Extracellular matrix Repair, regeneration Wound healing

Attila Zalatnai

EXTRACELLULAR MATRIX

Complex macromolecules underlying the epithelial cells and filling the intercellular space

> collagens basement membranes elastic fibers fibronectin proteoglycans

- provide physical support where tissue strength is neeeded
- products of fibroblasts
- cannot be streched

COLLAGEN FAMILY (I – X)

Type I Type II Type IV Type VI bone matrix cartilage matrix basement membrane most interstitial tissues

COLLAGEN BIOSYNTHESIS

Hydroxylation requires vitamin C!

DEGRADATION OF THE COLLAGENS

Specific collagenases (MMPs – matrix metalloproteses) Source: fibroblasts, macrophages, neutrophils, endothel cells...

BASEMENT MEMBRANES

Separate cells and stroma All epithelial cells have them (except: liver!) Collagen IV + laminin PAS-positive staining reaction In kidneys: primary filters

FUNCTIONS OF THE BASEMENT MEMBRANES

- physical support
- sites for cell attachment
- in some organs: flltering function

ELASTIC FIBERS

Provide the elasticity of the tissues and organs

FIBRONECTIN

- found in plasma and in the tissues
- multifunctional binding site for various cell components
- first primitive matrix deposited in the stroma

PROTEOGLYCANS

CELL TYPES ACCORDING TO THEIR REGENERATIVE CAPACITY

Labile cells:

divide continuously stem cells (germinal layer, crypt cells,

hemopoietic stem cells)

Stable cells:

capable of dividing after proper stimuli (cell loss)

liver, tubules of the kidney

Result: regeneration

Permanent cells:

unable of dividing

neurons, cardiac and striated muscle, lens

Result: repair

WOUND HEALING

STEP 1 (hemostatic stage):

filling the gap with blood fibrinogen → fibrin plasma fibronectin deposition (crosslinking)

early stabilization

of the edges

WOUND HEALING

Step 2 (inflammatory stage):

Migration of cellular elements
Formation of granulation tissue
numerous newly formed capillary buds
PMNs (later on: histiocytes)
Progressive maturation of the

granulation tissue

MATURATION OF THE GRANULATION TISSUE

WOUND HEALING

Step 3 (proliferative stage):

synthesis of the extracellular matrix

Step 4 (stabilization):

collagen deposition scar formation hyalinization

4-6 weeks

PRINCIPAL FORMS OF THE WOUND HEALING

Healing by primary intention

sterile (surgical) wounds closely apposed edges minimal tissue loss

fine, delicate scar

Healing by secondary intention

infected wounds great distance between the edges

irregular, deforming scar

IMPAIRED OR DELAYED WOUND HEALING

SYSTEMIC CAUSES

- diabetes mellitus
- hypoproteinemia
- vitamin C deficiency
- malignant tumors
- glycocorticosteroids

LOCAL CAUSES

- mechanical stress (streching)
- inadequate blood supply
- superinfection
- foreign materials

Predispose to wound dehiscence!

ABNORMAL SCAR FORMATION

KELOID

Rough, hypertrophic scar Especially black people

Stone formation

Stone (calculus): hard concretion of mineral salts in lumina lined by mucosa

Gallbladder: cholelithiasis Common bile duct: choledocholithiasis Kidney: urolithiasis / nephrolithiasis Salivary duct: sialolithiasis Pancreas: pancreaticolithiasis

Causes: precipitation of minerals that are otherwise in solution

FORMS OF THE BILIARY STONES

- Pure stones
 - (cholesterol, bilirubin)
- Mixed stones
- Combined stones

BECIMEN 81-1.CA-44 4 DATE11/38/8

ETIOPATHOGENETIC FACTORS OF THE CHOLESTEROL STONES

MICELLA FORMATION

Cholesterol is kept in solution by means of bile acid salts and phospholipids

Bile stone formation:

Cholesterol concentration ↑ Bile acid salts concentration ↓

water molecules

Chole - et choledocholithiasis

Urolithiasis (nephrolithiasis)

- Oversaturation
- Outflow block
- pH shift
- bacterial infection

2.

3.

oxalate stone (frequent in strict vegetarians)

urate stone (gout)

hematuria

radiating pain

hydronephrosis

bacterial infection (pyelonephritis)

struvit (staghorn) stone (infection)

