

Inflammation I. István Kenessey, MD, PhD Semmelweis University Department of Pathology, Forensic and Insurrance Medicine

The Definition of Inflammation

The body's complex response against a harmful stimuli to eliminate inducing agent, and remove damaged cells and tissues.

Categorization by time

- Acute (~1 week) exsudation
- Subacut
- Chronic

connective tissue

Exogenous causes of inflammation

Mechanic

trauma, surgery, foreign body

Physical

burn, freezing, radiation

Chemical

acids, alkalis, other

Biological

bacteria, viruses, fungi, worms, protozoa, insects, exogenous toxins, allergens

Endogenous causes of inflammation

- Activation of proteases / lack of inhibitors pancreatitis, DIC, ARDS
- Disorders of blood supply ischaemia, infarction
- Immunological processes
 autoimmune reactions, immunecomplexes
- Accumulation of endogenous materials kidney stone, bile stone, uraemia

The signs of acute inflammation

- Rubor (redness)
- Calor (heat)
- Dolor (pain)
- Tumor (swelling)
- Functio laesa (loss of function)

Celsus (~B.C. 25 – A.D. 50)

Galenus (A.D. 129 – A.D. 216)

The phases of acute inflammation

Reparation

Vascular phase

Source: Robbins Basic Pathology

Exsudate vs. transudate

- Both are liquid accumulation (edema) in the interstitial (extravascular) space
- **Transudate**: low protein content cause: increased hydrostatic pressure (passive hyperaemia)
- Exsudate: protein rich

cause: inflammation (active hyperaemia + increased permeability)

Arteriole Venule

Rivalta test: Denaturation due to acetic acid

Vascular phase – increased permeability

- Contraction of endothelial cells (histamine, bradykinin, TNF, IL-1)
- Alteration of cell adhesion structures
- Direct endothelial damage
- Leukocyte-dependent endothelial damage
- Increased transcytosis (vesicular transport)
- Leaking from the new vessels

Cellular phase – Migration of leukocytes

- Margination (due to hemodynamics)
- Rolling (selectins)
- Docking (adhesion molecules integrins)
- Migration (PECAM-1 CD31)
- Chemotaxis-directed (bacterial proteins, cytokines, complement, arachidonic acid lipoxygenase metabolites)

Cellular phase – Activation of leukocytes

- Phagocytosis
- Lysosomal digestion (degradation)
- Synthesis and release of mediators (degranulation)

The inflammatory cells

Neutrophils

Monocytes

White Blood Cells Heroes in Our Immune System

rsscience.com

T cells

B cells

Eosinophils

Polymorphonuclear cells (granulocytes)

Basophils

40-70% of all leukocytes "Innate" immune system Chemotexis-directed Phagocytosis Lysosomal free agents Degranulation

Eosinophils

Allergic reactions

- Anaphylaxia
- Asthma
- Atopic dermatitis

Anti-parasite response

Lymphocytes

T cells

Specific immune response Cellular and humoral immunity

Monocyte - macrophage

Nomenclature

- "-itis" ending
- E.g.
- Colon colitis
- Trachea tracheitis
- Pancreas pancreatitis
- Hepar hepatitis

BUT EXCEPTIONS!

- Pneumonia
- Oophoritis
- Typhlitis
- Colpitis
- etc..

Types of acute inflammation – categorization by exsudate

- Serous inflammatio serosa
- Fibrinous inflammatio fibrinosa
- Purulent (pustulous) inflammatio purulenta
- Hemorrhagic– inflammatio haemorrhagica
- Gangrenous inflammatio gangraenosa

seu ichorosa

Serous inflammation

- The most simple types
- Relatively low amount of protein
- Dilute, watery, liquid

Examples:

- Burn / frost injury
- Viral infections (e.g. common cold, HSV)
- Allergy

Serous inflammation of the skin

Fibrinous inflammation

- Due to the increased permeability of the vessels fibrinogen is also transferred
- Macroscopically greyish membrane
- Microscopically eosinophil fibrin mesh

Examples:

- Inflammation of serous membranes
- Pseudomembranosous colitis
- Diphteria

Fibrinous pericarditis

Pseudomembranosus colitis

Purulent (suppurative) inflammation

- Pus: <u>neutrophil</u> granulocytes + dead tissue
- Pyogenic bacteria (e.g. Staphilococcus)
- Yellowish, concentrated liquid

Special forms:

- Abscess
- Phlegmon
- Pustule
- Folliculitis
- Furuncle
- Carbuncle

- Empyema
- Pyometra
- Pyonephros
- Pyoarthros
- Pyocephalus
- stb...

Bacterial pneumonia I.

Bacterial pneumonia II.

Acute appendicitis I.

Acute appendicitis II.

Acute appendicitis III.

Purulent meningititis

Pyelonephritis apostematosa

Brain abscess

Hemorrhagic inflammation

- Damage of the small vessel's wall (toxin)
- Macroscopically massive blleding
- Microscopically erithrocytes

Example:

- Bacterial: pestis, anthrax
- Viral: smallpox, influenza
- Hemorrhagic pancreatitis

Hemorrhagic inflammation in lung

Source: Tauenberger et al.

Gangrenous inflammation

- The body is unable for effective defense
- Cause might be general weakness
- Atherosclerosis, diabetes mellitus

Examples:

- Diabetic feet
- Gangraenous appendicitis
- Noma

Formái:

- Dry gangrene (gangraena sicca)
- Wet gangrene (gangraena humida)
- Gas gangrene (gangraena emphysematosa)

Diabetic feet

Gangrenous appendicitis

Sepsis

Bacteremia + systemic reaction

- High amount of pathogens in the blood flow
- Cytokine response (TNF, IL-12, IL-1)
- Fever
- Higher level of acute phase protein in the blood (CRP, procalcitonin)
- Leukocytosis
- Septic shock

<u>Clinical diagnosis</u>: inflammatory focus + systemic signs

Subacute inflammation

- Transition between acute and chronic
- Weeks, 1-2 months
- Decreased exsudate
- Decreased edema
- Mixed cellular infiltration: eosinophil, lymphocyte
- Reparation processes

Regeneration, wound healing

Replacement of damaged tissue

- by identical cells
- by connective tissue (fibrosis, scars)

Proliferatory capacity:

- Constantly dividing tissues (bone marrow, epidermis, mucosa)
- Stable tissues

(connective tissue, endothel, smooth muscle, liver, kidney, pancreas)

Permanent tissues

(neural tissue, heart muscle)

Steps of regeneration

Starts within 24 hours

- Angiogenesis

 (from existing vessels, and inducing bone marrow stem cells)
- Fibroblastic migration and proliferation
- ECM deposition scar formation growth factors
- Maturation and remodeling of connective tissue (synthesis – degradation)

Stages of Wound Healing

Source: Wasatch Photonics

Primary wound healing

- Clear, non-infected surgical incision
- Minimal amount of scar tissue
- 0-24: fibrinous secretion + neutrophils
- Days: granulation tissue: collagen + vessels + macrophages
- Weeks: epithelial proliferation and scar

Secondary wound healing

- Extensive tissue damaged, irregular or infected wound margins
- Fibrinous secretion
- More expansive inflammatory reaction
- Larger amount of granulation tissue
- Scar tissue + contraction

Primary Intention healing

Secondary Intention healing

Thank you for your attention

ARARSERS.

......