Determination of working length and step-back technique

Dr János Vág Phd Department of Conservative Dentistry Semmelweis University

Based on Mahmoud Torabinejad, Richard E. Walton, ENDODONTICS: PRINCIPLES AND PRACTICE 4th edition

Anatomy of the apex

Figure 1 (a) Position of the apical foramen (adapted from Kuttler 1955). (b) Anatomy of the root apex (adapted from Kuttler 1955).

- 1. Radiological apex (anatomical)
- 2. Major foramen (foramen apicale)
- 3. Minor foramen (apical constriction, foramen physiologicum, CDJ)
- 4. Distances: 0.36-0.6 mm (but could be 3 mm)
- 5. Distances: 0.5-0.8 mm
- 6. age, tooth type, curvature

Figure 15-4 A, The classic apical anatomy consisting of the major diameter of the foramen and the minor diameter of the constriction. **B**, An irregular ovoid apical canal shape and external resorption. **C**, A bowling pin apical morphology and an accessory canal. **D**, Multiple apical foramina.

Working sheet

	Estimated WL	AL (-0.5mm)	Needle Control	Adjusted WL	MAF	enlargement	
MB	21 mm						
ML	21mm						
D	20mm						

Estimated working length

Parallel technique

- Filmholder
- Long tube

Pre-operative x-ray

Calculation of estimated WL

- film: 3 mm
 - Magnification: 10% (at about 2 mm)
 - Distance: (radiological apex – apical constriction): 1 mm (or more)
- digital: 1 mm

Apex locators

- 1918. Custer, idea
- 1942. Suzuki, the equation
- 1962. Sunada, the first working machine, First generation (direct current, sensitivity to fluid, calibration, painfull)
- 1972. Second generation (alternating current, one frequency, impedance, calibartion requirement: sensitivity to wet)
- 1994. Third generation
- (alternating current, several frequencies, difference or ratio of impedances)
- IV., V., VI. generations

Fig. 2. Simple d.c. ohmmeter for measuring the length of the root canal using direct electric current

Apex locator

Problems

E.Root canel filled with gutta-percha

Instruction

Apical preparation, IAF and MAF

IAF

2 sizes

more

MAF

Working sheet

	Estimated WL	AL (-0.5mm)	Needle Control	Adjusted WL	MAF	enlargement	
MB	21 mm	19.5mm	19.5mm (15 Hedström)	19.5mm	25		
ML	21mm	19.5mm	19.5mm (15 K- file)	19.5mm	25		
D	20mm	21mm	21mm (20 K-file)	21mm	35		

Needle control

Excentric radiograph

Comparison of two methods

Radiological (needle control)

- distance 1-4 mm
- Superimposition of anatomical structures
- Exposure
- Multiple canals could be probelmatic
- Rubber dam problematic
- calculation

Apex locator

- 0.5 mm
- _
- (pregnancy)
- _
- neccessity
- _

Cleaning and Shaping

(Chemomechanical preparation)

The criteria of canal preparation

- developing a continuously tapered tunnel
- maintaining the original shape of the canal
- maintaining the apical foramen in its original position
- keeping the apical opening as small as possible (prevention of reinfection, apical stop for obturation)
- developing glassy smooth walls

Proportionally enlarge

Reason of the tapered enlarged shape

- Removing infected dentin
- Irrigation
- Obturation (condensation)

Effective irrigation

Step-back technique

Phase I

- Apical preparation starting at the apical constriction
- Initial apical file (N 10-25)
- Enlargement at least three sizes more, master apical file

Movements for preparations

Watch winding (clockwise/counterclockwise viscounterclockwise)
rotation, reciprocating)

• Reaming (clockwise cutting rotation)

• Filing (scraping), Circumferential filing

Watch-winding

Phase II

- Increasing larger file shorter length (above N 25)
- 1, 2, és 3 mm short of working length
- Recapitulation: MAF is inserted to the WL to clear out any debris collecting in the apical part,

Working sheet

	Estimated WL	AL (-0.5mm)	Needle Control	Adjusted WL	MAF	enlargement	
MB	21 mm	19.5mm	19.5mm (15 Hedström)	19.5mm	25	40	
ML	21mm	19.5mm	19.5mm (15 K- file)	19.5mm	25		
D	20mm	21mm	21mm (20 K-file)	21mm	35		

File set

Refining phase II

- coronal flare
- mid root enlargement

Coronal flare

The Diameter of Rotary Flaring Instruments

Size (No.)	Gates-Glidden Drills (mm)	Peeso Reamers (mm)
1	0.5	0.7
2	0.7	0.9
3	0.9	1.1
4	1.1	1.3
5	1.3	1.5
6	1.5	1.7

Apical clearing

Step-back technique

Aim: increase the diameter without procedural error

- 1. Filing (+apical last mm: rotation)
- 2. Incrementally reducing the working length when using larger and stiffer instruments
- 3. More tapering: Avoid procedural error, easier rinsing, compactable filling, better copying the nonrounded cross-section
- 4. Cons: procedural error still occur, apical dentin plug

Thank you for your attention

