## **Balazs Dome, Sandor Paku**

## Alternative vascularization mechanisms in cancer

## Semmelweis Symposium, 2015



Translational Thoracic Oncology Program Department of Thoracic Surgery Medical University of Vienna





| Table 1   Successful completed phase III trials with anti-VEGF pathway agents |                           |                  |       |                         |
|-------------------------------------------------------------------------------|---------------------------|------------------|-------|-------------------------|
| Combined with                                                                 | Tumor (setting)           | † PFS?           | † 0S? | Trial identifier        |
| Bevacizumab                                                                   |                           |                  |       |                         |
| IFL                                                                           | CRC (1st)                 | Yes              | Yes*  | AVF210796               |
| FOLFOX or XELOX                                                               | CRC (1st)                 | Yes*             | Yes   | N01696615               |
| FOLFOX                                                                        | CRC (2 <sup>nd</sup> )    | Yes              | Yes*  | E3200 <sup>97</sup>     |
| Paclitaxel                                                                    | MBC (1 <sup>st</sup> )    | Yes*             | No    | E210098                 |
| Docetaxel                                                                     | MBC (1 <sup>st</sup> )    | Yes*             | NA    | AVADO                   |
| Capecitabine, taxane<br>or anthracycline                                      | MBC (1 <sup>st</sup> )    | Yes*             | No    | Ribbon1 <sup>100</sup>  |
| Chemotherapy <sup>‡</sup>                                                     | MBC (2 <sup>rd</sup> )    | Yes*             | NA    | Ribbon2 <sup>101</sup>  |
| Carboplatin and paclitaxel                                                    | NSCLC (1st)               | Yes              | Yes*  | E4599 <sup>102</sup>    |
| Cisplatin and gemcitabine                                                     | NSCLC (1st)               | Yes*             | No    | AVAIL <sup>108</sup>    |
| Erlotinib                                                                     | NSCLC (2 <sup>nd</sup> )  | Yes*             | NA    | ATLAS <sup>104</sup>    |
| Interferon-2a                                                                 | RCC (1 <sup>st</sup> )    | Yes              | No*   | AVOREN <sup>106</sup>   |
| Interferon-2a                                                                 | RCC (1 <sup>st</sup> )    | Yes              | No*   | CALGB90206106           |
| Carboplatin and paclitaxel                                                    | OC (1 <sup>st</sup> )     | Yes*             | NA    | GOG 021837              |
| Monotherapy                                                                   | $GBM \ (2^{nd})^{\delta}$ | Yes              | Yes   | AVF3708107              |
| Sunitinib                                                                     |                           |                  |       |                         |
| Monotherapy                                                                   | RCC (1 <sup>st</sup> )    | Yes*             | Yes   | NCT00083889109          |
| Monotherapy                                                                   | GIST (2 <sup>nd</sup> )   | Yes <sup>¶</sup> | NA    | SUN 1112 <sup>109</sup> |
| Monotherapy                                                                   | PIC (2 <sup>nd</sup> )    | Yes*             | Yes   | NCT00428597110          |
| Sorafenib                                                                     |                           |                  |       |                         |
| Monotherapy                                                                   | RCC (1*i)                 | Yes              | No*≁  | TARGET <sup>111</sup>   |
| Monotherapy                                                                   | HCC $(1^{st})$            | No               | Yes*  | SHARP <sup>112</sup>    |
| Pazopanib                                                                     |                           |                  |       |                         |
| Monotherapy                                                                   | RCC (1st and 2nd)         | Yes*             | NA    | VEG105192118            |
| Vandetanib                                                                    |                           |                  |       |                         |
| Docetaxel                                                                     | NSCLC (2 <sup>nd</sup> )  | Yes*             | No    | ZODIAC <sup>114</sup>   |

| Table 2   Unsuccessful or terminated phase III trials with anti-VEGF pathway agents |                                    |                 |       |                         |
|-------------------------------------------------------------------------------------|------------------------------------|-----------------|-------|-------------------------|
| Combined with                                                                       | Tumor (setting)                    | * PFS?          | * 0S? | Identifier              |
| Bevacizumab                                                                         |                                    |                 |       |                         |
| XELOX and cetuximab                                                                 | CRC (1*)                           | Noׇ             | NA    | CAIRO2115               |
| Oxalipiatin- or Minotecan-based<br>chemotherapy and panitumumab                     | CRC (1°)                           | No×i            | NA    | PACCETTS                |
| FOLFOX                                                                              | CRC (adjuvant)                     | No <sup>s</sup> | NA    | NSABP-C-08%             |
| Capecitabline                                                                       | MBC (2 <sup>nc</sup> )             | No×             | No    | AVF2119117              |
| Erlotinib                                                                           | NSCLC (2 <sup>rd</sup> )           | Yes             | No*   | BeTallo                 |
| Capecitabline or 5-FU and displatin                                                 | AGC (1 <sup>w</sup> )              | Yes             | No×   | AWAGAST                 |
| Gerneitabine                                                                        | PC (1")                            | No              | No*   | CALGB80303136           |
| Gerneitabine and erlotinib                                                          | PC (1 <sup>31</sup> )              | Yes             | No*   | AviTA <sup>121</sup>    |
| Docetaxel and prednisone                                                            | PR (1 <sup>s1</sup> )              | Yes             | No×   | CALGB90401122           |
| FOLFOX or XELOX                                                                     | CRC (adjuvant)                     | No <sup>s</sup> | NA    | AVANT <sup>24</sup>     |
| Aflibercept                                                                         |                                    |                 |       |                         |
| Semcitable                                                                          | PC (1")                            | NA              | No×   | WANILLA                 |
| Sunitinib                                                                           |                                    |                 |       |                         |
| Papitaxel                                                                           | MBC $\langle 1^{A} \rangle$        | No*             | NA    | SUN 1094                |
| Capecitabline                                                                       | MBC (2**)                          | No×             | No    | SUN 1099***             |
| Docetaxel                                                                           | MBC $\langle 1^{\prime a} \rangle$ | No*             | NA    | SUN 1064                |
| FOLFIRI                                                                             | CRC (1*)                           | No×             | NA    | SUN 1122                |
| Eriotinib                                                                           | NSCLC (2 <sup>re</sup> )           | Yes             | No×   | SUN 1087                |
| Monotherapy                                                                         | MBC (2 <sup>w</sup> )              | No*             | No    | SUN 1107 <sup>194</sup> |
| Monotherapy                                                                         | HCC (2 <sup>rd</sup> )             | NA              | No    | SUN 1170                |
| Prednisone                                                                          | PR (2 <sup>re</sup> )              | NA              | No×   | SUN 1120                |
| Sorafenib                                                                           |                                    |                 |       |                         |
| Carboplatin and pacilitaxel                                                         | MM (2 <sup>rd</sup> )              | No×             | NA    | PRISM                   |
| Carboplatin and pacifiaxel                                                          | NSCLC (1 <sup>24</sup> )           | No              | No×   | ESCAPE <sup>124</sup>   |
| РТК787                                                                              |                                    |                 |       |                         |
| FOLFOX                                                                              | CRC (2 <sup>nd</sup> )             | Yes             | No×   | CONFIRM 2126            |
| FOLFOX                                                                              | CRC (1°)                           | No*             | No    | CONFIRM 1               |
| Semaxanib                                                                           |                                    |                 |       |                         |
| FOLFIRI                                                                             | CRC (1°)                           | NA              | No×   | NCT00021281             |
| Leucovorin and 5-FU                                                                 | CRC (1°)                           | NA              | No*   | NCT00004252             |
| Axitinib                                                                            |                                    |                 |       |                         |
| Gemcitable                                                                          | PC (1")                            | NA              | No×   | A4061028                |
| Vandetanib                                                                          |                                    |                 |       |                         |
| Monotherapy                                                                         | NSCLC (2 <sup>rd</sup> )           | No×             | No    | ZEST <sup>127</sup>     |
| Pemetrexed                                                                          | NSCLC (2 <sup>re</sup> )           | No×             | No    | ZEAL <sup>128</sup>     |
| Cediranib                                                                           |                                    |                 |       |                         |
| FOLFOX                                                                              | CRC (1*)                           | No×             | NA    | HORIZON III             |
| Monotherapy or Iomustine                                                            | GBM (2 <sup>w</sup> )              | No×             | No    | REGAL***                |

Ebos et al. Nat Rev Clin Oncol 2011; 8: 210-21

## Anticipated vs observed clinical effects of antivascular drugs

| Parameter               | Predicted effect       | Actual (pre)clinical findings                         |
|-------------------------|------------------------|-------------------------------------------------------|
| Tumor response /        | Tumor dormancy         | Variable and depend on tumor type, tumor site and the |
| Angiogenesis dependency |                        | therapeutic protocol                                  |
| Toxicity                | No or minimal side     | Hypertension, Proteinuria, thromboembolic events,     |
|                         | effects - antivascular | bowel perforations, bleeding, fistulas,               |
|                         | drugs target only      | leukoencephalopathy, etc.                             |
|                         | activated tumor ECs    |                                                       |
| Resistance              | No resistance to       | Tumors develop resistance and progress after initial  |
|                         | antivascular drugs     | response                                              |

## Possible mechanisms promoting tumor progression after anti-vascular therapy

1. Hypoxia-driven mechanisms

2. Activation of compensatory angiogenic signaling pathways

3. Thrombotic events caused by antivasc. agents  $\rightarrow$  endothel damage  $\rightarrow$  increased metastasis

4. Pericyte dysfunction  $\rightarrow$  vessel damage  $\rightarrow$  increased metastasis

5. Switch to an alternative vascularization mechanism





Role of the different vascularization mechanisms in tumor resistance

1./ endothelial sprouting
 2./ glomeruloid angiogenesis/microvascular proliferation

 3./ vascular mimicry
 4./ vessel cooption/incorporation
 5./ Intussusceptive angiogenesis

 6./ postnatal vasculogenesis (bone-marrow derived circulating endothelial progenitor cells)

## Alternative vascularization mechanisms in cancer: endothelial sprouting



Paku S. First steps of tumor-related angiogenesis. Lab Invest 1991;65:334–46.

## Glomeruloid Microvascular Proliferation Is Superior to Intratumoral Microvessel Density as a Prognostic Marker in Non-Small Cell Lung Cancer<sup>1</sup>

Fumihiro Tanaka,<sup>2</sup> Hiroki Oyanagi, Kazumasa Takenaka, Shinya Ishikawa, Kazuhiro Yanagihara, Ryo Miyahara, Yozo Kawano, Mio Li, Yosuke Otake, and Hiromi Wada

Human Cancer Biology

Clin Cancer Res 2007;13(12)

## Prominent Microvascular Proliferation in Clinically Aggressive Neuroblastoma

Radhika Peddinti,<sup>1</sup> Rana Zeine,<sup>2</sup> Dragos Luca,<sup>5</sup> Roopa Seshadri,<sup>1</sup> Alexandre Chlenski,<sup>2</sup> Kristina Cole,<sup>4</sup> Bruce Pawel,<sup>4</sup> Helen R. Salwen,<sup>2</sup> John M. Maris,<sup>4</sup> and Susan L. Cohn<sup>3</sup>

[CANCER RESEARCH 62, 6808-6811, December 1, 2002]

Advances in Brief

Prognostic Importance of Glomeruloid Microvascular Proliferation Indicates an Aggressive Angiogenic Phenotype in Human Cancers<sup>1</sup>

Oddbjørn Straume, Pierre O. Chappuis,<sup>2</sup> Helga B. Salvesen, Ole J. Halvorsen, Svein A. Haukaas, John R. Goffin,<sup>3</sup> Louis R. Bégin,<sup>4</sup> William D. Foulkes, and Lars A. Akslen<sup>5</sup>

Survival

2











Alternative vascularization mechanisms in cancer: **Glomeruloid angiogenesis** 

Döme B. et al. J Neuropathol Exp Neurol 2003; 62:655-61.



Glomeruloid bodies in lung cancer brain metastases in mice

Döme B. et al. J Neuropathol Exp Neurol 2003; 62:655-61.



Döme B. et al. *Am J Pathol* 2007; 170:1-15.

824 | NATURE | VOL 468 | 9 DECEMBER 2010

doi:10.1038/nature09557

# Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells

Lucia Ricci-Vitiani<sup>1</sup>\*, Roberto Pallini<sup>2</sup>\*, Mauro Biffoni<sup>1</sup>, Matilde Todaro<sup>3</sup>, Gloria Invernici<sup>4</sup>, Tonia Cenci<sup>5</sup>, Giulio Maira<sup>2</sup>, Eugenio Agostino Parati<sup>4</sup>, Giorgio Stassi<sup>3,6</sup>, Luigi Maria Larocca<sup>5</sup> & Ruggero De Maria<sup>1,7</sup>

LETTER

ΗŰ

9 DECEMBER 2010 | VOL 468 | NATURE | 829

doi:10.1038/nature09624

# Glioblastoma stem-like cells give rise to tumour endothelium

Rong Wang<sup>1,2,3</sup>, Kalyani Chadalavada<sup>4</sup>, Jennifer Wilshire<sup>5</sup>, Urszula Kowalik<sup>1</sup>, Koos E. Hovinga<sup>1,6</sup>, Adam Geber<sup>1</sup>, Boris Fligelman<sup>1</sup>, Margaret Leversha<sup>4</sup>, Cameron Brennan<sup>1,3,7</sup> & Viviane Tabar<sup>1,2,3</sup>

| Prognostic Role of Vasculo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ogenic Mimicry in                                                                                                      | Vasculo<br>ii                                       | genic mimicry is associated with high tumor grade,<br>avasion and metastasis, and short survival in<br>patients with hepatocellular carcinoma                                                                                                                                                                                                                               | Effects of Angiogenesis<br>Inhibitors on Vascular<br>Network Formation by<br>Human Endothelial and<br>Melanoma Cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Colorectal Cancer<br>Coen I. M. Bacten, M.D., Ph.D. <sup>1</sup> - Fe<br>Patrick Panwels, M.D., Ph.D. <sup>2</sup> - Adri<br>Cor C. M. I. Bacten, M.D., Ph.D. <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | unke Hillen, Ph.D. <sup>4</sup><br>aan P. de Bruine, M.D., Ph.D. <sup>5</sup><br>about bactement (5.87%), Urienála, Ja | ,                                                   | HUA COO <sup>4</sup> , XIU LAN ZHAO <sup>4</sup> , WHI ZHANO <sup>4</sup> and XISHAN HAO <sup>4</sup><br>in of Forbelegy. Tonjin Concer Hospital, Tanjin Wellcal University. Tonjin 2009/9,<br>(Pathelege, Timjin Malicul University, Tim in, P.R. Ching <sup>4</sup> Department of Pathelege ,<br>University of Texas M. D. Anderson Cancer Canter, Houston, TX 27030, USA | Daisy W. J. van der Schaft,<br>Richard E. B. Seftor, Elisabeth A.<br>Seftor, Angela R. Hess, Lynn M.<br>Gruman, Dawn A. Kirschmann,<br>Yumi Yokoyama, Arjan W.<br>Griffioen, Mary J. C. Hendrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>Sagarden and State and</li></ul> | Research Paper<br>The Clinical Significa<br>Carcinoma                                                                  | nce of                                              | Tumor Cell-Lined Vasculature in Ovarian                                                                                                                                                                                                                                                                                                                                     | Endothelial cells involved in vasculo<br>genesis and angiogenesis are key far<br>gets in cancer therapy. Recent evi-<br>dence suggests that tumor cells can<br>express some genes typically ex<br>pressed by endothelial cells and form<br>extracellular matrix-rich tubular net<br>works, phenomena known as vasculo-<br>genic mimicry. We examined the ef-                                                                                                                                                                                                                                                                                                                                                                |
| Vasculogenic Mimicry: a New Prog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Implications for Anti-Vase                                                                                             | culogeni                                            | c Therapy<br>—                                                                                                                                                                                                                                                                                                                                                              | (i.e., anginex, TNP 470, and endosta<br>tin) on vasculogenic mimicry in hu-<br>man melanoma MUM-2B and C8161<br>cells and compared them with their<br>effects in human endothelial HMEC 1<br>and HUVEC cells. Anginex, TNP 470,<br>and endostatin markedly inhibited<br>vascular cord and thus formation by                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Image: Addemocarcinoma <ul> <li>Manage: Addemocarcinoma</li> <li>Manage: Addemocarcinoma</li> <li>Manage: Addemocarcinoma</li> <li>Manage: Addemocarcinoma</li> <li>Manage: Addemocarcinoma</li> <li>Manage: Addemocarcinoma</li> <li>Addemocarcinoma</li> <li>Clinical significance of</li> <li>Manage: Addemocarcinoma</li> <li>Manage: Addemocarcinoma</li> <li>Manage: Addemo</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                        | ION - IIUM<br>d' vascui<br>Youg-gan N<br>Chung-Sean | antanimat tissut<br>logenic mimicry in human gliomas<br>m -<br>Tang -                                                                                                                                                                                                                                                                                                       | vascular coro and tube formation by<br>HMEC 1 and HUVEC cells <i>in vitro</i> ,<br>whereas tubular network formation<br>by MUM 2B and C8161 cells was rel-<br>atively unaffected. Endothelial cells<br>expressed higher mRNA and protein<br>levels for two putative endostatin re-<br>ceptors, $\alpha_5$ integrin and heparin sul-<br>fate proteoglycan 2, than melanoma<br>cells, suggesting a mechanistic basis<br>for the differential response of the two<br>cell types to angiogenesis inhibitors.<br>These findings may contribute to the<br>development of new antivascular<br>therapeutic agents that target both<br>angiogenesis and tumor cell vasculo<br>genic mimicry. [J Natl Cancer Inst<br>2004;96:1473-77] |
| Role and mechanism of vasculo<br>gastrointestinal stromal tumors<br>Baocun Sun PhD <sup>a,b,*,1</sup> , Shuo Qie MS <sup>a,b,1</sup> , Shi<br>Xiulan Zhao BS <sup>b</sup> , Songyuan Gao PhD <sup>a</sup> , Chunsl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>genic mimicry in</b><br>*<br>wu Zhang PhDª, Tao Sun MS <sup>b</sup> ,<br>1eng Ni PhD <sup>b</sup> , Xinghui Wang M  | S <sup>b</sup> ,                                    |                                                                                                                                                                                                                                                                                                                                                                             | 2004;96:1473 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



Alternative vascularization mechanisms in cancer: Vessel cooption

Lymphangiogenesis Correlates with Lymph Node Metastasis, Prognosis, and Angiogenic Phenotype in Human Non–Small Cell Lung Cancer

Ferenc Renyi-Vamos,<sup>1,2,4</sup> Jozsef Tovari,<sup>5</sup> Janos Fillinger,<sup>3</sup> Jozsef Timar,<sup>1,5</sup> Sandor Paku,<sup>6</sup> Istvan Kenessey,<sup>5</sup> Gyula Ostoros,<sup>1</sup> Laszlo Agocs,<sup>2</sup> Ibolya Soltesz,<sup>3</sup> and Balazs Dome<sup>1,5</sup>

Clin Cancer Res 2005;11:7344-7353





#### (Lymph)angiogenic phenotypes and survival in NSCLC

Rényi-Vámos, F. et al. Clin Cancer Res 2005;11:7344-7353

Journal of Pathology J Pathol 2015; 235: 384–396 Published online 18 December 2014 in Wiley Online Library (wileyonlinelibrary.com) D01: 10.1002/path.4464

## **ORIGINAL PAPER**

Mechanism of tumour vascularization in experimental lung metastases







Schematic representation of the vascularization process in lung metastases

Tumor cells
 Endothelial cells
 Type I pneumocytes
 Type II pneumocytes
 Capillary lumen
 Fibroblasts
 Activated fibroblasts (myofibroblasts)
 Basement membrane
 Connective tissue
 Alveolar lumen



Journal of Pathology J Pathol 2015; 235: 384–396

### Antiangiogenic Therapy of Cerebral Melanoma Metastases Results in Sustained Tumor Progression via Vessel Co-Option

William P. J. Leenders,' Benno Küsters,' Klek Verrijp,<sup>1</sup> Cathy Maass,<sup>1</sup> Pieter Wesseling,<sup>1</sup> Arend Heerschap,<sup>2</sup> Dirk Ruiter,' Andy Ryan,<sup>3</sup> and Robert de Waal<sup>1</sup>

Departments of <sup>1</sup>Pathology and <sup>2</sup>Radiology, University Medical Centre St. Radhoud, Nijmepen, the Netherlands; and <sup>2</sup>AstraZeneca Enc., Macclesfield, United Knigdom CE MRI scans, leading to erroneous conclusions about ther apentic efficacy during magnetic resonance imaging followup. The maintenance of VEGF A-induced vessel leakage in the absence of neovascularization at lower ZD6474 doses may be exploited to improve delivery of chemotherapeutic agents in combined treatment regimens of antianglogenie and chemotherapeutic compounds.

www.nature.com/nep

### Anti-VEGF Antibody Treatment of Glioblastoma Prolongs Survival But Results in Increased Vascular Cooption<sup>1</sup>

James L. Rubenstein\*, Jin Kim<sup>1</sup>, Tomoko Ozawa<sup>1</sup>, Michael Zhang<sup>1</sup>, Manfred Westpha<sup>®</sup>, Dennis F. Deen<sup>1</sup> and Marc A. Shuman\*

\*Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA; <sup>1</sup>Genentech, South San Francisco; <sup>1</sup>Division of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA and <sup>3</sup>Department of Neurological Surgery, University Hospital Eppendorf, Hamburg, Germany





Patan S, Haenni B, Burri PH. Evidence for intussusceptive capillary growth in the chicken chorio-allantoic membrane (CAM). Anat Embryol (Berl). 1993; 187:121-30.



A New Mechanism for Pillar Formation during Tumor-Induced Intussusceptive Angiogenesis

Inverse Sprouting

Sándor Paku,\* Katalin Dezső,\* Edina Bugyik,\* József Tóvári,<sup>†</sup> József Tímár,<sup>‡</sup> Péter Nagy,\* Viktoria Laszlo,<sup>§</sup> Walter Klepetko,<sup>§</sup> and Balázs Döme<sup>51</sup>





#### Steps of pillar formation

• Localized dissolution of the BM beneath the bridging EC

• The bEC later attaches to a collagen bundle in the underlying connective tissue

• A pulling force is exerted by the cytoskeleton of the bEC to the collagen bundle, resulting in the transport of the collagen bundle through the vessel lumen

• The pillar matures through the immigration of connective tissue cells and the deposition of new collagenous matrix

The American Journal of Pathology, Vol. 179, No. 3, September 2011

A New Mechanism for Pillar Formation during Tumor-Induced Intussusceptive Angiogenesis

Inverse Sprouting

Sándor Paku,\* Katalin Dezső,\* Edina Bugyik,\* József Tóvári,<sup>†</sup> József Tímár,<sup>‡</sup> Péter Nagy,\* Viktoria Laszlo,<sup>§</sup> Walter Klepetko,<sup>§</sup> and Balázs Döme<sup>§1</sup>

From the 1<sup>st</sup> Institute of Pathology and Experimental Cancer Research\* and the 2<sup>nd</sup> Department of Pathology,\* Seminetaetic University, Budapest, Hungary: the Department of Experimental Pharmacology,<sup>1</sup> National Institute of Oncology, Budapest, Hungary, the Department of Thomacic Surgery,<sup>3</sup> Translational Thomacic Oncology Laboratory, Medical University of Vienna, Vienna, Austria, and the Department of Thomac Biology,<sup>4</sup> National Korawyi Institute of Pubmonology, Budapest, Hungary,



|                                                                                                                                                                                                 | Treatments                                                          |                                                                                              |                                                                                                    |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| Variable                                                                                                                                                                                        | Control                                                             | rHuEPO                                                                                       | Vatalanib                                                                                          |  |  |
| C38 colon carcinoma s.c. tumor weight (g)<br>Relative vessel area (%vessel/tumor area)<br>No. of pillars/vessel area (no./mm <sup>2</sup> )<br>No. of pillars/tumor area (no./mm <sup>2</sup> ) | $2.73 \pm 0.72$<br>$1.47 \pm 0.32$<br>$21 \pm 3$<br>$0.31 \pm 0.04$ | $\begin{array}{r} 2.77 \pm 1.12 \\ 1.75 \pm 0.28 \\ 25 \pm 5 \\ 0.43 \pm 0.06^* \end{array}$ | $\begin{array}{r} 1.46 \pm 0.82^{*} \\ 1.21 \pm 0.14 \\ 32 \pm 6^{*} \\ 0.38 \pm 0.08 \end{array}$ |  |  |
| Results are expressed as mean $\pm$ SD. $*P < 0.05$ .                                                                                                                                           |                                                                     |                                                                                              |                                                                                                    |  |  |

The American Journal of Pathology, Vol. 179, No. 3, September 2011



Endothelial progenitor cells, proangiogenic hematopoietic cells and circulating endothelial cells

Döme B. Crit Rev Oncol Hematol 2009; 69:108-24.

## **Circulating endothelial progenitors in the clinics**

| Myelofibrosis     | Massa M et al. J Clin Oncol, 2005                |
|-------------------|--------------------------------------------------|
| Multiple Myeloma  | Zhang H et al. <i>Blood,</i> 2005                |
| AML               | Wierzbowska A et al. <i>Eur J Haematol,</i> 2005 |
| Hodgkin-disease   | Lanza F et al. Bone Marrow Transplant, 2003      |
| Breast cancer     | Furstenberger G et al. Br J Cancer, 2006         |
| Gastric cancer    | Kim HK et al. Cancer Lett, 2003                  |
| Hepatic cancer    | Ho JW et al. <i>Hepatology,</i> 2006             |
| Colorectal cancer | Willett CG et al. Nat Med, 2004                  |







NSCLC

Döme B et al. Cancer Res, 2006

| Table 1   Successful completed phase III trials with anti-VEGF pathway agents |                           |                  |       |                         |
|-------------------------------------------------------------------------------|---------------------------|------------------|-------|-------------------------|
| Combined with                                                                 | Tumor (setting)           | † PFS?           | † 0S? | Trial identifier        |
| Bevacizumab                                                                   |                           |                  |       |                         |
| IFL                                                                           | CRC (1st)                 | Yes              | Yes*  | AVF210796               |
| FOLFOX or XELOX                                                               | CRC (1st)                 | Yes*             | Yes   | N01696615               |
| FOLFOX                                                                        | CRC (2 <sup>nd</sup> )    | Yes              | Yes*  | E3200 <sup>97</sup>     |
| Paclitaxel                                                                    | MBC (1 <sup>st</sup> )    | Yes*             | No    | E210098                 |
| Docetaxel                                                                     | MBC (1 <sup>st</sup> )    | Yes*             | NA    | AVADO                   |
| Capecitabine, taxane<br>or anthracycline                                      | MBC (1 <sup>st</sup> )    | Yes*             | No    | Ribbon1 <sup>100</sup>  |
| Chemotherapy <sup>‡</sup>                                                     | MBC (2 <sup>rd</sup> )    | Yes*             | NA    | Ribbon2 <sup>101</sup>  |
| Carboplatin and paclitaxel                                                    | NSCLC (1st)               | Yes              | Yes*  | E4599 <sup>102</sup>    |
| Cisplatin and gemcitabine                                                     | NSCLC (1st)               | Yes*             | No    | AVAIL <sup>108</sup>    |
| Erlotinib                                                                     | NSCLC (2 <sup>nd</sup> )  | Yes*             | NA    | ATLAS <sup>104</sup>    |
| Interferon-2a                                                                 | RCC (1 <sup>st</sup> )    | Yes              | No*   | AVOREN <sup>106</sup>   |
| Interferon-2a                                                                 | RCC (1 <sup>st</sup> )    | Yes              | No*   | CALGB90206106           |
| Carboplatin and paclitaxel                                                    | OC (1 <sup>st</sup> )     | Yes*             | NA    | GOG 021837              |
| Monotherapy                                                                   | $GBM \ (2^{nd})^{\delta}$ | Yes              | Yes   | AVF3708107              |
| Sunitinib                                                                     |                           |                  |       |                         |
| Monotherapy                                                                   | RCC (1 <sup>st</sup> )    | Yes*             | Yes   | NCT00083889109          |
| Monotherapy                                                                   | GIST (2 <sup>nd</sup> )   | Yes <sup>¶</sup> | NA    | SUN 1112 <sup>109</sup> |
| Monotherapy                                                                   | PIC (2 <sup>nd</sup> )    | Yes*             | Yes   | NCT00428597110          |
| Sorafenib                                                                     |                           |                  |       |                         |
| Monotherapy                                                                   | RCC (1*i)                 | Yes              | No*≁  | TARGET <sup>111</sup>   |
| Monotherapy                                                                   | HCC $(1^{st})$            | No               | Yes*  | SHARP <sup>112</sup>    |
| Pazopanib                                                                     |                           |                  |       |                         |
| Monotherapy                                                                   | RCC (1st and 2nd)         | Yes*             | NA    | VEG105192118            |
| Vandetanib                                                                    |                           |                  |       |                         |
| Docetaxel                                                                     | NSCLC (2 <sup>nd</sup> )  | Yes*             | No    | ZODIAC <sup>114</sup>   |

| Table 2   Unsuccessful or terminated phase III trials with anti-VEGF pathway agents |                                    |                 |       |                         |
|-------------------------------------------------------------------------------------|------------------------------------|-----------------|-------|-------------------------|
| Combined with                                                                       | Tumor (setting)                    | * PFS?          | * 0S? | Identifier              |
| Bevacizumab                                                                         |                                    |                 |       |                         |
| XELOX and cetuximab                                                                 | CRC (1*)                           | Noׇ             | NA    | CAIRO2115               |
| Oxalipiatin- or Minotecan-based<br>chemotherapy and panitumumab                     | CRC (1°)                           | No×i            | NA    | PACCETTS                |
| FOLFOX                                                                              | CRC (adjuvant)                     | No <sup>s</sup> | NA    | NSABP-C-08%             |
| Capecitabine                                                                        | MBC (2 <sup>nc</sup> )             | No×             | No    | AVF2119117              |
| Erlotinib                                                                           | NSCLC (2 <sup>rd</sup> )           | Yes             | No*   | BeTallo                 |
| Capecitabline or 5-FU and displatin                                                 | AGC (1 <sup>w</sup> )              | Yes             | No×   | AWAGAST                 |
| Gerneitabine                                                                        | PC (1")                            | No              | No*   | CALGB80303136           |
| Gerneitabine and erlotinib                                                          | PC (1 <sup>31</sup> )              | Yes             | No*   | AviTA <sup>121</sup>    |
| Docetaxel and prednisone                                                            | PR (1 <sup>s1</sup> )              | Yes             | No×   | CALGB90401122           |
| FOLFOX or XELOX                                                                     | CRC (adjuvant)                     | No <sup>s</sup> | NA    | AVANT <sup>24</sup>     |
| Aflibercept                                                                         |                                    |                 |       |                         |
| Semcitable                                                                          | PC (1")                            | NA              | No×   | WANILLA                 |
| Sunitinib                                                                           |                                    |                 |       |                         |
| Papitaxel                                                                           | MBC $\langle 1^{A} \rangle$        | No*             | NA    | SUN 1094                |
| Capecitabline                                                                       | MBC (2**)                          | No×             | No    | SUN 1099***             |
| Docetaxel                                                                           | MBC $\langle 1^{\prime a} \rangle$ | No*             | NA    | SUN 1064                |
| FOLFIRI                                                                             | CRC (1*)                           | No×             | NA    | SUN 1122                |
| Eriotinib                                                                           | NSCLC (2 <sup>re</sup> )           | Yes             | No×   | SUN 1087                |
| Monotherapy                                                                         | MBC (2 <sup>w</sup> )              | No*             | No    | SUN 1107 <sup>194</sup> |
| Monotherapy                                                                         | HCC (2 <sup>rd</sup> )             | NA              | No    | SUN 1170                |
| Prednisone                                                                          | PR (2 <sup>re</sup> )              | NA              | No×   | SUN 1120                |
| Sorafenib                                                                           |                                    |                 |       |                         |
| Carboplatin and pacilitaxel                                                         | MM (2 <sup>rd</sup> )              | No×             | NA    | PRISM                   |
| Carboplatin and pacifiaxel                                                          | NSCLC (1 <sup>24</sup> )           | No              | No×   | ESCAPE <sup>124</sup>   |
| РТК787                                                                              |                                    |                 |       |                         |
| FOLFOX                                                                              | CRC (2 <sup>nd</sup> )             | Yes             | No×   | CONFIRM 2126            |
| FOLFOX                                                                              | CRC (1°)                           | No*             | No    | CONFIRM 1               |
| Semaxanib                                                                           |                                    |                 |       |                         |
| FOLFIRI                                                                             | CRC (1°)                           | NA              | No×   | NCT00021281             |
| Leucovorin and 5-FU                                                                 | CRC (1°)                           | NA              | No*   | NCT00004252             |
| Axitinib                                                                            |                                    |                 |       |                         |
| Gemcitable                                                                          | PC (1")                            | NA              | No×   | A4061028                |
| Vandetanib                                                                          |                                    |                 |       |                         |
| Monotherapy                                                                         | NSCLC (2 <sup>rd</sup> )           | No×             | No    | ZEST <sup>127</sup>     |
| Pemetrexed                                                                          | NSCLC (2 <sup>re</sup> )           | No×             | No    | ZEAL <sup>128</sup>     |
| Cediranib                                                                           |                                    |                 |       |                         |
| FOLFOX                                                                              | CRC (1*)                           | No×             | NA    | HORIZON III             |
| Monotherapy or Iomustine                                                            | GBM (2 <sup>w</sup> )              | No×             | No    | REGAL***                |

Ebos et al. Nat Rev Clin Oncol 2011; 8: 210-21

#### Cancer Cell 2012; 21: 82-91.

#### Rapid Decrease in Delivery of Chemotherapy to Tumors after Anti-VEGF Therapy: Implications for Scheduling of Anti-Angiogenic Drugs

Ashid A.M. Van der Veldt,<sup>1,4</sup> Mark Lubberink,<sup>1,4</sup> Idris Bahee,<sup>4</sup> Meudy Wahaven,<sup>2</sup> Michiel P. de Boor,<sup>4</sup> Henk N. Verheut? Eik H. Semé,<sup>1</sup> Adriaan A. Lemmertsma,<sup>1</sup> and Egbert D. Windhorst,<sup>1</sup> Pieter E. Postmus,<sup>5</sup> Henk M. Verheut? Eik H. Semé,<sup>1</sup> Adriaan A. Lemmertsma,<sup>1</sup> and Egbert F. Smit<sup>4</sup> <sup>1</sup>Oppartnert of Nucleo-Middehc and PET Research <sup>2</sup>Oppartnert of Nucleo-Middehc and PET Research <sup>2</sup>Oppartnert of Nucleo-Middehc and PET Research <sup>3</sup>Oppartnert of Nucleo-Middehc and PET Research <sup>3</sup>Oppartnert of Linker Construction <sup>3</sup>Oppartnert of Linker Construction <sup>3</sup>Oppartnert of Childer Har nove ogy and Pharmacy <sup>3</sup>Oppartnert of Childer Harmacy (1000 Michael Harmacy) <sup>3</sup>Oppartnert of Childer Constant, 1007 Michael Harmacy <sup>3</sup>Oppartnert of Childer Constant, 1007 Michael Harmacy <sup>3</sup>Oppartnert of Childer Childer Harmacy, 1007 Michael Harmacy, 1007 Michael Harmacy, 1100 Mic

#### SUMMARY

Current strategies combining anti-angiogenic drugs with chemotherapy provide clinical benefit in cancer patients. It is assumed that anti-angiogenic drugs, such as bevacizumab, transiently normalize abnormal tumor vasculature and contribute to improved delivery of subsequent chemotherapy. To investigate this concept, a study was performed in non-small cell lung cencer (NSCLC) patients using positron emission tomography (PET) and radiolabeled docetarel (1<sup>st</sup> C]docetarel. In NSCLC, bevacizumab reduced both perfusion and net influx rate of (1<sup>st</sup> C]docetarel within 5 hr. These effects persisted after 4 days. The clinical relevance of these findings is notable, as there was no evidence for a substantial improvement in drug delivery to tumors. These findings highlight the importance of drug scheduling and advocets further studies to oplinize echeduling of anti-angiogenic drugs.





**"vascular normalization" theory** J Clin Oncol 2007; 25:4033-42.



Intratumoural distribution patterns of sunitinib and its target RTKs in sunitinib-treated mice as visualized by MALDI-MSI and immunofluorescent labelling.

Török S et al. Br J Pharmacol 2015;172:1148-63.



## Distribution properties of sunitinib and its metabolites in tumour-bearing mice

Török S et al. Br J Pharmacol 2015;172:1148-63.

## Effects of different antiangiogenic TKIs in a mouse model of CRC (C26)













Sunitinib



Vatalanib





Vatalanib in C38



## Key tasks

#### To better understand how tumors develop resistance against AV therapies

#### To reevaluate AV drugs in clinically relevant animal models

(gap between human cancer trials on advanced stage tumors and localized primary animal tumor models!!)

# To elucidate the optimal biologic dose and the best possible combination treatment strategy of AV agents in the setting of chemo(radio)therapy

Development of new horizontal and vertical drug combinations (including different types of antiangiogenics, VDAs, anti-hypoxia drugs and also cytotoxic agents) is necessary Cumulative toxicity poses a challenge!

#### Biomarkers of angiogenesis are urgently needed to:

predict the efficacy of antivascular agents identify patients responsive to AV therapies recognize tumor resistance improve the cost-effectiveness of AV agents

## Acknowledgements









All the patients, collaborators and referring physicians who have been so supportive of these studies