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ARTICLE INFO ABSTRACT

Keywords: In recent years, there has been an increase in applications of network science in many different fields. In clinical

Brain neuroscience and psychopathology, the developments and applications of network science have occurred mostly

Behavior simultaneously, but without much collaboration between the two fields. The promise of integrating these
Network science o Lo . . .

network applications lies in a united framework to tackle one of the fundamental questions of our time: how to
Psychopathology

understand the link between brain and behavior. In the current overview, we bridge this gap by introducing
conventions in both fields, highlighting similarities, and creating a common language that enables the exploi-
tation of synergies. We provide research examples in autism research, as it accurately represents research lines in
both network neuroscience and psychological networks. We integrate brain and behavior not only semantically,
but also practically, by showcasing three methodological avenues that allow to combine networks of brain and
behavioral data. As such, the current paper offers a stepping stone to further develop multi-modal networks and
to integrate brain and behavior.

Clinical neuroscience
Graph theory

1. Introduction

If one had to write a one-sentence summary of a century of research
into human behavior and the processes that underlie it, a good candidate
would be: “it’s complicated”. Indeed, the complexities encountered at
every level of analysis, from the neural underpinnings of cognitive and
affective processes to the intricacies of behavior itself, are astounding
and we are just beginning to realize the magnitude of the undertaking
that (neuro)psychology has ventured on. In the past years, however, we
have seen an interesting twist: instead of lamenting complexity as a
problem, novel methodologies have leveraged complexity as a strength,
and have brought to bear novel insights from the area of network science
to shed light on the topic. Two such areas are neuroscience, where
network analysis has become a common way of considering the brain,
and psychopathology, where the interactions between symptoms are
reconceptualized as network structures. But how should we connect
such different levels of analysis? Connections between neurons in our

brain, interactions between psychological states, and social relations we
engage in all form networks, but how should we envisage the relations
between networks that exist at such different levels? This question calls
for the development of methodologies suited to link network analyses
executed at distinct levels of analysis. This paper provides an overview
of methodological strategies that can be used to couple network analyses
at the brain and behavioral levels, illustrates their application to the case
of autism, and discusses open problems and avenues for further
development.

2. Networks in neuroscience
2.1. The history of network neuroscience
Neuroscience is a relatively young field of science, stemming from a

fusion between physiology, anatomy, molecular biology, developmental
biology, cytology, mathematical modeling, and psychology. One goal of
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Table 1
Terms and definitions used in brain network and symptom network analysis.
Term  Brain Behavior
Brain regions can be defined in any modality by Symptoms can be operationalized by
e anatomical markers, often taken from a template according to sulcal or gyral e diagnostic nosologies (eg DSM-5, ICD-10)
pattern e items or sub-scales from self -report questionnaires (often developed to assess a
e statistical association of brain signals, e.g. independent component analysis (ICA), diagnosis and based on the diagnostic nosologies)
Node spatial clustering.T e diagnostic interview schedules, such as the SKID-5 and similar instruments
The definition of the brain region can be binary or probabilistic o functions of objective behavioral measures (e.g., movement data, sleep
Voxels for MRI modalities with superior spatial resolution registrations, etc.)
Channels/Electrodes/Sensors, particularly for EEG, electrocorticography (ECoG), and ~ Experimentally induced responses (e.g., CO? challenge in panic disorder, responses
near-infrared spectroscopy (NIRS), sometimes for MEG to white noise in speech illusions in psychotic disorders)
Functional imaging and neurophysiology: Statistical association between signals. In
fMRI, the most common measures are correlation, partial correlation, or covariance. L. .. L ..
. . . Statistical associations between symptoms: The statistical associations between
In M/EEQG, it is coherence, (weighted) phase lag index (WPLI) or other phase based " . . .
) X X . symptoms can be uncovered cross-sectionally (i.e., by measuring many individuals
measures, or (amplitude) envelope correlation, to take into account the higher e . . . .
. . . . R once) or individually (i.e., by measuring an individual over time). When
temporal resolution and avoid artifacts due to volume conduction and signal leakage . .. L L. e .
. investigating the statistical association between symptoms in individuals over time,
in these methods. . .
, . 3 three different networks can be constructed: (i) a temporal network that captures
Functional networks are almost always individually determined. . . .
. U . . . . . . how symptoms influence each other over time; (ii) a contemporaneous network that
Link Diffusion imaging: Microstructural properties of white matter, i.e. fractional

anisotropy (FA), radial diffusivity (RD), count of (probability of) streamlines from

tractography, often normalized by distance or area size.
Diffusion-based networks are almost always individually determined.

Anatomical imaging: Correlation or covariance of morphological measurements
across participants, correlation of morphological measurements between regions.

Structural covariance networks can be determined at both the individual or the group

level.

captures how symptoms are statistically related at each time-point, after taking the
temporal effects into account; and in case multiple individuals are measured (iii) a
between-subject network can be constructed to reflect the statistical associations
between symptoms across individuals.

Perceived causal relations: In this approach, links between symptoms are be self-
reported, as individuals indicate how they perceive symptoms to affect one another.

neuroscience is to understand how brain features relate to human
behavior. Throughout the history of neuroscience and its preceding
scientific disciplines, two seemingly opposing views can easily be
distinguished, alternating as the ruling doctrine in particular periods of
history.

The first view is based on the idea that distinct behaviors are gov-
erned by the structure and function of distinguishable brain regions,
such that particular brain regions are responsible for particular func-
tions. This localizationist view has been championed by scientists
investigating the effects of focal lesions on functioning: Galen, doctor
and surgeon to the gladiators that entertained the crowds in ancient
Rome, observed how injuries to the head led to loss of cognitive func-
tions. In more recent times, neurosurgeon Wilder Penfield executed
‘virtual’ lesioning experiments on humans, by temporarily shutting
down brain functioning through electrical stimulation in epilepsy pa-
tients undergoing awake neurosurgery. This groundbreaking work
provided us with the homunculus, a mapping of sensory and motor
functions onto the cortex of the brain (Penfield and Boldrey, 1937).

Opposing this rather reductionist account of brain-behavior re-
lationships is the view that it is impossible to localize behavior in
particular areas of the brain. Instead, the brain is viewed as a holistic
organ that gives rise to behavior in a more unitary manner. An example
of such a framework is the idea of ‘mass action’, proposed by memory
investigator Karl Lashley, which holds that memory is distributed
throughout the cortex and cannot be localized to particular regions
(Lashley, 1931). Lesions leading to memory dysfunction are seen as a
proportional effect: the larger the area in the brain that is injured, the
more cognitive problems will ensue. Another famous proponent of this
view is Charles Sherrington, who attributed the process of waking up
and becoming conscious to the brain functioning as an enchanted loom:
no single thread can be held accountable for the fabric as a whole
(Sherrington, 1951).

Up to the end of the 20th century, these views opposed each other
and were difficult if not impossible to reconcile theoretically and
experimentally. Since 1998, however, network neuroscience offers a
mathematical framework that unites local specialization with global
integration through graph theoretical approaches applied to the brain
(Watts and Strogatz, 1998). In their seminal work, Watts and Strogatz
were the first to convert the central nervous system of the nematode
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Caenorhabditis elegans to a graph or network, with each of the animal’s
302 neurons being a node or vertex, and each axonal connection be-
tween those neurons being a link or edge. They then describe two al-
gorithms that capture nodal specialization (clustering coefficient) and
global integration (average path length), and propose that the combi-
nation of high specialization and integration, the ‘small-world’ network
topology, is optimal for functioning of any complex network, including
the brain. Since then, network neuroscientific studies of the human
brain have indeed shown that optimal brain functioning is governed by
such a network signature (van den Heuvel et al., 2009; Douw et al.,
2011), and that behavioral impairments, such as those present in autism
spectrum disorder (ASD; see 2.3.), go hand in hand with brain network
dysfunction (van den Heuvel and Sporns, 2019; Bassett et al., 2018a).

2.2. Methodology in network neuroscience

Macro-scale brain networks (which are the most often explored type
of brain networks in living humans) can be constructed in several ways,
based on different data modalities. The nodes in such a network typi-
cally represent voxels (see Table 1), or larger brain areas from an atlas.
Many different atlases are in use, for instance the 92-region automated
anatomical labeling atlas that is based on cytoarchitecture (Tzour-
io-Mazoyer et al., 2002) and the 246-region brainnetome atlas that is
based on connectivity pattern similarity per voxel (Fan et al., 2016). The
choice of atlas impacts all subsequent analyses and should not be taken
lightly. Several recent papers highlight the particulars of this choice and
offer guidance for different research questions (Arslan et al., 2018;
Power et al., 2013; Schaefer et al., 2018).

The links in the macro-scale brain network can be established in
different ways (see Fig. 1). Early methodologies to investigate the brain
network include structural covariance networks, where covariations in
cortical thickness of voxels or brain regions across people are quantified
(Wright et al., 1999; He et al., 2007). The rationale behind the method is
that (changes in) the structural properties of pairs of brain regions may
reflect shared underlying processes. Of note, since they take into account
individual differences in morphology, structural covariance networks
are usually constructed at the group level. More recent techniques do
allow for individual network reconstruction, for instance using inter-
hemispheric similarity in morphology (Tijms et al., 2012) or by
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Fig. 1. Methods in networks neuroscience. MRI = magnetic resonance imaging, EEG = electroencephalography, MEG = magnetoencephalography, rsfMRI =
resting-state functional MRI. In brain networks, nodes are usually brain regions or voxels. Links are modality-specific: when using anatomical MRI, links are extracted
by investigating morphological covariance at the subject or group level. Diffusion MRI allows for estimation of the number or integrity (weight) of structural
connections between different voxels or brain regions in individual subjects. Functionally, EEG/MEG/rsfMRI time series per voxel or region can be correlated to
define functional links, usually using connectivity measures that take the specific pitfalls of these modalities into account: whereas rsfMRI analysis usually involves
(partial) correlation coefficients, EEG/MEG connectivity calculation is susceptible to source conduction (EEG) or field spread (MEG), thus rendering it necessary to
account for these artifacts through choice of connectivity measure. This yields a single network per subject.

correlating multiple morphological parameters of two regions within the
same person (Seidlitz et al., 2018). Although the idea behind construc-
tion of these networks is similar, i.e., structural covariance determines
the links across or within subjects, it is important to note that individual
structural covariance networks obviously allow for more detailed hy-
pothesis testing than the group level network.

The anatomical connections between nodes can be imaged using
diffusion magnetic resonance imaging (dAMRL; Hagmann et al., 2007),
which picks up on the directionality of diffusion of water molecules
depending on how constrained they are by white matter bundles.
Reconstruction algorithms (i.e. tractography) then allow one to either
deterministically or probabilistically establish the number and/or
integrity of fiber bundles between each node in the brain network.
Although this method is commonly viewed as the gold standard for
anatomical connectivity estimation, it is important to note that trac-
tography always yields merely an estimate of the actual anatomical
connectivity between brain regions, and is subject to several methodo-
logical pitfalls (Maier-Hein et al., 2017), such as overestimation of fi-
bers, particularly in areas where tracts cross or ‘kiss’. Finally, this
approach yields an estimated anatomical brain network per scan.

Functional connections are most often assessed per individual using
functional MRI (fMRI), either during a task (tfMRI) or more often during
a resting-state (rsfMRI; Salvador et al., 2005). The modality indirectly
captures brain activity as represented by the blood-oxygenation level
dependent (BOLD) response. Although fMRI has high spatial resolution
at the level of millimeters, the sampling frequency of activity is low:
typically, it is measured every 1-5 seconds. In order to create a network,
the time series of activity from each node are correlated, based on the
idea that synchronized activity patterns would reflect some sort of
functional communication or connectivity. Any temporal dependency
could obviously indicate a direct functional connection between two
regions, or a common latent source of activity spreading to both regions
simultaneously. As such, no causal conclusion on which region is driving
the correlation can be drawn from functional connectivity. Although a
somewhat stable network can be constructed using only a few hundred
timepoints of data (typically 5—10 min of scanning are performed; Van
Dijk et al., 2010), recent literature suggests that extended data collection
may significantly increase reliability of network estimation through
functional connectivity (Noble et al., 2019). The analysis typically yields
a brain network per scan.
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Individual functional connectivity may also be investigated using
neurophysiological techniques such as electroencephalography (EEG;
Linkenkaer-Hansen et al., 2001) and/or magnetoencephalography
(MEG; Stam, 2004) during the resting-state. Both measure neuronal
activity more directly than fMRI, by either capturing the electric or
magnetic changes, respectively, induced by postsynaptic currents of
large numbers of neurons (n>50,000). The temporal resolution of these
techniques is therefore very high, with a sampling frequency above 1000
Hz, but the spatial resolution is more variable per region of the brain and
is in the order of centimeters. Again, functional connectivity is estab-
lished by calculating some sort of synchronization between the resulting
time series, although extra care should be taken to mitigate the meth-
odological pitfalls of the techniques, such as volume conduction in EEG
and spurious sources and signal leakage in MEG. With these techniques,
recording length (i.e., number of samples) is less influential in network
reconstruction due to the high sampling rate: approximately 1 min of
data already yields relatively stable network topology (Chu et al., 2012).
EEG and MEG yield a brain network per recording.

2.3. Autism as a brain network disorder

A case in point for the application of a network neuroscience
perspective is research on the neural basis of autism spectrum disorder
(ASD). ASD is a complex disorder characterized by difficulties with so-
cial interaction and communication alongside restricted interests, re-
petitive behaviors, and sensory hyper- or hypo-sensitivities (American
Psychiatric Association, 2013). While there is no generally accepted
etiological theory of the disorder, research over the last decades has
focused on identifying a neurobiological basis. Traditional neuro-
imaging methods that were designed to localize differences in the
context of lesion studies and a modular view of brain organization failed
to identify consistent focal differences in ASD (Maximo et al., 2014).
Emblematic of research across complex psychiatric conditions, the focus
has since shifted towards characterizing the role of brain network dif-
ferences in ASD (see Hull et al., 2017 for a review). A consistent finding
in the first wave of studies on rsfMRI connectivity was reduced
long-range connectivity in ASD, particularly between parietal and
frontal areas (Just et al., 2007; Kana et al., 2009). However, other
studies also reported increased connectivity (Shih et al., 2011), e.g.,
between parietal and temporal regions. More recent studies based on
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thousands of participants suggest a more complex picture with some
stronger and some weaker connections in ASD relative to typical groups
(Oldehinkel et al., 2019). Recent years saw a more direct application of
network theory to characterize brain connectivity differences in ASD.
Rather than just describing patterns of differences, network theory helps
to understand the implications of connectivity differences for the
network architecture. For instance, differences in functional brain con-
nectivity in ASD have been interpreted as a deviation from the typical
small-world architecture (Rudie et al., 2013), a shift in the balance of
modularization versus integration (Keown et al., 2017), and a difference
in the hub-spoke network hierarchy (Hong et al., 2019). These network
accounts suggest that subtle and distributed differences across the
network can accumulate in sub-optimal trade-offs in the network ar-
chitecture (van den Heuvel and Sporns, 2019). Further, the network
account suggests that particular areas may be implicated because of
their role for supporting an efficient network architecture rather than
their function for any specific computation (de Lange et al., 2019). This
perspective has led to new hypothesis to explain behavioral features of
autism on the basis of brain differences. For instance, Markram and
Markram put forward the ‘intense world’ theory that proposes a mech-
anism by which the behavioral features of autism may arise from local
hyperconnectivity (Markram and Markram, 2010). As this brief sum-
mary shows, the addition of a network perspective has enriched brain
research and provided a theoretical basis for mechanistic hypotheses to
understand this highly complex and heterogeneous condition (Bertolero
and Bassett, 2020).

3. Networks in psychopathology research
3.1. History

Reminiscent of the tension between localized and holistic theories of
information processing in the human brain, the history of psychopa-
thology research is characterized by a similar tension between reduc-
tionist and holistic approaches. In keeping with the original presentation
of psychiatry as a medical discipline (Kraepelin and Lange, 1927),
mental disorders are often portrayed in terms of a disease analogy
(Hyland, 2011). For instance, in current nosologies such as the DSM-5,
different mental disorders, psychological disorders, or neuro-
developmental disorders are all accompanied by a specific list of
observable symptoms; within a disease analogy, the disorders are
thought to underlie, cause, or determine these sets of symptoms that
often co-occur in individuals. Thus, an anxiety disorder causes the
symptoms of excessive worry and irritability; and a depression disorder
causes the symptoms of insomnia, fatigue, and concentration problems.
Following this conceptualization, disorders are considered to be un-
derlying causal entities that are ultimately rooted in brain functions.
From such a viewpoint, the central aim of psychiatry is to uncover these
entities through neuroscientific research (e.g., mental disorders are
“brain circuit disorders” that can be treated by “tuning these circuits”;
Insel and Cuthbert, 2015, p. 500).

On the other hand, in the history of the field, attention has been
repeatedly drawn to the fact that mental disorders crucially involve
subjective experience (Jaspers, 1963) and also appear to transcend the
physical borders of the human body, in the sense that they involve in-
teractions between human behavior and the physical and cultural
environment in which it unfolds (Kendler et al., 2011; Borsboom et al.,
2019). For example, symptoms of mental disorders often promote
behavior that leads to a change of environment which may itself pro-
mote other symptoms (e.g., a lack of human interaction due to social
anxiety may lead to withdrawal from social life, which in turn may lead
to loneliness and depressed mood; a drug addict may choose to live in
the city, which both accommodates the addiction and exposes the in-
dividual to a larger set of hazards that may promote further symptom-
atology). Such observed complexities typically appeal to systems
analogies, in which mental disorders are seen as disturbances in the
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behavioral, cognitive, and affective equilibria that characterizes mental
health; these alterations will typically include feedback loops that
involve the physical, social, and cultural environment and as such
portray psychiatric disorders as extended beyond the body and brain
(Borsboom et al., 2019).

Proponents of more holistic approaches note the lack of success in
identifying central pathogenic pathways on a purely genetic or neuro-
biological basis (Kendler, 2012) and point to the importance of trans-
diagnostic processes that span multiple disorders (Nolen-Hoeksema and
Watkins, 2011). Nonetheless, neuroscience is crucially important in
developing further understanding of psychopathology and the question
therefore is not so much whether the brain matters, but rather how al-
ternatives to reductionism can be organized into a methodologically
operational approach integrating neuroscience with other levels of
analysis.

In recent years, it has been proposed that network analysis may offer
such methodology towards unraveling the complexity of psychopa-
thology and accommodating the interaction between biological and
psychological levels of analysis. In one incarnation of this approach,
symptoms themselves are considered to interact in a causal network
(Borsboom and Cramer, 2013; McNally, 2021), and disorders are viewed
as alternative stable states of the causal system that arise out of these
interactions (Borsboom, 2017). In the wake of these theoretical de-
velopments, researchers have worked towards developing techniques to
estimate these connections between symptoms using the application of
network analytic approaches to multivariate data.

3.2. Psychological networks methodology

Psychological networks, like brain networks, consist of nodes and
links among them. In psychopathology networks, the nodes typically
represent symptoms that can be assessed using self-report question-
naires or diagnostic interviews. It is important to note that the nodes in a
psychopathology network thus do not reflect any fixed set of symptoms
nor any physically localized entities; nodes represent variables (i.e.,
functions defined on an outcome space), not things.

In psychopathology networks at least two different types of links can
be distinguished. First, and most commonly, links between symptoms
can be estimated from data and thus reflect statistical associations. Sec-
ond, links between symptoms can reflect reported relations, a method
that is known as Perceived Causal Relations (Frewen et al., 2012, 2013).

When the links between symptoms are estimated from data, these
can be estimated over people using cross-sectional network modeling (e.
g., how does ‘insomnia’ relate to ‘concentration problems’ across peo-
ple); or over time using temporal network modeling (e.g., how does
‘insomnia’ relate to ‘concentration problems’ within one person, over
time).

In cross-sectional network modeling (left panel in Fig. 2), a network
is estimated across participants at a single timepoint and reflects how
symptoms co-occur across people. There are multiple ways to estimate
such relations, and currently it is most common to estimate a Gaussian
Graphical Model (GGM; Epskamp et al., 2018d). A GGM can be visual-
ized as a network, where the symptoms are shown as nodes and the links
represent the partial correlations, indicating how two symptoms
co-occur, when taking all the other symptoms in the network into
account.

In temporal network modeling (middle panel in Fig. 2), a network is
estimated across timepoints and at least two networks can be constructed:
a temporal network reflecting how symptoms predict each other over
time in a directed network, and a contemporaneous network showing the
undirected relations among symptoms at a single measurement occa-
sion, after controlling for the temporal effects and all the other symp-
toms in the network (Epskamp et al., 2018b). If multiple people are
estimated over time, a between-subjects network can be estimated that
reflects how the mean-levels of symptoms covary between persons. Note
that this is not the same as a cross-sectional network, as the
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Fig. 2. Methods in psychopathology networks. In psychological networks, nodes usually represent symptoms. Links can be either estimated from data (left and
middle panel), or reported (right panel). Cross-sectional network modelling estimates associations between symptoms (the links) across people and yields a single
network per group. Temporal network modelling estimates the associations between symptoms over time and yields at least two networks per subject: a temporal
network showing the associations over time, and a contemporaneous network including the associations within one time-point, after taking the temporal associations
into account. If temporal data is available for multiple subjects, a between-subject network can be estimated. Perceived Causal Relations is a method that links
symptoms based on reported relations by a rater (e.g., patient or clinician). This method can yield a network per rater or an averaged network across raters.

cross-sectional network reflects a mix of both within- and
between-person effects (see Epskamp et al., 2018d for more details).

When networks are estimated from data there are two important
considerations. The first consideration is that of model selection. After
the model is estimated, there are different ways to determine whether a
link should be included in the network: thresholding, pruning, and
regularization. In brief, thresholding and pruning are similar as first a
saturated network is estimated (i.e., a network in which all possible
edges are included), after which only certain edges are selected (e.g.,
only significant edges are included). In thresholding the edges that do
not meet the criertion are simply omitted, whereas in pruning the model
in which these edges are put to zero is then refitted to the data. Alter-
natively, a network can be estimated using regularization techniques,
which shrinks or selects some of the estimated links, see Epskamp and
Fried (2018a) for a tutorial on estimating regularized networks.

The second consideration is that of accuracy and stability of the
estimated links. When estimating associations from data, there will,
inevitably, be some uncertainty around the estimated links. Therefore, it
is important to consider how accurate and stable the estimated network
parameters are (Borsboom et al., 2018). Over the last years it has
become common practice to evaluate this uncertainty using bootstraps
(Epskamp et al., 2018c).

While estimating the relations among symptoms from data is the
most common way to construct psychopathology networks, there are
alternative ways. One method, Perceived Causal Relations (PCR; right
panel in Fig. 2), links symptoms based on the self-rated causal relations
among symptoms (Frewen et al., 2012). First, the patient or proxy is
asked to select an individual set of experienced or relevant symptoms.
Then, for each symptom-pair that is present, the participant is asked to
what extent the symptoms cause one another. For example, if someone
suffers from ‘insomnia’ and ‘concentration problems’ they are asked to
what extent their insomnia causes their concentration problems, and
vice versa, to what extent their concentration problems cause their
insomnia. With this (personalized) rating technique, a directed network
of the perceived causal relations of a patient can be constructed. Orig-
inally, the method was mainly applied in patient samples (Frewen et al.,
2012), but more recently it has also been used to investigate the causal
relations as they are perceived by expert clinicians in their autistic pa-
tients (Deserno et al., 2020).

3.3. Autism as a psychological network disorder

The phenotypic study of autism too has seen recent efforts to apply
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network theory to characterize symptom profiles and covariance in ASD
(Anderson, 2008; Deserno et al., 2017). Traditionally,
developmental disorders such as ASD have been conceptualized with the
— often implicit — assumption that the co-occurrence of its diagnostic
features stems from some traceable etiological agent. In recent years,
however, the autism field, too, re-evaluated the implications of such
causal model being confronted with its theoretical and practical limits.
Recent work reconceptualizes the autistic phenotype as the result of
multiple interacting cognitive atypicalities instead of a common cause
(Happé and Ronald, 2008), and as a common adaptive response to mild
but widespread neural atypicalities (Johnson, 2017). To capture the
complex developmental interactions implied by these theories, the field
has started to integrate statistical representations of dynamic interaction
effects on the symptom level. Network analytic tools are now also used
to analyze networks of autism characteristics (Deserno et al., 2017),
networks of autism and comorbid conditions, such as OCD (Ruzzano
et al., 2015) and depression (Van Heijst et al., 2020). Such network
representations have opened the door to a field-wide re-evaluation to
the question of how adaptive, and potentially amendable, some conse-
quences of atypical development are. One of the first network studies in
the field, for example, suggested that sensory interest might funnel the
co-occurrence between autism and OCD (Ruzzano et al., 2015). Other
network studies concluded that anxiety and insomnia might be impor-
tant targets to reduce depression in autistic individuals (Montazeri et al.,
2020), and that general well-being in autistic adults could be improved
by creating opportunities for them to contribute to society, and monitor
their social satisfaction (Deserno et al., 2017). Taken together, these
examples illustrate that the network paradigm has triggered a growing
interest in the field to study the interrelation and dynamic adaptivity of
developmental outcomes previously thought to be more or less set in
stone (Happé and Frith, 2020).

neuro-

4. Linking neuroscience and psychology: methodological
avenues

While the fields of network neuroscience and network psychometrics
are rapidly developing, their synergy is lagging behind. This is striking,
as many of the pivotal questions that are being investigated are very
much alike. This holds for method development and statistics (e.g., how
to best estimate links between nodes) as well as for the substantive
questions (e.g., does the brain or symptom network differ for people
with autism compared with controls). While researchers in both fields
work on the same disorders, as evident from our autism example, and
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while most researchers agree that brain and behavior are crucial to
advance our understanding of disorders such as autism, efforts to link
the fields of network neuroscience and network psychometrics are
scarce. A general barrier towards such collaboration is that interdisci-
plinary research, although recognized by many to be essential for sci-
ence to progress, is only minimally embedded in institutions and funding
schemes. Therefore, such research approaches need to overcome many
challenges both substantively and practically.

Conceptually, for example, the definition of nodes in a network
differs greatly (see Table 1). In network neuroscience, a node refers to
some physical entity (e.g., a voxel or brain region), whereas in network
psychometrics this is never the case; symptoms are abstract states that
are defined on the bases of characteristic patterns of affect, cognition,
and behavior, rather than physically localized entities. Such differences
also bring about differences in research questions. Whereas network
neuroscience is generally concerned with discovering the underlying
brain structure or function, such conversion to an ‘underlying structure’
does not need to be the main goal in network psychometrics. In fact, in
network psychometrics it is generally known that the structure itself will
depend on the variables that are included. The step of variable selection
is thus a pivotal step in network psychometrics, whereas in network
neuroscience nodes will always represent the brain.

Very recently, the links between brain and behavior networks have
been explored. An opinion paper has posited that multilayer graph
theory might be able to bridge the gap between personality traits and
brain networks (Brooks et al., 2020). Furthermore, a recent paper uses
both symptom and brain data in combination with network analysis to
explore the links between specific depression symptoms and brain
structure (Hilland et al., 2020). The authors used cortical thickness of
five relevant brain regions as brain nodes, and scores on an often-used
depression questionnaire as symptom nodes, and looked at their asso-
ciation in 268 participants. Their results unveil several links between
specific brain regions and individual symptoms of depression for the first
time.

These papers highlight the importance and potential of integrating
brain and behavior. Yet, when integrating both fields, statistical chal-
lenges may arise concerning sampling issues, data collection, model
estimation, and model selection. First, for a model integrating brain and
behavior, the data has to be collected along the same dimensions, which
is often not the case. For example, brain networks are typically
computed at an individual level using intra individual data estimated on
the basis of anatomical models or functional time series, whereas
symptom networks often reflect inter individual differences that are
estimated on cross-sectional data. In such cases, it is not straightforward
how to link the brain and symptom networks. Second, integrating both
brain regions and symptoms into a single network requires estimation of
an increasing number of parameters compared with estimating a
network in only one domain, which necessitates availability of extensive
data samples. The nature of these necessary data samples differs as well
between brain and psychology networks: while many individuals or
many different time points are necessary to estimate a psychological
network, additional data limitations in network neuroscience relate to
scanning length and availability of advanced machinery. Third, prob-
lems may occur in estimating relations among the brain and symptom
levels as the effect sizes of these cross-level associations (i.e., associa-
tions between brain regions and symptoms) are likely to be much
smaller than those within a level (i.e., associations among brain regions
or associations among symptoms). Fourth, and relatedly, the ways in
which it is decided when to include an association into the network
model differs greatly in both fields. In network neuroscience it is rela-
tively common to threshold the estimated associations, whereas in
network psychometrics often regularization techniques are used. How-
ever, both may be sub-optimal given that the associations differ in size
(how to determine a threshold in such a case) and the inter-level asso-
ciations are likely to be the smallest (and will thus likely be omitted
when using regularization techniques).
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Fig. 3. Overview of the proposed methodological avenues. a) Multilayer net-
works: the symptom/behavior network and brain network are integrated into a
multilayer network that contains within- and between-layer links. b) Integrated
networks: nodes from behavioral/symptom measures and brain measures are
combined into a single network. c) Network-based regressor network:
behavior/symptom networks are used to identify brain correlates of each node
in the behavioral/symptom network and are subsequently combined in a sin-
gle network.

We have explored three ways of uniting the analytical network levels
of brain and behavior, schematically presented in Fig. 3. Each of these
methodological avenues tackles some of the challenges reported above
and may serve as a stepping stone for further multi-modal network
development.

4.1. Multilayer networks

4.1.1. Background

The most inclusive way to link brain and symptom networks is
incorporating both networks fully into some multilevel data structure. In
the past decade, so-called multilayer networks have been described
(Mucha et al., 2010), and may be used on brain-symptom networks
(Brooks et al., 2020). A multilayer network combines several levels of
network behavior in a system, both within and across the different levels
or layers. Thereby, it is able to incorporate brain connectivity, symptom
connectivity, and the connectivity between the brain and symptom
nodes. Importantly, the dynamics of the multilayer network may su-
persede properties of individual layers in other types of networks
(Stegehuis et al., 2016; Cellai et al., 2016).
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4.1.2. Method

Constructing a multilayer network involves multiple steps. First,
each layer-specific network is constructed (see Fig. 3a). For brain as well
as symptom networks, the methodologies described in the earlier sec-
tions of this paper can be used. The idea here is that by adhering to
current standards within these separate fields, the layer-specific network
information is preserved. Then, these networks are connected through
interlayer connections, for instance based on covariance of node prop-
erties, in order to track whether individual differences go hand in hand
across layers. From the behavioral data, we can take subjects’ scores on
each subscale. From the brain data, average connectivity of each brain
region can be used as a fingerprint of that region per subject. The cor-
relation between the two defines interlayer connectivity between each
pair of nodes. Ultimately, the layer-specific networks and interlayer
connectivities are combined into a supra-adjacency matrix, of which
multilayer network properties can be determined.

4.1.3. Interpretation

The resulting multilayer network may be a starting point to explore
brain-behavior relationships in a new way. For instance, one may extract
cross-level communities using a multilevel clustering algorithm. Com-
munities are clusters of nodes that share more links with each other than
with nodes outside these clusters (De Domenico et al., 2015). These
communities can highlight important connections in the network,
thereby supporting previous results or yet undiscovered findings. The
main advantage of using the multilayer approach is that layer-specific
network information is kept and included in the calculation of rele-
vant measures.

4.1.4. Limitations

At the same time, many assumptions and choices are part of such
multilayer analyses. First, each layer is of course still subject to the
shortcomings of that particular network methodology. Secondly, the
data used for both networks may differ. Most brain networks are
calculated on an individual level, based on time series or individual
tractography. On the other hand, psychology networks are usually
calculated at the group level. Consequently, the operationalization and
interpretation of interlayer connections is particularly difficult. Third,
there is a need to limit the number of false positives within and across
layers. Particularly for the interlayer connections, the optimal way to do
so is unclear. Fourth, multilayer network analysis is impacted by abso-
lute weights per layer and between layers (Mandke et al., 2018),
necessitating some sort of weight normalization. Finally, data avail-
ability is a major limitation of multilayer network analysis in the context
of brain-behavior relationships. Since the multilayer network obviously
has even more nodes than brain or symptom networks alone, more data
is needed to be able to assume links with a reasonable level of certainty.

4.2. Integrated network modelling

4.2.1. Background

Instead of first estimating a network at the brain and behavioral level
separately and then connecting these, it is also possible to estimate a
single, integrated network model including both brain and behavior
data (e.g., Hilland et al., 2020). This integrated network modelling re-
quires the brain and behavioral metrics to be measured along the same
dimension (i.e., over time, or over people). To this end, large cohorts
provide unique opportunities to link brain and behavior at a
cross-sectional level. These cohorts (e.g., UK biobank) contain both
brain and behavioral measures at a large scale, which enable us to relate
brain and behavior across people.

4.2.2. Method

The most straightforward case of estimating an integrated network
model will be in large cross-sectional datasets. Estimating the integrated
network then starts out with assembling a dataset that contains, for each
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person, the available brain and behavioral metrics (see Fig. 3b). Unlike
multilayer networks, these brain and behavioral metrics are included as
separate values (nodes) without first estimating the relations among
them. Then, similar to estimating a network in each discipline sepa-
rately, this dataset can be used to estimate the relations among all
included values, now containing both brain and behavioral information.

In estimating a network on the collated dataset there are choices to
be made regarding the estimation of the relations (e.g., using correla-
tions or partial correlations) and how to select or include links (e.g., use
some kind of pruning or regularization). If the sample is sufficiently
large, moderation effects could be included to investigate whether
specific brain regions may underlie the links between two symptoms
(Haslbeck et al., 2019).

4.2.3. Interpretation

By estimating an integrated network model, we can disentangle, at a
more fine-grained level, how specific brain regions relate to specific
symptoms. Using partial correlations could have the advantage to in
addition distinguish direct from indirect relations. Estimating an inte-
grated network model, Hilland et al. (2020) identified direct links be-
tween depression symptoms and brain regions, involving predominantly
the hippocampus, cingulate, and fusiform gyrus. When moderation ef-
fects are estimated, integrated network modelling could detect potential
brain regions that may underlie the interaction between two symptoms.

4.2.4. Limitations

While simple and straightforward, a great caveat to this method is
that the brain and behavior metrics must be measured in the same di-
mensions. Given that many psychological networks are estimated on
large groups of people (cross-sectional data), whereas many brain net-
works are individually based, this method might not always be suitable.

4.3. Network-based regressors

4.3.1. Background

One difficulty associated with integrating brain and behavior net-
works is the potentially large number of links in both networks. Further,
most questions in clinical neuroscience focus on symptoms and one may
only be interested in the brain measures if they relate to the symptoms.
To reduce the number of brain nodes to the ones that are tied to the
symptoms, regression approaches are commonly used to identify brain
correlates. However, symptom scores may be highly correlated,
obscuring the specific brain correlate of particular symptoms. In the
context of network psychometrics, the unique variance of each node in
the symptom network can be estimated to obtain the brain correlates to
correspond specifically to each node.

4.3.2. Method

To obtain the unique variance of a variable, one may simply regress
the effect of other variables from each variable and retain the residual.
The residual terms can be used as regressors to obtain the neural cor-
relates of the unique variance of each behavioral measure. Next, one can
obtain the network structure of the neural correlates, e.g., by calculating
the correlation between the regions that best predicted the behavioral
measures (see Fig. 3c).

Using this approach, Bathelt et al. (2020) investigated the network
structure of autism symptoms at the level of behavior and brain func-
tion. At the behavioral level, the results replicate the factor structure of
close links between social interaction and communication and weaker
links with RRBIs. However, at the level of functional brain correlates,
social interaction and RRBIs were more closely linked.

4.3.3. Interpretation

The interpretation of the results from this method is relatively
straightforward, because the measures at the neural level reflect the
unique variance in the behavioral measures. It may be of particular
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interest to identify any mismatch between the networks at each level or
to integrate both into a single network to assess potential confluence of
nodes.

4.3.4. Limitations

In some cases, there may be no clear neural correlate of a node in the
behavioral or symptom network. This may be because of genuine
weaker relation at the brain-level or because there is not enough vari-
ance in the behavioral or symptom measure once the variance of other
nodes has been taken into account. A careful inspection of the structure
of the behavior or symptom network is always advisable. If there is
reason to assume that there may not be a link with the brain measure for
a specific node in the behavior or symptom network, the corresponding
node can be omitted from the network-based regressor network.

5. Conclusions and future perspectives

We have laid out the parallel development and incorporation of
networks and complexity theory in neuroscience on the one hand, and in
psychological science on the other. As these fields have rapidly evolved,
both methodologically and conceptually in the past decades, now is the
time to invest into merging these insights and develop a brain-behavior
network methodology to answer new questions. Coming back to our
main example of ASD as a brain and symptom network disorder un-
derlines the promise that multi-level analysis may add to current level-
specific insights in terms of etiology, symptomatology and potentially
treatment of this disorder. A first multi-level study on ASD, using one of
the methodological avenues from this paper, indicates that the (known)
overlap between communication and social difficulties in the symptom
network is not reflected in the overlap between their functional brain
correlates (Bathelt et al., 2020). Knowledge on the multilevel organi-
zation of symptoms and brain networks may therefore impact treatment
strategies. Treatment of psychiatric disorders may be optimized by
better understanding the relationship between brain and behavior (e.g.,
Graham et al., 2014). For example, pharmacological treatment targets
molecular processes in the brain, but it is difficult to understand and
predict how behavior may change as a result of it because we lack the
essential multilevel knowledge to do so. Even more relevantly,
non-pharmacological treatments that directly target the brain, for
instance electrical or magnetic stimulation, have been center stage in
developing ideas on how interventions at the brain network level may
predict individual symptoms in psychiatric disorders (Douw et al., 2020;
Fox et al., 2014; Li et al., 2018). A multilevel network view of both
symptom and brain network behavior may allow further precision in
developing such treatment targets for patients suffering from psycho-
pathology. Coming back to our ASD example, the finding that brain
network correlates of behaviorally connected symptoms are more
separate (Bathelt et al., 2020), may mean that multimodal treatment
targeting different functional networks is necessary, or that behavioral
therapy that targets both connected symptoms may be more beneficial.
These results highlight the new insights that can be gained from inte-
grating brain and psychometric networks. However, the true potential of
these new avenues for understanding ASD and other complex disorders
will only become apparent once they are applied more widely and
developed further.

We conclude with some thoughts on how to advance this exciting
synergy between fields. First, methodological developments within both
network neuroscience and psychological network science are and will
remain ongoing. Keeping up with these field-specific advances will
greatly aid in tailoring any brain-behavior network combination. This
obviously necessitates collaboration between experts from both fields,
which undoubtedly takes more time and effort than field-specific
research. Secondly, sophisticated experiments will become necessary
to redeem the promise of brain-behavior networks. This will certainly
involve extensive data collection mitigating the previously described
variety of requirements that holds for both fields. Moreover, elegant
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study designs may be able to disentangle the trivial versus synergetic
information that the complex combination between brain and behavior
networks has to offer. For instance, a combined set of intervention
studies targeting the symptom network (e.g., cognitive behavioral
therapy for depression), the brain network (e.g., non-invasive brain
stimulation), or a combination of both (e.g., stimulation during ther-
apy), could elucidate whether and how these two levels correlate before
treatment, and how this might change as a result of manipulation. Also,
the utility of computational modeling in validating and expanding
empirical work on networks has been essential within physics, and is
winning ground in network neuroscience (Bassett et al., 2018b; Leven-
stein et al., 2020) and psychology (Guest and Martin, 2021). Future
endeavors in the field of brain-behavior networks may incorporate such
computational modeling in a way that also allows for fine-tuning of
cross-field insights. Finally, although network science offers a rich
theoretical framework with respect to the structure and dynamics of
both brain and behavior networks, the connection between neuro-
physiological and psychological theories is still largely lacking. Devel-
oping this connecting framework will help guide methodological
development and empirical exploration of the links between brain and
behavior. Very related to this point is the need to keep track of what type
of explanation or understanding these analyses are offering. Ideas have
been put forward on theory and explanation within network neurosci-
ence (Bertolero and Bassett, 2020) and psychological network science
(Borsboom, 2017), but the union between these methods or levels of
explanation remains largely unexplored from a philosophical
standpoint.

In conclusion, it is still complicated. However, we strongly
encourage those tickled by the idea of combining brain and behavior
networks to persist and take on this difficult task without getting over-
whelmed by these obstacles. There is value in embracing what seem to
be overwhelming levels of complexity, making mistakes, and learning as
we go.
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