
# NONSTEROID ANTIINFLAMMATORY ANALGESICS (NSAIDS)

2020



- narcotic
- morphine like
- major

### **ADJUVANTS**

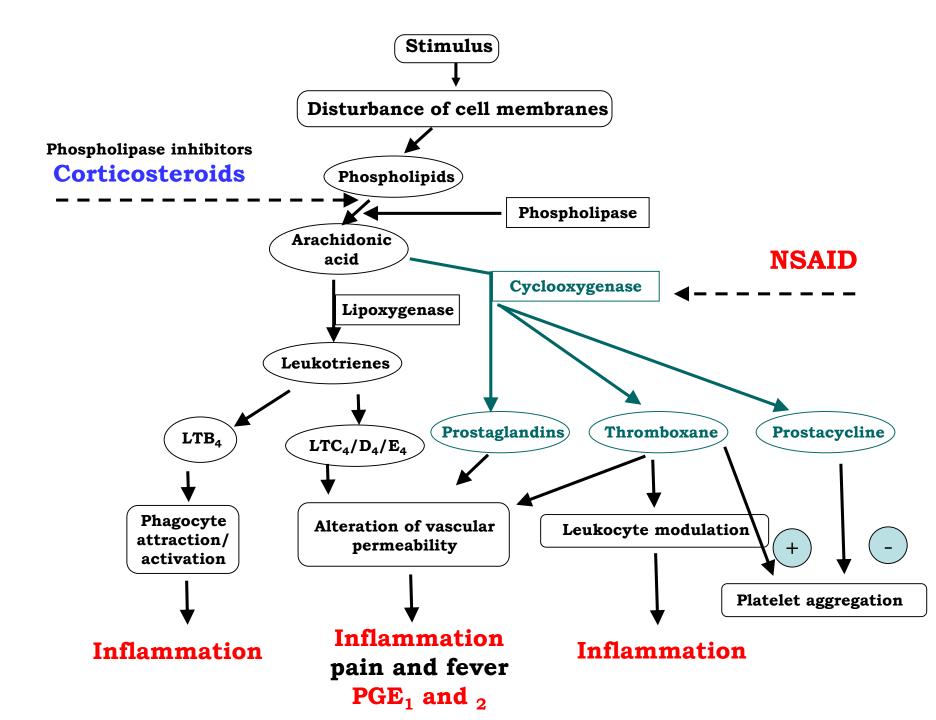

- non-narcotic
- ASA like
- minor

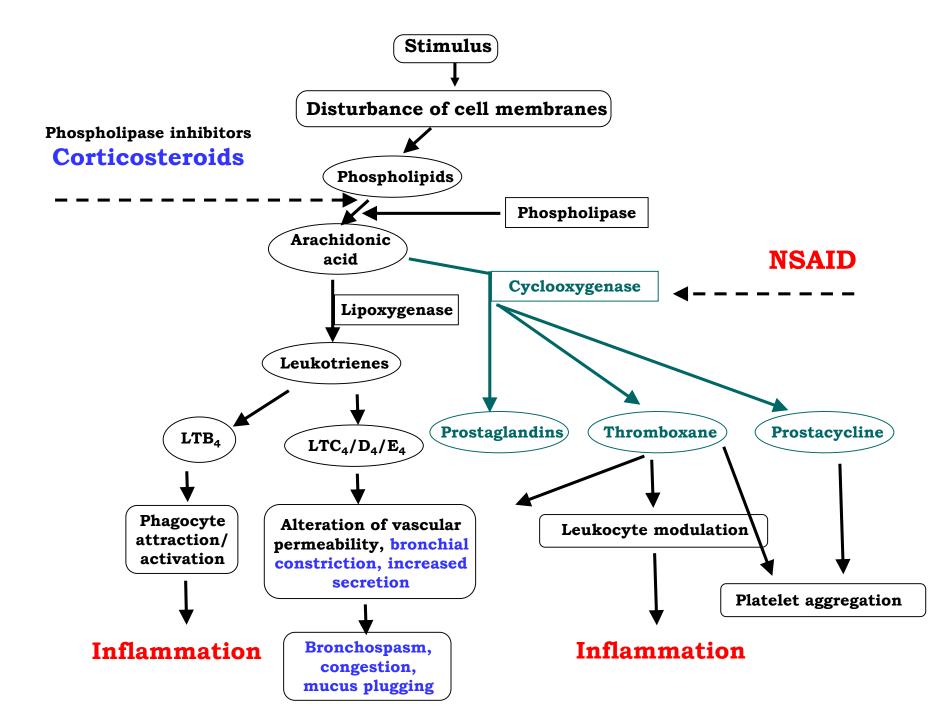
#### •NSAID

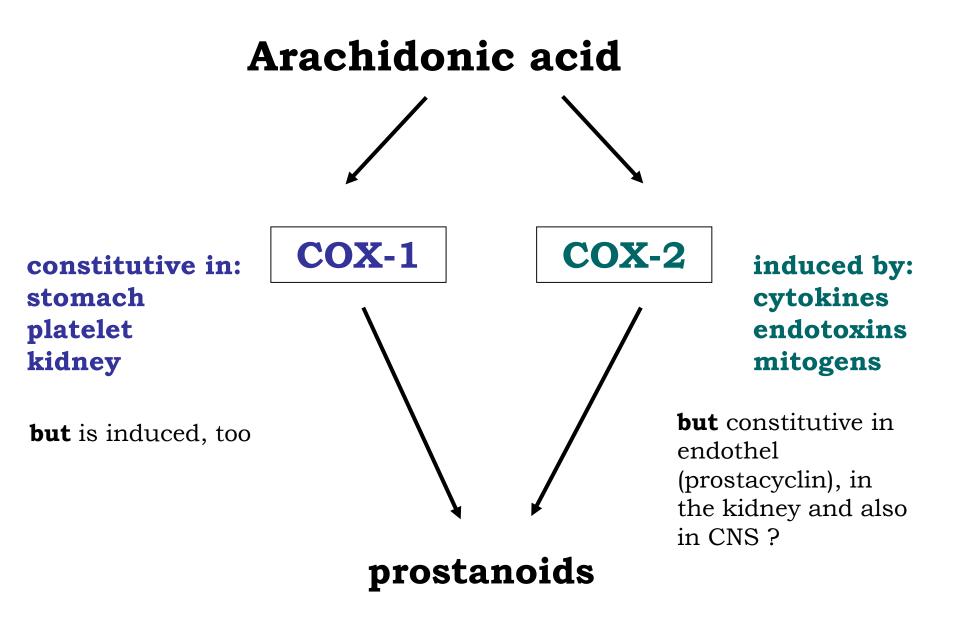
+ antiinflammatory antipyretic actions

# **Therapeutical effects I**

Analgesic – inhibition of the hyperalgesia induced by the PGs (PGE<sub>2</sub> and PGI<sub>2</sub>), reduction of the sensitivity of nociceptors (peripheral effects)



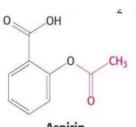


# **Therapeutical effects II**


Analgesic – inhibition of the hyperalgesia induced by the PGs (PGE<sub>2</sub> and PGI<sub>2</sub>), reduction of the sensitivity of nociceptors (peripheral effects)

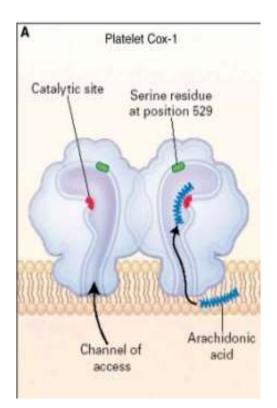
Antiinflammation – inhibition of the vascular effects of PGs (vasodilation, changes in permeability)

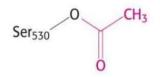
NSAID compounds (in contrast to glucocorticoids) affect mainly the first phase of inflammation

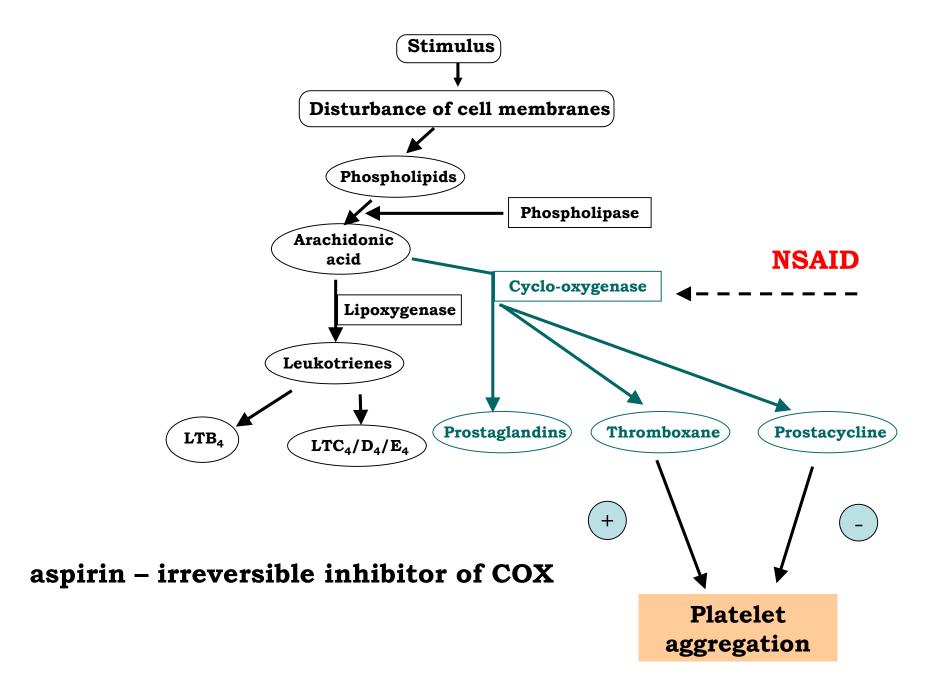








# **Therapeutical effects III**


Antipyretic effect – inhibition of the hypothalamic PGE<sub>2</sub> effect (central)


Inhibition of platelet aggregation – reduction of TXA<sub>2</sub> level (mainly COX-1 controlled effect) ASA is the most potent/most long-lasting



Aspirin (Acetylsalicyclic acid)







# **Other effects**

- $\succ$  Relaxation of the uterus
- > Closure of Ductus Botalli (arteriosus)

# **Adverse effects**

Ulcer (gastric, duodenum) – reduction of the level of defending PGs + local irritation (acidic character, diffusion into the cells of the mucosa, commutation, ionization

Impairment of kidney function, edema – GFR is reduced, during chronic usage the NSAID are accumulating in the kidney

Damage of cartilage – reduce of PGs results in enhanced formation of ROS ?

Allergic reaction – skin symptoms, bronchoconstriction (probably because of enhanced leukotriene synthesis)

Early closure of Ductus Botalli

Decreased contraction of the uterus – slowing-down of delivery, intensified bleeding

# **Pharmacokinetic characteristics**

- > good oral absorption
- > high plasma protein binding
- high hepatic metabolism mainly by glucuronidation
- excretion mainly by kidney, in case of impaired kidney function slow elimination, risk of recyclization
   excretion partly by the bile (e.g. diclofenac, indomethacin)
- > appearance in the synovial fluid (mainly those with short half life)

# CLASSIFICATION OF NSAIDs according to the antiinflammatory effect

#### analgesic and marked anti-inflammatory effect

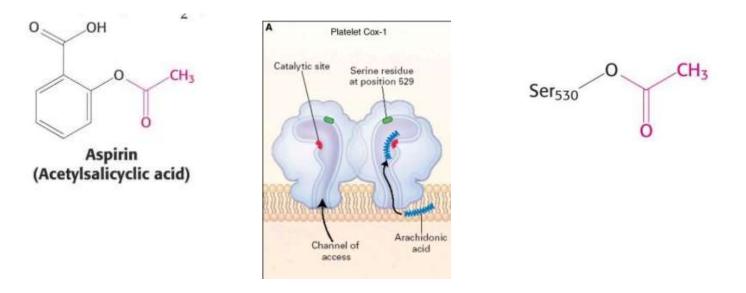
(salicylates, pyrazolones, acetic acid derivatives, oxicams)

**analgesic and mild/moderate anti-inflammatory effect** (propionic acid derivatives, fenamates

**analgesic effect without anti-inflammatory effect** (para-aminophenol derivatives)

# CLASSIFICATION according to COX selectivity

- 1. Relatively selective COX1 inhibitors (e.g. aspirin, indomethacin, naproxen, ketoprofen
- 2. Inhibitors having equal COX1/COX2 affinity (e.g. ibuprofen)
- 3. Inhibitors showing weak selectivity toward COX2 (<5 times difference, e.g. diclofenac, piroxicam)
- 4. Inhibitors showing medium selectivity toward COX2 (5-50 times difference , e.g. meloxicam, celecoxib)
- 5. Inhibitors with high selectivity toward COX2 (>50 times difference , e.g. etoricoxib, valdecoxib)


# CLASSIFICATION according to COX selectivity

1. Short duration of action (less, than 10 hours) **aspirin, indomethacin, diclofenac, ibuprofen** 

 Long duration of action (more, than 10 hors) naproxen, piroxicam, nabumeton, meloxicam SALICYLATES I

## acetyl salicylic acid (aspirin)

# analgesic and strong antiinflammatory irreversible COX inhibitor, COX-1>COX-2



**Special kinetic** - short half live, transformed to salicylic acid by esterase enzymes, which is metabolized in the liver. In case of higher doses zero order kinetic, accumulation, metabolic acidosis

## SALICYLATES I

acetyl salicylic acid (cont.)

## **THERAPEUTIC EFFECTS**

- Inhibition of platelet aggregation (80-300 mg/day) for preventing/treating arterial thrombosis
- Analgesic (500 mg/day)
- Antipyretic (500 mg/day
- Anti-inflammatory (4-5 g/day)

## SALICYLATES I

acetyl salicylic acid (cont.)

#### **SPECIAL ADVERSE EFFECTS I**

- Bleeding !!
- Hepatic effects asymptomatic hepatitis, Reye's syndrome
- Hypersensitive reactions in CNS tinnitus, vertigo, decrease of hearing, hyperventilation
- Hyperglycemia (with large doses)
- Hyperuricemia (contraindicated in gout)

Intoxication - metabolic acidosis, respiratory depression, hyperpyrexia), coma

Therapy NaHCO3 i.v. + symptomatic

# **OTHER SALICYLATES**

#### **Non-acetylated salicylates**

Non acetylated salicylates are weaker, than the acetylated (smaller risk of adverse effect)

For topical application

**salicylic acid** – keratoplastic (2-3%), keratolytic (8-10%) **methyl salicylate** – it induces hyperemia, used for joint/muscle pain

For systemic usage

*diflunisal* - not transformed to salicylic acid  $-t_{1/2}$  8-12 hrs.

5-aminosalicylic acid - IBD

# **ACETIC ACID DERIVATIVES**

#### indomethacin, diclofenac, sulindac, aceclofenac, tolmetin

Short acting, strong antiinflammatory drugs

## **INDOMETHACIN**

COX-1>COX-2 + inhibition of cell-migration and lymphocytes
 proliferation
 antiinflammatory! anti-gout effect!
Special indications - Hodgkin disorder as antipyretic
 management of patent ductus arteriosus
 (second line)

#### Severe adverse effects:

GI irritation, CNS (severe headache, depression, psychosis), hematologic reactions (aplastic anemia, thrombocytopenia, renal side effects

# **ACETIC ACID DERIVATIVES (cont.)**

#### **Diclofenac** (COX-1 >/≈ COX-2)

anti-inflammatory (accumulates in synovial fluid!) analgesic, antipyretic **Side effects** – enhancement of the transaminase level

#### Sulindac

pro-drug, converted in the liver to a sulfide, which is excreted into the bile and then reabsorbed from the intestine. This may help to maintain a constant blood levels with reduced gastrointestinal side effects (?) Long half-life

#### **Bromfenac** - ophthalmic usage after surgery

# **ENOL ACIDS (OXICAMS)**

Long acting  $(t_{1/2} 20-70 \text{ hr})$  antiinflammatory drugs

**Piroxicam,** *Tenoxicam* very long half life (50 hours)!

extensive bound to plasma protein

Lornoxicam – short half life (3-4 hr)

**Meloxicam** - higher affinity towards COX2 half life about 20 hours

# **PROPRIONIC ACID**

Better tolerated than the previous drugs, short duration of action, antiinflammatory (COX-1>COX-2) accumulation in the joints

**Ibuprofen/Dexibuprofen** – used also for management of patent ductus arteriosus (first line drug) COX-1=COX-2

#### Naproxen – long duration of action (t1/2 - 14 h),

**Ketoprofen** (topical)**/Dexketoprofen** (oral) some lipoxygenase inhibition, too;

*Ketorolac tromethamine* (injection, tabl. intraocular wash-out)

*Flurbiprofen* – also NO and TNFa synthesis inhibitor, oral and eye drop

Oxaprozin – half-life 58 hr

# **PYRAZOLONES I**

Strong antiinflammatory action

## Phenylbutazone

antiinflammatory!, analgesic, (antipyretic)

**severe side-effects** - used only in very severe inflammation, max. for 1 week (in Bechterew disease sometimes longer) used also topically !

Sulfinpyrazone uricosuric (presently discontinued)

# **PYRAZOLONES II**

Weak antiinflammatory action

**Methamizole** (aminopyrine, dipyrone) is transformed in the GI by a non-enzymatic way to 4-methylaminophenazon, which is strong **analgesic** and **antipyretic**, but **weak antiinflammatory** + shows some smooth muscle relaxant effect, too

#### No acidic character, no ulcerogenic effect !

**Side-effects** - agranulocytosis! (genetic background ?)

Phenazone eardrop

Aminophenazone analgesic and antipyretic

## **FENAMATES**

#### Mefenamic Acid, Flufenamic Acid, Niflumic Acid

Short duration of action

No advantages over others NSAIDs

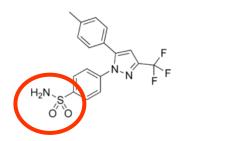
**Adverse effects** - diarrhea, rarely sever skin symptoms (Steven-Johnson syndrome)

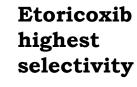
# **OTHER COMPOUNDS**

Nabumetone (Alkanon derivative) – mainly antiinflammatory, less ulcerogenity (non acidic prodrug + higher effect on COX-2)

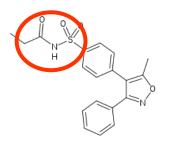
**Nimesulide** (Sulfonanilide) – higher effect on COX-2, hepatotoxicity !!

# **SELECTIVE COX-2 INHIBITORS (coxims)**


Substituted diaryl heterocyclic derivatives


#### Ulcerogenic action is small, cardiovascular risk is high

## **Celecoxib** and **etoricoxib**


used mainly as antiinflammatory drugs, celecoxib -

sulfonamide (allergy !)









## SIDE EFFECTS OF COX-2 INHIBITORS

## Cardiovascular

increased number of cardiovascular

side effects

## > Renal

no significant difference in the renal complication of selective COX-2 and non-selective COX inhibitors

#### risk!!! elderly, impaired renal function

## Stomach

Healing processes are diminished

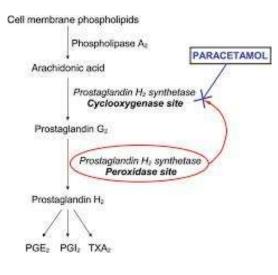
## > Psychiatric

confusion, hallucination, depression

Para-amino-phenol (aniline) derivatives

# THERAPEUTIC EFFECT:analgesic, antipyreticNO ANTIINFLAMMATORY ACTION!

**Short duration** 

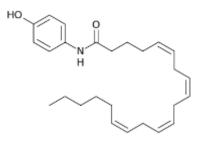

no GI ulceration! hypersensitivity occasionally!

*Phenacetin*: renal tubular necrosis, methemoglobinemia, hemolytic anemia, euphoria only in mixtures

#### Acetaminophen (paracetamol)

#### **Mechanism of action – COX inhibitors but not antiinflammatory?**

- ➢ COX inhibition in the brain (COX-3) ?
- It inhibits the peroxidase activity of COX enzymes, but not the endoperoxide synthase (cyclooxygenase) activity




Peroxidase activity is higher in inflamed cells (and in CNS)

## Acetaminophen

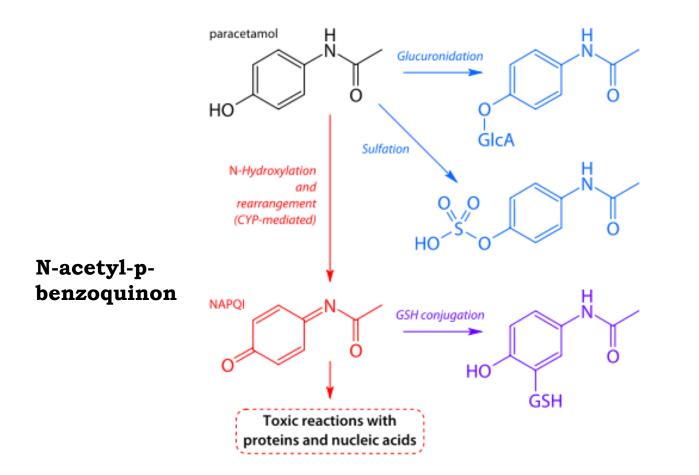
#### **Mechanism of action – COX inhibitors but not antiinflammatory?**

perhaps other effects e.g. decrease of free radicals, inhibition of myeloperoxidase or action via the endogenous cannabinoids



AM404 (N-arachidonoylaminophenol) active metabolit of paracetamol




Anandamide – endogenous cannabinoid

## Acetaminophen

short duration of action in case of not too high doses it is safe can be administered to children/pregnancy

**side-effects:** acute hepatic necrosis (might be fatal) (dose-dependent, 10-15g, in children 6-8 g)

Alcoholics/children are much more sensitive



Therapy of hepatic necrosis : SH compounds N- acetylcysteine