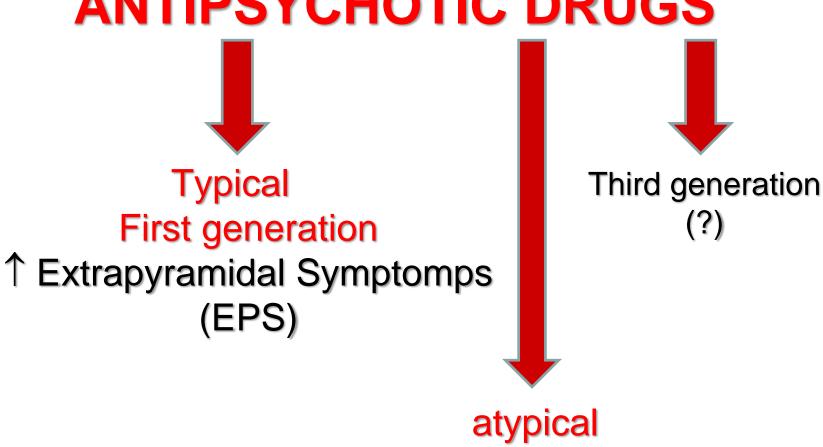
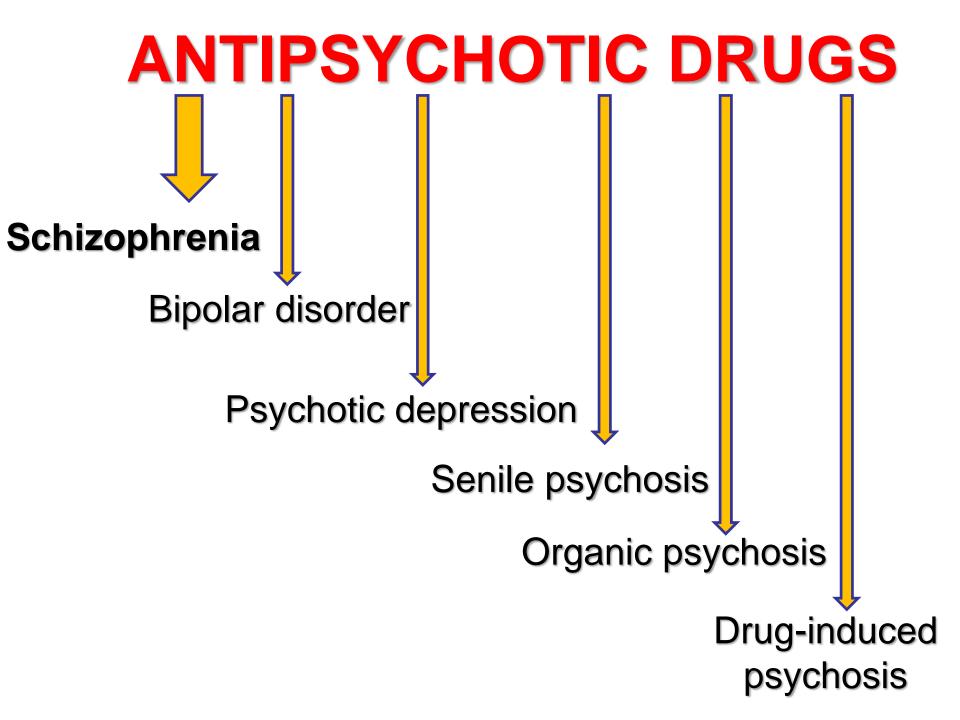
ANTIPSYCHOTIC DRUGS


DR. MAHMOUD AL-KHRASANI

SEMMELWEIS UNIVERSITY
DEPARTMENT OF PHARMACOLOGY AND PHARMACOTHERAPY


2019

Dr. Al-Khrasani Mahmoud al-khrasani.mahmoud@med.semmelweis-univ.hu

ANTIPSYCHOTIC DRUGS

Second generation ↓ EPS

THE SYMPTOMS OF SCHIZOPHRENIA

Positive symptoms:
☐ Hallucinations (vesion, hearing, smelling, taste, touch)
□ Delusion (of reference; of grandeur; of paranoid)
☐ Loss of contact with reality
☐ Reality distortion
☐ Thought disorder (loose associations)
☐ Disorganized thinking
☐ Paranoia – (systematized delusions)
☐ Bizarre behaviour
☐ Verbal, physical aggression

THE SYMPTOMS OF SCHIZOPHRENIA

Negative symptoms:
☐ Bradyphrenia (reduced, poor thinking)
☐ Asociality (antisocial behaviour)
☐ Anhedonia (absence of pleasure)
☐ Alogia (speechlessness, poverty of speech)
☐ Reduced drive and motivation
☐ Carelessness (poor social problem solving)

THE SYMPTOMS OF SCHIZOPHRENIA

Cognitive deficit (disorganizational)
☐ Short-term memory impairment.
☐ Long-term memory impairment.
□ Verbal memory impairment.
☐ Attention impairment.
☐ Reduced ability to abstract.
☐ Reduced vigilance.

Schizophrenia

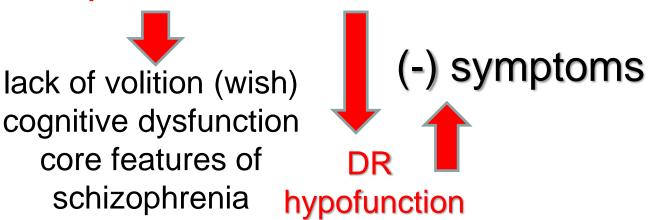
Epidemiology: 1%.

Etiology: unknown, but has multifactorial causes.

Pathophysiology: \uparrow vent. size (3^{rd} and L. ventricles in subtypes of schizophrenics), small \downarrow in brain size, obvious \downarrow in cortical size of the left temporal lobe).

CAUSES OF SCHIZOPHRENIA

1. GENETICS.


The risk 40 %, in case both parents have schizophrenia.

CAUSES OF SCHIZOPHRENIA

2. NEUROCHEMISTRY

- **A- DOPAMINE HYPOTHESIS:** Amphetamine, L-DOPA, Positron emission tomography (PET) support the following:
- 1 in D₂-R densities in the head of the caudate nucleus and ↓ in the prefrontal cortex.
- ↓ in D₁-R densities in the caudate nucleus and the prefrontal cortex.

Mesolimbic (+) symptoms DR hyperactivity

Dopamine Pathways

- Mesolimbic (VTA-limbic system)
 - (+) Symptoms
- Mesocortical (VTA-frontal lobe)
 - (-) Symptoms
- Nigro-Striatal

Coordination of voluntary movement. D₂-blockade results in extrapiramidal symptoms (EPS)

□ Tubero-Infundibular

Prolactin, Thermoregulation

ANTIPSYCHOTICS & DA RECEPTORS

□ D_1 -like family (D_1 , D_5 , G_s -coupled): activation results in ↑ adenylyl cyclase activity, ↑ cAMP.

Note: The potency of antipsychotic drugs is not correlated with their affinity for D₁.

 \square D₂-like family (D₂, D₃ and D₄) G_i-coupled:

stimulation results in ↓ adenylyl cyclase activity,

↓ cAMP.

Note: The affinity for D_2 is correlated with the therapeutical potency of the drugs.

2. NEUROCHEMISTRY

B- SEROTONIN HYPOTHESIS.

LSD and mescaline produce schizophrenia-like symptoms.

$$5-HT_{2A}$$
, $5-HT_{2C}$, $5-HT_{6/7}$ receptors.

5-HT₂ G_q/G₁₁-coupled

5-HT_{2A}: target of LSD

Atypical AP agents are D-R antagonists or partial agonists and have 5- HT₂ -R antagonist action, which reverse the worsening effect induced by 5-HT agonists in schizophrenics.

2. NEUROCHEMISTRY

C- GLUTAMATE HYPOTHESIS

Phencyclidine and dizolcipine (NMDA antagonists) are modeling both the (+) and (-) symptoms of schizophrenia.

These symptoms are effectively blocked by 5-HT₂A and atypical agents than by D₂ antagonists.

 \downarrow D₁ (at the presynaptic site) of prefrontal cortex → \downarrow glutamatergic activity (import. in memory).

GYLCINE TRANSPORTER

ANTIPSYCHOTICS & OTHER RECEPTOR

- α_1 , H_1 , M: responsible for side effects
- effect on other receptors:
- e.g. 5-HT_{2A} and M may \downarrow EPS.

But peripheral unwanted effects 1

ANTIPSYCHOTICS & SCHIZOPHRENIA Terminology

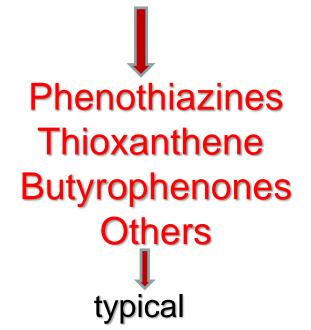
Chlorpromazine 1952

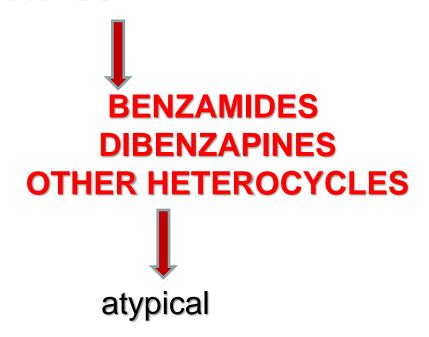
EPS in human catalepsy in animals

Neuroleptics major tranquilizers

Clozapine, 1959 No or fewer EPS in human

RESERPINE


1954 for short time



Less beneficial More side effects (EP)

CLASSIFICATION OF ANTIPSYCHOTICS

- Based on clinical features: (typical and atypical).
- Based on the potency: (high and low / medium clinical efficacy).
- Based on chemical structures:

CLASSIFICATION OF ANTIPSYCHOTICS

Typical

- Phenothiazines

Dimethylamine analogues: Chlorpromazine.

Piperazine analogues: Trifluoroperazine,

Fluphenazine, Perphenazine.

Piperidine analogues: Thioridazine

- Thioxanthenes
- Butyrophenones (phenyl-butyl-piperidines): Haloperidol.
- Diphenyl-butyl-piperidines: Pimozide, Fluspirilene.

	Dimethylamine analogues	Piperazine analogues	
Phenothiazines	- ChlorpromazineWeak potency M, H and α antagonist	- Fluphenazine High efficacy Depot inj. (IM).	
Thioxanthenes	chlorprothixene-(high clinical potency)	 - Flupenthixol Dept inj - Thiothixene: High potency, EPS (medium) - zuclopenthixol 	
High efficacy: Tardive dyskinesia			

High efficacy: Tardive dyskinesia

PHENOTHIAZINES

Dimethylamine-analogues

High affinity for D₁, D₂, D₃, D₄-receptors.

(chlorpromazine, levomepromazine). Week antipsychotic

Chlorpromazin: action-low clinical potency, but have

pronounced sedative and antihistamine effects.

Affinity: 5HT2A= α 1> D2 > D1.

Side Effects: Dry mouth, sedation, EPS (medium)

Neuroleptic malignant syndrome, Orthostatic hypotension

Fotoszenzibilizáció, Mydriasis, [↑]Prolactin.

First-Generation (Typical) Antipsychotics **PHENOTHIAZINES**

Piperidine-analogues: have low efficacy, but strong antichlonergic effects (thioridazine and its active metabolite, mesoridazine, pipothiazine).

Thioridazine Enantiomers Structural: EPS (medium), peripheral atropine-like side effect, cardiotoxicity (↑ QT)

Piperazine-analogues:

(fluphenazine, perfenazine, trifluoperazine).

Fluphenazine: high efficacy agents-(high clinical potency), with less anticholinergic, sedative and, hypotensive effects depot inj. (25mg/ml, IM).

Side effects: EPS, Hypotens, Tardiv dysk.

Prochlorperazine and thiethylperazine: Antiemetics

THIOXANTHENES

High affinity for D₁, D₂, D₃, D₄-receptors like phenothiazine analogues.

Dimethylamine-analogues: chlorprothixene-(high clinical potency)

 $D_1 = D_2$ high, potent agent, high affinity H_1 and M.

Side effects: EPS, Tardive dyskinesia, akathisia

Piperazin-analogues:

Flupenthixol:

Tabl. or Depot inj.(2-3weeks) for patients of poor compliance. Side effects: EPS, atropine like effects, hyperprolactinemia.

Thiothixene: High potency, EPS (medium)

clopenthixol (racemic mixture) and its active ciz isomer zuclopenthixol.

First-Generation (Typical) Antipsychotics

Butyrophenone analogues (phenylbutylpiperidines):

High selectivity for D_2 -R, have week binding to $(D_1, 5\text{-HT}, H_1, \alpha_1 \text{ and M})$ receptors.

Haloperidol: the most widely used typical antipsychotic with EPS with high clinical potency). Acute_ps

Other indications: severe vomiting, hiccup.

Droperidol (has sedative effect). Is used in neuroleptanalgesia.

First-Generation (Typical) Antipsychotics

- Good action on (+) symptoms.
- No effect on (-) symptoms.

SIDE EFFECTS:

- **EPS** (dystonia, akathisia, parkinsonism, tardive dyskinesia)
- Neuroleptic malignant syndrome
- Hyperprolactinaemia
- Others: dry mouth, weight-gain

First-Generation (Typical) Antipsychotics

	taon (Typical) / anape	
Side effects	time	treatment
Dystonia	Hours	anticholinergics
Akathisia	Days	Anticholinergics Benzodiazepines Propranolol
Akinesia	weeks	
Tardive dyskinesia	neuroleptic-induced DR hypersensitivity (?)	Valbenazine VMAT2 inhibitor
Neuroleptic malignant syndrome		stop medication Cooling, BZDs, Bromocriptine Dantrolene

ATYPICAL ANTIPSYCHOTICS (SECOND GENERATION)

- Diminished tendency to cause EPS.
- Have efficacy on (+) and (-) symptoms (?).

clozapine, olanzapine, quetiapine, risperidone, paliperidone, sertindole, ziprasidone, Lurasidone, Cariprazine, asenapine, and aripiprazole

ATYPICAL ANTIPSYCHOTICS

1. MIXED (5-HT/DA) ANTAGONIST EFFECTS.

DA + 5-HT $_{2A/C}$ -(may 5-HT $_{6,7}$) (clozapine, olanzapine, quetiapine, sertindol (cardiotoxic), ziprasidon).

2. SELECTIVE ANTAGONIST EFFECT ON D_2/D_3 -Rs.

No binding to D_1 or other receptors (sulpiride, amisulpiride).

Lower affinity for H_1 -, α_1 ,- and M receptors.

3. PARTIAL AGONISTS

 D_2 and 5-HT_{1A} (aripiprazol).

ATYPICAL ANTIPSYCHOTICS

4. ANTAGONISTS WITH LOWER AFFINITY FOR D₂-R

+ fast dissociation (clozapine, quetiapine).

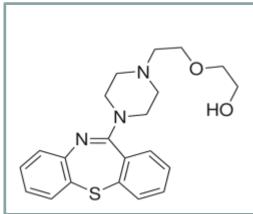
5. PRONOUNCED ACTION ON MESOLIMBIC SYSTEM

olanzapine, quetiapine, sertindol.

Have small EPS and endocrine dysfunctions.

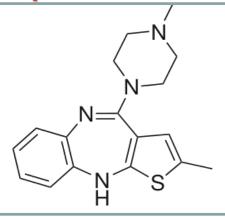
ATYPICAL ANTIPSYCHOTICS Classification based on Chem. str

BENZAMIDES: (sulpiride, amisulpiride).


- amisulpiride differs from the classical and atypical antipsychotics: no affinity for 5HT, α-adrenergic, H₁and cholinergic receptors.

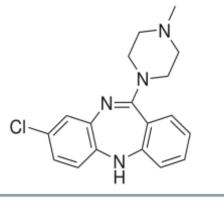
DIBENZAPINES AND OTHER TRICYCLIC DRUGS:

(clozapine, olanzapine, quetiapine).


BENZISOXAZOLE ANALOGS: risperidone

DIBENZEPINES (TRICYCLIC STRUCTURES)

Quetiapine


QT interval
High affinity for D-,
5-HT_{2A}-R
Lower EPS, TD

Olanzapine

High clinical potency

5-HT_{2A} receptors, D₂ and other receptors Fewer EPS

Clozapine

Low D_4 , 5-HT $_2$ Medium clinical potency refractory schizophrenia modest affinity for DRs Has affinity for H1, α , M receptors No EPS

MH: agranulocytosis
Seizures
Hypersalivation (M2?)

Greater weight gain and metabolic problems (unwanted).

All have effect in bipolar disorder

ATYPICAL ANTIPSYCHOTICS

BENZAMIDES

Amisulpride

- High affinity D₂, D₃
- No affinity D_1 -, D_4 -, D_5
- No affinity α , H, M
- No affinity for 5HT

Use: acute and chronic

schizophrenia

Sulpiride

- Inhibits the presynaptic auto-,
- + postsynaptic D₂
- Principle place: mesolimbic
- EPS (treated with antiparkins).
- ↑QT-intervallum

Dihydrocarbostyril

Aripiprazole: high clinical potency,

- high affinity, partial D₂ agonist (low intrinsic activity)
- acts as antagonist in mesolimbic region.

Use: also in bipolar disorder, major depressive disorder

Side effects: weight gain, akathisia, insomnia

Benzothiazole analogues: **Ziprasidone**

Medium clinical potency

antagonist at D_2 , 5-HT_{2A}, and 5-HT_{1D} and agonist at 5-HT_{1A} receptor Side effects: long QT (unwanted), EPS (tremor, dystonia, akathisia),PD ziprasidon and aripiprazol 5-HT_{1A} (anxiolytic effect).

5-HT_{1A} -Rs are somatodendritic autoreceptors that inhibit 5-HT release.

Imidazindole analogues: sertindole

ATYPICAL ANTIPSYCHOTICS

BENZISOXAZOLE ANALOGUES

(risperidone and its metabolite paliperidon)

High affinity D₂, 5-HT₂

High potency

No affinity for M, week affinity α_2 , H₁

Binds to α_1

Use: Acute and chronic schizophrenia

Side effect: EPS (dose-related), hyperprolactinemia, modest

weight gain and metabolic disorders

ATYPICAL ANTIPSYCHOTICS

Lurasidone: novel, D₂, 5-HT₂ and ₇ antagonist

Cariprazine: new Hungarian, schizophrenia, bipolar disorder

Affinity: D3 > D2 (partial agonist) >>>>

5 HT_{2A and C} (inverse agonist); and antagonist (5HT₇),

5HT_{1A} (partial).

Asenapine

Bitopertine and sarcoserine: glycine transporter inhibitor (type I)

ANTIPSYCHOTICS (UNWANTED EFFECTS)

I. RELATED TO DA INHIBITION:

EPS.

Neuroleptic Malignant Syndrome.

Hyperprolactinaemia.

- II. OTHER CENTRAL SIDE EFFECTS: (Sedation, decrease seizure threshold (I.gener. chlorpromazine, Clozapine, olanzapine, sulpiride, amisulpride, ziprasidone), confusion, weight gain (Clozapine, olanzapine, zotepine > risperidone=quetiapine > amisulpride, aripiprazole, lurasidone, asenapine and ziprasidone), other hypothalamicpituitary effects.
- III. CARDIOVASCULAR SIDE EFFECTS: Orthostatic hypotension, QT prolongation (e.g. ziprasidone).
- IV. OTHERS: blood disorders, agranulocytosis (clozapine), jaundice, ↑ serum levels of enzymes, photosensitivity, rash, retinopathy, cataract.

Extrapyramidal Symptoms (EPS)

- Dystonias (acute)
- Parkinsonism
- Akathisia
- □ Neuroleptic Malignat Syndrome (NMS)
 - Muscle rigidity, fever, sweating, delirium
- □ Tardive Dyskinesia (TD), Late developing
 - fly catching, lip smacking
 - HM: DA receptor supersensitivity

Atypical antipsychotics

↑ risk of metabolic changes (diabetes, lipid profile): Clozapine, olanzapine

Weight gain: clozapine ≥ olanzapine > risperidone ≥ quetiapine

EPS: clozapine no; then resperidone > olanzapine ≥ ziprasidone≥ aripiprazole ≥ quetiapine

↑ Prolactine secretion: resperidone, Paliperidone olanzapine small others no

↑QT interval: Ziprasidone > quetiapine ≥ risperidone > olanzapine ≥ Clozapine

Sedation: Clozapine > olanzapine ≥ quetiapine

Atypical antipsychotics

For bipolar depression:

quetiapine, olanzapine, lurasidone (+ fluoxetine)

Unipolar depression (adjunktive treatment):

aripiprazole, quetiapine, olanzapine.

For agitation + bipolar depression + schizophrenia:

Ziprasidone, aripeprazol (haloperidol but ↑ EPS).