

Inflammation I.

Balázs Csernus

Facts about inflammation

- High Inflammation Is Tied To Depression
- Inflammation is linked to cardiovascular disease
- Chronic Inflammation increase risk of Alzheimer's
- Chronic Inflammation Is Linked To Cancer
- Exercise Can Reduce Inflammation
- Dark Chocolate reduces inflammation

Definition

- complex protective response to injury
- caused by various endo- and exogenous stimuli
- injurious agents are destroyed, diluted or walled-off
- inflammation is not a disease
- inflammation ≠ infection
- can be potentially harmful (allergies, autoimmunity)

Causes of inflammation

• Exogenous causes:

- Physical agents
 - Mechanic agents: fractures, foreign objects, lacerations
 - Thermal agents: burns, freezing
- Chemical agents: toxic gases, acids, bases
- Biological agents: bacteria, viruses, parasites

• Endogenous causes:

- Circulation disorders: thrombosis, infarction, hemorrhage
- Enzymes activation e.g. acute pancreatitis
- Metabolic products deposals uric acid, urea

Types of immune response

- Innate (inherited)
 - Fast, uniform response to infection
 - generically coded (same reactions in the population)
 - recogizes conserved antigens: PAMP (LPS, CpG DNA), DAMP
 - linked to Toll-like receptors
 - no memory
 - activates adaptive immunity
 - components: granulocytes, macrophages, complement system

<u>Adaptive</u>

- slow response, but highly specific
- has memory, can be taught
- not inheritable different in the members of a population
- may cause harm: allergies, autoimmunity, tissue rejection
- components: lymphocytes, plasma cells, antibodies

Classification

(several points of view)

- according to duration
 - acute chronic (+ subacute, hyperacute)
- according to histological features
 - non-specific (not possible to trace etiology) vast majority
 - specific / granulomatous (e.g. TBC)

according to causative agent

- non-infectious (sterile) chemical substances, congelation, radiation - inflammation has a reparative character
- infectious (caused by living organisms)
 - bacterial, viral, fungal, parasitic, ect.
- according to exent
 - local
 - systemic

Terminology

- Greek root + -itis
- gastritis
- enteritis
- carditis
- nephritis
- stomatitis

BUT

- pneumonia
- glossitis, not linguitis
- cheilitis, not labiitis

Acute inflammation

- Rapid onset (seconds, minutes)
- Short duration (max. a few days)
- **Exsudation** of fluids and plasma proteins
- Characteristic cells: neutrophil granulocytes (PMN cells)
- Orchestered by chemical mediators

Cardinal signs of acute inflammation (CELSUS)

"rubor et tumor cum calore et dolore"

(redness and swelling with heat and pain)

- --Cornelius Celsus in De Medicina, 1st century A.D.
- later "functio laesa" (disturbance of function) was added by Virchow

Components of acute inflammatory reaction

vascular reactions

- cellular reactions: migration and activation of leukocytes
- systemic reactions (chemical mediators)

1. Vascular reactions

<u>Goal:</u> deliver inflammatory cells to the site of injury

- ▶ 1. Vasodilation (active hyperaemia) arterioles dilate \rightarrow capillaries open
 - increased blood flow and increased hydrostatic pressure

2. Increased vascular permeability

- Plasma proteins escape \rightarrow increased osmotic pressure in the interstitium
- early phase histamin, bradykinin (postcapillary venules)
 - late phase TNF α , INF γ , IL-1 (capillary vall damage)

Result: transudate - fluid with low protein content

exudate - fluid with high protein content

2. Cellular events

<u>Goal:</u> **Recruitment** > migration of leukocytes from the microcirculation to site of inflammation

Steps:

- Margination: fMLP (f-Met-Leu-Phe) complement, thrombin, chemokines
- Rolling: selectins
- Adhesion: integrins, ICAM, VCAM
- Transmigration/Diapedesis: through venules
- Activation: mediators released from macrophages activate leukocytes
- **Effector mechanisms:** opsonisation (IgG, C3b, CRP),
 - phagocytosis, ROS, proteases

© Elsevier 2005

Cellular components I.

Neutrophil granulocytes

- Major phagocytic granulocyte
- Contain multilobed nucleus
- Neutrophilic granules
- Respond to chemotactic stimuli
- Activated by macrophage and endothelial derived cytokines
- Major cell of acute inflammation
- Primary effector cells in IR to pyogens
- May secrete their enzymes

Cellular components II.

Eosinophil granulocytes

- Contain eosinophilic granules
- Express Fc receptors for IgE
- IgE prevalent in parasitic infections
- IgE mediates activation of eosinophil killing mechanisms
- Role in immediate hypersensitivity to allergens
- Cause tissue injury and inflammation

Cellular components III.

Basophil granulocytes

- In circulation -basophils
- In tissue- Mast cells
- Express Fc receptors for IgE
- Release chemical mediators of immediate hypersensitivity

Monocytes/Macrophages

- Regulators of inflammatory response by releasing cytokines
- Major class of phagocytic cells
- Participate in both acute and chronic inflammation
- Provide link between innate and adaptive response (act as APC)
- Phagocytose apoptotic PMN's

- TNF-a and IL-1 are responsible for fever and the release of stress hormones (norepinephrine, vasopressin, activation of the reninangiotensin-aldosterone system), stimulate synthesis of IL-6, IL-8, and interferon gamma.
- Cytokines, especially IL-6, stimulate the release of acute-phase reactants such as C-reactive protein (CRP).

Complement fragments

- Stimulate chemotaxis of neutrophils, eosinophils and monocytes;
- C3a, C5a increase vascular permeability;
- Cytokines
 - Interleukins (IL1, IL 6, IL8)
 - Stimulates the chemotaxis, degranulation of neutrophils and their phagocytic activity
 - Induce extravascularization of granulocytes
 - Fever
 - Tumor necrosis factor (TNF)
 - Leukocytosis
 - Fever
 - Stimulates prostaglandins production

Prostaglandins

- Lipid soluble molecules derived from arachidonic acid through the cyclooxygenase pathway.
- Contribute to vasodilation, capillary permeability, and the pain and fever that accompany inflammation.
- Cause the dilation of precapillary arterioles (edema), lower the blood pressure, modulates receptors activity and affect the phagocytic activity of leukocytes.
- The prostaglandin thromboxane A2 promotes platelet aggregation and vasoconstriction

Leukotrienes

- From arachidonic acid, but through the lipoxygenase pathway.
- Histamine and leukotrienes have similar functions.
- Histamine is produced rapidly and transiently while the more potent leukotrienes are being synthesized.
- Leukotrienes C4 and D4 are recognized as the primary components of the *slow reacting substance of anaphylaxis* (SRS-A) that causes slow and sustained constriction of the bronchioles.
- Affect the permeability of the postcapillary venules, the adhesion properties of endothelial cells, and stimulates the chemotaxis and extravascularization of neutrophils, eosinophils, and monocytes.

Histamine

- Found in platelets, basophils, and mast cells.
- Causes dilation and increased permeability of capillaries

Platelet-activating factor (PAF)

- Generated from a lipid complex stored in cell membranes;
- Induces platelet aggregation;
- Activates neutrophils and is a potent eosinophil chemoattractant;
- Contributes to extravascularization of plasma proteins

Plasma Proteases

- Bradykinin causes increased capillary permeability (implicated in hyperthermia and redness) and pain;
- Clotting factors Contribute to the vascular phase of inflammation, mainly through formation of fibrin peptides

Summary of chemical mediators

Vasodilation

Prostaglandins E₂, D₂, F₂₀, I₂ Nitric Oxide

Increased Vascular Permeability

Histamine, Serotonin Bradykinin C3a and C5a (through liberating amines) Leukotrienes C_a,D_a,E_a PAF (AGEPC) oxygen free radicals

Chemotaxis

C5a Leukotriene B₄ IL-8 Bacterial products Pain PGE₂ Bradykinin

Fever

IL-1, IL-6, TNF PGE₂

Tissue Damage

Neutrophil and macrophage lysosomal enzymes

Oxygen derived free radicals Nitric Oxide

Systemic consequences of inflammation

- Fever caused by pyrogic cytokines (IL-6, TNFa) on hypothalamus
- Leukocytosis
- Increased erythrocyte sedimentation rate (ESR)
- Acute phase proteins (CRP, SAA, fibrinogen)
- Incresed pulse rate
- Chills

Outcomes of acute inflammation

- 1. RESOLUTION restoration to normal
- in limited injury
- chemical substances neutralization
- normalization of vascular permeability
- apoptosis of inflammatory cells
- increased lymphatic drainage
- 2. HEALING by granulation tissue / fibrous scar
- tissue destruction
- fibrinous inflammation adhesions, fibrosis
- purulent inflammation abscess formation
- 3. PROGRESSION to chronic inflammation

Chronic inflammation

<u>Reasons:</u>

- persisting infection or prolonged exposure to irritants (intracell. surviving of agents - TBC)
- repeated acute inflammations (otitis, rhinitis)
- primary chronic inflammation low virulence, sterile inflammations (silicosis)
- autoimmune reactions (rheumatoid arthritis, glomerulonephritides, multiple sclerosis)

<u>Cellular component - ("round cell" infiltrate)</u>

- lymphocytes (T and B), plasma cells
- eosinophils parasites, allergies
- monocytes / macrophages activation by various mediators

Morphologic patterns of acute inflammation

- Serous inflammation inflammatio serosa
- Fibrinous inflammation inflammatio fibrinosa
- Purulent inflammation inflammatio purulenta
- Hemorrhagic inflammation inflammatio haemorrhagica
- Gangrenous inflammation inflammatio ichorosa seu gangraenosa

Serous inflammation

Exudate: a thin watery fluid, low protein content (transsudate) originating from the plasma or secretions of mesothelial cells lining the body cavities (effusions)

Examples:

Skin - blisters from trauma or burns
Nasal mucosa - Common cold (rhinitis), allergy
Gut mucosa - cholera
Mesothelial linings - Peritoneal, pleural, pericardial cavities

From a burn

Varicellavirus

Later Stages of Chickenpox

Blisters

Herpes simplex type I

Pemphigus vulgaris

- Autoimmune mechanism
- Type II. hypersensitivity
- Target: desmoglein
- Suprabasal achantolysis
- Skin bullae
- Tzanck-cells

Outcome: usually favorable except

- serous meningitis
- severe burns,
- Cholera dehydration
- Serous laryngitis (H. influenzae, drug allergies, inhalation of irritants)