

- Definition: Artificial Intelligence (Reference: Merriam-Webster)
 - "A machine's ability to make decisions and perform tasks that simulate human intelligence and behavior.

Artificial Intelligence

The field of computer science that seeks to create intelligent machines that can replicate or exceed human intelligence

- Definition: Artificial Intelligence (Reference: Merriam-Webster)
 - "A machine's ability to make decisions and perform tasks that simulate human intelligence and behavior.
- Definition: Machine Learning (Source: Arkerdar: Business Intelligence for Business)
 - "A facet of AI that focuses on algorithms, allowing machines to learn and change without being programmed when exposed to new data."

Artificial Intelligence

The field of computer science that seeks to create intelligent machines that can replicate or exceed human intelligence

Machine Learning

Subset of AI that enables machines to learn from existing data and improve upon that data to make decisions or predictions

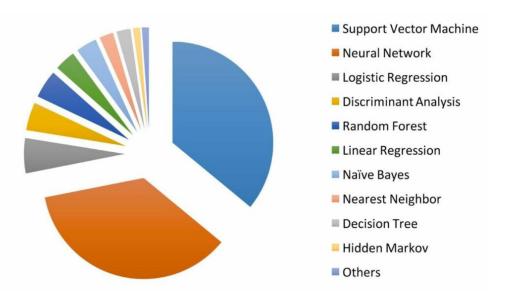
- Definition: Artificial Intelligence (Reference: Merriam-Webster)
 - "A machine's ability to make decisions and perform tasks that simulate human intelligence and behavior.
- Definition: Machine Learning (Source: Arkerdar: Business Intelligence for Business)
 - "A facet of AI that focuses on algorithms, allowing machines to learn and change without being programmed when exposed to new data."
- Definition: Deep Learning (Source: HCIT Experts)
 - "The ability for machines to autonomously mimic human thought patterns through artificial neural networks composed of cascading layers of information."

Artificial Intelligence

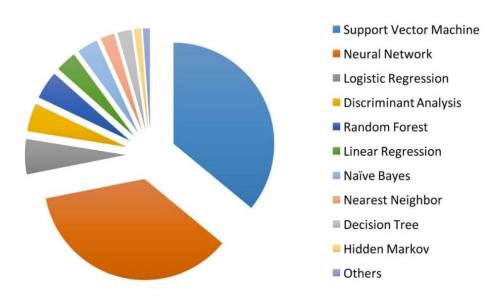
The field of computer science that seeks to create intelligent machines that can replicate or exceed human intelligence

Machine Learning

Subset of AI that enables machines to learn from existing data and improve upon that data to make decisions or predictions


Deep Learning

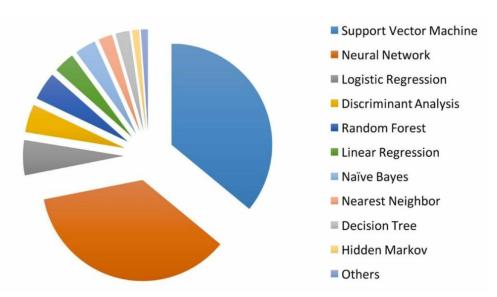
A machine learning technique in which layers of neural networks are used to process data and make decisions


methods

Machine learning algorithms used in the medical literature Artificial intelligence in healthcare: past, present and future, svn-2017-000101

methods

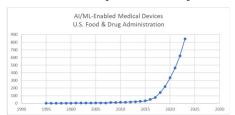
Machine learning algorithms used in the medical literature Artificial intelligence in healthcare: past, present and future, svn-2017-000101


disease detection

- Bladder tumor
- Alzheimer
- Breast cancer
- Tuberculosis
- Cardiac arrest
- Skin lesion
- Artery occlusion
- Diabetic retinopathy
- Hypertension
- Vertical root fracture
- ...

Artificial intelligence in disease diagnosis: a systematic literature review, ... J Ambient Intell Humaniz Comput. 2023; 14(7): 8459–8486 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754556/

methods

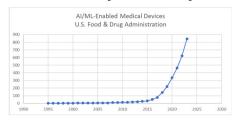

Machine learning algorithms used in the medical literature Artificial intelligence in healthcare: past, present and future, svn-2017-000101

AI/ML-Enabled Medical Devices

- Detection of bladder tumor
- Counting and recognizing specific cell types
- Diagnosis of infarcts, Alzheimer's, cancer, etc.
- Detection of depression
- Choice and dosing of drugs
- Diagnosis of heart diseases, degenerative diseases of the brain, etc.
- Detection of epidemics
- Prognosis of the time of death of intensive care patients

- ...

Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices U.S. Food & Drug Administration, 950 entries, 08/07/24

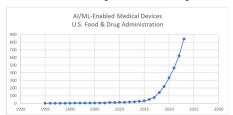

 AI/ML provide the ability to analyze data and provide important insights.

AI/ML-Enabled Medical Devices

- Detection of bladder tumor
- Counting and recognizing specific cell types
- Diagnosis of infarcts, Alzheimer's, cancer, etc.
- Detection of depression
- Choice and dosing of drugs
- Diagnosis of heart diseases, degenerative diseases of the brain, etc.
- Detection of epidemics
- Prognosis of the time of death of intensive care patients

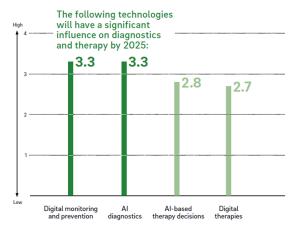
- ...

Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices U.S. Food & Drug Administration, 950 entries, 08/07/24


- AI/ML provide the ability to analyze data and provide important insights.
- Medical device manufacturers are using these technologies to innovate their products to better assist health care providers and improve patient care.

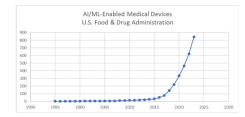
AI/ML-Enabled Medical Devices

- Detection of bladder tumor
- Counting and recognizing specific cell types
- Diagnosis of infarcts, Alzheimer's, cancer, etc.
- Detection of depression
- Choice and dosing of drugs
- Diagnosis of heart diseases, degenerative diseases of the brain, etc.
- Detection of epidemics
- Prognosis of the time of death of intensive care patients


- ...

Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices U.S. Food & Drug Administration, 950 entries, 08/07/24

- Al/ML provide the ability to analyze data and provide important insights.
- Medical device manufacturers are using these technologies to innovate their products to better assist health care providers and improve patient care.


It's unlikely that AI will replace doctors outright. Instead, AI systems will be used to highlight potentially malignant lesions or dangerous cardiac patterns for the expert – allowing the doctor to focus on the interpretation of those signals.

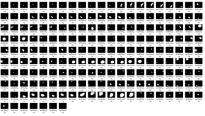
AI/ML-Enabled Medical Devices

- Detection of bladder tumor
- Counting and recognizing specific cell types
- Diagnosis of infarcts, Alzheimer's, cancer, etc.
- Detection of depression
- Choice and dosing of drugs
- Diagnosis of heart diseases, degenerative diseases of the brain, etc.
- Detection of epidemics
- Prognosis of the time of death of intensive care patients

- ...

Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices U.S. Food & Drug Administration, 950 entries, 08/07/24

Data matter

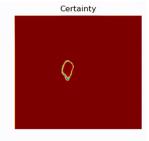

Annotated data

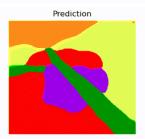
Robust Medical Instrument Segmentation (ROBUST-MIS)

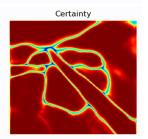
Gastrointestinal Image ANAlysis (GIANA)

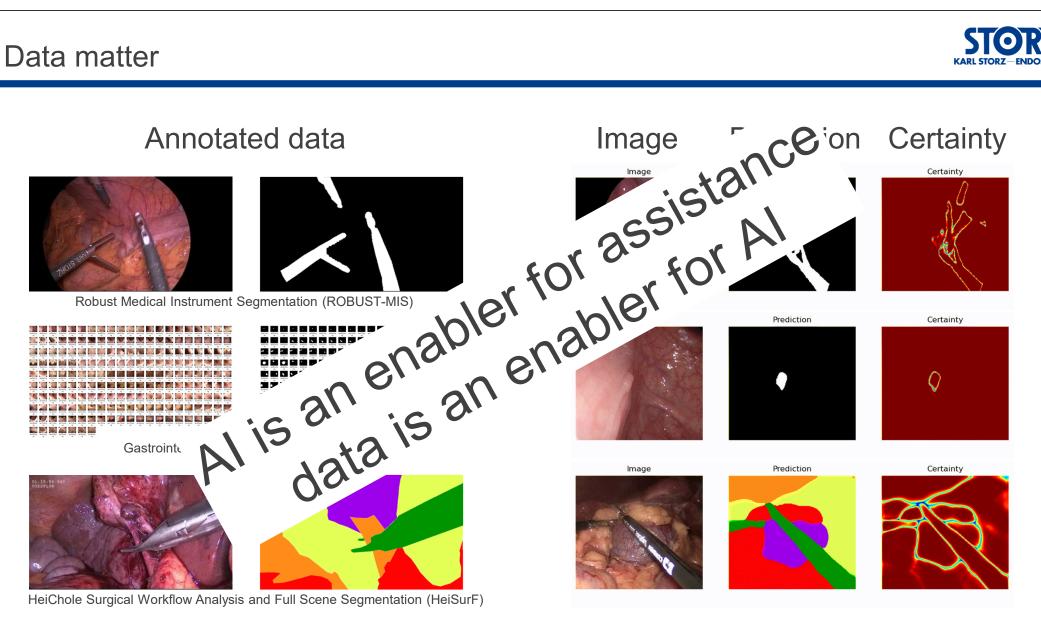
HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF)

Image Prediction Certainty









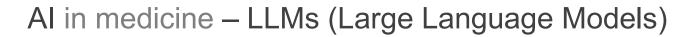
Data matter

- Definition: Artificial Intelligence (Reference: Merriam-Webster)
 - "A machine's ability to make decisions and perform tasks that simulate human intelligence and behavior.
- Definition: Machine Learning (Source: Arkerdar: Business Intelligence for Business)
 - "A facet of AI that focuses on algorithms, allowing machines to learn and change without being programmed when exposed to new data."
- Definition: Deep Learning (Source: HCIT Experts)
 - "The ability for machines to autonomously mimic human thought patterns through artificial neural networks composed of cascading layers of information."
- Definition: Generative Al (Source: TechExperts)
 - "Generative artificial intelligence (GenAI, or GAI) is artificial intelligence capable of generating text, images, videos, or other data."

Artificial Intelligence

The field of computer science that seeks to create intelligent machines that can replicate or exceed human intelligence

Machine Learning

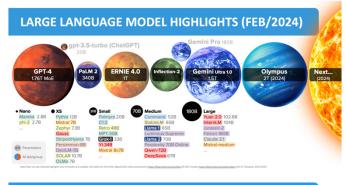

Subset of AI that enables machines to learn from existing data and improve upon that data to make decisions or predictions

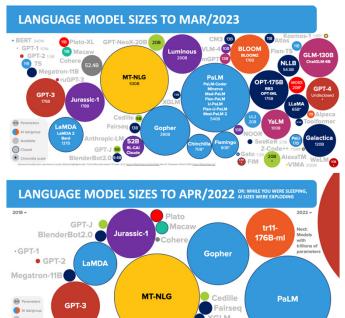
Deep Learning

A machine learning technique in which layers of neural networks are used to process data and make decisions

Generative Al

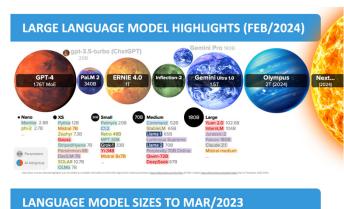
Create new written, visual, and auditory content given prompts or existing data

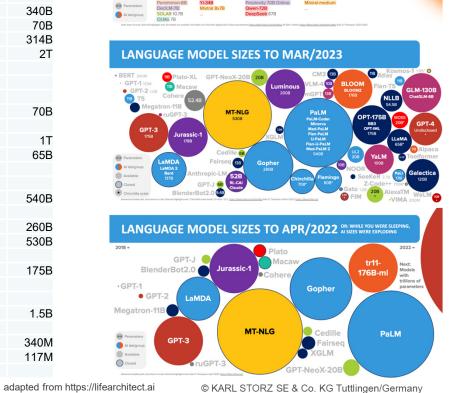

	Olympus	Amazon	
	GPT-5	OpenAl	
	Grok-3	xAI	
	MAI-1	Microsoft	
	IVIAI- I	MICIOSOIL	
2024	Grok-2	xAl	600B
2024	Llama 3.1	Meta Al	405B
2024	Claude 3.5	Anthropic	
2024	Nemotron-4	NVIDIA	340B
2024	Llama 3.1	Meta Al	70B
2024	Grok-1.5	xAl	314B
2024	Claude 3	Anthropic	2T
2024	Gemini 1.5	Google	
		ŭ	
2023	ERNIE 4.0	Baidu	
2023	Llama 2	Meta Al	70B
2023	Claude 2	Anthropic	
2023	GPT-4	OpenAl	1T
2023	Llama	Meta Al	65B
2022	GPT-3.5	OpenAl	
2022	PaLM	Google	540B
2021	ERNIE 3.0	Baidu	260B
2021	NLG	NVIDIA	530B
2020	GPT-3	OpenAl	175B
2020	BlenderBot 1.0	Facebook	
2019	GPT-2	OpenAl	1.5B
2018	BERT	Google	340M
2018	GPT-1	OpenAl	117M

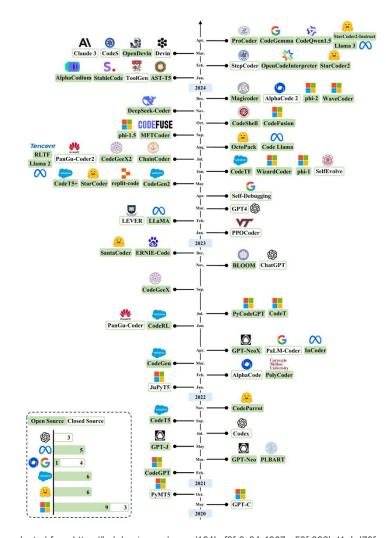

© KARL STORZ SE & Co. KG Tuttlingen/Germany

Al in medicine – LLMs (Large Language Models)

	Olympus GPT-5 Grok-3	Amazon OpenAl xAl	
	MAI-1	Microsoft	
2024	Grok-2 Llama 3.1	xAl Meta Al	600B 405B
2024	Claude 3.5	Anthropic	1002
2024	Nemotron-4	NVIDIA	340B
2024	Llama 3.1	Meta Al	70B
2024	Grok-1.5	xAl	314B
2024	Claude 3	Anthropic	2T
2024	Gemini 1.5	Google	
2023	ERNIE 4.0	Baidu	
2023	Llama 2	Meta Al	70B
2023	Claude 2	Anthropic	4.
2023	GPT-4	OpenAl	1T
2023	Llama	Meta Al	65B
2022	GPT-3.5	OpenAl	
2022	Pal M	OpenAl Google	540B
2022	ralivi	Google	3406
2021	ERNIE 3.0	Baidu	260B
2021	NLG	NVIDIA	530B
2020	GPT-3	OpenAl	175B
2020	BlenderBot 1.0	Facebook	
2019	GPT-2	OpenAl	1.5B
2018	BERT	Google	340M
2018	GPT-1	OpenAl	117M


adapted from https://lifearchitect.ai


© KARL STORZ SE & Co. KG Tuttlingen/Germany


Al in medicine – LLMs (Large Language Models)

	Olympus	Amazon	
	GPT-5	OpenAl	
	Grok-3	xAl	
	MAI-1	Microsoft	
2024	Grok-2	xAI	600B
2024	Llama 3.1	Meta Al	405B
2024	Claude 3.5	Anthropic	
2024	Nemotron-4	NVIDIA	340B
2024	Llama 3.1	Meta Al	70B
2024	Grok-1.5	xAI	314B
2024	Claude 3	Anthropic	2T
2024	Gemini 1.5	Google	
2023	ERNIE 4.0	Baidu	
2023	Llama 2	Meta Al	70B
2023	Claude 2	Anthropic	
2023	GPT-4	OpenAl	1T
2023	Llama	Meta Al	65B
2022	GPT-3.5	OpenAl	
2022	PaLM	Google	540B
2021	ERNIE 3.0	Baidu	260B
2021	NLG	NVIDIA	530B
2020	GPT-3	OpenAl	175B
2020	BlenderBot 1.0	Facebook	
2019	GPT-2	OpenAl	1.5B
2018	BERT	Google	340M
2018	GPT-1	OpenAl	117M

adapted from https://hub.baai.ac.cn/paper/164bcf3f-6c34-4007-a50f-382bd1abd70f