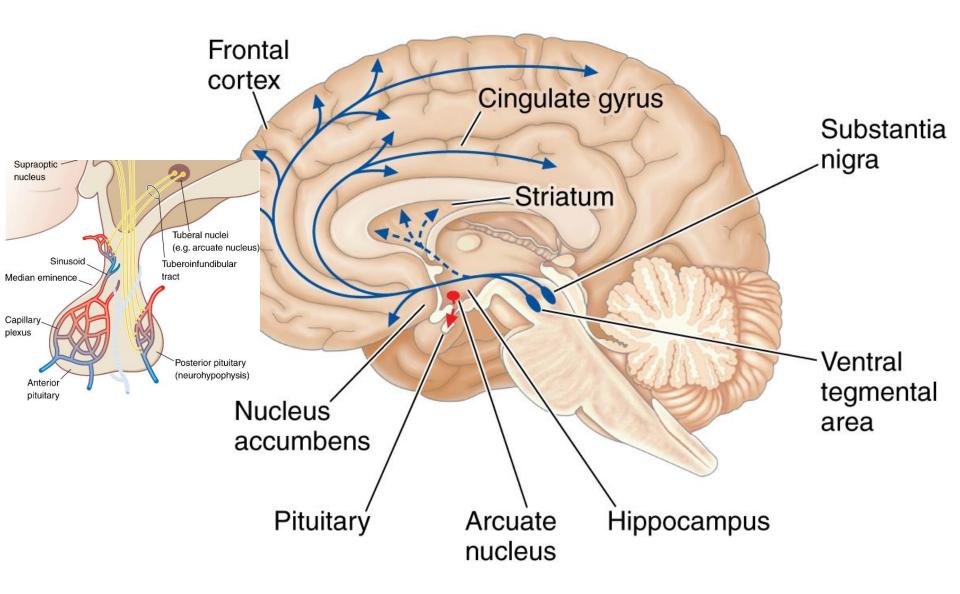
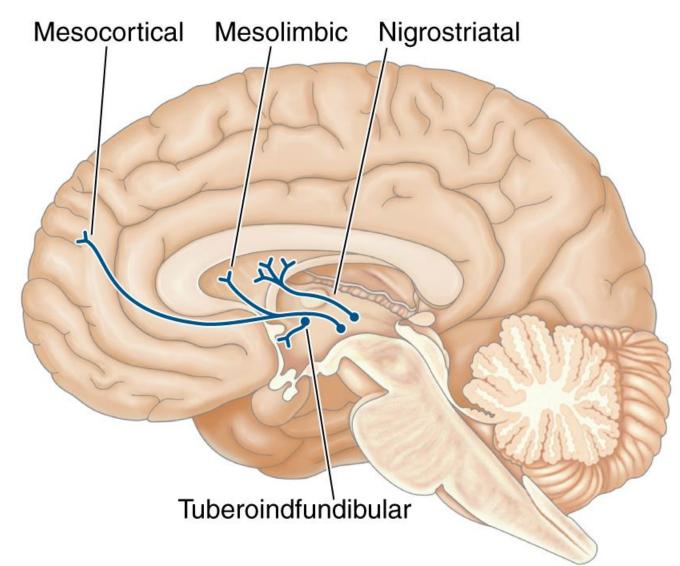
Pharmacology of the central dopaminergic systems

Tibor Zelles


Dept. Pharmacology & Pharmacotherapy Semmelweis University

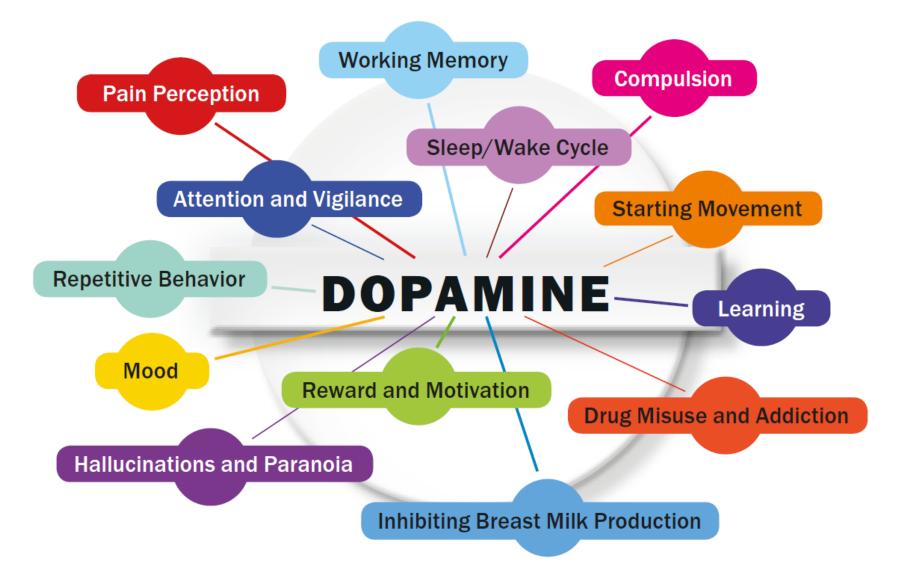
Dopamine (DA)


- 1910 synthesis of DA
- 1930 precursor of NA, A
- beginning of the 1950s DA is a transmitter
- end of 1950s DA in the CNS
- beginning of the 1960s DA level decreases in the CNS in Parkinson's disease

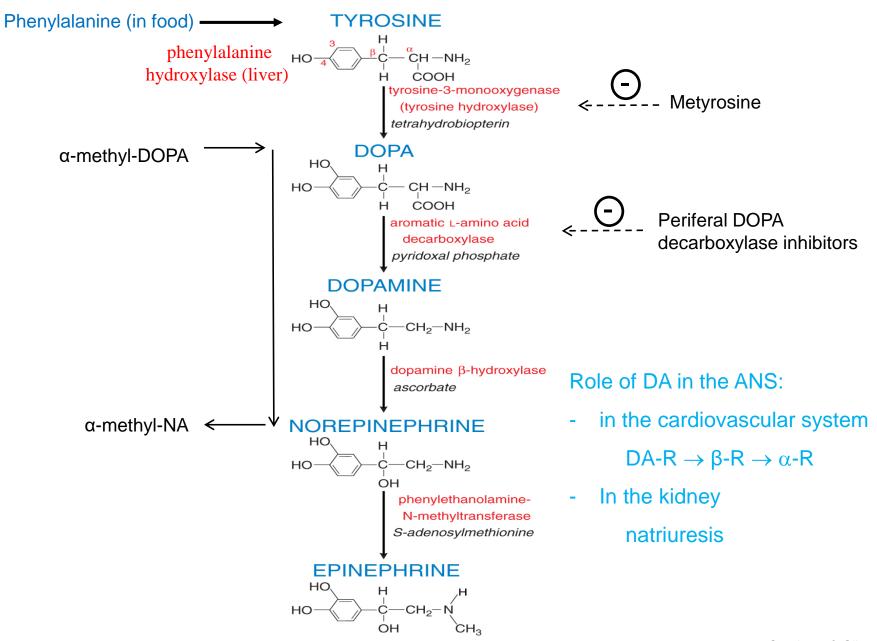
- It is rather a neuromodulator than a classic excitatory or inhibitory neurotransmitter
- DA, Tyr, DOPAC oxidation \rightarrow melanin (dark colour of subst. nigra)
- DA-, DOPA-kinons (oxidated products) bounded to α -synuclein (Lewy bodies)

Major dopaminergic (DAergic) pathways in the brain

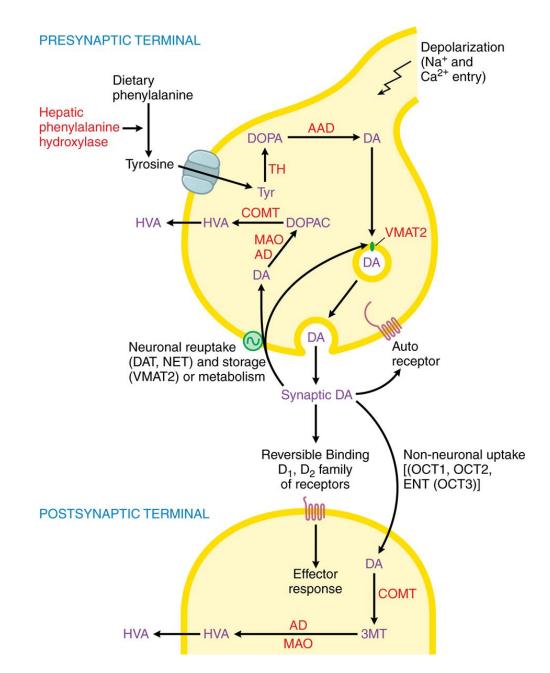
Major DAergic pathways in the brain - simplified



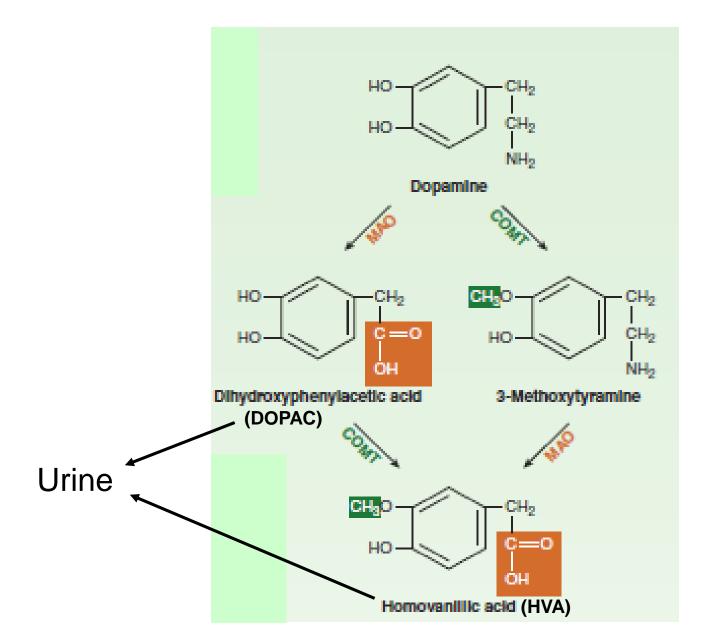
Goodman & Gilman's, 12th Ed.


4 main pathways of DAergic neurons in the CNS

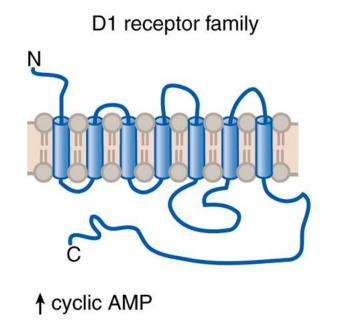
Pathway	Associated w/	Dysfunction
1. Mesolimbic	Reward Learned behaviors	Scizophrenia Psychosis Addiction
2. Mesocortical	Motivation Emotion Impulse control Cognitive functions	Scizophrenia Psychosis ADHD
3. Nigrostriatal	Movement regulation	Parkinson Movement side effects
4. Tuberoinfundibular	Regulation of prolactin secretion	Hyperprolactinemia


DA is linked to many facets of experience

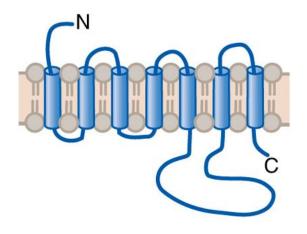
Synthesis of DA, NA and A



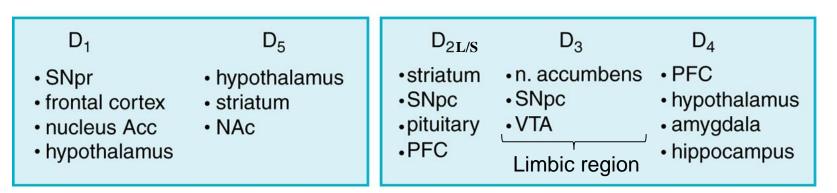
Synthesis and inactivation of dopamine


Goodman & Gilman's, 12th Ed.

Metabolism of DA by catechol-O-methyltraferase (COMT) & monoamine oxidase (MAO)



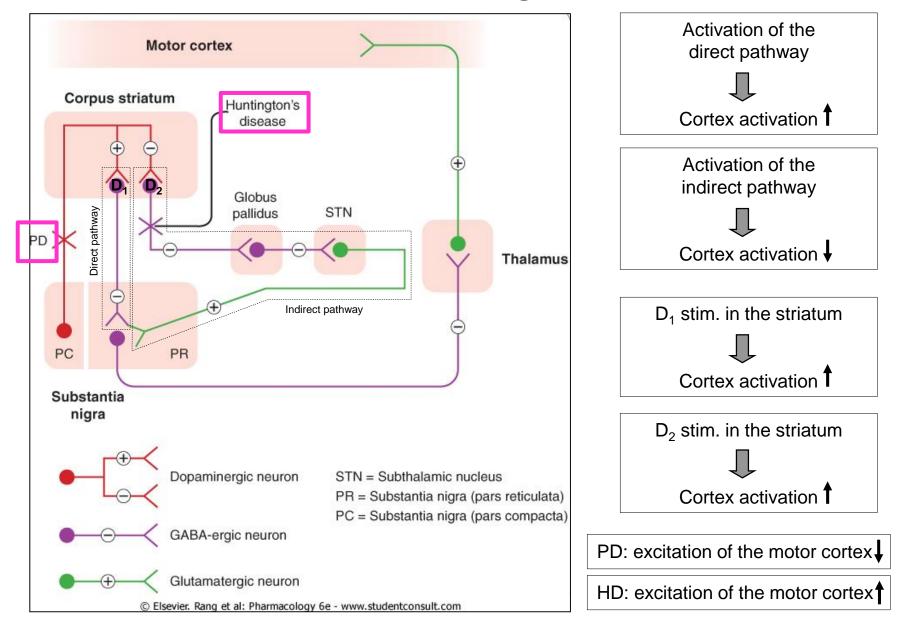
BG Katzung, 12th Ed.


Distribution and characterization of DA receptors in the CNS

D2 receptor family

- ↓ cyclic AMP
- ↑ K⁺ currents
- ↓ voltage-gated Ca²⁺ currents

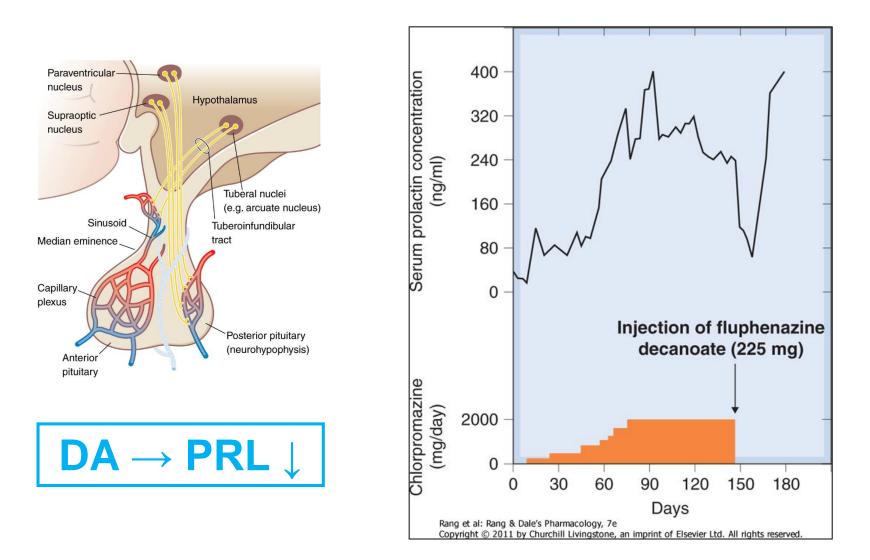
Goodman & Gilman's, 12th Ed.


CNS use of DA receptor agonists

Primary limitations: lack of subtype selectivity

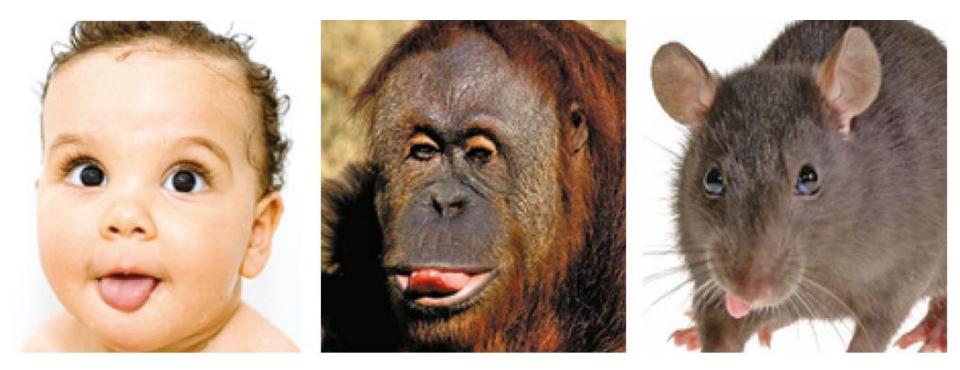

- Parkinson's disease e.g. ropinirole, rotigotine
- Hyperprolaktinemia bromocriptine, cabergoline
- Restless leg syndrome (mild DAergic hypofunction) ropinirole
- ADHD selective D₄ agonist A-412977 (experimental; <u>no abuse potential</u>;

cognitive improvement well below doses of hyperlocomotion)


Simplified diagram of the organisation of the extrapyramidal motor system and the defects that occur in Parkinson's & Huntington's disease

Drugs used to treat Parkinson's disease

Antipsychotics \rightarrow prolactin secretion \uparrow DA-R agonists \rightarrow prolactin secretion \downarrow

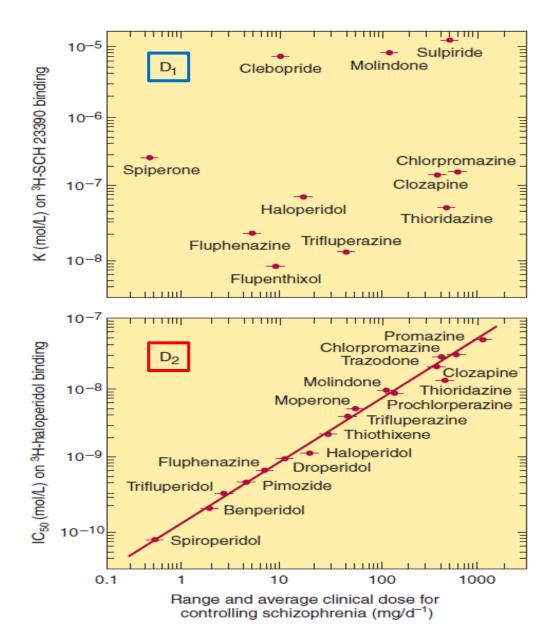


When daily dosage with chlorpromazine was replaced with a depot injection of fluphenazine, the plasma prolactin initally dropped, because of the delay in absorption, and then returned to a high level

DA agonist (drug) \rightarrow addiction (disease), e.g., gambling \rightarrow enhanced appetite

DA – "the pleasure molecule" or rather prediction of delight

Sign of delight – lip licking



CNS use of <u>DA receptor antagonists</u>

Primary limitation: lack of subtype selectivity

- Schizophrenia, psychosis 1st & 2nd gen. antipsychotics (e.g. chlorpromazine & clozapine)
- Vomiting antiemetics (metoclopramide; 1st gen. antipsychotics)
- Huntington disease antipsychotics (severity of choreoathetotic movements \downarrow , but may increase muscle rigidity)
- Tics in Tourette's syndrome risperidone, aripiprazole
- Drug addiction D₃ selective antagonist (experimental)

Therapeutic potency of antipsychotic drugs ~ binding affinity for to D₁ & D₂

 $\begin{array}{l} Chlorpromazine: \ \alpha_{1}=5\text{-}HT_{2A}>D_{2}>D_{1}\\ Haloperidol: \ D_{2}>\alpha_{1}>D_{4}>5\text{-}HT_{2A}>D_{1}>H_{1}\\ Clozapine: \ D_{4}=\alpha_{1}>5\text{-}HT_{2A}>D_{2}=D_{1}\\ Olanzapine: \ 5\text{-}HT_{2A}>H_{1}>D_{4}>D_{2}>\alpha_{1}>D_{1}\\ Aripiprazole: \ D_{2}=5\text{-}HT_{2A}>D_{4}>\alpha_{1}=H_{1}>>D_{1}\\ Quetiapine: \ H_{1}>\alpha_{1}>M_{1,3}>D_{2}>5\text{-}HT_{2A}\\ \end{array}$

Main receptorial affinities of antipsychotics

Table 16-2

Potencies of Antipsychotic Agents at Neurotransmitter Receptors^a

	DOPAMINE SEROTONIN			$5HT_{2A}/D_2$	DOPAMINE		MUSCARINIC	ADRENERGIC		HISTAMINE	
	D ₂	5-HT _{1A}	5-HT _{2A}	5-HT _{2C}	RATIO	D ₁	D_4	M ₁	$\alpha_{_{1A}}$	$\alpha_{_{2A}}$	H ₁
Typical Agents											
Haloperidol	1.2	2100	57	4500	47	120	5.5	>10,000	12	1130	1700
Fluphenazine	0.8	1000	3.2	990	3.9	17	29	1100	6.5	310	14
Thiothixene	0.7	410	50	1360	72	51	410	>10,000	12	80	8
Perphenazine	0.8	420	5.6	130	7.4	37	40	1500	10	810	8.0
Loxapine	11	2550	4.4	13	0.4	54	8.1	120	42	150	4.9
Molindone	20	3800	>5000	10,000	>250	>10,000	>2000	>10,000	2600	1100	2130
Thioridazine	8.0	140	28	53	3.5	94	6.4	13	3.2	130	16
Chlorpromazine	3.6	2120	3.6	16	1	76	12	32	0.3	250	3.1
Atypical Agents											
Asenapine ^b	1.4	2.7	0.1	0.03	0.05	1.4	1.1	>10,000	1.2	1.2	1.0
Ziprasidone	6.8	12	0.6	13	0.1	30	39	>10,000	18	160	63
Sertindole ^b	2.7	280	0.4	0.90	0.2	12	13	>5000	1.8	640	130
Zotepine ^b	8.0	470	2.7	3.2	0.3	71	39	330	6.0	210	3.2
Risperidone	3.2	420	0.2	50	0.05	240	7.3	>10,000	5.0	16	20
Paliperidone	4.2	20	0.7	48	0.2	41	54	>10,000	2.5	4.7	19
Iloperidone	6.3	90	5.6	43	0.9	130	25	4900	0.3	160	12
Aripiprazole	1.6	6.0	8.7	22	5.0	1200	510	6800	26	74	28
Sulpiride ^b	6.4	>10,000	>10,000	>10,000	>1000	>10,000	54	>10,000	>10000	>5000	>10,000
Olanzapine	31	2300	3.7	10	0.1	70	18	2.5	110	310	2.2
Quetiapine	380	390	640	1840	2.0	990	2020	37	22	2900	6.9
Clozapine	160	120	5.4	9.4	0.03	270	24	6.2	1.6	90	1.1

^aData are averaged K, values (nM) from published sources determined by competition with radioligands for binding to the indicated cloned human receptors. Data derived from receptor binding to human or rat brain tissue is used when cloned human receptor data is lacking.

^bNot available in the U.S.

Source: NIMH Psychoactive Drug Screening Program (PDSP) K_i Database: http://pdsp.med.unc.edu/pdsp.php (Accessed June 30, 2009).

A possible subclassification of 2nd generation antipsychotics based on receptor binding

Mixed D₂ / 5-HT_{2A/C} antagonists (inverse agonists), (+ 5-HT_{1A} partial agonists & 5-

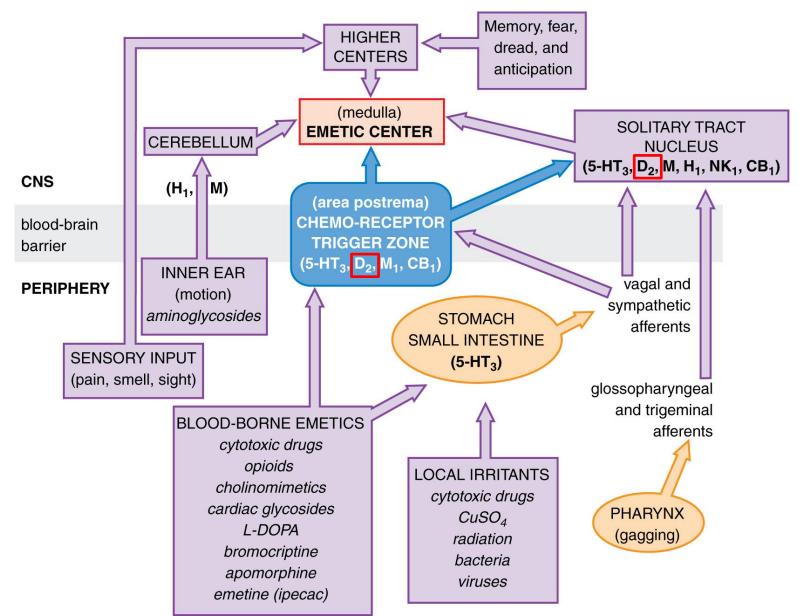
HT_{6/7} antagonists):

- tricyclic ones (dibenzepines) clozapine, olanzapine, quetiapine
- other heterocyclic ones risperidone, paliperidone, ziprasidone, sertindole

• D₂/ D₃ antagonists:

- (sulpiride), amisulpride, tiapride
- D₂ partial agonist / 5-HT₂ antagonist:
 - aripiprazole
- D₃ > D₂ partial agonist:
 - cariprazine

Neurological side effects of antipsychotics

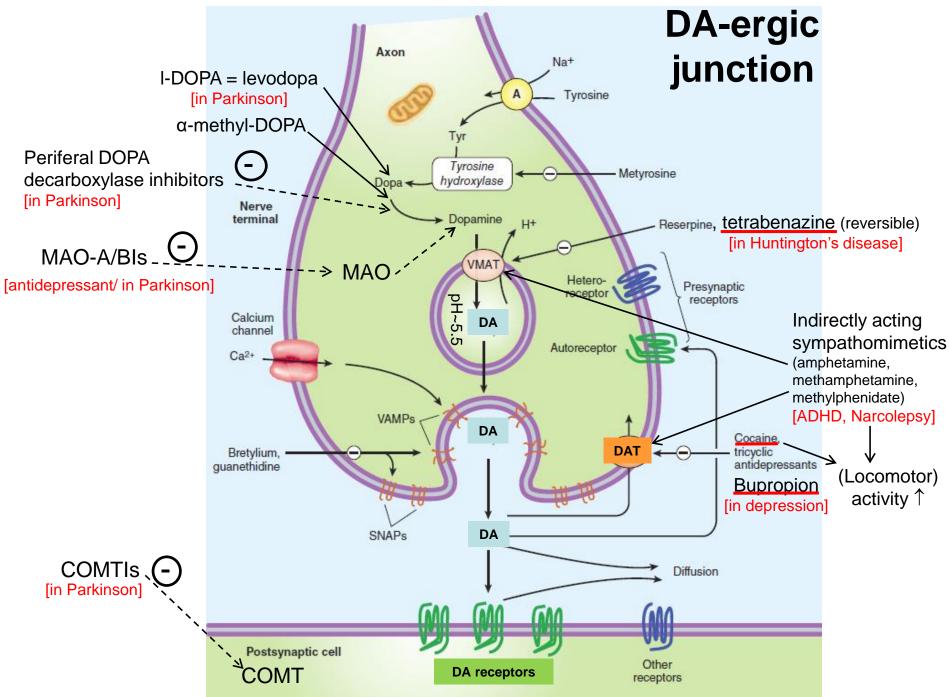

Table 16-4

Neurological Side Effects of Antipsychotic Drugs

neurotogicat Sit	te Effects of Antipsyci	lotic brugs		
REACTION	FEATURES	TIME OF ONSET AND RISK INFO	PROPOSED MECHANISM	TREATMENT
Acute dystonia	Spasm of muscles of tongue, face, neck, back	Time: 1-5 days. Young, antipsy- chotic naïve patients at highest risk	Acute DA antagonism	Anti-parkinsonian agents are diagnostic and curative ^a
Akathisia	Subjective and objective restlessness; <i>not</i> anxiety or "agitation"	Time: 5-60 days	Unknown	Reduce dose or change drug; clonazepam, propranolol more effective than <u>anti-</u> <u>parkinsonian agents^b</u>
Parkinsonism	Bradykinesia, rigidity, variable tremor, mask facies, shuffling gait	Time: 5-30 days. Elderly at greatest risk	DA antagonism	Dose reduction; change medication; <u>anti-</u> <u>parkinsonian agents</u> ^c
Neuroleptic malignant syndrome	Extreme rigidity, fever, unstable BP, myoglobinemia; <u>can be fatal</u>	Time: weeks-months. Can persist for days after stopping antipsychotic	DA antagonism	Stop antipsychotic immediately; supportive care; dantrolene and bromocriptine ^d
Perioral tremor ("rabbit syndrome")	Perioral tremor (may be a late variant of parkinsonism)	Time: months or years of treatment	Unknown	Anti-parkinsonian agents often help ^c
Tardive dyskinesia	Orofacial dyskinesia; rarely widespread choreoathetosis or dystonia	Time: months, years of treatment. Elderly at 5-fold greater risk. Risk ∝ potency of D ₂ blockade	Postsynaptic DA receptor supersensitivity, up-regulation	Prevention crucial; treatment unsatisfactory. May be reversible with early recognition and drug discontinuation

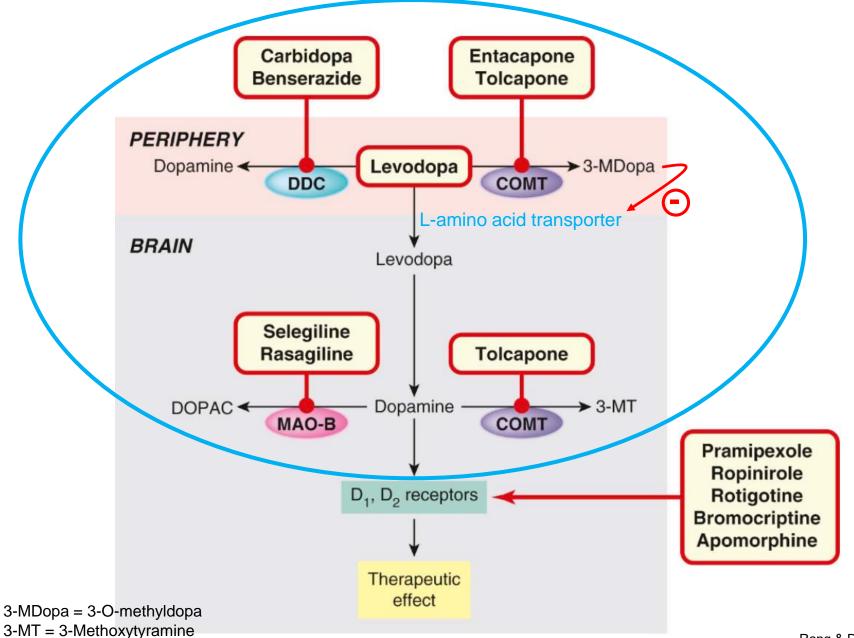
Goodman & Gilman's, 12th Ed.

Mechanism of vomiting & targets of antiemetics



Non-receptorial,

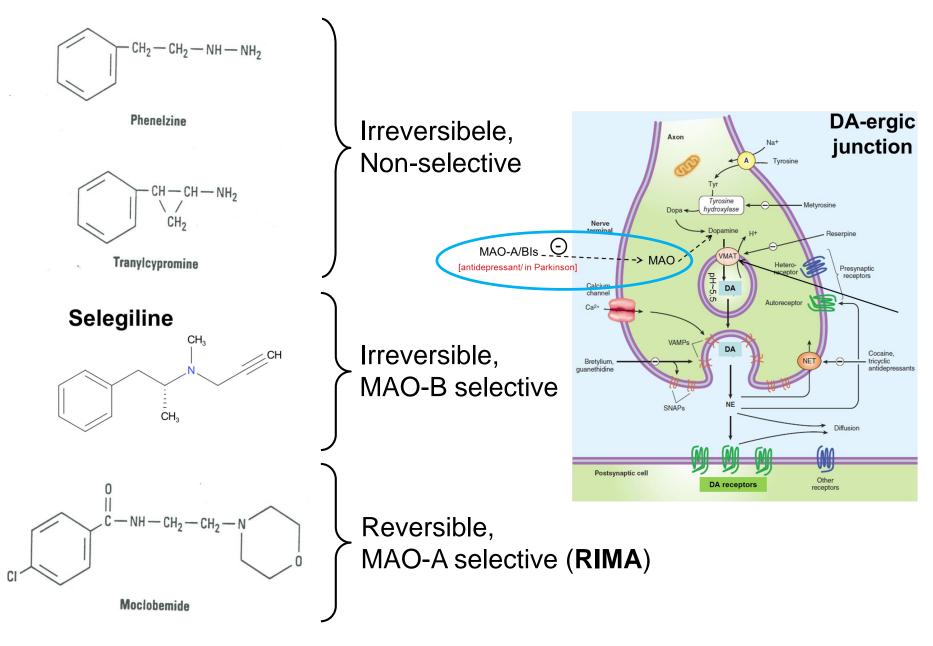
pre- & *postsynaptic* modulation of DAergic neurotransmission


Therapeutic uses: - Parkinson's disease

- Huntington's disease
- ADHD
- Narcolepsy
- Depression

BG Katzung, 12th Ed.

Drugs used to treat Parkinson's disease



Rang & Dale's, 8th Ed.

There are two types of MAO

	Substrate	Inhibitor
MAO-A	5-HT, NA	clorgyline moclobemide (RIMA)
МАО-В	fenilethylamine DA	selegiline
MAO-A / MAO-B	Tiramine DA	iproniazid, phenelzine, isocarboxazid

MAOIs

Thanks for your attention