove 95 2’-deoxyribo-cytidine-

phosphateguanosine (CpG) dinucleotides in a way that it is not reflected in its amino 

acid sequence. This way the dCpG luciferase coding region encodes the same amino 

acid sequence as the wild type firefly luciferase but the nucleotide sequence shows only 

77% homology. The resistance of the dCpG construct to the T3 treatment can be 

explained by the very likely disruption of the negative TRE(s) of the original sequence. 

We also tested a novel luciferase NanoLuc. NanoLuc was isolated from deep-sea 

shrimp Oplophorus gracilirostris and a synthetic form of the small unit of the luciferase 

was created (Hall et al., 2012). This new luciferase system has several advantages 

compared to the firefly and Renilla based reporters (see Section 2), it is more stable to 

environmental stress (like changes in pH, temperature) and the duration of the signal is 

longer. In our studies we found that only a slight and not significant reduction was 

observed after T3 treatment. Only a minimal decrease was observed, but it was within 

the range of the resolution limit of the assay. Our findings indicate that no potent 

negative TRE is present in the NanoLuc construct. To further widen the spectrum of the 

investigated constructs, Renilla reniformis luciferase was also tested (Lorenz et al., 

1991) which is widely used as internal control in luciferase assays. The T3 treatment 

caused a significant decrease in the luciferase expression compared to the control. 

However, the downregulation was less pronounced than in the case of the classical 

firefly but underlined that the popular Renilla luciferase reporter should be handled with 

care for T3-mediated promoter studies. 

In summary, we were able to identify alternative reporters, i.e the dCpG luciferase and 

the NanoLuc that can be more accurately used to assess TH responsiveness of a specific 

promoter than the classical firefly luciferase.  
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7. CONCLUSIONS 

We focused on the better understanding of the D2-mediated TH activation in the 

embryonic and adult chicken brain. D2 mRNA could be detected as early as on 

embryonic day 7, and the presence of activity of the D2 enzyme could also be readily 

detected. We provided evidence that D2 message can be detected from E8 in scattered 

cell clusters. This became stronger and localized in elongated perivascular like cell 

clusters in the neostriatum and hypothalamus of E15 embryos. The rearrangement of the 

D2-labelled cells could be observed in the investigated adult chicken brain samples, 

namely labelled ependymal cells reminiscent of tanycytes were detected in the wall of 

the third ventricle, while the intensity of hybridization signal in other parts of the brain 

was markedly decreased. All these results confirmed that the developing chicken brain 

is able to activate the prohormone thyroxine with D2 at a very early stage, well before 

the onset of the thyroidal secretion. The distribution pattern of D2 is subjected to change 

during brain development via ontogenic regulation and contributes to the adjustment of 

appropriate T3 levels in the central nervous system. Our findings challenge the dogma 

of minimized TH action during proliferative phases and calls to refine views on 

minimized T3 availability in the developing central nervous system. 

We confirmed the role of alternative splicing of the D2 mRNA in the post 

transcriptional regulation of the D2 encoding dio2 gene. We were able to identify and 

functionally test a novel alternatively spliced D2 mRNA in the brain and the liver of 

chickens. This transcript is 77 bp shorter than the wild-type D2 mRNA and encodes an 

inactive deiodinase enzyme. Our results indicate that alternative splicing is one of the 

several processing mechanisms that influence the level of D2 in a given tissue. Our 

results also confirm that D2 mRNA level quantification alone may be misleading in the 

interpretation of D2 enzyme activity levels of the different tissues. In addition, we 

demonstrated that the 5’UTR of the D2 mRNA down-regulates D2 activity and this 

effect is underlain by sORF based translation initiation. This mechanism helps to keep 

the translation of the D2 protein low which contributes to the tight regulation of this T3 

generating, highly active oxido-reductase. 

According to the current consensus, T3 exerts its biological effects predominantly via 

nuclear transcriptional events. Experimental assessment of this mechanism is a crucial 

approach to study thyroid hormone related signalling. T3-mediated regulation of the 
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classical firefly luciferase reporter is a significant set back of these studies. Therefore, 

our findings on the resistance of the dCpG luciferase and the NanoLuc to T3-mediated 

downregulation allow an accurate assessment of the potency of elements involved in the 

transcriptional regulation of TH-mediated gene expression in various reporter assays. 
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8. SUMMARY 

Thyroid hormones play an important role in the development and function of various 

organ systems. The hypothalamo-pituitary-thyroid axis is programmed to keep serum 

thyroid hormone level relatively stable, but at the tissue level thyroid hormone evoked 

changes are regulated by a tightly controlled local machinery. Our aim was to 

investigate the regulatory factors underlying thyroid hormone mediated effects using 

molecular and cell biological approaches. We addressed the regulation of thyroid 

hormone availability in the developing chicken hypothalamus; performed studies to 

better understand the RNA-dependent post-transcriptional regulation of the type 2 

deiodinase (D2) encoding dio2 gene; and also aimed to identify authentic luciferase 

reporter proteins for transcriptional studies on T3-dependent gene expression. 

We provided evidence that the D2 mRNA expression and activity can be detected from 

embryonic day 7 and encodes an active enzyme in the developing chicken brain. We 

also observed redistribution of cellular elements responsible for D2-mediated thyroid 

hormone activation in the ontogeny of the chicken brain. Our results prove that the local 

T3 generating machinery is functional already from early stages of development of the 

central nervous system that challenges the dogma of minimized TH action in the 

proliferative developmental stages. 

We identified two RNA-dependent post-transcriptional molecular mechanisms 

regulating D2 activity in chicken. We isolated an alternatively spliced D2 mRNA that 

encodes an inactive enzyme that could impact tissue specific D2 activity in the brain 

and liver of chicken. We also demonstrated that the 5’ untranslated region of D2 mRNA 

downregulates the activity of the D2 enzyme and the underlying molecular mechanism 

is based on short open reading frame associated translational initiation. 

We demonstrated that two novel luciferase reporters, the dCpG luciferase and the 

NanoLuc accurately measure the activity of T3-dependent gene expression in contrast to 

the classical firefly. The established approach allows the authentic assessment of 

transcriptional effects of thyroid hormone. 

Our studies contribute to the better understanding of cellular and molecular mechanisms 

underlying the effect of thyroid homone on the brain and other tissues. 
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9. ÖSSZEFOGLALÁS 

A pajzsmirigyhormonok fontos szerepet játszanak a különböző szervrendszerek 

fejlődésében és működésében. A hipotalamusz-hipofízis-pajzsmirigy tengely a szérum 

pajzsmirigyhormon szint viszonylagos stabilitásának fenntartására van programozva, 

azonban a szövetekben a pajzsmirigyhormonok által kiváltott változásokat szigorú 

szabályozás alatt álló helyi mechanizmusok irányítják. Célunk a pajzsmirigyhormon 

hatás szabályozó tényezőinek tanulmányozása volt, ehhez molekuláris és sejtbiológiai 

módszereket használtunk. Vizsgáltuk a fejlődő csirke hipotalamuszban a 

pajzsmirigyhormon elérhetőség szabályozását; kísérletet tettünk a kettes típusú dejodázt 

(D2) kódoló dio2 gén RNS-függő poszttranszkripcionális szabályozásának jobb 

megértésére; továbbá a T3-függő génexpresszió transzkripciós tanulmányozására 

alkalmas luciferáz riporter fehérjék azonosítását tűztük ki célul. 

Bizonyítottuk, hogy a D2 mRNS expressziója és enzimaktivitása már a 7. embrionális 

naptól kimutatható a fejlődő csirkeagyban. Megfigyeltük a D2 által kiváltott 

pajzsmirigyhormon aktiváció sejtes elemeinek újrarendeződését a csirke agyfejlődése 

folyamán. Eredményeink azt igazolják, hogy a T3 előállító rendszer már a központi 

idegrendszer korai fejlődési stádiumában működőképes, ami megkérdőjelezi azt az 

elképzelést, miszerint a pajzsmirigyhormon hatás minimalizálva van proliferatív 

fejlődési szakaszokban. 

Azonosítottunk két olyan RNS-függő, poszttranszkripcionális molekuláris 

mechanizmust, ami szerepet játszik a D2 aktivitás szabályozásában csirkében. 

Izoláltunk egy alternatívan hasított, inaktív enzimet kódoló D2 mRNS-t, ami szerepet 

játszhat a szövetspecifikus D2 aktivitás kialakulásában csirke agyban és májban. 

Kimutattuk továbbá, hogy a D2 mRNS 5’ nemtranszlálódó régiója csökkenti a D2 

enzim aktivitását és e folyamat molekuláris hátterében a rövid nyitott olvasási keret 

transzlációs iniciációja áll. 

Igazoltuk, hogy két új riporter, a dCpG és a NanoLuciferáz, a klasszikus “firefly” 

luciferázokkal ellentétben, pontosan méri a T3-függő génexpresszió aktivitását. A 

kidolgozott módszer lehetővé teszi a pajzsmirigyhormonok által kiváltott transzkripciós 

változások pontosabb megítélését. 

Vizsgálataink hozzájárulnak a pajzsmirigyhormonok agy- és egyéb szövetekben kifejtett 

hatásának hátterében álló sejtes és molekuláris folyamatok jobb megértéséhez.  
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