Medical statistics, informatics and telemedicine

lecture 1 hour/week practice 1 hour/week 2 credits

Tutor: Dr Dániel Veres

week	lecture topic	practice topic
1	Principles of quantitative medicine.	Introduction.
		Data types. Introduction to data types.
2	Summary of data: descriptive statistics	Graphical representation of data and interpretation
		of plots I. Ploting frequencies: visualization of
		samples with a large number of elements on a
		histogram, bar plot.
3	Event, probability, distribution.	Graphical representation of data and interpretation
		of plots II. Box plots, scatter plot, mosaic plot.
		Outliers. Interpretation of percentile curves.
		Descriptive values. Determination of descriptive
		values from a large sample size.
4	Estimations.	Distributions. Using binomial distributions. Using
		normal ditributions.
5	Principles of hypothesis testing in medical	Reference interval. Approximate calculation for
	practice.	normal distribution. Interpretation.
		Confidence intervals. Simple calculation of the
		confidence interval of mean. Interpratation.
6	T-tests; chi-square tests.	Hypothesis tests. Logic of hypothesis tests.
	Multiplicity.	
7	Correlation. Simple linear regression.	Student t-tests. Making t-tests. Interpretation of effect
		size, confidence interval and p-value.
		Multiplicity. Examples for multiple testing.
8	Arguing.	Correlation, regression. Interpretation of corerlation
		coefficient. Making simple linear regression,
		interpretation of the slope.
9	Linear regression as a tool against confounding,	Arguing. Examples.
		Bias. Examples
10	Evaluation of diagnostic tests.	<i>Regression models</i> . Interpreting the results of
		regression models.
11	ROC curves. Likelihood ratios.	Diagnostic tests I. Evaluation of diagnostic tests.
		Examples drom the literature.
12	Our own research, diploma work, dialogue with	Diagnostic tests II. ROC curves. Likelihood ratios.
	the statistician: How much is enough? How not	
	to make a very bad questionnaire? How to make	
	a good data table?	
13	Introduction to medical decision theory,	Preparing data. Organizing data tables.
	Bayesian theory: a priori and a posteriori	
	distributions, learning model.	
14	Databases, expert systems, AI supported	When and how to ask a statistician.
	diagnostics, BigData.	Questionnaires. Reflection on a questionnaire - how
		not to do very badly.