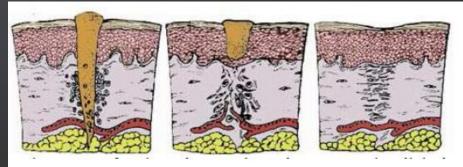


Semmelweis University Faculty of Dentistry Department of Oro-Maxillofacial Surgery and Stomatology

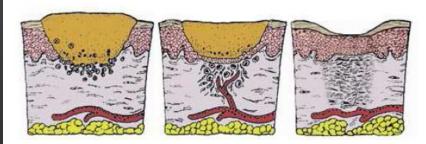
Sutures and Suture Materials in Oral Surgery


2016

Wound healing

PRIMARY (PER PRIMAM INTENTIONEM, PER PRIMAM, PP)

Galenus: the main task of the doctor: gapless wound closeur and linear scar healing


In primary wound healing there is no tissue loss. Incised wound is held together by a blood clot and possibly by sutures. An inflammatory process begins in adjacent tissue at the moment of injury. After several days, granulation tissue forms as a result of migration of fibroblasts to the area of injury and formation of new capillaries. Epithelial cells at wound margin migrate to clot and seal the wound. Regenerating epithelium covers the wound. Scarring occurs as a granulation tissue matures and injured tissue is replaced with connective tissue

Wound healing

SECONDARY (PER SECUNDAM INTENTIONEM, PER SEC)

Healing by second intention occurs when there is tissue loss, as in extensive burns and deep ulcers. The healing process is more prolonged than in healing by primary intention because large amounts of dead tissue must be removed with viable cells. Open area is more extensive, inflammatory reaction is more widespread and tends to become chronic. Healing may occur under a scab formed of dried exudate, or dried plasma proteins and dead cells. Fibroblasts and capillary buds migrate toward center of would to form granulation tissue, which becomes a translucent red color as capillary network develops. Granulation tissue is fragile and bleeds easily. As granulation tissue matures, marginal epithelial cell migrate and proliferate over connective tissue base to form a scar. Contraction of skin around scar is the result of movement of epithelial cells toward center of wound in an attempt to close the defect. Surrounding skin moves toward center of wound in an effort to close the defect.

Wounds of various origins

- Puncture wound (vulnus punctum)
- Incised wound (vulnus scissum)
- Cut wound (vulnus caesum)
- Contuse wound (vulnus contusum)
- Lacerated wound (vulnus lacerum)
- Gunshot wound (vulnus sclopetarium)
- Bite wound (vulnus morsum)
- Burn wound (chemical, fire)
- Radiation wound

Methods of uniting wound edges

The basic condition for wound healing to be accurate and free of tension suturing, not to create blind spots and ensure optimal blood flow to the wound.

Surface adhesives (eg. Steri Strip)
 Tissue adhesives (eg. human fibrin adhesives)

- Clamps
- Sutures

Copyright © 2011 by Mosby, an imprint of Elsevier Inc.

Necessary for suturing

Suture material

Needle

Needle holder

(Tweezers)

Selection of suture materials

The choice of suture materials should be based on the physical and biological characteristics of the suture material and the healing properties of the sutured tissue

Factors influencing selection includes:

- Adequate tensile strenght
- Should hold tissue together safety
- Should be no stronger than sutured tissue
- Secured knots to prevent loosening of suture material which can be affected by:
 - Type of suture material
 - Length of the cut end
- Should be easy to handle
- Minimal tissue reaction
- Condition of sutured tissue (dirty, contaminated or infected wound)

Characteristics of the ideal suture material

- Optimal characteristics of application (flexibility, slides well in tissues, easy to tie a knot, knot safety)
- Minimal tissue trauma
- High tear strength, should hold edges together until healing
- Minimal tissue reaction
- Complete resorption or removable
- Other important characteristics: thickness, elasticity, capillarity, structure, sterilization

Classification of suture materials

Types of suture material according to origin:

- natural
- synthetic
- Types of suture material according to resorption:
 - non-absorbable suture materials
 - absorbable suture materials
- Types of suture material according to their structure/filament:
 - monofilament
 - multifilament
 - pseudomonofilament

Structure of suture materials

monofilament: made of a single elementary fiber

multifilament: made of a number of elementary filaments, twisted or braided

pseudomonofilament: multifilament thread coated with some kind of material (eg. serous membrane, silicone, etilene-propilene, etc.)

Comparison of the monofilament and multifilament thread

	Monofilament thread	Multifilament thread	
Advantages	Smooth surface Strong Low friction Lower resistance Less tissue trauma No bacterial culture No capillarity No tumor cell transport	Stronger Softness and flexibility Ease of use Knot safty	
Disadvantages	Not very elastic Difficult handling and knotting	Rough surface Bacterial culture Capillarity Tumor cell transport Elongation Tissue trauma Tissue damage (kerf, sawing)	

Comparison of natural and synthetic suture material

	Natural	Synthetic
Advantages	Easy to use	Economic
	Easy to knot	Similar to the natural materials
		Absorption: hydrolisis
		Calcuable absorption
		Strength
Disadvantages	Absorption: enzymatic	
	Tissue reaction	The monofilaments difficult to handle
	Unpredictable absorption	nanale

Comparison of non-absorbable and absorbable suture materials

	Absorbable	Non-absorbable
Advantages	It's degraded in the human body Not perceived as foreian matter No foreign body reaction	It keeps closure of the wound for unlimited time periode
Disadvantages	Closure of the wound is for a limited time period	Foreign matter Foreign body reaction Rejection of the suture

Natural absorbable suture material

catgut:

Animal intestine (cattle, sheep, goat, sometimes horse, donkey, mule, pig, but not cat!) purified, clean collagen fibres.

Used by al-Zahrawi in the 10th century, also for instrument strings, bow strings, suturing.

Resorption: proteolysis in 30-40 days, but reduced tensile strength after 7 days

chromic catgut:

Reduced tensile strength only after 18-21 days.

Synthetic, absorbable materials

Polyglycolic acid (eg. Dexon)

Keeps tensile strength (TS) for 1 week, after 3 weeks only 20%

Polyglactin (eg. Vicryl)

TS: 14 days, 50-70 days degradation

Polydioxane (PDS)

TS: 6 weeks, 90 days to 6 months degradation

Polyglyconate (eg. Maxon) After 4 weeks 50% TS

Resorption: mainly hydrolysis

Natural, non-absorbable materials

Silk – naturally strong multifilament or pseudomonofilament

Synthetic, non-resorbable materials

Polyamide (eg. Supramid) – 6-0, 7-0 monofilament, thickers are multifilament, pseudomonofilament

Polyester (eg. Dacron) – easy to handle, to make knots, holds the knot well, inflammatory reactions may occur

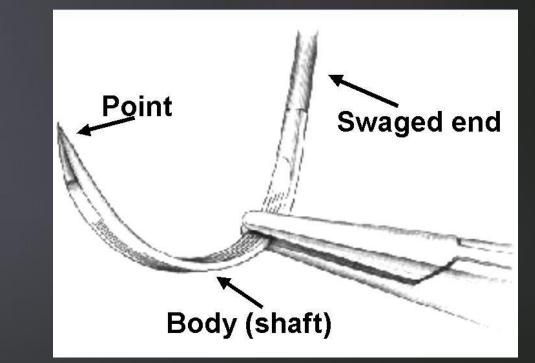
Polypropylene (eg. Prolene) – strong, slides well, minimal tissue reaction, expensive, more difficult to handle, stubby suture ends

Teflon (Gore-Tex)

Size of suture materials

USP (United States Pharmacopeia)	Diameter (mm)
6	0.8
5	0.7
4	0.6
3	0.6
2	0.5
1	0.4
0	0.35
2-0	0.3
3-0	0.2
4-0	0.15
5-0	0.1
6-0	0.07
7-0	0.05
8-0	0.04
9-0	0.03
10-0	0.02
11-0	0.01

Needles

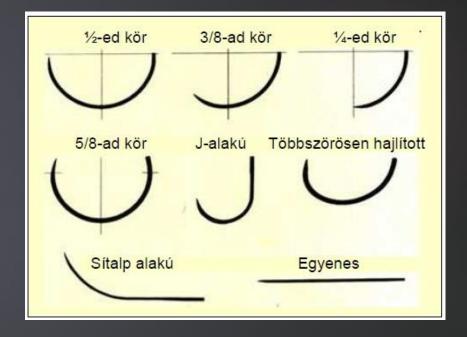

The ideal needles:

Should be elastic

Should strain resistant

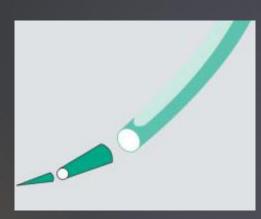
Should not bend easily

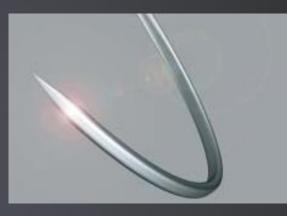
Should not break

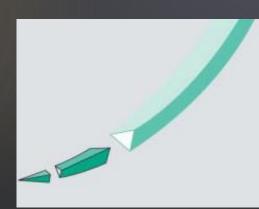


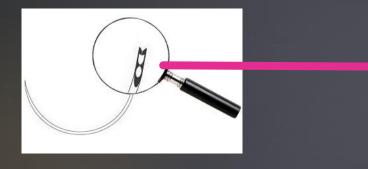
Needle shapes

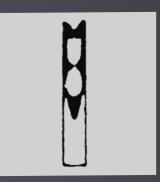
May have various shapes


▶ 3/8ths of a circle (B-needle)


1/2 of a circle (G-needle)

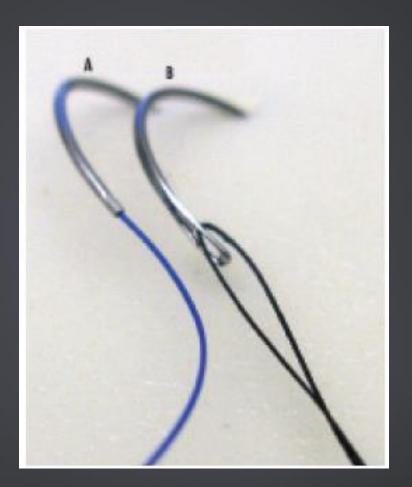

Cross section of the needle

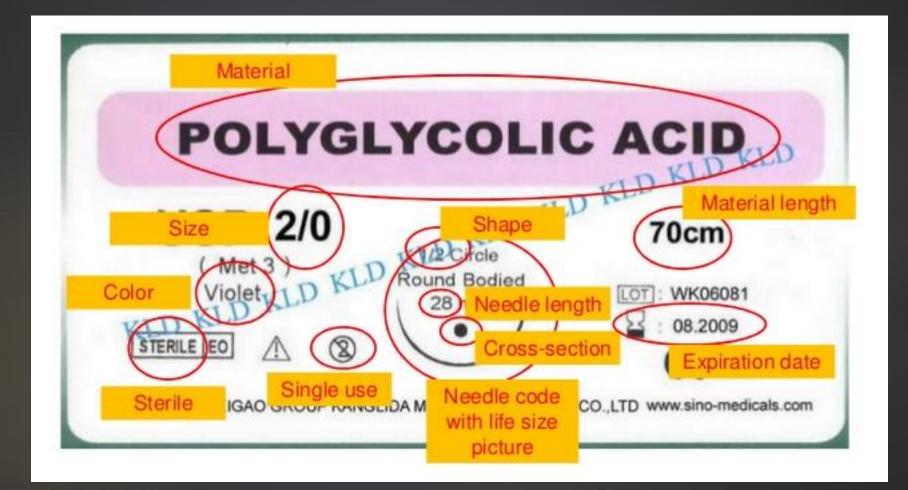

Triangular (cutting needle)



Traditional and atraumatic needles

End of a traditional needle

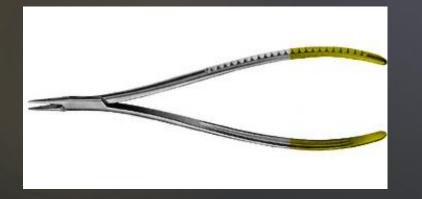



Atraumatic suture material

Suture material / needle

Needle holder

► Hegar-Mayo

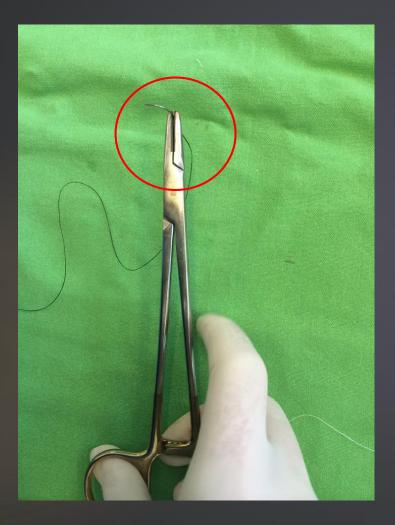


Special needle holders

Palatinal needle holder
Micro needle holder
Needle holders without a lock

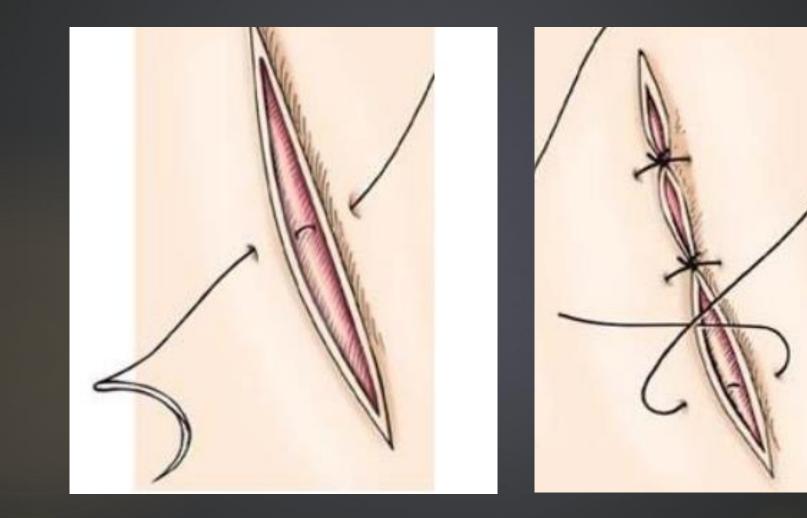
Principles of suturing

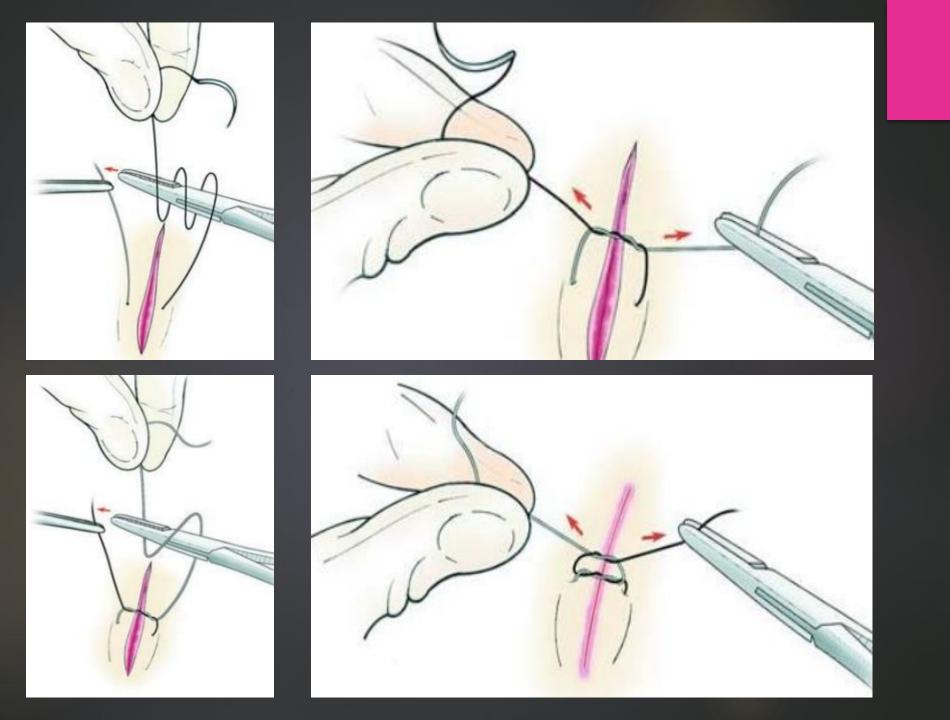
- Use suture <u>needle</u> of suitable shape and size
- Use suture <u>material</u> that is of suitable type and size for the tissue being sutured
- Good bite (2-3 mm from the free edge of the soft tissue)
- Sutures should NOT be placed under tension
- Knots should be tied 2-3 mm away from the incision line
- Suture material is cut 4-5 mm away from the knot
- Superficial sutures should be removed 5-7 days after (exception: sinus closure) surgery to prevent infection / foreign body reaction

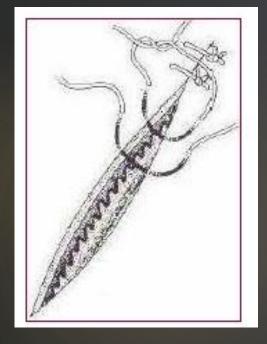

Advantages of suturing (closure)

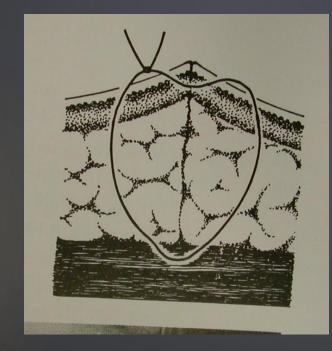
Promotes healing

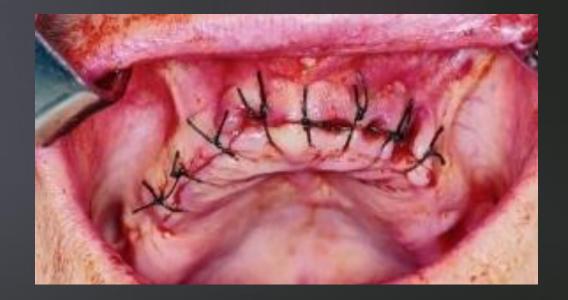
Prevents complications
 INFECTION
 HAEMORRHAGE
 TISSUE NECROSIS


Preserve the normal contur and shape of tissues


Grasping the needle

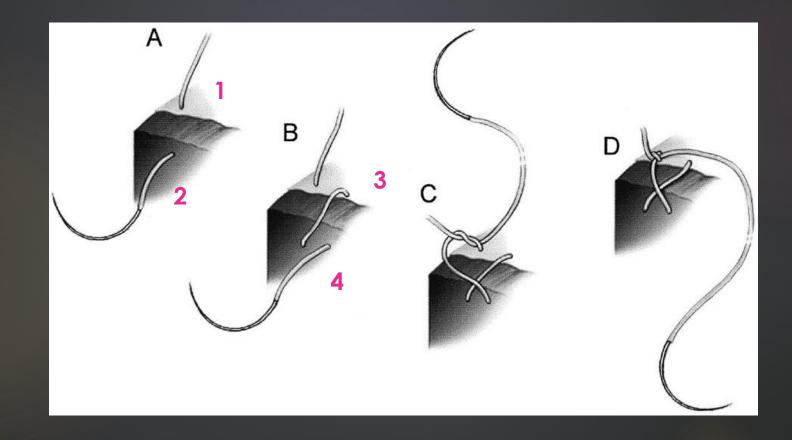

HOW TO MAKE A KNOT?





Suture techniques 1.

Single interrupted suture



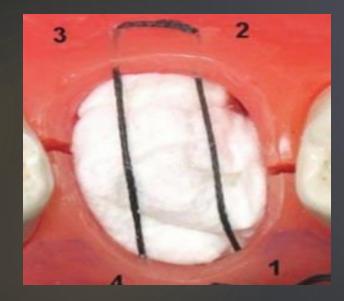
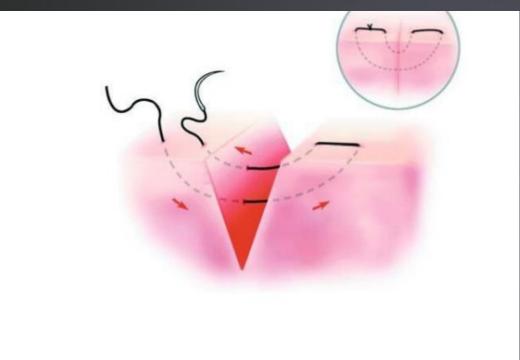
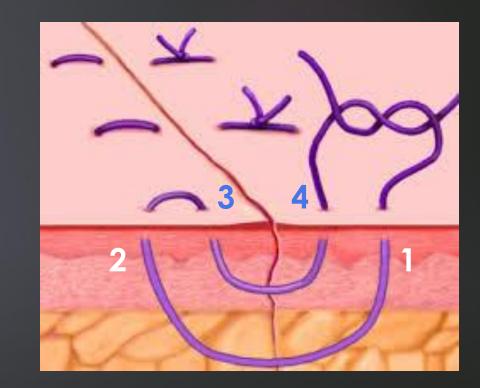
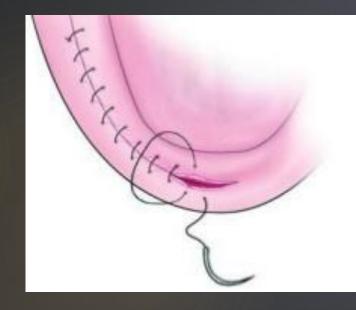

Suture techniques 2.

Figure 8 suture (Z-stitch, crossed matrass suture)

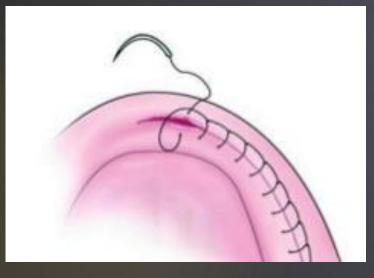
Suture techniques 3.

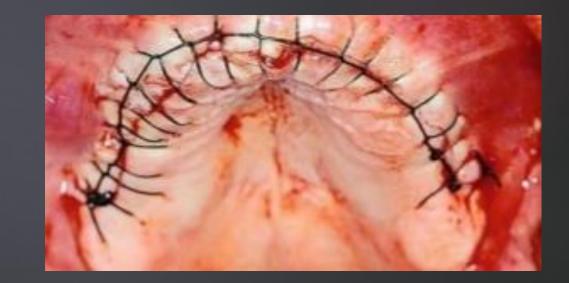

Horizontal matrass suture




Vertical matrass stitch (Donáti)

Suture techniques 5.


Continuous sutures



Suture techniques 5.

Continuous interlocking sutures

Thank you for attention!