Genes and environment: The complex etiology of psychiatric disorders

Attila J. Pulay, M.D.

Department of Psychiatry and Psychotherapy

Semmelweis University

September 19th, 2012

Outline

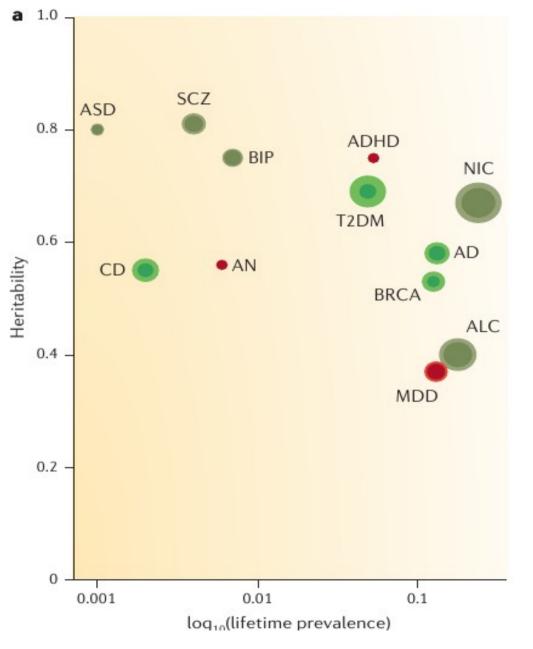
1. Introduction to psychiatric disorders

2. Methods used in psychiatric genetics

3. Psychiatry in nutshell, genetic characteristics

4. Environment steps in: gen-environment interactions

5. Therapeutic considerations


Psychiatric disorders

 Mental disorders: significant dysfunction in an individual's cognitions, emotions, or behaviors

 Diagnoses based on behavioral assessment, no lab tests or biomarkers are available (except for organic psychosyndromes)

So why do we think that they have anything to do with genes?

Heritability of psychiatric disorders

ASD: autism spectrum disorders AD: Alzheimer dementia ADHD: attention-deficit hyperactivity disorder AN: anorexia nervosa ALC: alcohol dependence BIP: bipolar disorder BRCA: breast cancer CD: Crohn disorder MDD: major depressive disorder NIC: nicotine dependence SCZ: schizophrenia T2DM: type 2 diabetes mellitus

From: Sullivan et al, 2012. Genetic architectures of psychiatric disorders: the emerging picture and its implications. *Nature*

Genetic studies

- Population genetics:
 - Family studies
 - Twin studies
 - Adoption studies
- Epidemiologic studies:
 - Genetic cohorts

- Molecular methods
 - Linkage studies
 - Association studies
 - Expression studies
 - (epigenetic analyses)
- Animal models

A typical genetic analysis workflow

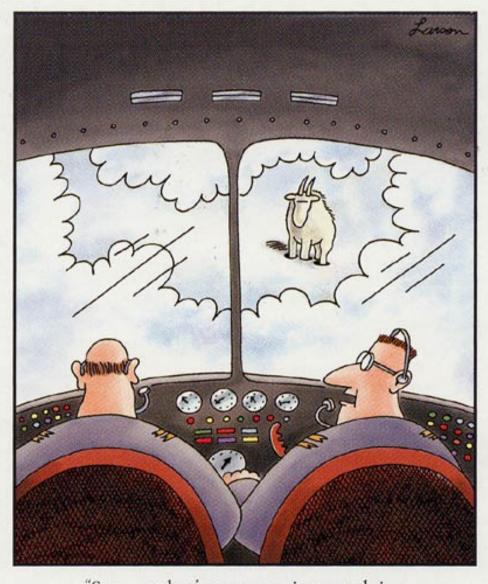
Population studies

Molecular methods

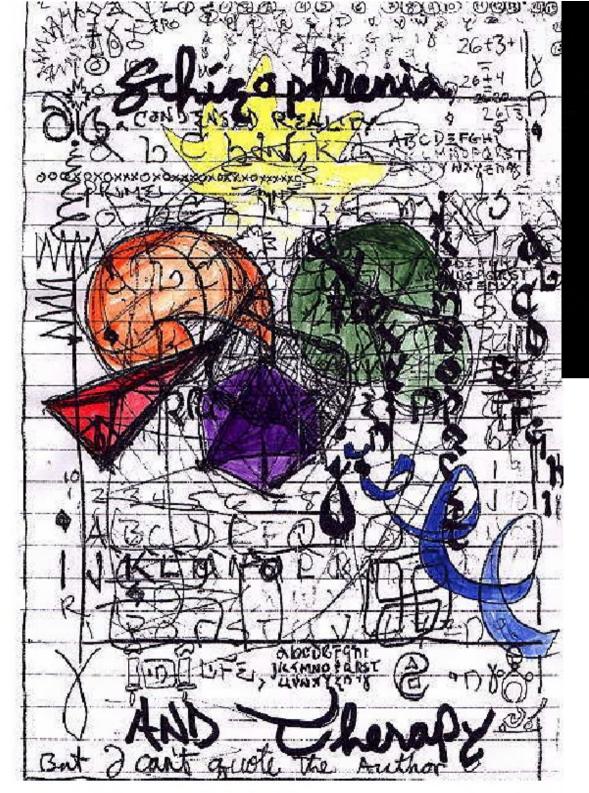
Candidate genes (polymorphisms)

biological hypotheses

Epidemiologic analyses

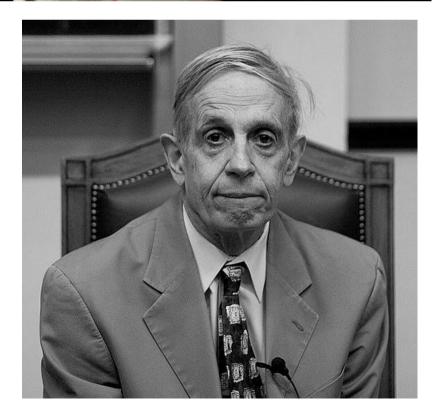


Genetic Risk


Results of GWAS Studies...

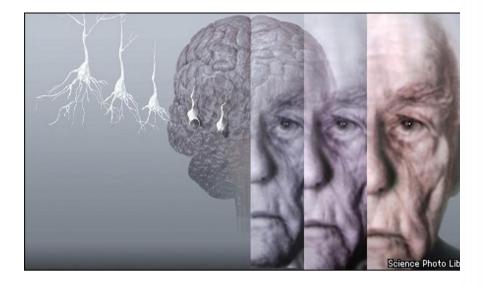
Phenotype	SNP Location		Discovery GWAS (cases/controls)	Largest meta-analysis (cases/controls)	P value	Odds ratio	Nearest gene	
Alzheimer's	rs3818361	chr1:207784968	2,018/5,324 (REF. 34)	<19,870/39,846 (REF. 35)	3.7×10 ⁻¹⁴	1.18	CR1	
disease	rs744373	chr2:127894615	3,006/14,642 (REF. 193)	<19,870/39,846 (REF. 35)	2.6×10 ⁻¹⁴	1.17	BIN1	
	rs9349407	chr6:47453378	8,309/7,366 (REF. 36)	18,762/29,827 (REF. 36)	8.6×10 ⁻⁹	1.11	CD2AP	
	rs11767557	chr7:143109139	8,309/7,366 (REF. 36)	18,762/35,597 (REF. 36)	6.0×10^{-10}	1.11	EPHA1	
	rs11136000	chr8:27464519	3,941/7,848 (REF. 33)	8,371/26,965 (REF. 193)	1.6×10^{-16}	1.18	CLU	
	rs610932	chr11:59939307	6,688/13,251 (REF. 35)	>19,000/38,000 (REF. 35)	1.2×10^{-16}	1.10	MS4A cluster	
	rs3851179	chr11:85868640	3,941/7,849 (REF. 33)	8,371/26,966 (REF. 193)	3.2×10 ⁻¹²	1.15	PICALM	
	rs3764650	chr19:1046520	5,509/11,531 (REF. 35)	>17,000/34,000 (REF. 35)	5.0×10 ⁻²¹	1.23	ABCA7	
	rs2075650	chr19:45395619		8,371/26,966 (REF. 193)	1×10^{-295}	2.53	APOE, TOMM40	
	rs3865444	chr19:51727962	8,309/7,366 (REF. 36)	18,762/29,827 (REF. 36)	1.6×10 ⁻⁹ 1.10		CD33	
Alcohol	rs1229984	chr4:100239319	REF. 102		1.3×10^{-11}		ADH1B	
consumption	rs6943555	chr7:69806023	REF. 101		4.1×10^{-9}		AUTS2	
	rs671	chr12:112241766	REF. 100		3×10^{-211}		ALDH2	
Bipolar	rs12576775	chr11:79077193	7,481/9,251 (REF. 60)	11,974/51,793 (REF. 60)	4.4×10^{-8}	1.14	ODZ4	
disorder	rs4765913	chr12:2419896	7,481/9,250 (REF. 60)	11,974/51,792 (REF. 60)	1.5×10^{-8}	1.14	CACNA1C	
	rs1064395	chr19:19361735	682/1300 (REF. 194)	8,441/35,362 (REF. 194)	2.1×10^{-9}	1.17	NCAN	
Nicotine	rs1329650	chr10:93348120	38,181 (REF. 93)	73,853 (REF. 93)	5.7×10^{-10}		LOC100188947	
consumption	rs1051730	chr15:78894339	38,181 (REF. 93)	73,853 (REF. 93)	2.8×10^{-73}		CHRNA3	
	rs3733829	chr19:41310571	38,181 (REF. 93)	73,853 (REF. 93)	1.0×10^{-8}		EGLN2, CYP2A6	
Smoking cessation	rs3025343	chr9:136478355	41,278 (REF. 93)	64,924 (REF. 93)	3.6×10 ⁻⁸	1.13	DBH	
Smoking initiation	rs6265	chr11:27679916	74,035 (REF. 93)	143,023 (REF. 93)	1.8×10^{-8}	0.94	BDNF	
Schizophrenia	rs1625579	chr1:98502934	9,394/12,462 (REF. 59)	17,839/33,859 (REF. 59)	1.6×10^{-11}	1.12	MIR137	
	rs2312147	chr2:58222928		18,206/42,536 (REF. 195)	1.9×10^{-9}	1.09	VRK2	
	rs1344706	chr2:185778428	479/2,937 (REF. 174)	18,945/38,675 (REF. 196)	2.5×10^{-11}	1.10	ZNF804A	
	rs17662626	chr2:193984621	9,394/12,463 (REF. 59)	17,839/33,860 (REF. 59)	4.6×10^{-8}	1.20	PCGEM1	
	rs13211507	chr6:28257377	3,322/3,587 (REF. 70)	18,206/42,536 (REF. 195)	1.4×10^{-13}	1.22	МНС	
	rs7004635	chr8:3360967	9,394/12,465 (REF. 59)	17,839/33,862 (REF. 59)	2.7×10^{-8}	1.10	MMP16	
	rs10503253	chr8:4180844	9,394/12,464 (REF. 59)	17,839/33,861 (REF. 59)	4.1×10^{-8}	1.11	CSMD1	
	rs16887244	chr8:38031345	3,750/6,468 (REF. 68)	8,133/11,007 (REF. 68)	1.3×10^{-10}	1.19	LSM1	
	rs7914558	chr10:104775908	9,394/12,466 (REF. 59)	17,839/33,863 (REF. 59)	1.8×10^{-9}	1.10	CNNM2	
	rs11191580	chr10:104906211	9,394/12,467 (REF. 59)	17,839/33,864 (REF. 59)	1.1×10^{-8}	1.15	NT5C2	
	rs11819869	chr11:46560680	1,169/3,714 (REF. 197)	3,738/7,802 (REF. 197)	3.9×10^{-9}	1.25	AMBRA1	
	rs12807809	chr11:124606285		18,206/42,536 (REF. 195)	2.8×10^{-9}	1.12	NRGN	
	rs12966547	chr18:52752017	9,394/12,468 (REF. 59)	17,839/33,865 (REF. 59)	2.6×10^{-10}	1.09	CCDC68	
	rs9960767	chr18:53155002		18,206/42,537 (REF. 195)	4.2×10 ⁻⁹	1.20	TCF4	

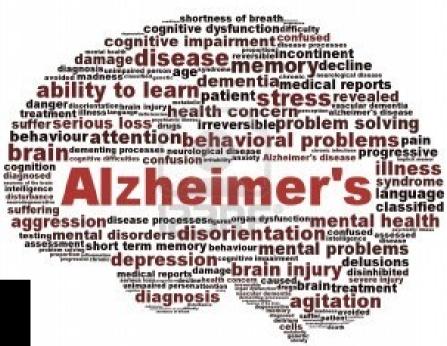
...and their interpretation

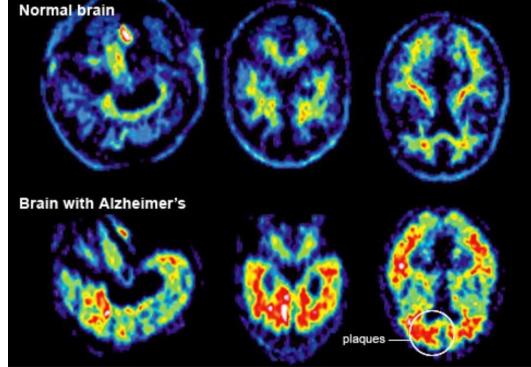

"Say ... what's a mountain goat doing way up here in a cloud bank?"

4 <u>ACADEMY AWARDS</u></u> BEST PICTURE

OWN THE AWARDS EDITION VIDEO OR 2-DISC DVD JUNE 25th




Schizophrenia


- Main symptoms: delusions, hallucinations, disorganized thoughts and behavior, affective disturbances, clustered to positive and negative symptoms
- Familial transmission is straightforward (heritability: 0.8, MZ twins: 48-59%, DZ twins: 16% concordance)
- Referred to as the totally unsuccessful example of linkage and association studies
- GWAS studies did not replicate previously implicated candidate genes, and significant markers only explain 3% of the heritability -> "missing heritability"

Candidate genes in schizophrenia

Gene ¹	Description	OMIM ²	Cytogenetic Band	Cytogenetic Abnormalities	Genome Scan Meta- Analysis ³	Linkage Evidence⁴	Association Study Support⁵	Expression in PFC ⁶	Functional Studies: Plausibility?	
AKT1	V-AKT murine thymoma viral oncogene homolog 1	164730	14q32.33	No	No	No	2+ & 1- studies	++	Yes	
СОМТ	Catechol-O- methyltransferase	116790	22q11.21	Yes	Yes	Yes	Some studies +	++	Yes	
DISC1	Disrupted in schizophrenia 1	605210	1q42.2	Yes	No	Yes	Multiple studies +	+	Yes	
DRD3	Dopamine receptor D3	126451	3q13.31	No	No	Inconsistent	Meta-analysis +	-	Yes	
DTNBP1	Dystrobrevin binding protein 1	607145	6p22.3	No	Yes	Yes	Multiple studies +	++	Yes	
G30/G72	Putative proteins LG30 & G72	607415	13q33.2	No	No	Inconsistent	Multiple studies +		Insufficient data	
HTR2A	Serotonin receptor 2A	182135	13q14.2	No	No	Inconsistent	Meta-analysis +	++	Yes	
NRG1	Neuregulin 1	142445	8p12	No	Nearby	Yes	Multiple studies +	+	Yes	
PRODH	Proline dehydrogenase 1	606810	22q11.21	Yes	Yes	Yes	-	++	Yes	
RGS4	Regulator of G-protein signaling 4	602516	1q23.3	No	Yes	Yes	Multiple studies +	++	Yes	
SLC6A4	Serotonin transporter	182138	17q11.2	No	Nearby	Inconsistent	Meta-analysis +	+	Yes	
ZDHHC8	Zinc finger/DHHC domain protein 8	608784	22q11.21	Yes	Yes	Yes	2+ & 1- studies	++	Yes	

Alzheimer dementia

- Main symptoms: Progressive deterioration of cognitive abilities, agitation, hallucinations.
- Neurodegenerative disease, EC: neuritic plaque, IC: neurofibrillar filaments, beta-amiloyd
- Familial AD (5%): mendelian transmission, dominant, early manifestation: APP (amyloid precursor protein), presenilin1, presenilin 2
- Sporadic AD (95%): polygenic, late-onset: apolipoprotein E e4 allele risk factor, GWAS replicated
- APP gene on chromosome 21- association with Down-trisomy

Mood disorders

- Depression: depressed mood, performance problems, somatic symptoms (loss of appetite, sleep problems)
- Mania: elevated mood, hyperactivity, decreased critical insight, irritability
- Bipolar disorder: cycles of depression and mania, social disability, family problems, high suicide risk and comorbid substance use disorders

Genetics of mood disorders

- Highly prevalent disorders (MDD~15%, BD~6%)
- Familial transmission straightforward in BD (h²: 0.8, MZ: 65%, DZ: 14%), moderate in MDD (h²: 0.39, MZ:50%, DZ:18%)
- GWAS studies yielded a few significant markers in BD with only 1 gene in concert with linkage results (CACNA1C, OR=1.14), again explaining only 2% of heritability variance
- No markers reached significance in MDD, and the main candidate gene (SLC6A4) association was dismissed by recent meta-analyses

Posttraumatic stress disorder

- A highly disabling development of symptoms following extreme traumatic events, classified as anxiety disorder in the DSM-IV
- Prevalence of such events is 49-90%, but only 7-12% of the population develops PTSD
- Heritability: 0.3-0.35, shares a large amount a genetic factors with other anxiety disorders and substance use disorders
- No GWAS conducted yet, candidate genes are of HPA axis and monoaminergic pathways. None of the candidate genes associated with PTSD, only FKBP5 (a chaperon protein gene of the CRH receptor) showed significant interactive effect with alcohol dependence and childhood adversities on PTSD.

What's going on?

 Polygenic inheritance suspected, but independent evaluation of the markers in GWAS studies implies monogenic model, need for statistical models of multimarker effect, e.g. pathway analyses

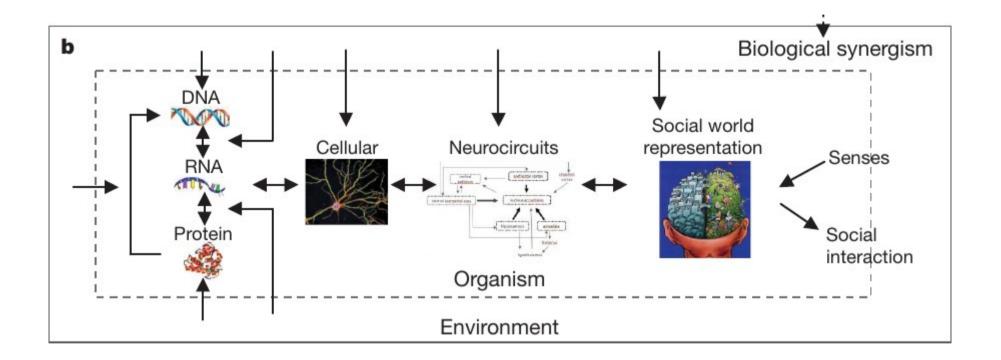
 We also need to consider epistasis and other gengen regulatory interplay

• Are we still missing something?

Health Tip

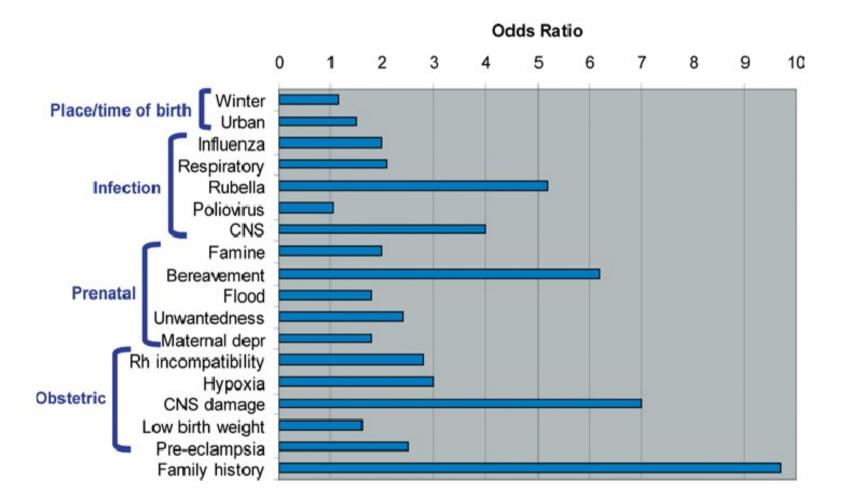
Obesity doesn't run in family. The main problem is nobody runs in the family.

Gene-Environment Interactions


- Refers to the phenomenon where genetic and environmental factors both play a role in the etiology of a disease and possibly strengthen each others effect.
- Especially important in chronic non-communicable diseases and psychiatry.
- Elucidating GxE interactions can lead to better prevention and therapeutic measures.
- The field is connected closely to psychiatric genetics.

Gene-Environment Interactions

- Synergistic: G and E factors enhancing each others' effect
- <u>Antagonistic</u>: G and E suppress each other


- <u>Vulnerability model</u>: G predispose a sensitivity towards E stressors
- <u>Plasticity model</u>: G may confer susceptibility, but beneficial in optimal E

Gene-Environment Interactions

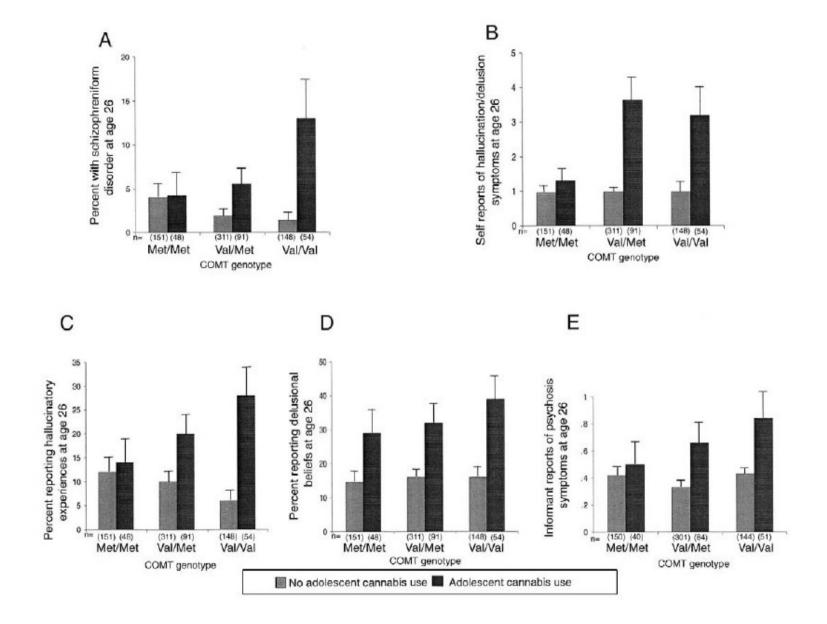
From: van Os et al., 2010. The environment and schizophrenia. Nature

Environmental risk factors in schizophrenia

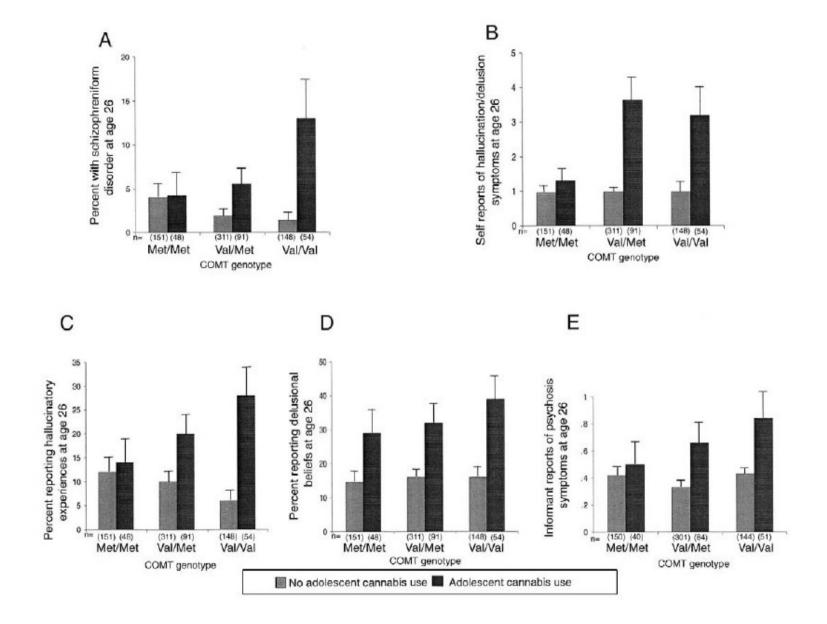
From: Sullivan, 2005. The Genetics of Schizophrenia. *PloS Medicine*

Environmental risk factors in schizophrenia

	Prenatal						Po	ostnat	al			
	Conception	Birth						Pube	rty			
	↓	Year	1 2	2 4	8	10	12		14	16	18	20
								Cann	ahis			
ent	Pre/perinatal factors			_	_	_	_	Carin	abis			
uuu							Tra	auma				
Pre/perinatal factors						U	Irban u	pbring	ging			
						Mino	ority gr	oup p	ositio	n		
							-			-		-
	•											
а	Brain:											
	Grey matter organization											
	Neurogenesis											
	Axonal growth											
	Myelinization											
	Synaptogenesis											
	Synaptic pruning											
	Neuro-endocrine regulation							-	-			
b	Neurocognition:											
	Sustained attention											
	Selective attention											
	Working memory											
	Language, receptive											
	productive Private speech					_						
	Inner speech											
	Analogical reasoning		-									
	Meta-cognition											
c	Affect:											
	Basic emotions				_							
	Complex emotions				_				_			
	Emotional regulation		-									
	Reward experience											
Ы	Social cognition:											
	Emotion recognition											
	Attachment											
	Self-concept and identity											
	Theory of mind											
	anna anna an 📕 Chliniaidhe Chliniaidhe											


From: van Os et al., 2010. The environment and schizophrenia. Nature

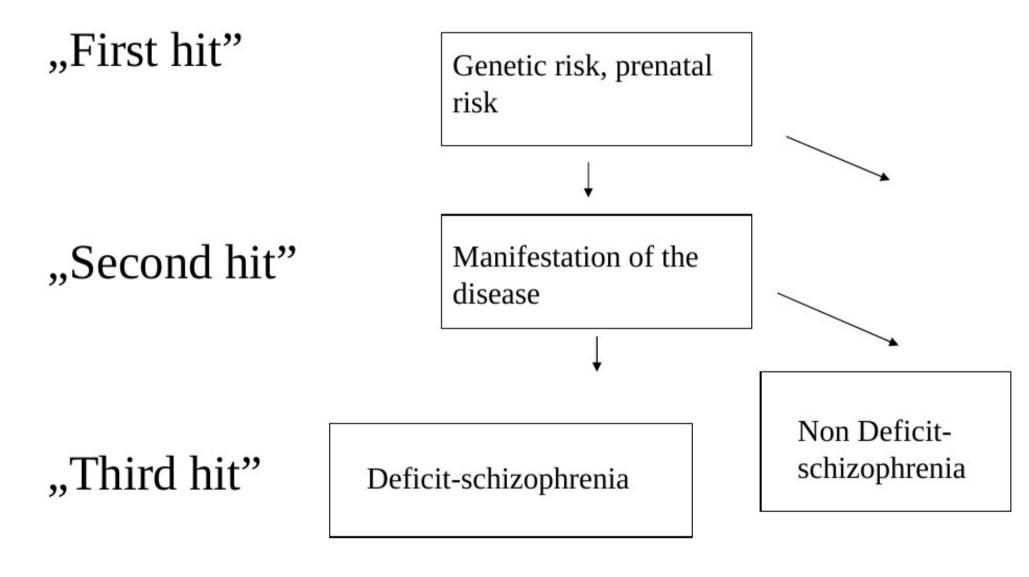
Moderation of the Effect of Adolescent-Onset Cannabis Use on Adult Psychosis by a Functional Polymorphism in the Catechol-O-Methyltransferase Gene: Longitudinal Evidence of a Gene X Environment Interaction


- Epidemiological cohort study: Dunedin (New-Zeeland)
- Catecholamin-O-methyltransferase: role in the break-down of dopamine
- missense mutation that generates a valine (Val) to methionine (Met) substitution at codon 158 (Val¹⁵⁸Met), Caspi et al, 2005

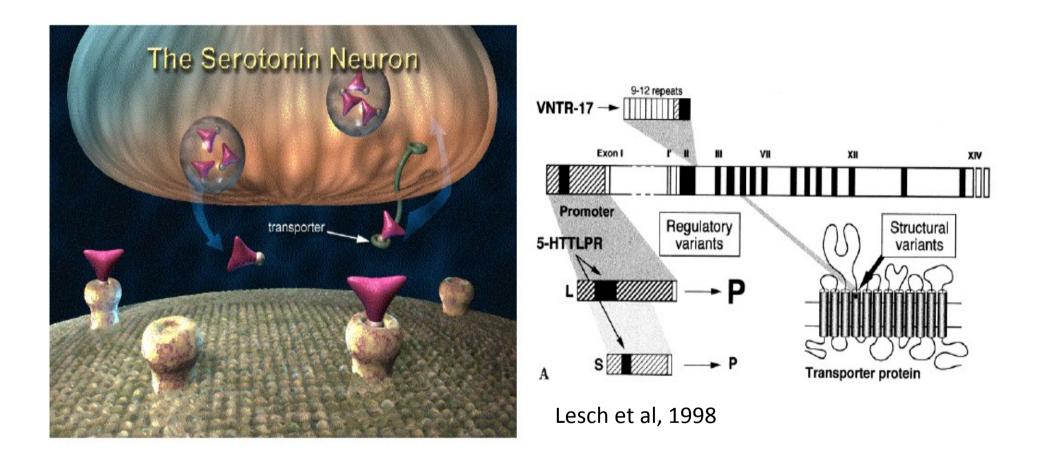
The influence of adolescent-onset cannabis use on adult psychosis is moderated by variations in the COMT gene


Caspi et al, 2005.

The influence of adolescent-onset cannabis use on adult psychosis is moderated by variations in the COMT gene


Caspi et al, 2005.

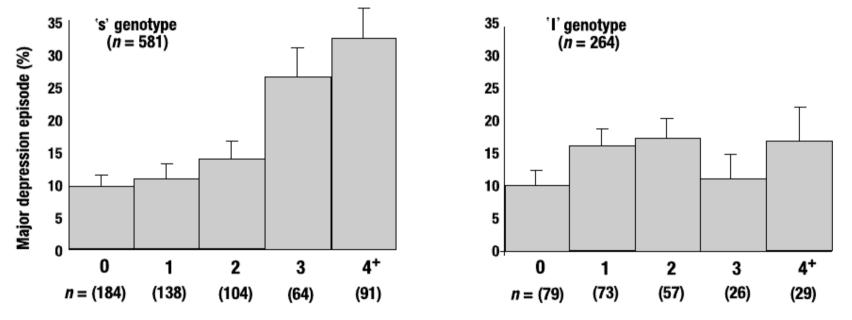
GxE effect on psychotic outcomes



From: van Os et al., 2010. The environment and schizophrenia. *Nature*

The "multiple-hit" neurobiological model of schizophrenia

Serotonin transporter (SLC6A4, 5-HTT)

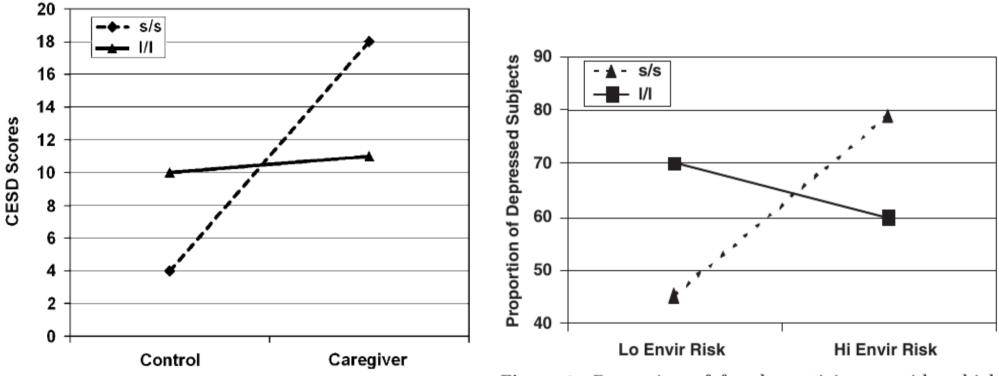

Location: 17q11.2

Major regulatory element in the serotonin transmission and primary target of antidepressant (SSRI) medications

S allele (14 repeats) -> reduced expression level and slower serotonin turnover L allele (16 repeats) -> normal expression level and serotonin turnover

Influence of Life Stress on Depression: Moderation by 5-HTTLPR

"Vulnerability model"



Groups of individuals having different numbers of life events

From: Caspi et al, 2003. Science

Influence of 5-HTTLPR on Depression: Moderation by Environmental Risk

"Plasticity model"

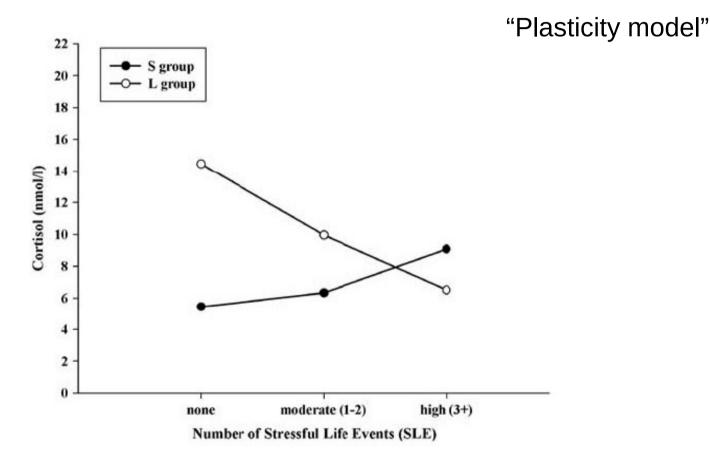


Figure 1 Center for Epidemiological Studies-Depression (CESD) scores for female caregivers and non-caregiver controls by 5-HTTLPR genotype (Brummett *et al.*²⁷).

Figure 2 Proportion of female participants with a high level of depression by environmental risk group and 5-HTTLPR genotype (Eley *et al.*²⁸).

From: Belsky et al., 2009. Vulnerability genes or plasticity genes? *Molecular Psychiatry*

Influence of 5-HTTLPR on Stress-Reactivity: Moderation by Environmental Risk

From: Muller et al, 2011. Interaction of Serotonin Transporter Gene-Linked Polymorphic Region and Stressful Life Events Predicts Cortisol Stress Response. *Neuropsychopharmacology*

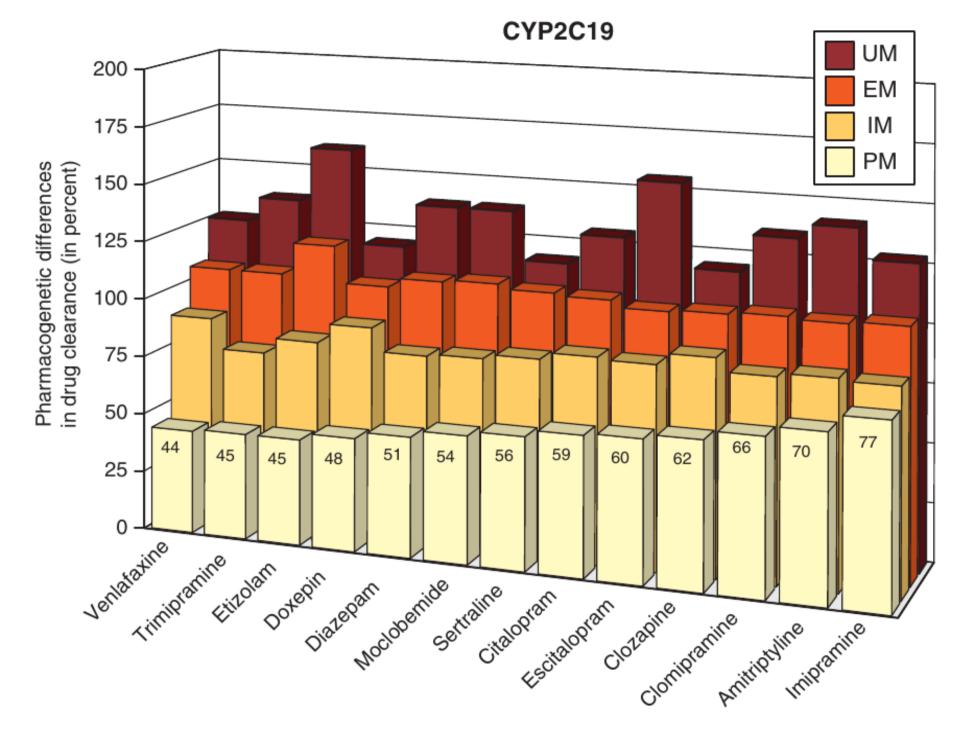
Sounds great, but...

A recent 30-year long cohort study (Fergusson et al, 2012) and meta-analyses (Munafò et al. 2009, Risch et al., 2009) could not replicate the GxE effect of HTTLPR

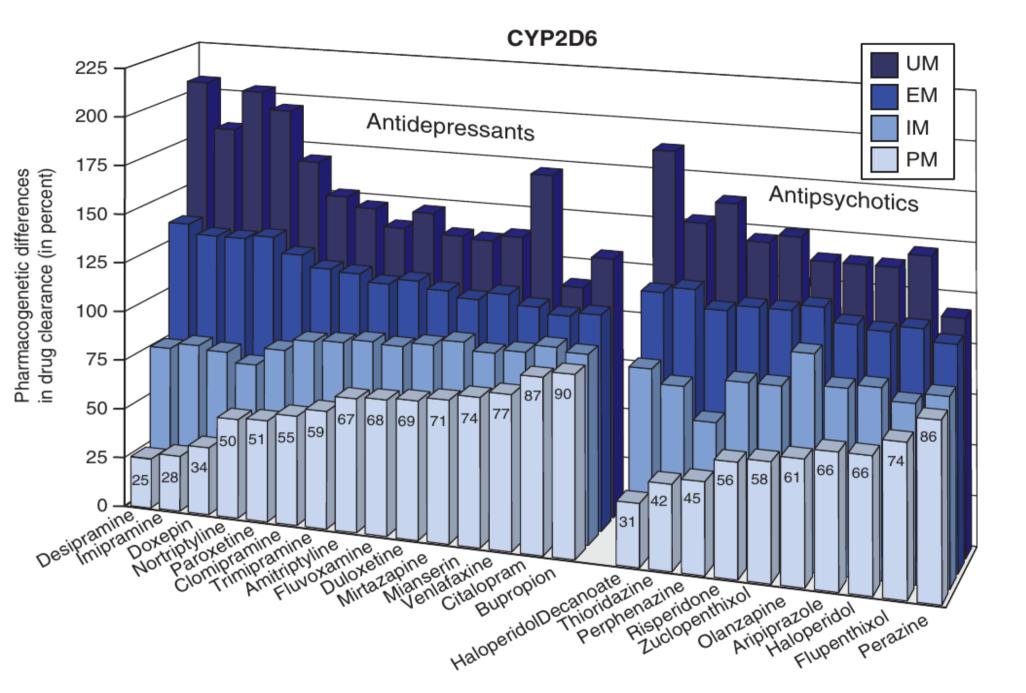
An Interface for GxE: Epigenome

- Epigenome: inherited changes without change in DNA sequence (DNA methylation pattern, histone acethylation or methylation), changes in expression pattern
- Especially prone to early-life stressors (malnutrition, lack of maternal caregiving, maltreatment)
- Tissue-specific patterns
- Changes may be conserved till the 3rd generation (animal models, Crews et al, 2011)

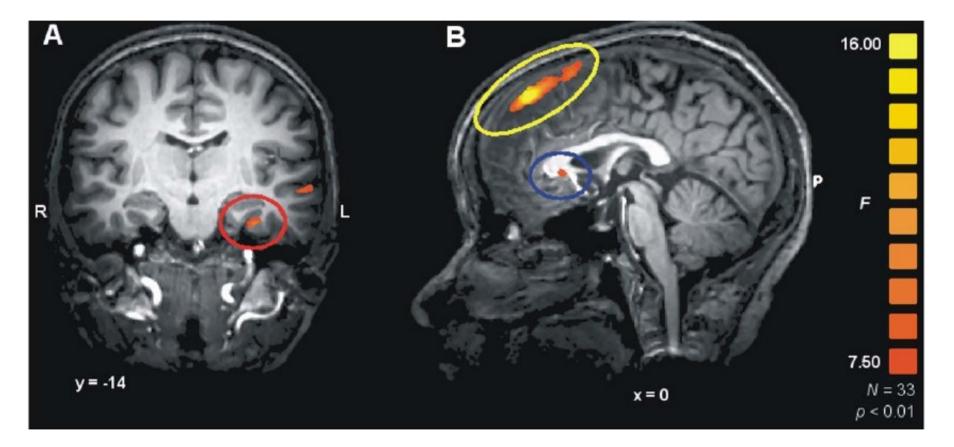
Epigenetic evidence


 BDNF promoter methylation pattern can be associated with MDD (Fuchikami et al, 2011) replication needed

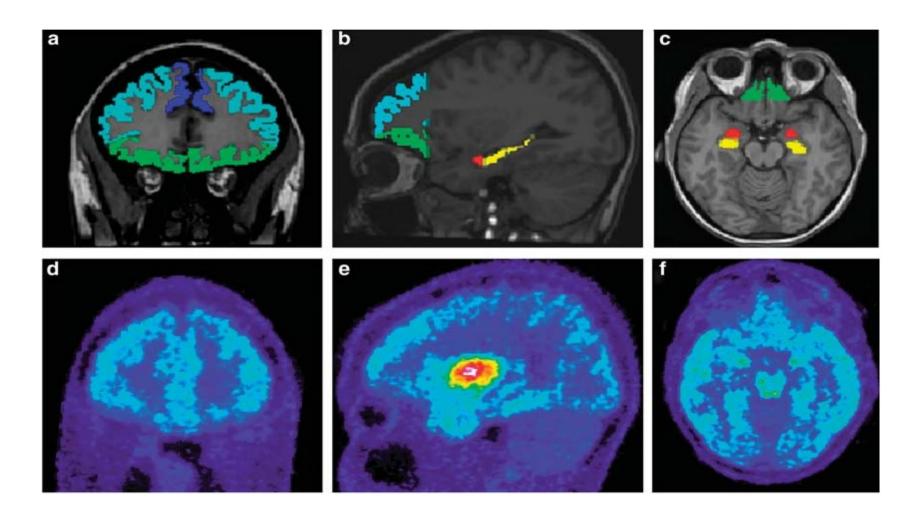
 Regular voluntary exercise caused BDNF demethylation in rat brain (Pinilla-Gomez, 2012)


 Heavy exercise and consequent IL-1ß change better predicted remission than SSRI in nonresponder MDD patients (Rethorst et al, 2012)

GxE and Therapy


- Therapy itself is an environmental factor, introducing epigenetic modifications
- Pharmacogenetic variations are important in predicting treatment response (eg. COMT Val158Met, CYP2D6, CYP3A4, HTR2A polymorphisms on response to clozapin)
- CYP2D6, CYP2C19 poor or ultrarapid metabolizers need personalized dosage of psychotrop meds
- Risk for side effects: DRD2, DRD3, HTR2A,CYP2D6 for tardive dyskinesia, HTR2C for AP induced weight gain, GRIA1 sexual arousal dysfunction in SSRI

From: JC Stingl et al., Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol Psych (2012), 1-15



From: JC Stingl et al., Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol Psych (2012), 1-15 Changes in activity of amygdala, prefrontal cortex and hippocampus in depressed patients after successful psychodynamic psychotherapy

Buchheim et al., 2012

Differences in D2 receptor binding after successful cognitive-behavior therapy in patients with social anxiety

From: Cervenka S. et al, 2012

Take-home messages

- Genetic and environmental factors are both extremely important in the etiology of psychiatric disorders
- <u>Schizophrenia</u>: high heritability, genes related to neuro- and synaptogenesis, ("disorder of connectivity"), demonstrated gene- environment interactions for urban upbringing and cannabis use.
- <u>Major depression</u>: moderate level of heritability, unclear genetic background, possible, but questionable complex GxE interactions between HTTLPR and SLEs and other epigenetic effects
- <u>Bipolar disorder</u>: high heritability, genes of synaptic formations and regulations, shares a large portion of genetic susceptibility with schizophrenia
- Understanding gene-environment interactions and epigenetic effects is very important for the treatment as well

Thank you for your attention!