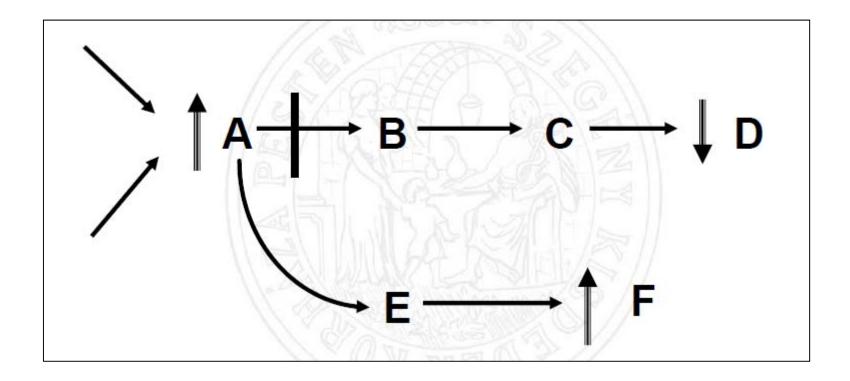
Barna Vásárhelyi

Lab test for the investigation of major human metabolic disorders

The human body


Contains app. 6 x 10^{14} cells. (100.000-fold higher than the total number of people on Earth).

- One cell contains 4×10^{11} molecules.
- The number of possible variations exponentially increase with complexity.

Metabolites in human body

- Several thousands of different structures, classes
- Concentration ranges between mmol and less than pmol
- Distribution varies with tissues
- Blood and urine the most commonly available tissue for analysis – they may indirectly reflect real conditions
- Different analytical approach is required.

Disorder of metabolism: the pathomechanism

Two-sided problem:

(1) metabolites before the block increase (and become toxic)

(2) The level of endproduct decrease

This lecture is about

- Lab aspects of the two most common metabolic disorders:
 - Diabetes
 - Dyslipidemia
- Principles of screening for rare disorders

Disturbed glucose homeostasis

<u>Hypoglycemia</u> (under 2.5 mmol/l)

Endocrine disorders (adrenal insufficiency hypophysis insufficiency),

Glycogen storage disorders,

insulinoma,

stress

Alcoholism, liver disorders, cirrhosis Severe medical conditions (sepsis, uremia), fasting Drug-induced hypoglycemia Preanalytical error of (use serum/plasma cell unseparated from compartment).

<u>Hyperglycemia</u> (above 10 mmol/l)

Diabetes,

Hyperthyreosis,

Overproduction of cortisone / GH / glucagone

Classification of Diabetes Mellitus

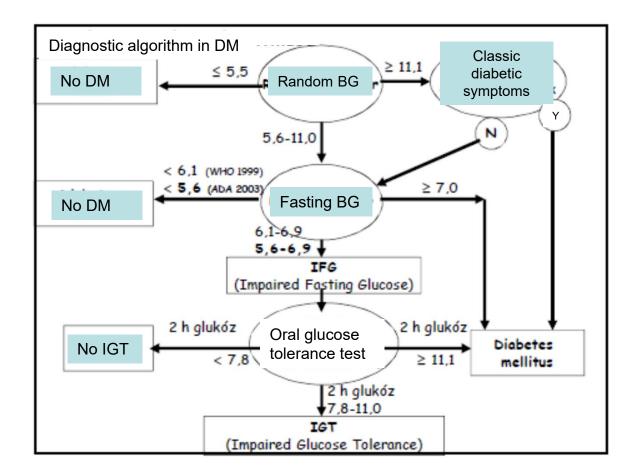
Type 1 diabetes autoimmune origin; the destruction of beta cells of the pancreas
(6-7%)

2. Type 2 diabetes relative insulin deficiency / insulin resistance (90%)

3. Other subgroups (3-4%)

Epidemiology of diabetes (WHO)

1994: 100 millions 2010: 250 millions 2030: 350 millions of diabetics worldwide (90-95%: Type 2 DM)


Diabetes is the cause of

50% of end-stage renal disorders 50% of cases with blindness in the elderly risk factor for stroke (3x), infarction (3-5x) peripheral artery disease (15-30x)

PROBLEM

- It is characteristic for T2DM that symptoms of disease (thirst, excessive urination, weakness, weight loss etc) occur just in advanced stage if ever
- Hyperglycemia, the leading symptom of diabetes does not cause any complaint

SCREENING IS OF OUTMOST IMPORTANCE

NOTE:

Formula for calculation of mg/dl from mmol/l: **mg/dl = 18 × mmol/l** Formula for calculation of mmol/l from mg/dl: **mmol/l = mg/dl / 18**

HOW TO PERFORM OGTT

- THE test should be performed in the morning, at fasting state (at least 10 hours after a meal)
- DURING 3 days prior to OGTT the diet should contain at least 150 gram carbohydrate per day.
- PHYSICAL ACTIVITY should be as usual.
- SOME FACTORS (infection, drug, anxiety, stress, smoking) may affect the results
- 75 g (or 1.75 g/kg bw) glucose dissolved in 250 300 ml glucose should be ingested during 5 minutes.
- Glucose levels should be measured baseline and in the 120th minute.
- FOR non-cooperating patients: IV glucose 0,5 g/kg bw (up to 35 g), during 3 min; sampling in every 10th min, for 1 hour

GLUCOSE MEASUREMENT

• SAMPLE: recommended: NaF containing tube

WHY?

- FLUORIDE inhibits the enolase enzyme, hence inhibits the consumption of glucose
- In general, glucose levels decrease by 0.5 mmol/l per hour for 3 hours, then stabilise in the presence of fluoride for 3 days.

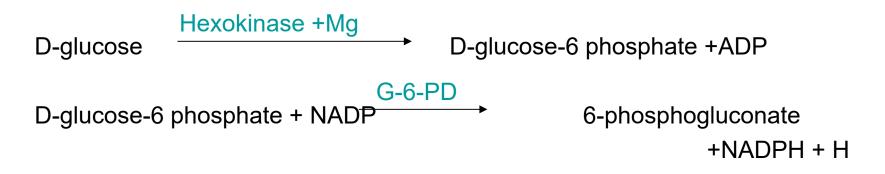
Analytical approach for glucose level measurement

Glucose-oxidase technique:

Alfa-D-glucose _____ beta-D-glucose

glucose oxidase beta-D-glucose +H2O2 + O2 → géuconate + H2O2

Reduced chromogen (not coloured) +H2O2 peroxidase


Oxidised chromogen (coloured) + 2H2O

Warning: cannot be used in reducing environment. Vitamin C decreases by 50% the level.

H2O2 can be measured with amperometry; principle for glucometer

Analysis of glucose levels

Hexokinase method (reference method):

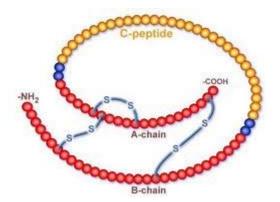
Warning: EDTA plasma cannot be used

Important:

- Total blood: Capillary glucose level is lower by 5-10% than that in the venous blood
- Venous plasma glucose: equal to that in capillary whole blood
- Capillary blood: sampling site (finger tip) should be prewarmed before sampling

See FILM 1

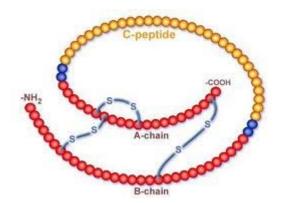
 Please, note the low repeatability of POCT blood glucose test results


https://www.youtube.com/watch?v=n7H3KfMNpX4

Urinary glucose levels

- Clinically not sound
- Methods based on the reducing capacity of glucose

(interferring: uric acid, fructose, lactose, ketone bodies, sulfonamide, cystein, creatinine, salicilate etc.)


• Methods using glucose-oxidase approach (false positive: hypochloric acid, expired test false negative: vitamin C, antibiotics, salicylate, ketone bodies)

Peptide C

Reference range: 0,3-1,4 nmol/l (0,8-4,2 ng/ml).

- Pro-insuline molecule is cleaved for insulin and peptide-C before secretion.
- The quantity of secreted peptide C is identical to that of insulin.
- Indicates endogenous insulin production.
- Indication: diagnosis of islet cell tumors, pre-diabetes, hypoglycemia, insulinoma.
- Increased levels: insulinoma, type 2 DM, renal failure
- Decreased levels: type 1 DM

INSULIN

Reference range: 18-170 pmol/l (2,6-25 mU/l) in fasting state.

- Classification / prediction of DM
- Beta-cell activity assessment
- Increased levels: insulinoma, insulin resistance / early phase of T2DM, polycystic ovary syndrome, exogenous insulin therapy, sulphanylurea therapy
- Decreased levels: T1DM

HOMA-INDEX CALCULATION (homeostasis model assessment)

Fasting INSULIN * fasting GLUCOSE

Reference range: <4.4

• High values: Indication for insulin resistance

AUTOANTIBODIES

• Identification of patients at risk T1DM: 75-85%+ (otherwise: 0,5%)

Islet cell autoantibodies: ICA Glutamate acid decarboxilase autoantibodies: GADA Tirosin-phosphatase IA-2 autoantibodies: IA-2A Insulin autoantibodies : IAA

DETECTION: with immunoassay

Genetic testing

HLA-DR3 (30%) HLA-DR4 (95%) histocompatibility genes (also present in 40% of non-diabetics)

OTHER hormones

Glucagone, IGF, epinephrine, GH, thyroxin, somatostatin

DIABETIC COMPLICATIONS

EARLY onset:

Ketoacidosis, lactic acidosis, hyper (hypo) glycemia – blood glucose tests, blood gases, electrolytes

LABORATORY TESTS ARE ESSENTIALLY NEEDED

LATE onset:

- Microvascular
- Macrovascular
- Retinopathy
- Neuropathy
- Nephropathy --- microalbuminuria (30 300 mg/day)

NO test for detection , just for risk assessment (EXCEPT: nephropathy)

DIABETIC KETOACIDOSIS: KETONE BODIES

Reference range: serum 20-40 µmol/l (0,2-0,4 mg/dl)

 β -hxdroxx-butirate, acetic acid, acetone.

- Under normal conditions: peripheral tissues consume acetic acetate and beta-hydroxi-butirate. Acetone is produced from acetacetate by decarboxylation.
- In fastaing, disturbed carbohydrate or lipid metabolism: 3-5 mmol/l, increased urinary excretion. In practice, semiquantitative assessment is adequate.

Urinary strips: acetic acetate and aceton produce violet complex with nitroprussid-sodium.

HbA1c assessment: indicator of long-term metabolic state

Self-monitoring of blood glucose levels support the appropriate dosing of insulin and the dietary modifications.

To assess the long-term efficacy of therapy HbA1c determination is needed (reflects the blood glucose levels of the last 2-3 months)

HbA1c helps to decide the appropriateness of therapy and to assess patient's compliance with therapy. More the average glucose higher the HbA1c

HbA1c: what is that and how is to be measured

HbA1c: a labile substance is produced as a result of reaction between aldehide group of the glucose and the free amino group of Hb (Schiff base) that is converted irreversibly for stable ketoamine

No enzyme catalises to this process. The process depends solely on glucose levels.

Healthy range: < 6%

Measurement:

1.HPLC 2.Immunoassay (közel 30 féle teszt)

Problem: different reagents, approaches: standardization is required

IFCC standardisation

- **IFCC** (International Federation of Clinical Chemistry and Laboratory Medicine) :
- Reference measurement approach with a pure primary calibrator (β-N1-deoxifructosyl-hemoglobin) Reagent producing companies are obliged to used this primary reference material to standardise their HbA1c measurement techniques.

Reference laboratories worldwide

Result parameters

- HbA1c should be reported in IFCC units (mmol HbA1c /mol HbA₀) using thes units in NGSP units (%).
- The conversion formula between IFCC and NGSP unit (NGSP% = [0,0915 * IFCC mmol/mol]+ 2,15)
- After 2011 HbA1c should be reported as IFCC unit in Hungary

Novel reference range and target values

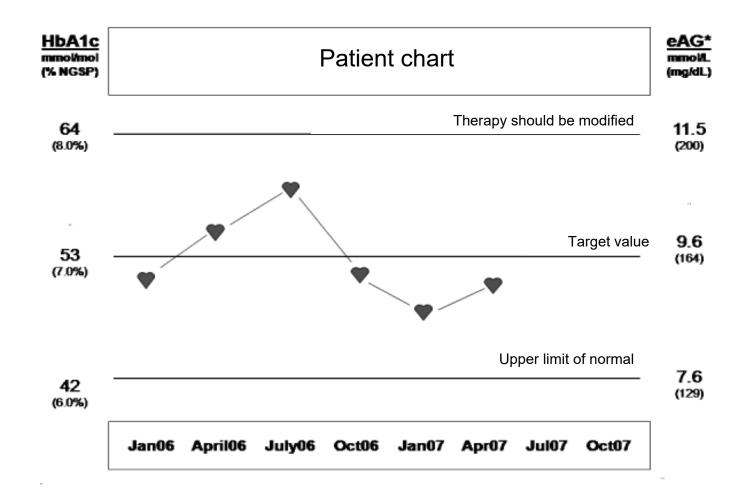
Reference range					
old	novel				
4.0-6.0%	20-42 mmol/mol				
Therapeutic target value					
old	novel				
7.0%	53 mmol/mol				

• DCCT IFCC 4.0% = 20 mmol/mol 5.0% = 31 mmol/mol 6.0% = 42 mmol/mol 7.0% = 53 mmol/mol 8.0% = 64 mmol/mol9.0% = 75 mmol/mol

Kilpatrick's Kludge
Ann Clin Biochem 2009; 46 (1) 84-5

Using HbA1c: the ADAG (A1c derived average glucose) or eAG (estimated average glucose)

- Current guidelines: Lab should report the estimated average glucose levels derived from HbA1c
- In 2008, the following formula was published for the calculation of eAG (estimated average glucose)


eAG mmol/I= 1,59 x HbA1c%-2,59 ; (eAG mg/dI= 28,7 x HbA1c%-46,7)

 The association is not affected by the age, gender, diabetes, race and smoking

^{1.} ADAG Study Group Translating the A1c assay into estimated average glucose values Diab Care 2008; 31: 1473-1478

^{2.} David B. Sacks. Translating Hemoglobin A1c into Average Blood Glucose: Implications for Clinical Chemistry Clin Chem 2008; 54:1756-1758.

The information provided by the eAG

IMPORTANT: eAG reflects the average blood glucose level representative for a given period and it is not the same as that measured at home

IMPORTANT

- 1% increase in Hb A1c: 18% and 28% increase in risk of cardiovascular and peripheral artery disease, respectively
- Appropriate blood glucose ontrol is reuired
- Hgb A1c is recommended to be <7%

Problems with HbA1c measurements:

ABNORMALITIES WITH THE QUANTITY / TURNOVER OF HB

- Hemolytic anemia \rightarrow age of red cells decreases \rightarrow HbA1c levels may decrease
- Higher age of red cells (iron deficient anemias) → HbA1c levels may increase

ABNORMALITIES WITH THE QUALITY OF HB

- Hemoglobinopathies (Hgb F,Hgb C) \rightarrow falsely low HbA1c
- Severe renal and liver disorders may interfere

INDICATOR of short-term metabolic status

FRUCTOSE-AMINE

Reference range: 200-285 µmol/l.

Fructose-amine is a protein-ketoamine complex. It is produced when glucose is attached to albumin.

It indicates the amount of glucose in μ mol that binds to albumin in 1 litre of serum. Half-life is short, it is appropriate to characterize blood glucose levels

Half-life is short, it is appropriate to characterize blood glucose levels during the last 2-3 weeks

Useful when HbA1c levels cannot be interpreted.

Disordered fat metabolism

Friedrichsen-type classification (primary hyperlipidemias)

Phenotype	Chol	Tg	Chy	VLDL	IDL	LDL	Genetic cause
I	+	+++	++			low	LpL deficiency, ApoC-II deficiency
lla	++	normal		normal		++	familiary hyperchol
llb	++	++		++	normal or +	++	familiary combined hyperlipemia
111	++	++	+	+	++	low	familiary III típusú hyperlipemia
IV	+	++		++		normal	familiary combined HPL familiary hypertg.
V	+	++	++	++		low	familiary hypertg ApoC-II deficiency

• See FILM 2

https://www.youtube.com/watch?v=of-r3jnzYf0

https://www.youtube.com/watch?v=9dghtf7Z7fw

Secondary hyperlipoproteinaemia:

- diabetes mellitus
- metabolic syndrome
- gout
- obesity
- hypothyreosis
- pregnancy
- estrogen, steroid therapy
- nephrosis syndrome
- alcoholism
- Drug adverse effect
- Obstructive liver disease

4 major parameters:

Parameter	Normal	Intermediate	Pathologic
total cholesterol (mmol/l)	<5,2	5,2-6,2	6,2<
LDL cholesterol (mmol/l)	<3,4	3,4-4,2	4,2<
HDL cholesterol (mmol/l)	>1,6	1 – 1,6	1>
Triglyceride (mmol/l)	<0,9	0,9-1,42	1,42<

Other risk factors should be always considered

Target value depends on risk:

Risk category	Target	LDL-cholesterol	total cholesterol
I.	IHD or equivalent, Risk >20%	2,6	4,0
11.	At least 2 risk factors, risk < 20%	3,4	5,2
.	0-1 risk factors	4,1	6,5

cholesterol

- 25-40% 'free' (unbound)
- 60-75% estherified with fatty acids
- Summa: 'total cholesterol'
- Circulates exclusively with apolipoproteins
- Sample: serum or plasma (fasting)

Cholesterol: principle of analysis

cholesterol ester + free cholesterol

cholesterol esterase

free cholesterol + free fatty acids

cholesterol oxidase

cholestenone + H2O2

H2O2: colourful complex with phenol and 4-aminoantipyrin

Important

- Strangulation (for more than 3 min) increases cholesterol levels by 10%
- Increase while standing
- 5% of daily fluctuation

Analysis is interferred by:

Hemoglobin, bilirubin (extreme high values), ascorbic acid (extreme high dose)

Triglycerid level analysis

- Free glicerol levels after treatment of the specimen with lipase
- Several techniques

Preanalytical errors:

- Strangulation increases triglyceride levels
- Long-term storage on clotted sample.
- Free glycerol present in the sample.
- Haemolysis; high ascorbate levels: falsely low triglyceride levels.

When should one measure the cholesterol / triglyceride levels?

Guidelines recommend the measurement of lipid panel before 40 years of age as a part of routine lab investigation.

Total cholesterol, triglyceride and HDL-cholesterol levels should be measured in each people with any of the following conditions:

- Known risk factor for CVD (diabetes, hypertension)
- CVD in history
- High prevalence of CVD in young age among relatives)
- the patient or their first level relative have xanthelasma or arcus corneaej
- The serum is lipaemic in fasting state (this time triglyceride should be also measured)
- obese

METABOLIC SYNDROME (if exists at all)

- Hypertension
- Hypertriglyceridemia
- low HDL-cholesterol
- Obesity
- Impaired glucose tolerance
- Microalbuminuria (WHO)

(an entity of lab disturbances)

Conditions frequently associated with metabolic syndrome

- Impaired glucose tolerance
- Atherogen dyslipidemia
- Endothel dysfunction
- Prothrombotic state
- Hemodynamic changes
- Proinflammatory state
- Increased ovarian testosterone production
- Sleeping apnoe

Disorders frequently associated to metabolic syndrome

- diabetes
- hypertension
- polycystic ovary syndrome (PCOS)
- non-alcoholic fatty acid
- sleeping apnoe
- CVD (infarction, PAD, Stroke)
- Cancer (breast, prostata, colorectal, liver)

Inborn errors of metabolism

- Inherited autosomal recessive
- Young age
- In some case dietary intervention may help to reach symptom free status
- Can be diagnosed from blood (abnormal metabolite levels)
- Screening programs

Neonatal screening for 26 inborn errors of metabolism

Amino acid metabolism disturbances:

Phenylketonuria Maple syrup disease Tyrosinemia, type I, II Argininosuccinate synthase deficiency, ASS) Argininosuccinate liase deficiency, ASL) Homocistinuria

Fatty acid oxidation disturbances:

Short-chain acil-CoA dehydrogenase deficiency (SCAD) Medium-chain acil-CoA dehydrogenase deficiency (MCAD) Long-chain hydroxi-acil-CoA dehydrogenase deficiency (LCHADa,b) Very long chain acil-CoA dehydrogenase deficiency (VLCAD) Multiplex acil-CoA dehydrogenase deficiency (MADD, v. GA II) carnitin-palmytoil transferase deficiency (CPT-I, CPT-II) carnitin transport disorders (CT)

Disorders of organic acids:

beta-ketotiolase deficiency Glutarate acidemia, 1 típus (GA-I) Isovalerianate acidemia (IVA) Metilmalonate acidemia (MMA) Propionate acidemia (PA) 3-Hidroxi-3-metilglutaril-CoA-liase deficiency (HMG) 3-Metilkrotonil CoA carboxilase deficiency (MCC) Multiplex carboxilase deficiency (MCD)

Endocrine and other metabolic disorders Hypothyreosis Galaktosemia Biotinidase deficiency

Diet / substitution may prevent the complications

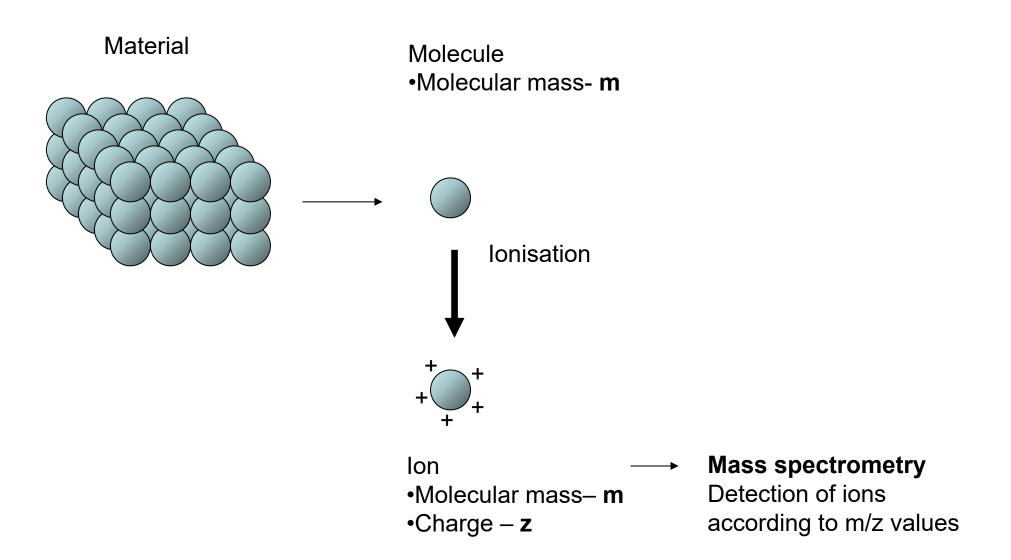
Neonatal screening for 26 inborn errors of metabolism

Amino acid metabolism de Phenvlketonuria

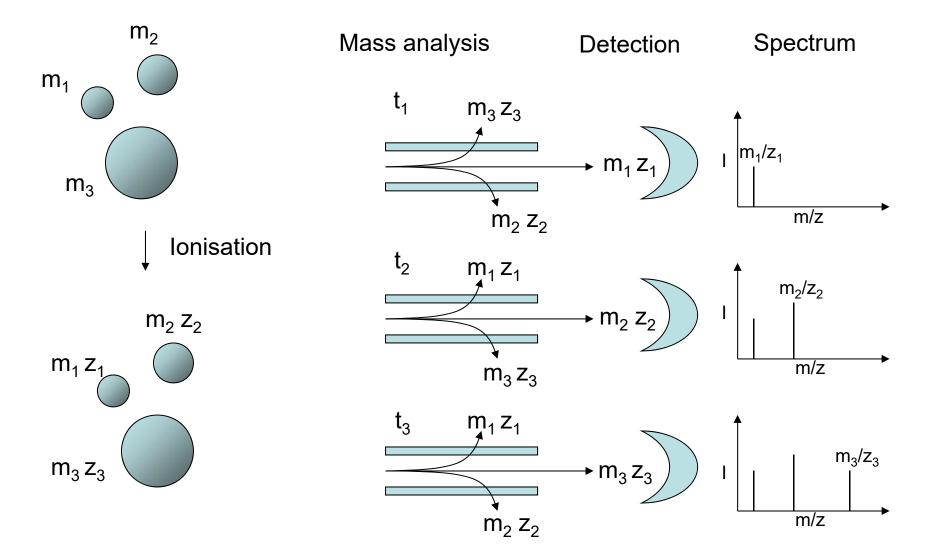
Maple syrup disease Tyrosinemia, type I, II Argininosuccinate synthase Argininosuccinate liase defic Homocistinuria

Fatty acid oxidation distu Short-chain acil-CoA dehyd Medium-chain acil-CoA dehy Long-chain hydroxi-acil-CoA del Very long chain acil-CoA del (VLCAD) Multiplex acil-CoA dehydrog carnitin-palmytoil transferas carnitin transport disorders (

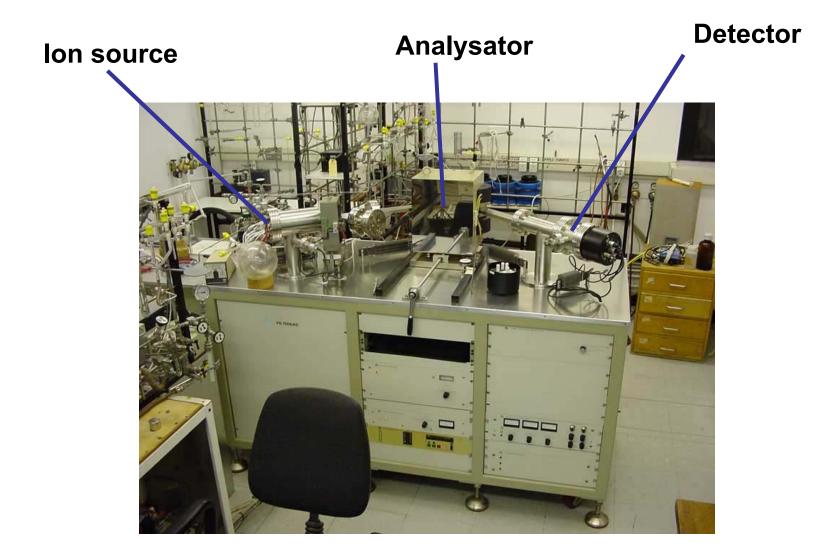
yanic acids:

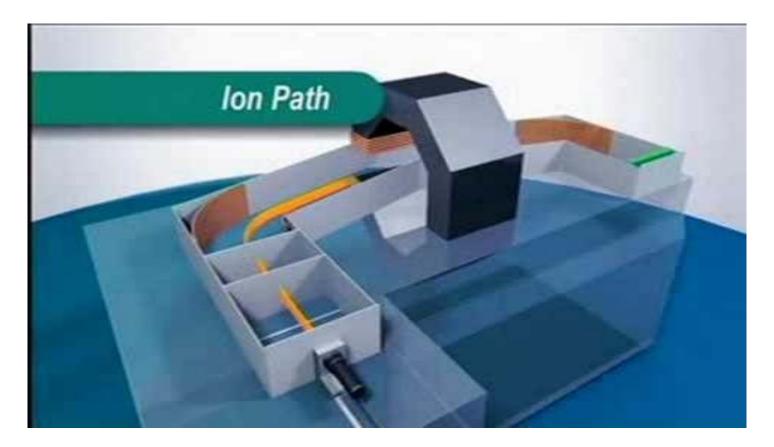

deficiency ia, 1 típus (GA-I) idemia (IVA) idemia (MMA) mia (PA) glutaril-CoA-liase deficiency (HMG) oA carboxilase deficiency (MCC) lase deficiency (MCD)

other metabolic disorders

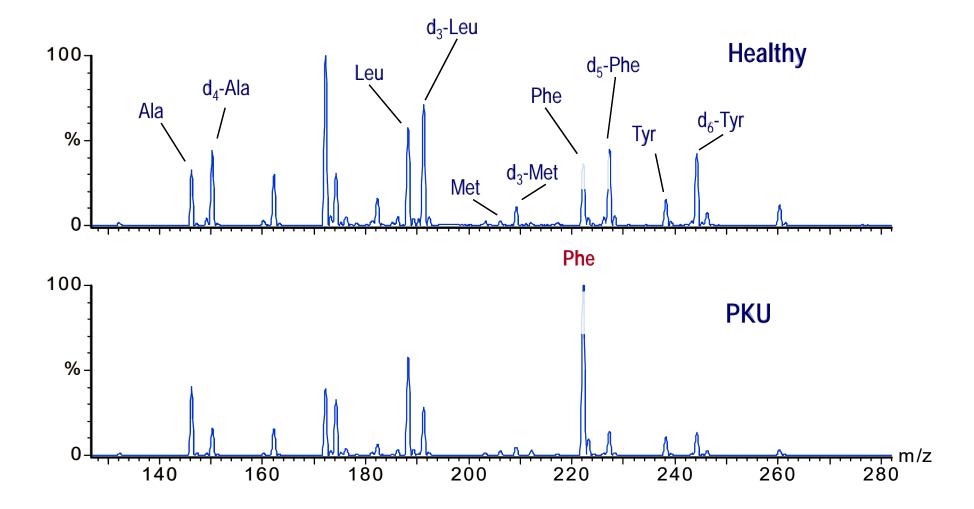

ency

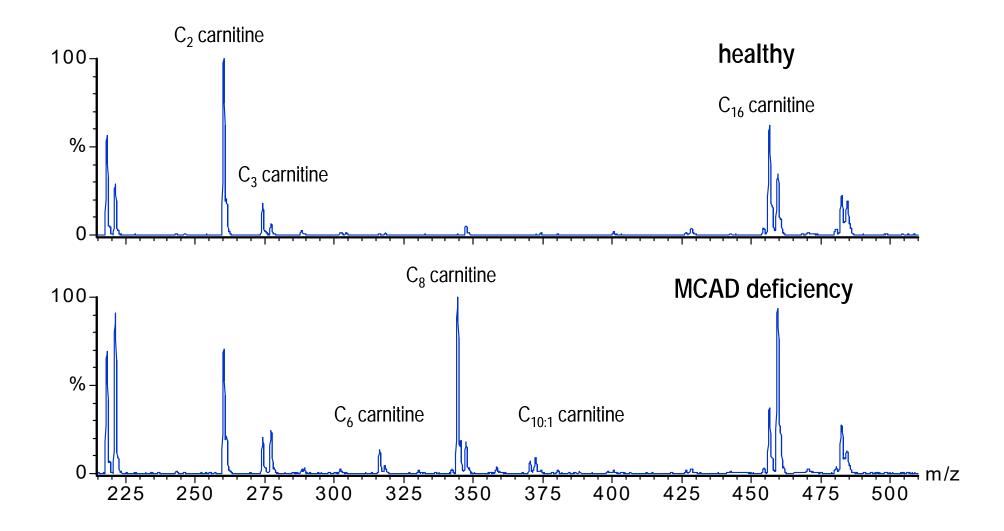
Diet / substitution may prevent the complications


Mass spectrometry for detection


Mass spectrometry

Mass spectrometer




See FILM 3

https://www.youtube.com/watch?v=J-wao0O0_qM

Mass spectrum analysis for newborn screening

Take home messages

- 1. Lab has a major role in diagnosis and monitoring of metabolic disorders
- 2. Large variety of techniques
- 3. The two most commonly ordered groups of tests:

blood glucose homeostasis

&

lipid metabolism

4. Mass spectrometry is used for metabolic screening