NEUROPATHOLOGY
NEOPLASIA, INFECTION

HAJNALKA RAJNAI
TUMORS OF THE CNS
INCIDANCE OF CHILDHOOD NEOPLASMS

- Leukemia: 32%
- CNS: 7%
- Lymphoma: 6%
- Neuroblastoma: 5%
- Kidney tumor: 7%
- Bone tumor: 3%
- Rhabdomyosarcoma: 3%
- Retinoblastoma: 4%
- Germ cell tumor: 3%
- Egyéb: 10%
PRIMARY TUMORS OF THE CNS

1. Gliomas
2. Neuronal or mixed glioneural tumors
3. Choroid plexus neoplasms
4. Embryonal tumors
5. Meningial tumors
6. Other parenchymal tumors
 • Haematologic malignancies
 • Germ cell tumors
CHARACTERISTICS

- Do not have premalignant or in situ stages
- Rarely spread outside of the CNS

Symptoms
- Epilepsy (focal or generalized)
- Focal neurologic deficits
- Signs of raised intracranial pressure
- Hydrocephalus

Diagnosis
- Age
- Sex
- Site of neoplasm
- Family history

Grade

- Predicting the biological behaviour
 - Grade I
 - Low proliferative potential
 - Possibility of curative resection
 - Grade II
 - Infiltrative
 - Often recur
 - Progression
 - Grade III
 - Histological evidence of malignancy
 - High mitotic activity, atypia
 - Grade IV
 - Cytologically malignant
 - Rapid disease evolution
I. GLIOMAS

- Oligodendroglia
- Astrocyte
- Ependyma
- Neuron
- Choroid plexus
1.1. Astrocytoma

1. Pilocytic astrocytoma (Grade I)

- Children and young adults
- Benign tumors
- Most commonly infratentorial – Cerebellum
II. Diffuse astrocytoma (Grade II-IV)

- Fourth through the sixth decades of life
- Cerebral hemispheres – Focal signs, headache

Well-differentiated astrocytoma Grade II
- Atypia+ High cellularity

Anaplastic astrocytoma Grade III
- Atypia + High cellularity + High mitotic activity

Glioblastoma Grade IV
- Atypia + High cellularity + High mitotic activity + Necrosis/Endothel proliferation
Well-differentiated astrocytoma Grade II
Anaplastic astrocytoma Grade III
Normal brain
• IDH1 mutation

Well-differentiated astrocytoma
• Loss of 19 ch
• ATRX loss

Anaplastic astrocytoma
• 10 q loss

Glioblastoma
• Secunder

Glioblastoma
• Primer
• EGFR overexpr.
• 10q loss
• PTEN mutation
Glioblastoma Grade IV

Vascular proliferation

Necrosis
I. II. Oligodendroglioma

- Fourth and fifth decades of life
- Cerebral hemispheres – Seizure, headache
 - Frontal, temporal lobe
- 1p 19q codeletion
Well-differentiated oligodendroglioma
Grade II

Anaplastic oligodendroglioma
Grade III

Vascular proliferation
I. III. Ependymoma

- Intracranial – Childhood
 - IV. ventricle, III. ventricle
- Spinal ependymoma – 20-40 years of age
Ependymoma Grade II

Pseudorosettes

Anaplastic ependymoma Grade III

Necrosis
II. NEURONAL/GLIONEURONAL TUMORS

- Oligodendroglia
- Astrocyte
- Neuron
- Ependyma
- Choroid plexus
I. Central neurocytoma Grade II

- Intraventricular neoplasms located predominantly in the vicinity of the septum pellucidum
- Young adults
II. Gangliocytoma, ganglioglioma Grade I

- Mature appearing neurons ± Glial cells
- Glial component – with time anaplastic
III. Dysembryoplastic neuroepithelial tumor
Grade I

- Childhood tumor
- Superficial temporal lobe
III. CHOROID PLEXUS NEOPLASMS

- Oligodendroglia
- Astrocyte
- Neuron
- Ependyma
- Choroid plexus
Choroideus plexus papilloma

Plexus choroideus carcinoma
IV. EMBRIONAL NEUROEPITHELIAL TUMORS

- Predominance in children
- Disseminate through CSF pathways
- Small undifferentiated cells
- High mitotic index, widespread apoptosis
- Potential for divergent neuroepithelial differentiation
I. Medulloblastoma Grade IV

- 20% of pediatric brain tumor
- Infratentorial, IV. ventricle
II. Atypical teratoid/rhabdoid tumor (ATRT) Grade IV

- Most commonly <5 years
- Poor prognosis
- Anywhere in the CNS
V. MENINGIOMAS

- Benign tumors that arise from arachnoid meningotheelial cells
- External surfaces, or intraventricular
- Focal neurological deficits
I. Meningioma Grade 1.

- Incidence rises with age
- Primary CNS tumors ~30% meningioma
- Several histological variants

Psammoma body
II. Atypical Meningioma
Grade II.

III. Anaplastic Meningioma
Grade III.

Ki67

Necrosis
VI. PRIMARY CNS LYMPHOMA

- DLBCL type
- Most common CNS neoplasm in immunosuppressed persons
- Nearly always positive for the EBV
VII. CNS GERM CELL TUMORS

- Germinoma - 50%
- Teratoma - 20%
 - Mature teratoma
 - Immature teratoma
 - Teratoma with malignant transformation
- Yolk sac tumor
- Embryonal carcinoma - 5%
- Choriocarcinoma
- Mixed tumor - 25%
VIII. METASTATIC TUMORS

- Gray-white junction
- Sharply demarcated masses
- Perifocal edema

![Magnetic Resonance Imaging (MRI)](image1)
![Histology of Small Cell Lung Carcinoma (SCLC)](image2)
![Histology of Breast Carcinoma](image3)
INFECTIONS OF THE NERVOUS SYSTEM

Localisation:

1. Parenchyma: encephalitis, myelitis, encephalomyelitis.
SPREAD

1. Hematogenous spread
2. Direct implantation – Trauma, iatrogenic
3. Local extension – Otitis media, Congenital malformation
4. Peripheral nerves
1. Bacterial infection
 - Bakterial meningitis
 - Brain abscessus
 - Tuberculosis
 - Neurosyphilis

2. Virus infection
 - Viral meningitis
 - Herpesvirus
 - Cytomegalovirus
 - Poliovirus
 - Rabies
 - HIV
 - Progressive multifocal leukoencephalopathy

3. Fungal infection
 - Candida
 - Mucormycosis
 - Aspergillus
 - Cryptococcus

4. Protozoal infection
 - Toxoplasma

5. Parazite infection
 - Cystercosis
 - Echinococcus
I. Epidural abscess
 • Local spread – sinuitis, osteomyelitis
 • Bacterial, fungal
 • Spinal - spinal cord compression

II. Subdural empyema
 • Local spread – sinus
 • Arachnoid, subarachnoid space is unaffected
 • Thrombophlebitis in the bridging veins
MENINGITIS

I. Bacterial meningitis

1. Neronates
 • Escherichia coli
 • B Streptococcus
2. Children young, adults
 • Neisseria meningitidis
 • Streptococcus pneumoniae
3. Older individuals
 • Streptococcus pneumoniae
 • Listeria monocytogenes
II. Aseptic/Viral meningitis

- Echovirus
- Coxsackie B
- Coxsackie A
- Herpes simplex virus (HSV)-2
- Mumps
- Human immunodeficiency virus (HIV)
- Lymphohoriomeningitis virus
- Arbovirus
- Rubeola
- Parainfluenza virus
- Adenovirus
III. Chronic meningitis

III.I. Mycobacterium tuberculosis

- Meningitis – Fibrinous exudate
- Intraparenchymal mass (tuberculoma)
- Chronic tuberculotic infection - arachnoideal fibrosis - hydrocephalus
III.II. Spirochaetal infections

A. Neurosyphilis (3rd stadium) – Treponema pallidum
 • 10% of persons with untreated infection
 1. Chronic meningitis/meningovascular neurosyphilis
 • Involves the base of the brain
 2. Paretic neurosyphilis
 • Neuron loss – loss of mental, physical functions
 3. Tabes dorsalis
 • Sensory nerves in the dorsal roots
 • Sensory ataxia

B. Neuroborreliosis – Borrelia burgdorferi
 • Aseptic meningitis
 • Facial nerve palsies
 • Mild encephalopathy
 • Polyneuropathies
PARENCHYMAL INFECTIONS

I. Brain abscesses
 • Bacterial infections
 • Spread:
 • Direct implantation
 • Local extension
 • Hematogenous spread
 • Symptoms - Focal
II. Viral encephalitis

- Perivascular lymphoid infiltration
- Microglial nodules
- Neuronophagia
II. 1. Herpes virus

A. Herpes simplex-1
 • Children and young adults
 • Frontal, temporal lobe involvement
 • Necrotizing encephalitis

B. Herpes simplex-2
 • Adults
 • Viral meningitis
 • Primary HSV genital inf - neonates

C. Varicella zoster
 • Immunosuppressed patients
 • HZV encephalitis
II. II. Cytomegalovirus

A. Fetus
 • Periventricular necrosis
 • Microcephalia
 • Periventricular calcification

B. Adult
 • Immunosuppressed persons
 • Periventricular
 • Subacute encephalitis
II.III. Poliovirus

- Gastroenteritis – Secunder CNS spread
 - Poliomyelitis anterior acuta / Paralytic poliomyelitis
 - Damages motor neurons in the spinal cord and brain stem
 - Flaccid paralysis with muscle wasting and hyporeflexia

- 25 to 35 years – Postpolio syndrome
 - Progressive weakness, pain
II. IV. Rabies Virus

- Rabies
 - Rabid animals, usually by a bite

- Ascending along the peripheral nerves
 - the incubation period depends on the distance between the wound and the brain

- Symptoms:
 - Non specific
 - Signs of CNS excitability
 - Pain, hydrophobia
 - Mania-coma
II.V. Human Immunodeficiency virus

A. Aseptic meningitis
 • Within 1 to 2 weeks of onset of primary infection by HIV in about 10% of patients

B. HIV Encephalitis (HIVE)
 • Perivascular lymphoid infiltration
 • Myelin loss in the hemispheres (Leukoencephalopathy)
 • Microglial noduls
 • Giant cells

C. Opportunistic infections

D. Primary CNS lymphoma
II.VI. JC virus / Progressive multifocal leukoencephalopathy

- Polyoma virus
- Infects oligodendroglial cells
 - Demyelinisation
 - White matter – Hemispheres, Cerebellum
- Progressive neurologic symptoms
III. Fungal infections

A. Candida Albicans
 • Multiplex microabscessusok

B. Mucormycosis
 • Nasal cavity, sinus infection
 • Direct extension, Vascular invasion

C. Aspergillus fumigatus
 • Hemorrhagic infarctions
 • Vascular invasion

D. Cryptococcus neoformans
 • Meningitis, Meningoencephalitis
 • Fulminant
Candida albicans
Mucormycosis
Aspergillus fumigatus
Cryptococcus neoformans
IV. Protozoal infection - Toxoplasmosis

- Toxoplasma gondii
 - Humans intermedius hosts
 - Definitive host - Cat

A. Fetal infection/Congenital
 - Chorioretinitis
 - Hydrocephalus
 - Intracranial calcification

B. Adult infection
 - Immunosuppressed adults
 - Subacute symptoms
 - Evolving in 1 or 2 week period
 - Focal-diffuse
IV. Parazitic infection

I. Tenia solium - Cysticercosis

- End-stage infection
 - Larval organisms leave the lumen of the gastrointestinal tract
 - Encyst – Brain – subarachnoid space

- Symptoms
 - Focal symptoms
 - Epilepsy
2. Echinococcus /Hydatidosis/

- Childhood
- Contact with dogs
 - Encysts – Usually liver, lung rarely brain

- Symptoms
 - Focal signs
 - Epilepsy
- Robbins Basic Pathology, 9th Edition
- Neuropathology: A Reference Text of CNS Pathology, 3rd Edition