

Neuropathology

Neurodegenerative disorders

Lilla Reiniger

Semmelweis University I. st. Dept. Of Pathology and Experimental Cancer Research Budapest

reiniger.lilla@med.semmelweis-univ.hu

Primary neurodegenerative diseases

- Degeneration of subsets of neurons that typically are related by function (selective neuronal vulnerability)
- Accumulation of abnormal proteins characteristic of a disease – is often seen
- Symptoms depend on the affected brain regions
 - Dementia/cognitive decline (cortical neurons, hippocampus)
 - Movement disorders: hypo- or hyperkinetic (neurons of the basal ganglia)
 - Ataxia (cerebellum)
 - Weakness (motoneurons)
 - Mixed

Primary neurodegenerative diseases – abnormal proteins

- Normal cellular protein develops an abnormal conformation
- Imbalance in protein metabolism
- The (abnormal) protein aggregates and accumulates intra- or extracellular
- E.g.: Tau, alpha-synuclein, beta-amyloid, TDP-43, FUS, prion

Alzheimer Disease (AD)

Prevalence

60-64 ys: 1% 85 ys: 50%

- Incidence rate increases with age 70-80 ys: 1-2 case/100 persons/year after 80 ys: 2-8 case/100 persons/year
- Disease duration is ~7 ys (2-18)

Alzheimer Disease (AD)

Initially: memory and cognitive problems

(e.g.: they get lost, unable to cope with new situations, cannot dress up etc.)

- Later: psychiatric and behavioral problems, incontinency, etc.
- Terminally: severe cognitive decline, unable to move, mutism

Alzheimer Disease (AD)

- Sporadic (90-95%) "late onset"
 - Multiple genetic and environmental factors

- Familial (5-10%) "early onset"
 - AuD inheritance
 - Mutations in Presenilin-1 & -2 (coding components of γ-secretase), and amyloid precursor protein
 - <60 ys

AD macro-morphology: Atrophy

AD micro-morphology: Amyloid plaques & Neurofibrillary tangles

Aβ-plaques

β-amyloid

Neurofibrillary tangles

Amyloid angiopathy

Amyloid-beta plaques & neurofibrillary tangles accumulate in the brain in a characteristic way with disease progression

Aβ-peptide is produced by cleavage of APP. Aβ-oligomers are neurotoxic.

Risk factors and molecular mechanisms in the pathogenesis of Alzheimer disease

Genetic risk factors in Alzheimer disease

Gene name (symbol)	Chromosomal location	Function of encoded protein
Apolipoprotein E (APOE)	19q13.2	Transportation of lipoproteins, fat-soluble vitamins, and cholesterol
APOE4 allele – increases Aβ aggregation and decreases its clearance		
1 allele – 4x risk		
2 alleles – 19x risk		
Not enough to develop AD		
Myc box-dependent-interacting protein 1 (BIN1)	2q14.3	Tumor suppressor
ATP binding cassette transporter 7 (ABCA7)	19p13.3	The expression pattern suggests a role for lipid homeostasis and differentiation of immune cells.
Membrane-spanning 4-domains, subfamily A (MS4A)	11q12.2	Possibly involved in signal transduction or immunological functions
Ephrin type-A receptor 1 (EPHA1)	7q34	Member of the EPH receptor-tyrosine kinase family, implicated in mediating developmental events of the ner vous system
CD33 antigen (CD33)	19q13.3	Adhesion molecule of myelomonocytic-derived cells
CD2 associated protein (CD2AP)	6p12.3	A scaffolding molecule that regulates the actin cytoskeleton and vesicle formation
Sortilin-related receptor 1 (SORL1)	11q24.1	Receptor for ApoE, assists with intracellular trafficking and processing of APP

Parkinson Disease (PD)

- Common (10-20 new case/100 000/y)
- After 60 ys (40-70 ys)
- Loss of dopaminergic neurons
- Specific movement symptoms:

tremor, rigidity, bradykinesia, instability

- +/- Dementia
- Autonomic dysfunction and behavioral disorders often present in advance motor problems

Parkinson Disease (PD)

- Sporadic
 - Multiple genetic and environmental factors

- Familial
 - AuDom inheritance: α-synuclein mutations/duplications
 - AuRec inheritance: Parkin, UCHL-1, LRRK2, PARK7,
 PINK1, etc. mutations

PD macro-morphology: SN & LC are pale (depigmented)

Normal

PD

+/- Diffuse cortical atrophy

PD micro-morphology: Neuronal loss, Lewy bodies

- Dop. neurons of the substantia nigra & locus coeroleus are lost
- Lewy bodies and Lewy neurites:
 - SN, LC, pons, medulla oblong., cortical & subcortical areas
 - contain α-synuclein
- Cortical involvement dementia
- Pale bodies

Progression of PD pathology

Huntington disease (HD)

- Autosomal dominant inheritance
- CAG trinucleotid repeat disease
- Specific movement symptoms
 - Involuntary jerky/writhing/choreiform movements
 - Ataxia
 - Hyperkinesis
- Behavioral and affective disorders (increased risk for suicide), dementia
- Disease duration: 15 ys

Huntington disease (HD)

4p16.3 – Huntingtin gene

With increasing number of repeats, the disease starts at earlier ages (disease duration remains the same)

Expanded polyglutamine (polyQ) chain gains toxic function

HD – toxic functions of mutant huntingtin protein

Nature Reviews | Genetics

HD macro-morphology: caudate nucl. & putamen atrophy

HD micro-morphology: Neuronal loss, gliosis, intranuclear inclusions

Copyright © 2012, 2005 by Saunders, an imprint of Elsevier Inc.

Amyotrophic Lateral Sclerosis (ALS)

- Lower motoneurons get lost in brainstem and spinal cord → muscle atrophy, weakness, fasciculation
- Upper motoneurons get lost in primary motor cortex \rightarrow paresis, hyperreflexia, spasticity
- 40-70 ys; 1-2/100.000/y
- Sporadic
- Familial 5-10%, e.g. C9orf72 hexanucleotide repeat expansion; SOD-1, TDP-43, FUS mutations

ALS – macro: atrophic and grey anterior nerves

Spinal cord front

Spinal cord back

ALS – macro: atrophic and grey anterior nerves (cauda equina)

Anterior nerves Posterior nerves

ALS – micro: loss of motoneurons in spinal cord with gliosis, and muscle atrophy

ALS – macro: motorcortex atrophy in severe cases

ALS – micro: neuronal loss, gliosis, spongiosis

Due to loss of upper motoneurons corticospinal tract is degenerated

"lateral sclerosis"

ALS – TDP-43 positive neuronal and glial inclusions

Prion disease TSE – transmissible spongiform encephalopathies

- 1. Sporadic prion disease
 - Sporadic Creutzfeldt-Jakob disease (sCJD) ~1/million/y
 - Sporadic fatal insomnia (sFI)
- 2. Inherited prion diseases (IPD) PRPN gene mutation
 - Familial CJD (fCJD)
 - Gerstmann–Straussler–Scheinker syndrome (GSS)
 - Fatal familial insomnia (FFI)
- 3. Acquired prion disease special groups are affected
 - Variant CJD (vCJD) eating infected cattle
 - latrogenic CJD growth hormon, cornea, electrodes etc.
 - Kuru cannibalism

Prion disease – common features

- Progressive dementia
- Other neurological and psychiatric symptoms
- Fatal

Neuronal loss Spongiform degeneration

Reactive gliosis

PrP^{Sc} accumulation

Pathomechanism of prion diseases

Normal: PrP^c

Mainly α-helix protease sensitive unknown function

Abnormal: PrP^{sc}

Contains many β-sheet protease resistant

© DeMarco & Daggett, 2004

Mechanisms for generation of PrP^{Sc}

Inherited forms

HB

The nature of protein is different due to mutation – ↑ propensity to convert

HC

sCJD

Thought to be age related: Abnormal posttranslational modification processes, "quality control" disturbance

latrogenic CJD

Exogene PrP is abnormal

HB

Conversion

Pathogenesis of prion diseases

Prion protein gene - PRNP

Polymorphic variants

Prion disease – macro: atrophic or normal brain

Prion disease – micro: "Spongiform change" and PrP^{Sc} accumulation

Spongiform degeneration

Abnormal PrP

Prion disease – micro: vCJD

