
MAMMOGRÁFIAI DIAGNOSZTIKAI 
MESTERSÉGES INTELLIGENCIA RENDSZER 

RIBLI DEZSŐ 
KOMPLEX RENDSZEREK FIZIKÁJA TANSZÉK, ELTE 
TÉMAVEZETŐ CSABAI ISTVÁN



MESTERSÉGES INTELLIGENCIA LÁZ

MIÉRT VAGYUNK ITT? 
MESTERSÉGES INTELLIGENCIA LÁZ

▸ “Sorra verte a mesterséges intelligencia a 
világ legjobb gojátékosait” 

▸ “Jobban látnak a Google gépei, mint az 
emberek” 

▸ “Mesterséges intelligencia fog segíteni a 
bőrrák diagnosztizálásában" 

▸ “Mesterséges intelligencia = harmadik 
világháború” 

▸ Nagy remények és nagy túlzások 
médiában

image source

https://www.coe.int/en/web/commissioner/-/safeguarding-human-rights-in-the-era-of-artificial-intelligence


MESTERSÉGES NEURÁLIS HÁLÓK FORRADALMA A KÉPFELISMERÉSBEN

GÉPI LÁTÁS
▸ Kép osztályozás feladat embernek könnyű, ösztönösen oldjuk meg, 

szoftveresen évtizedekig megközelíthetetlen feladat 

▸ Nincs egyszerű összefüggés a több százezer pixel értéke és a 
képen lévő kategória között 

▸ Hagyományos programozással, recept szerűen reménytelen feladat 

▸ Gépi tanulás paradigma: 

▸ Veszünk egy “függvényt” (kép -> osztály), (pl.: neurális háló) 

▸ A függvény paramétereit ismert osztályokba tartozó példákon 
keresztül optimalizáljuk, hogy a függvény pontos választ adjon az 
látott pédákon. 

▸ Neuronhálókat például lépésenként lehet optimalizálni, azaz 
“tanítani”: 

▸ Kiértékeljük a függvényt egy (vagy több) példán, 
megnézzük mit mond, és olyan irányba változtatjuk a 
függvény paramétereit hogy jobb választ adjon. Ezt 
ismételgetjük nagyon sokszor, nagyon sok példán. 

▸ Új, addig nem látott példákon validáljuk az eredményt ( a meglévő 
példákat egy adatbázisban telefonkönyv szerűen is tárolhatnánk, az 
nem gépi látás! )  

▸ Gépi tanulás - emberi tanulás párhuzama!

Image source: Adam Geitgey

https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721
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NEURÁLIS HÁLÓK
▸ Teljesen összekötött neurális hálók 

▸ Hubel és Wiesel: látókéregben lévő neuronoknak 
receptív mezeje van! 

▸ Ötlet: ne kössünk össze mindent mindennel! 

▸ Fukushima: Neocognitron 

▸ Mesterséges neuronok kis receptív mezővel 
végigpásztázzák a képet.  

▸ A képekre jellemző “eltolás invarianciát” fogja 
meg 

▸ A keresett osztály a képen bárhol lehet, 
nem csak egy adott x-y pozícióban 

▸ A kép minden pontját hasonló 
jellemzőkkel lehet jól leírni: intenzitások, 
élek, sarkok textúrák mindenhol közel 
azonosan fontosak, nem csak a jobb alsó 
sarokban pl. 

▸ Többrétegű neurális háló a vizuális percepció 
hiearchikus folyamatát  fogja meg: élek, sarkok, 
egyszerű formák,…, lábak -> kutya

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

are not conditionally independent of one another given
the layers above and below. In contrast, our treatment
using undirected edges enables combining bottom-up
and top-down information more e�ciently, as shown
in Section 4.5.

In our approach, probabilistic max-pooling helps to
address scalability by shrinking the higher layers;
weight-sharing (convolutions) further speeds up the
algorithm. For example, inference in a three-layer
network (with 200x200 input images) using weight-
sharing but without max-pooling was about 10 times
slower. Without weight-sharing, it was more than 100
times slower.

In work that was contemporary to and done indepen-
dently of ours, Desjardins and Bengio (2008) also ap-
plied convolutional weight-sharing to RBMs and ex-
perimented on small image patches. Our work, how-
ever, develops more sophisticated elements such as
probabilistic max-pooling to make the algorithm more
scalable.

4. Experimental results

4.1. Learning hierarchical representations

from natural images

We first tested our model’s ability to learn hierarchi-
cal representations of natural images. Specifically, we
trained a CDBN with two hidden layers from the Ky-
oto natural image dataset.3 The first layer consisted
of 24 groups (or “bases”)4 of 10x10 pixel filters, while
the second layer consisted of 100 bases, each one 10x10
as well.5 As shown in Figure 2 (top), the learned first
layer bases are oriented, localized edge filters; this re-
sult is consistent with much prior work (Olshausen &
Field, 1996; Bell & Sejnowski, 1997; Ranzato et al.,
2006). We note that the sparsity regularization dur-
ing training was necessary for learning these oriented
edge filters; when this term was removed, the algo-
rithm failed to learn oriented edges.

The learned second layer bases are shown in Fig-
ure 2 (bottom), and many of them empirically re-
sponded selectively to contours, corners, angles, and
surface boundaries in the images. This result is qual-
itatively consistent with previous work (Ito & Ko-
matsu, 2004; Lee et al., 2008).

4.2. Self-taught learning for object recognition

Raina et al. (2007) showed that large unlabeled data
can help in supervised learning tasks, even when the

3http://www.cnbc.cmu.edu/cplab/data_kyoto.html
4
We will call one hidden group’s weights a “basis.”

5
Since the images were real-valued, we used Gaussian

visible units for the first-layer CRBM. The pooling ratio C

for each layer was 2, so the second-layer bases cover roughly

twice as large an area as the first-layer ones.

Figure 2. The first layer bases (top) and the second layer

bases (bottom) learned from natural images. Each second

layer basis (filter) was visualized as a weighted linear com-

bination of the first layer bases.

unlabeled data do not share the same class labels, or
the same generative distribution, as the labeled data.
This framework, where generic unlabeled data improve
performance on a supervised learning task, is known
as self-taught learning. In their experiments, they used
sparse coding to train a single-layer representation,
and then used the learned representation to construct
features for supervised learning tasks.

We used a similar procedure to evaluate our two-layer
CDBN, described in Section 4.1, on the Caltech-101
object classification task.6 The results are shown in
Table 1. First, we observe that combining the first
and second layers significantly improves the classifica-
tion accuracy relative to the first layer alone. Overall,
we achieve 57.7% test accuracy using 15 training im-
ages per class, and 65.4% test accuracy using 30 train-
ing images per class. Our result is competitive with
state-of-the-art results using highly-specialized single

features, such as SIFT, geometric blur, and shape-
context (Lazebnik et al., 2006; Berg et al., 2005; Zhang
et al., 2006).7 Recall that the CDBN was trained en-

6
Details: Given an image from the Caltech-101

dataset (Fei-Fei et al., 2004), we scaled the image so that

its longer side was 150 pixels, and computed the activations

of the first and second (pooling) layers of our CDBN. We

repeated this procedure after reducing the input image by

half and concatenated all the activations to construct fea-

tures. We used an SVM with a spatial pyramid matching

kernel for classification, and the parameters of the SVM

were cross-validated. We randomly selected 15/30 training

set and 15/30 test set images respectively, and normal-

ized the result such that classification accuracy for each

class was equally weighted (following the standard proto-

col). We report results averaged over 10 random trials.
7
Varma and Ray (2007) reported better performance

than ours (87.82% for 15 training images/class), but they

combined many state-of-the-art features (or kernels) to im-

prove the performance. In another approach, Yu et al.

(2009) used kernel regularization using a (previously pub-

lished) state-of-the-art kernel matrix to improve the per-
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Table 2. Test error for MNIST dataset

Labeled training samples 1,000 2,000 3,000 5,000 60,000

CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%

Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%

Hinton and Salakhutdinov (2006) - - - - 1.20%

Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object

categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four

object categories (faces, cars, airplanes, motorbikes).
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Features Faces Motorbikes Cars

First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23

Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-

recall curve (AUC-PR) for three classification problems

using class-specific object-part representations. (bottom)

Average AUC-PR for each classification problem.
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Figure 5. Histogram of conditional entropy for the repre-

sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference

Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-

umn: (top) input image. (middle) reconstruction from the

second layer units after single bottom-up pass, by project-

ing the second layer activations into the image space. (bot-

tom) reconstruction from the second layer units after 20

iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-
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Neocognitron 121 
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FIGURE 2. Hierarchical network structure of the neocognitron. The numerals at the bottom of the figure show the total numbers of 
S- and C-cells in individual layers of the network which are used for the handwritten numeral recognition system discussed in 
Section 4. 

is drawn in each cell-plane in Figure 2. Incidentally, 
each ellipse in the figure represents the area from which 
a cell receives input connections. 

The density of cells in each layer is designed to de- 
crease with the order of the stage, because the cells in 
higher stages usually receive signals from larger areas 
of the input layer and the neighboring cells come to 
receive similar signals. Hence, in the highest stage, only 
one C-cell exists in each cell-plane. 

Thus, in the whole network, in which layers of S- 
cells and C-cells are arranged alternately, the process 
of feature-extraction by S-cells and toleration of posi- 
tional shift by C-cells are repeated. During this process, 
local features extracted in a lower stage are gradually 
integrated into more global features. Figure 4 illustrates 
this situation schematically. Finally, each C-cell of the 
highest stage integrates all the information of the input 
pattern, and responds only to one specific pattern. In 
other words, in the highest stage, only one C-cell, cor- 

responding to the category of the input pattern, is ac- 
tivated. Other cells respond to patterns of other cate- 
gories. Thus, the C-cells of the highest stage may be 
called "gnostic cells," and their response shows the final 
result of the pattern-recognition of the network. 

The operation of tolerating positional error a little 
at a time at each stage, rather than all in one step, plays 
an important role in endowing the network with an 
ability to recognize even distorted patterns. Since errors 
in the relative position of local features are tolerated 
in the process of extracting and integrating features, 
the same C-cell responds in the highest layer, even if 
the input pattern is deformed or changed in size or 
shifted in position. In other words, the neocognitron 
recognizes the "shape" of the pattern independent of 
its size and position. 

3. SELF-ORGANIZATION OF 
T H E  NETWORK 

The connections converging to S-cells are variable, 
and are reinforced gradually in accordance with stim- 
uli given to the network during the process of learn- 
ing. Both processes, "learning-without-a-teacher" and 
"learning-with.a-teacher" can be used to train the neo- 
cognitron to recognize patterns. 

FIGURE 3. Illustration showing the spatial arrangement of the 
connections converging to single cells of a cell-plane. 

3.1 Learning without a Teacher 

We will first discuss the case of learning-without-a- 
teacher (Fukushima, 1980; Fukushima & Miyake, 
1982). The repeated presentation of a set of training 
patterns is sufficient for the self-organization of the net- 
work, and it is not necessary to give any information 
about the categories in which these patterns should be 

source: Deep 
Learning book

Fukushima, K., 1980

Lee, H. Et al. 2009

https://www.deeplearningbook.org
https://www.deeplearningbook.org
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KONVOLÚCIÓS NEURÁLIS HÁLÓ (CNN)
▸ Praktikusan működő 

megvalósítása a kis receptív 
mezejű, csuszó ablakos 
neuronhálónak 

▸ Konvolúciós neuron:  

▸ kis receptív mező 
( pl.:térben csak az első 
szomszéddal van 
kapcsolatban )  

▸ Replikált súlyok, 
neuronok: a bemenetet 
minden pontban 
ugyanazokkal a 
paraméterekkel értékeli ki

 

forrás: Deep Learning könyv

képek forrása

http://deeplearning.net/tutorial/
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
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KONVOLÚCIÓS NEURÁLIS HÁLÓ
▸ Praktikusan működő megvalósítása a kis 

receptív mezejű, csuszó ablakos 
neuronhálónak 

▸ Konvolúciós neuronháló:  

▸ Egy paraméterű kovolúciós neuron 
aktivációs kimenetei egy aktivációs 
térképet alkotnak 

▸ Sok különböző paraméterű neuron 
egy rétegben: a kép reprezentációja 
az aktivációs térképek összessége 

▸ Térképek leskálázása, következő neuron 
receptív mezejének hatékony 
növelésére

source: deeplearning.net tutorial

http://deeplearning.net/tutorial/


MESTERSÉGES NEURÁLIS HÁLÓK FORRADALMA A KÉPFELISMERÉSBEN

GÉPI LÁTÁS FEJLŐDÉSE
▸ CNN a 80-as évektől ismert, karakter felismerésre sikeresen 

alkalmazták 

▸ De ezt a feladatot más módszerekkel is nagyon jól meg 
lehetett oldani 

▸ Ezután megakadt a neurális haló alapú gépi látás, és más irányba 
fejlődött a gépi látás területe 

▸ Ügyes, a kép tulajdonságait jól jellemző mennyiségek, 
reprezentáció kinyerése, és ezeken egyszerű modellek 
tanítása (feature engineering) 

▸ Ezzel ellentétben a konvolúciós neurális háló a nyers adaton 
dolgozik, a kimenete az osztály 

▸ end-to-end tanulás, a kép tulajdonságait jól jellemző 
mennyiségeket is tanulja! A tanult reprezentációs a 
konvolúciós neuronok rétegei.

(a) (b) (c) (d) (e) (f) (g)

Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

results are insensitive to ϵ’s value over a large range.

Centre-surround normalization. We also investigated an
alternative centre-surround style cell normalization scheme,
in which the image is tiled with a grid of cells and for
each cell the total energy in the cell and its surrounding re-
gion (summed over orientations and pooled using Gaussian
weighting) is used to normalize the cell. However as fig. 4(c)
(“window norm”) shows, this decreases performance relative
to the corresponding block based scheme (by 2% at 10−4

FPPW, for pooling with σ=1 cell widths). One reason is
that there are no longer any overlapping blocks so each cell
is coded only once in the final descriptor. Including several
normalizations for each cell based on different pooling scales
σ provides no perceptible change in performance, so it seems
that it is the existence of several pooling regions with differ-
ent spatial offsets relative to the cell that is important here,
not the pooling scale.

To clarify this point, consider the R-HOG detector with
overlapping blocks. The coefficients of the trained linear
SVM give a measure of how much weight each cell of each
block can have in the final discrimination decision. Close ex-
amination of fig. 6(b,f) shows that the most important cells
are the ones that typically contain major human contours (es-
pecially the head and shoulders and the feet), normalized
w.r.t. blocks lying outside the contour. In other words —
despite the complex, cluttered backgrounds that are com-
mon in our training set — the detector cues mainly on the
contrast of silhouette contours against the background, not
on internal edges or on silhouette contours against the fore-
ground. Patterned clothing and pose variations may make
internal regions unreliable as cues, or foreground-to-contour
transitions may be confused by smooth shading and shad-
owing effects. Similarly, fig. 6(c,g) illustrate that gradients
inside the person (especially vertical ones) typically count as
negative cues, presumably because this suppresses false pos-

itives in which long vertical lines trigger vertical head and
leg cells.

6.5 Detector Window and Context
Our 64×128 detection window includes about 16 pixels

of margin around the person on all four sides. Fig. 4(e)
shows that this border provides a significant amount of con-
text that helps detection. Decreasing it from 16 to 8 pixels
(48×112 detection window) decreases performance by 4%
at 10−4 FPPW. Keeping a 64×128 window but increasing
the person size within it (again decreasing the border) causes
a similar loss of performance, even though the resolution of
the person is actually increased.

6.6 Classifier
By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.

6.7 Discussion
Overall, there are several notable findings in this work.

The fact that HOG greatly out-performs wavelets and that
any significant degree of smoothing before calculating gra-
dients damages the HOG results emphasizes that much of
the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
shape contexts lose out significantly here.

Secondly, strong local contrast normalization is essen-
tial for good results, and traditional centre-surround style
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each cell the total energy in the cell and its surrounding re-
gion (summed over orientations and pooled using Gaussian
weighting) is used to normalize the cell. However as fig. 4(c)
(“window norm”) shows, this decreases performance relative
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is coded only once in the final descriptor. Including several
normalizations for each cell based on different pooling scales
σ provides no perceptible change in performance, so it seems
that it is the existence of several pooling regions with differ-
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not the pooling scale.

To clarify this point, consider the R-HOG detector with
overlapping blocks. The coefficients of the trained linear
SVM give a measure of how much weight each cell of each
block can have in the final discrimination decision. Close ex-
amination of fig. 6(b,f) shows that the most important cells
are the ones that typically contain major human contours (es-
pecially the head and shoulders and the feet), normalized
w.r.t. blocks lying outside the contour. In other words —
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contrast of silhouette contours against the background, not
on internal edges or on silhouette contours against the fore-
ground. Patterned clothing and pose variations may make
internal regions unreliable as cues, or foreground-to-contour
transitions may be confused by smooth shading and shad-
owing effects. Similarly, fig. 6(c,g) illustrate that gradients
inside the person (especially vertical ones) typically count as
negative cues, presumably because this suppresses false pos-

itives in which long vertical lines trigger vertical head and
leg cells.

6.5 Detector Window and Context
Our 64×128 detection window includes about 16 pixels

of margin around the person on all four sides. Fig. 4(e)
shows that this border provides a significant amount of con-
text that helps detection. Decreasing it from 16 to 8 pixels
(48×112 detection window) decreases performance by 4%
at 10−4 FPPW. Keeping a 64×128 window but increasing
the person size within it (again decreasing the border) causes
a similar loss of performance, even though the resolution of
the person is actually increased.

6.6 Classifier
By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.

6.7 Discussion
Overall, there are several notable findings in this work.

The fact that HOG greatly out-performs wavelets and that
any significant degree of smoothing before calculating gra-
dients damages the HOG results emphasizes that much of
the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
shape contexts lose out significantly here.

Secondly, strong local contrast normalization is essen-
tial for good results, and traditional centre-surround style
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MESTERSÉGES NEURÁLIS HÁLÓK FORRADALMA A KÉPFELISMERÉSBEN

CNN FORRADALOM
▸ 80-as évektől ismert, mi hiányzott? (Minden…) 

▸ Számítási teljesítmény 

▸ Emberi agyban 100 milliárd neuron, számítógép 90-ben … 

▸ Nagy adathalmaz 

▸ Komplex összefüggések megtanulásához rengeteg példa kell 

▸ Számítási teljesítmény fejlődés 

▸ Google 2009-ben nagy klasztereken próbálkozik (Dean et al.), de a megoldás 
végül sokkal demokratikusabb lett: számítógépes játékok világának 
megjelenítésére kifejlesztett, masszívan párhuzamos (1000+processzor) grafikus 
chipek általános célú programozásával GPGPU (General-purpose computing on 
graphics processing units). Legfontosabb keretfendszer az NVIDIA gyártótól a 
CUDA.  

▸ Mára a grafikus kártyák mellett megjelentek a Google által kifejlesztett 
kifejezetten neurális háló célhardverek a TPU-k (Tensor Processing Unit), amik 
sokkal kevesebb energiát használnak, mint az általánosabb célú GPU-k, de még 
nem terjedtek el széles körben. 

▸ Adathalmazok fejlődése 

▸ Imagenet: 14 millió nagy felbontású kép (300x500pixel) az internetről, emberek 
annotálták (Amazon Mechanical Turk)  (Deng et al.) , 22ezer kategória. ILSVRC 
verseny 2010-től: 1.2 millió kép részhalmaz, 1000 kategória (Russakovsky et al.) 



MESTERSÉGES NEURÁLIS HÁLÓK FORRADALMA A KÉPFELISMERÉSBEN

ILSVRC
▸ 2010, 2011: nincs CNN versenyző, 25% top5 pontosság 

▸ 2012-ben az első CNN alapú versenyző (saját GPU-n futtatható 
neurális háló implementációval) , 15% pontosság 

▸ 1989-es karakter felismerő hálózat felturbózva + ReLU 
(Rectified Linear Unit) 

▸ Ember pontossága 4-5 %, szakértőkét 2-3%-ra becsülték. 

▸ https://cs.stanford.edu/people/karpathy/ilsvrc/ 

▸ Azóta folyamatos fejlesztés, rengeteg újdonság a neurális 
hálózatokkal kapcsolatban: mára 2% pontosság 

▸ Tavaly be is zárták a versenyt, lényegében megoldottnak tekintik a 
feladatot (annotációs hibák, nem egyértelmű képek, etc). 

▸ További nagy versenyek vannak, más gépi látás részfeladatokra.  
Objektum, gyalogos detekció, szegmentálás. Ezekben még van 
fejlődés.
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MESTERSÉGES NEURÁLIS HÁLÓK FORRADALMA A KÉPFELISMERÉSBEN

CNN UGYANOLYAN, MINT AZ EMBERI LÁTÁS?

▸ A legnagyobb kép klasszifikációs 
benchmarkon a CNN megoldások 
egyenrangúak, ha nem jobbak, mint egy 
nagyon-nagyon koncentráló ember. 

▸ Van különbség? 

▸ Mi a közös ezekben a képekben? 

▸ CNN: mind strucc, és biztos!

Forrás: Szegedy et al



MESTERSÉGES NEURÁLIS HÁLÓK FORRADALMA A KÉPFELISMERÉSBEN

ADVERSARIAL PÉLDÁK
▸ Az eredetit felismeri a CNN-hogy panda. 

▸ Emberi szemmel észre nem vehető módosítás után, már magabiztosan 
gibbonnak nézi. 

▸ Optikai illúzió mesterséges neuronhálónak 

▸ CNN átlátszó, ismerjük a működését, ki lehet számolni, hogyan kell 
rosszindulatúan picit megváltoztatni a képet, hogy inkább gibbon-t 
mondjon. 

▸ Eredeti szerzők szerint a CNN “túl lineáris”  (könnyen tanul, könnyen 
átverhető) 

▸ Emberi látás/agy ilyen mértékű és irányú változtatásra teljesen 
érzéketlen 

▸ Nagyon aktívan kutatott téma, sok alkalmazásban gondot jelenthet 
(kémkedés…) 

▸ Önvezető autók átverése a táblák változtatásával (ember számára 
látható, de nem túl gyanús módon) (Eykholt et al) 

▸ Orvosi képfeldolgozásban ez csak egy érdekesség, nincs rosszindulatú 
támadásra, kép manipulációra lehetőség

Figure 1: The left image shows real graffiti on a Stop sign,
something that most humans would not think is suspicious.
The right image shows our a physical perturbation applied
to a Stop sign. We design our perturbations to mimic graffiti,
and thus “hide in the human psyche.”

the viewing camera. Additionally, other practicality chal-
lenges exist: (1) Perturbations in the digital world can be
so small in magnitude that it is likely that a camera will not
be able to perceive them due to sensor imperfections. (2)
Current algorithms produce perturbations that occupy the
background imagery of an object. It is extremely difficult
to create a robust attack with background modifications be-
cause a real object can have varying backgrounds depending
on the viewpoint. (3) The fabrication process (e.g., printing
of perturbations) is imperfect.

Informed by the challenges above, we design Robust
Physical Perturbations (RP2), which can generate perturba-
tions robust to widely changing distances and angles of the
viewing camera. RP2 creates a visible, but inconspicuous
perturbation that only perturbs the object (e.g. a road sign)
and not the object’s environment. To create robust perturba-
tions, the algorithm draws samples from a distribution that
models physical dynamics (e.g. varying distances and an-
gles) using experimental data and synthetic transformations
(Figure 2).

Using the proposed algorithm, we evaluate the effective-
ness of perturbations on physical objects, and show that
adversaries can physically modify objects using low-cost
techniques to reliably cause classification errors in DNN-
based classifiers under widely varying distances and angles.
For example, our attacks cause a classifier to interpret a
subtly-modified physical Stop sign as a Speed Limit 45 sign.
Specifically, our final form of perturbation is a set of black
and white stickers that an adversary can attach to a physical
road sign (Stop sign). We designed our perturbations to re-
semble graffiti, a relatively common form of vandalism. It
is common to see road signs with random graffiti or color
alterations in the real world as shown in Figure 1 (the left
image is of a real sign in a city). If these random patterns
were adversarial perturbations (right side of Figure 1 shows
our example perturbation), they could lead to severe conse-
quences for autonomous driving systems, without arousing
suspicion in human operators.

Given the lack of a standardized method for evaluating

Figure 2: RP2 pipeline overview. The input is the target Stop
sign. RP2 samples from a distribution that models physical
dynamics (in this case, varying distances and angles), and
uses a mask to project computed perturbations to a shape
that resembles graffiti. The adversary prints out the resulting
perturbations and sticks them to the target Stop sign.

physical attacks, we draw on standard techniques from the
physical sciences and propose a two-stage experiment de-
sign: (1) A lab test where the viewing camera is kept at
various distance/angle configurations; and (2) A field test
where we drive a car towards an intersection in uncontrolled
conditions to simulate an autonomous vehicle. We test our
attack algorithm using this evaluation pipeline and find that
the perturbations are robust to a variety of distances and
angles.
Our Contributions. Figure 2 shows an overview of our
pipeline to generate and evaluate robust physical adversarial
perturbations.

1. We introduce Robust Physical Perturbations (RP2) to
generate physical perturbations for physical-world ob-
jects that can consistently cause misclassification in a
DNN-based classifier under a range of dynamic physi-
cal conditions, including different viewpoint angles and
distances (Section 3).

2. Given the lack of a standardized methodology in eval-
uating physical adversarial perturbations, we propose
an evaluation methodology to study the effectiveness
of physical perturbations in real world scenarios (Sec-
tion 4.2).

3. We evaluate our attacks against two standard-
architecture classifiers that we built: LISA-CNN with
91% accuracy on the LISA test set and GTSRB-CNN
with 95.7% accuracy on the GTSRB test set. Using two
types of attacks (object-constrained poster and sticker
attacks) that we introduce, we show that RP2 produces
robust perturbations for real road signs. For example,
poster attacks are successful in 100% of stationary and
drive-by tests against LISA-CNN, and sticker attacks
are successful in 80% of stationary testing conditions
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something that most humans would not think is suspicious.
The right image shows our a physical perturbation applied
to a Stop sign. We design our perturbations to mimic graffiti,
and thus “hide in the human psyche.”

the viewing camera. Additionally, other practicality chal-
lenges exist: (1) Perturbations in the digital world can be
so small in magnitude that it is likely that a camera will not
be able to perceive them due to sensor imperfections. (2)
Current algorithms produce perturbations that occupy the
background imagery of an object. It is extremely difficult
to create a robust attack with background modifications be-
cause a real object can have varying backgrounds depending
on the viewpoint. (3) The fabrication process (e.g., printing
of perturbations) is imperfect.

Informed by the challenges above, we design Robust
Physical Perturbations (RP2), which can generate perturba-
tions robust to widely changing distances and angles of the
viewing camera. RP2 creates a visible, but inconspicuous
perturbation that only perturbs the object (e.g. a road sign)
and not the object’s environment. To create robust perturba-
tions, the algorithm draws samples from a distribution that
models physical dynamics (e.g. varying distances and an-
gles) using experimental data and synthetic transformations
(Figure 2).

Using the proposed algorithm, we evaluate the effective-
ness of perturbations on physical objects, and show that
adversaries can physically modify objects using low-cost
techniques to reliably cause classification errors in DNN-
based classifiers under widely varying distances and angles.
For example, our attacks cause a classifier to interpret a
subtly-modified physical Stop sign as a Speed Limit 45 sign.
Specifically, our final form of perturbation is a set of black
and white stickers that an adversary can attach to a physical
road sign (Stop sign). We designed our perturbations to re-
semble graffiti, a relatively common form of vandalism. It
is common to see road signs with random graffiti or color
alterations in the real world as shown in Figure 1 (the left
image is of a real sign in a city). If these random patterns
were adversarial perturbations (right side of Figure 1 shows
our example perturbation), they could lead to severe conse-
quences for autonomous driving systems, without arousing
suspicion in human operators.

Given the lack of a standardized method for evaluating

Figure 2: RP2 pipeline overview. The input is the target Stop
sign. RP2 samples from a distribution that models physical
dynamics (in this case, varying distances and angles), and
uses a mask to project computed perturbations to a shape
that resembles graffiti. The adversary prints out the resulting
perturbations and sticks them to the target Stop sign.

physical attacks, we draw on standard techniques from the
physical sciences and propose a two-stage experiment de-
sign: (1) A lab test where the viewing camera is kept at
various distance/angle configurations; and (2) A field test
where we drive a car towards an intersection in uncontrolled
conditions to simulate an autonomous vehicle. We test our
attack algorithm using this evaluation pipeline and find that
the perturbations are robust to a variety of distances and
angles.
Our Contributions. Figure 2 shows an overview of our
pipeline to generate and evaluate robust physical adversarial
perturbations.

1. We introduce Robust Physical Perturbations (RP2) to
generate physical perturbations for physical-world ob-
jects that can consistently cause misclassification in a
DNN-based classifier under a range of dynamic physi-
cal conditions, including different viewpoint angles and
distances (Section 3).

2. Given the lack of a standardized methodology in eval-
uating physical adversarial perturbations, we propose
an evaluation methodology to study the effectiveness
of physical perturbations in real world scenarios (Sec-
tion 4.2).

3. We evaluate our attacks against two standard-
architecture classifiers that we built: LISA-CNN with
91% accuracy on the LISA test set and GTSRB-CNN
with 95.7% accuracy on the GTSRB test set. Using two
types of attacks (object-constrained poster and sticker
attacks) that we introduce, we show that RP2 produces
robust perturbations for real road signs. For example,
poster attacks are successful in 100% of stationary and
drive-by tests against LISA-CNN, and sticker attacks
are successful in 80% of stationary testing conditions

Forrás: Szegedy et al



MESTERSÉGES NEURÁLIS HÁLÓK FORRADALMA A KÉPFELISMERÉSBEN

TOVÁBBI KÜLÖNBSÉGEK
▸ CNN sokkal egyszerűbb: a legbonyolultabb hálózatok is csak nagyjából száz 

millió paraméterrel rendelkeznek 

▸ CNN hardver többet fogyaszt, (de sokkal gyorsabban elemez (GoogleNet. 7 
ezredmásodperc / kép)) 

▸ CNN csak jól definiált szűk feladatot képes ellátni 

▸ CNN elég buta: tanításához egy speciális feladatra (jelenleg) sokkal több kép 
kell, mint egy ember számára. Csak címkézett példákból tud tanulni, nem lehet 
“elmagyarázni neki” hogyan néz ki egy kutya. Nem gondolkozik, csak 
mintázatot illeszt! Ehhez sok példa kell. 

▸ CNN nagyon szorgalmas, olyan mennyiségú képanyagon lehet tanítani, amit 
egy ember egész élete során sem tudna feldolgozni 

▸ CNN nagyon gyorsan tanul: 1 óra alatt (!) betanítható az emberi teljesítmény 
elérésére az ILSVRC-n 

▸ A CNN sosem fárad el



MESTERSÉGES NEURÁLIS HÁLÓK A KÉPALKOTÓ DIAGNOSZTIKÁBAN

CNN A KÉPALKOTÓ DIAGNOSZTIKÁBAN
▸ Bőr rák: kép osztályozás  

▸ Esteva et al. 

▸ Emlékeztető: szenzitivitás: TP/P, specificitás: TN/N
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lesions. In this task, the CNN achieves 72.1 ±  0.9% (mean ±  s.d.)  overall 
accuracy (the average of individual inference class accuracies) and two 
dermatologists attain 65.56% and 66.0% accuracy on a subset of the 
validation set. Second, we validate the algorithm using a nine-class 
disease partition—the second-level nodes—so that the diseases of 
each class have similar medical treatment plans. The CNN achieves 
55.4 ±  1.7% overall accuracy whereas the same two dermatologists 
attain 53.3% and 55.0% accuracy. A CNN trained on a finer disease 
partition performs better than one trained directly on three or nine 
classes (see Extended Data Table 2), demonstrating the effectiveness 
of our partitioning algorithm. Because images of the validation set are 
labelled by dermatologists, but not necessarily confirmed by biopsy, 
this metric is inconclusive, and instead shows that the CNN is learning 
relevant information.

To conclusively validate the algorithm, we tested, using only 
 biopsy-proven images on medically important use cases, whether 
the algorithm and dermatologists could distinguish malignant versus 
benign lesions of epidermal (keratinocyte carcinoma compared to 
benign seborrheic keratosis) or melanocytic (malignant melanoma 
compared to benign nevus) origin. For melanocytic lesions, we show 

two trials, one using standard images and the other using dermoscopy 
images, which reflect the two steps that a dermatologist might carry out 
to obtain a clinical impression. The same CNN is used for all three tasks. 
Figure 2b shows a few example images, demonstrating the difficulty in 
distinguishing between malignant and benign lesions, which share many 
visual features. Our comparison metrics are sensitivity and specificity:

=sensitivity true positive
positive

=specificity true negative
negative

where ‘true positive’ is the number of correctly predicted malignant 
lesions, ‘positive’ is the number of malignant lesions shown, ‘true neg-
ative’ is the number of correctly predicted benign lesions, and ‘neg-
ative’ is the number of benign lesions shown. When a test set is fed 
through the CNN, it outputs a probability, P, of malignancy, per image.  
We can compute the sensitivity and specificity of these probabilities 

Acral-lentiginous melanoma
Amelanotic melanoma
Lentigo melanoma
…

Blue nevus
Halo nevus
Mongolian spot
…

Training classes (757)Deep convolutional neural network (Inception v3) Inference classes (varies by task) 

92% malignant melanocytic lesion

8% benign melanocytic lesion

Skin lesion image

Convolution
AvgPool
MaxPool
Concat
Dropout
Fully connected
Softmax

Figure 1 | Deep CNN layout. Our classification technique is a  
deep CNN. Data flow is from left to right: an image of a skin lesion  
(for example, melanoma) is sequentially warped into a probability 
distribution over clinical classes of skin disease using Google Inception  
v3 CNN architecture pretrained on the ImageNet dataset (1.28 million 
images over 1,000 generic object classes) and fine-tuned on our own 
dataset of 129,450 skin lesions comprising 2,032 different diseases.  
The 757 training classes are defined using a novel taxonomy of skin disease 
and a partitioning algorithm that maps diseases into training classes 

(for example, acrolentiginous melanoma, amelanotic melanoma, lentigo 
melanoma). Inference classes are more general and are composed of one 
or more training classes (for example, malignant melanocytic lesions—the 
class of melanomas). The probability of an inference class is calculated by 
summing the probabilities of the training classes according to taxonomy 
structure (see Methods). Inception v3 CNN architecture reprinted 
from https://research.googleblog.com/2016/03/train-your-own-image-
classifier-with.html
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Figure 2 | A schematic illustration of the taxonomy and example test 
set images. a, A subset of the top of the tree-structured taxonomy of skin 
disease. The full taxonomy contains 2,032 diseases and is organized based 
on visual and clinical similarity of diseases. Red indicates malignant, 
green indicates benign, and orange indicates conditions that can be either. 
Black indicates melanoma. The first two levels of the taxonomy are used in 
validation. Testing is restricted to the tasks of b. b, Malignant and benign 

example images from two disease classes. These test images highlight the 
difficulty of malignant versus benign discernment for the three medically 
critical classification tasks we consider: epidermal lesions, melanocytic 
lesions and melanocytic lesions visualized with a dermoscope. Example 
images reprinted with permission from the Edinburgh Dermofit Library 
(https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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CNN A KÉPALKOTÓ DIAGNOSZTIKÁBAN

▸ Diabéteszes retinopátia: 3D kép 
klasszifikáció, (De Fauw et al) ARTICLESNATURE MEDICINE

Nevertheless, our framework demonstrated an area under the 
ROC curve that was over 99% for most of the pathologies (and 
over 96% for all of them; Supplementary Table 7), on par with the 
performance of the experts on OCT only. As with earlier evalu-
ations, performance of the experts improved when they were 
provided also with the fundus image and patient summary notes. 
This improvement was most marked in pathologies classed as ‘rou-
tine referral’, for example geographic atrophy and central serous 
retinopathy. Many of these pathologies are conditions for which 
the fundus photograph or demographic information would be 
expected to provide important information, indicating that there is 
scope for future work to improve the model. However even in the 
worst case our framework still performed on par with at least one 
retinal specialist and one optometrist (Supplementary Table 6 and 
Supplementary Fig. 8).

Generalization to a new scanning device type. A key benefit of 
our two-stage framework is the device independence of the second 
stage. Using our framework on a new device generation thus only 
requires retraining of the segmentation stage to learn how each 

tissue type appears in the new scan, whereas the knowledge about 
patient-to-patient variability in pathological manifestation of differ-
ent diseases, which it had learned from the approximately 15,000 
training cases, can be reused. To demonstrate this generalization, we 
collected an independent test set of clinical scans from 116 patients 
(plus confirmed clinical outcomes) recorded with a different 
OCT scanner type from a different vendor (Spectralis, Heidelberg 
Engineering,; hereafter ‘device type 2’). This dataset is listed as 
dataset 11 in Supplementary Table 3 (see Methods ‘Datasets’). We 
selected this device type for several reasons. It is the second most 
used device type at Moorfields Eye hospital for these examinations, 
giving rise to a sufficient number of scans. It has a similar worldwide 
market share as device type 1. But most importantly, this device type 
provides a large difference in scan characteristics compared to the 
original device type (see Supplementary Fig. 9).

To evaluate the effect of a different scanning device type, we ini-
tially fed the OCT scans from device type 2 into our framework, 
which was trained only on scans from device type 1 (Fig. 4a). 
The segmentation network was clearly ‘confused’ by the changed 
appearance of these structures and attempted to explain them as  
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Fig. 5 | Visualization of the segmentation results as thickness maps. a, The average intensity projection of the OCT scan along A-scan direction (frontal 
view of the eye) is overlaid with a thickness map of the fibrovascular pigment epithelium detachment (PED, red segment). b, Screenshot from our OCT 
viewer. First row (left), referral suggestion, tissue volumes and diagnosis probabilities. The highlighted bars correspond to the selected segmentation model. 
First–third rows, thickness maps of the 10 relevant tissue types from segmentation model instance 2. The two healthy tissue types (high level retina and 
RPE) are displayed in a black–blue–green–brown–white color map, the pathological tissues (all others) are displayed as overlay on a projection of the raw 
OCT scan. The thin white line indicates the position of slice 80. Fourth row, slice 80 from the OCT scan and the segmentation map from segmentation 
model instance 2. Detailed tissue legend in Supplementary Table 2. The slice and model instance can be interactively selected (see Supplementary Video 1).

NATURE MEDICINE | VOL 24 | SEPTEMBER 2018 | 1342–1350 | www.nature.com/naturemedicine 1347

ARTICLES NATURE MEDICINE

997 patients that were not included in the training dataset (data-
set 5 in Supplementary Table 5). We then tested our framework on 
this dataset. For each patient, we obtained the referral suggestion 
of our framework plus an independent referral suggestion from 
eight clinical experts, four of whom were retina specialists and four 
optometrists trained in medical retina (see Supplementary Table 
6 for more information). Each expert provided two separate deci-
sions, one (like our framework) from the OCT scan alone (dataset 
7 in Supplementary Table 5); and one from the OCT plus fundus 
image and clinical notes (dataset 8 in Supplementary Table 5, see 
Supplementary Fig. 2), in two separate sessions spaced at least two 
weeks apart. We compared each of these performances (framework 
and two expert decisions) against the gold standard.

Our framework achieved and in some cases exceeded expert per-
formance (Fig. 3). To illustrate this, Fig. 3a displays performance 
on ‘urgent referrals’, the most important clinical referral decision 
(mainly for pathologies that cause choroidal neovascularization; 
see Supplementary Table 1) versus all other referral decisions as 
a receiver operating characteristic (ROC) plot (plots for the other 
decisions are shown in Supplementary Fig. 3). Performance of our 
framework matched our two best retina specialists and had a sig-
nificantly higher performance than the other two retinal special-
ists and all four optometrists when they used only the OCT scans 
to make their referral suggestion (Fig. 3a, filled markers). When 
experts had access to the fundus image and patient summary notes 
to make their decision, their performance improved (Fig. 3a, empty 
markers) but our framework remained as good as the five best 
experts and continued to significantly outperform the other three 
(see Supplementary Information).

To provide a more complete picture, the overall performance 
of our framework on all four clinical referral suggestions (urgent, 
semi-urgent, routine and observation only) compared to the two 
highest performing retina specialists is displayed in Fig. 3b. The 
framework performed comparably to the two best-performing 
retina specialists, and made no clinically-serious wrong decisions 
(top right element of each matrix; that is, referring a patient who 
needs an urgent referral to observation only). Confusion matri-
ces for the assessments of the other human experts are shown in 
Supplementary Fig. 4. The aggregated number of wrong referral 
decisions is displayed as error rate (1 −  accuracy) for our framework 
and all experts in Fig. 3c. Our framework (5.5% error rate) per-
formed comparably to the two best retina specialists (6.7% and 6.8% 
error rate) and significantly outperformed the other six experts in 
the ‘OCT only’ setting. Significance thresholds (3.9% for higher per-
formance and 7.3% for lower performance) were derived by a two-
sided exact binomial test, incorporating uncertainty from both the 
experts and the algorithm (see Methods ‘Statistical analysis’). When 
experts additionally used the fundus image and the summary notes 
of the patient, five approached the performance of our framework 
(three retina specialists and two optometrists), which continued to 
significantly outperform the remaining three (one retina specialist 
and two optometrists).

Our framework uses an ensemble of five segmentation and 
five classification model instances (see Supplementary Fig. 1) to 
achieve these results. Beside the benefits of an uncertainty measure, 
ensembling also significantly improves overall performance com-
pared to a single model instance. Error rates for different ensemble 
sizes are shown in Supplementary Fig. 5. With more segmentation 
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Fig. 2 | Results of the segmentation network. Three selected two-dimensional slices from the n!= !224 OCT scans in the segmentation test set (left)  
with manual segmentation (middle) and automated segmentation (right; detailed color legend in Supplementary Table 2). a, A patient with diabetic 
macular edema. b, A patient with choroidal neovascularization resulting from age-related macular degeneration (AMD), demonstrating extensive 
fibrovascular pigment epithelium detachment and associated subretinal fluid. c, A patient with neovascular AMD with extensive subretinal hyperreflective 
material. Further examples of the variation of pathology with model segmentation and diagnostic performance can be found in Supplementary Videos 1–9. 
In all examples the classification network predicted the correct diagnosis. Scale bars, 0.5!mm.
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solid line and the shaded areas represent the mean bootstrapped ROC curve and the 95th-percentiles. Bootstrap 
is a statistical technique which enables estimation of confidence intervals by repeated resampling of a represent-
ative population18. The average bootstrapped area under the ROC curve (AUC) for the median analysis was 0.99 
(0.95–1.0) and 0.98 (0.94–0.99) for the 90th-percentile analysis. However, the 90th-percentile analysis has higher 
specificity at a sensitivity level of 0.999 (0.32, 95%-CI: 0.29–0.97) compared to median analysis (0.17, 95%-CI: 
0.15–1.0).

Identification of breast cancer metastases in sentinel lymph nodes. Representative examples of 
sentinel lymph node specimens are presented in Fig. 5 (without metastases) and Fig. 6 (with metastases). The 
metastases are correctly detected with very high likelihood (red color). Areas containing only lymphocytes are 
mostly transparent (likelihood close to zero), whereas areas containing histiocytes or mixtures of histiocytes and 
lymphocytes are transparent – green (low likelihoods). Distinction between histiocyte–rich regions and metasta-
ses is also a well-known difficulty for residents in pathology.

Quantitatively, results were analyzed in two ways. FROC analysis was used to assess localization accuracy, 
whereas ROC analysis was used to assess performance at the slide level. FROC analysis was only performed on 
the test set, as annotations are required to assess localization accuracy. The FROC and ROC curves are shown in 
Fig. 7. Results of the FROC and ROC analyses are also summarized in Table 3. At the expense of one or two false 
positive detections per tumor-negative image 90% or 93% of all individual micro- and macro-metastases could be 
identified, respectively. If we also include all isolated tumor cell (ITC) instances, 71% was found at the expensive 
of one false positive detection per tumor-negative image and 74% was found at the expense of two false positive 
detections per image.

The ROC analysis shows that in both the test and consecutive data sets, an area under the ROC curve of 
close to 0.90 can be obtained on the slide level when discriminating slides without from slides with micro- and 
macro-metastases. Furthermore, at 0.999 sensitivity up to 0.44 specificity could be obtained in the consecutive 
set. When also including slides only containing ITC, performance drops to an area under the ROC curve of 0.74 
and 0.02 specificity at 0.999 sensitivity.

Discussion
Although deep learning is an active research field, the application of deep learning to histopathology is relatively 
new. Most already published work has focused on the detection of mitotic figures9,11 or identification and seg-
mentation of individual cells15,19. One paper used a convolutional auto-encoder to segment basal-cell carcinoma 
in H&E-images of breast cancer20.However, this model is only evaluated on images from pre-selected regions of 
interest and not on whole slides, making it difficult to assess its practical value.

The two papers most closely related to our work have focused on different entities. Cruz-Roa et al. used a 
CNN to detect and segment primary breast cancer12 and Ertosun et al. investigated the grading of gliomas13. We 

Figure 2. Representative example of a whole slide prostate biopsy specimens with 30% cancer. The top row 
shows the complete field of view, the bottom row a close up (close-up area indicated by the square rectangle). 
The second column shows the cancer likelihood map as an overlay on the original image. Red indicates a high 
likelihood of cancer, whereas transparent/green indicates a low likelihood.
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Pre-processing steps. The annotations were used to generate binary mask images at the same resolution as 
the original slides. Any pixel inside an annotated region was labeled as cancer (label 1), whereas all other regions 
were left blank (label 0).

In addition to the binary annotation mask, we also generated binary tissue masks to separate background from 
tissue. To this end we performed a simple thresholding procedure on the optical density of the RGB channels. 
Optical density of a channel is obtained through:

=OD I
I

log
(1)c

max
10

Here ODc is the optical density of the channel c (Red, Green or Blue), I is the intensity of the channel and Imax 
is the maximum intensity, which is 255 due to 8-bit quantization. By thresholding the optical densities at 0.2, all 
background could be removed resulting in a binary mask where tissue is labeled 1 and background is labeled 0.

Convolutional neural network training and application. To train the convolutional neural network 
we made use of the open-source ‘deep learning’ libraries Theano 0.7 and pylearn2 0.125,26.

As it is impossible to feed entire whole-slide images to the network at once, we randomly extracted small 
patches from the whole-slide image for training. Whole-slide results can then be obtained by applying the net-
work to every pixel in the image.

Patch size in pixels was determined empirically during initial experiments. We tried 64 ×  64, 128 ×  128 and 
256 ×  256 pixel patches. The 64 ×  64 sized patches performed substantially worse on patch-based accuracy and 
256 ×  256 sized patches limited convolutional networks depth due to memory limitations of the GPU. As such, 
we settled on a patch size of 128 ×  128.

Figure 6. Representative examples of lymph nodes with macro-metastases (top image) and a single 
micro-metastasis (bottom image) from the test set. Metastases likelihood maps are overlaid on the original 
H&E image. Transparent/green means a low likelihood, whereas red indicates a high likelihood of metastasis. 
Magenta contours indicate the ground truth annotation. On the right side of the whole slide images the areas 
indicated by the yellow squares are shown at full-resolution.

Statistical Analysis
Measurements of time, accuracy, and numeric score

between assisted and unassisted modes were analyzed using
mixed-effects models. Models were generated with patholo-
gists and images treated as random effects and the assistance
modality and session (mode 1 or mode 2) treated as fixed
effects. For statistical significance evaluation, P-values were
obtained using the Likelihood Ratio Test with the anova
function in R, comparing the full model to a null model with
the fixed effect of interest (eg, assistance mode) removed. For
statistical significance of accuracy, binomial mixed-effect
models across all observations were generated using the glmer
function. All models were generated using the lme4 package
in R and each category (eg, negative or micrometastases) was
modeled separately.

RESULTS

Reference Standard and Study Images
All study images were reviewed by 3 reference standard

pathologists as described in the “Materials and methods”
section above. For all slides, digitized images of both H&E-
satined and IHC-stained sections were reviewed to establish
the reference standard classification. The final category clas-
sification of images used in this study is summarized in
Table 1. Three cases had initially discrepant classifications
among reference standard pathologists, all of which involved
the identification of tumor foci near the border of 2 size
categories. These discrepancies were resolved easily with
adjudicated measurement or tumor cell counts (additional
details in Supplemental Table 2, Supplementary Digital
Content 1, http://links.lww.com/PAS/A677).

Classification Accuracy
The overall mean sensitivity for detection of meta-

stases by the pathologists in this study was 94.6% (95%
confidence interval [CI], 93.4%-95.8%). To evaluate the
impact of the assisted read on accuracy, we analyzed per-
formance by case category and assistance modality (Fig. 3A).
For micrometastases, sensitivity was significantly higher with

TABLE 1. Case Composition
Category No. Images (n [%])

Negative 24 (34)
Isolated tumor cells 8 (11)
Micrometastasis 19 (27)
Macrometastasis 19 (27)
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FIGURE 3. Improved metastasis detection with algorithm assistance. A, Data represents performance across all images by image
category and assistance modality. Error bars indicate SE. The performance metric corresponds to corresponds to specificity for
negative cases and sensitivity for micrometastases (micromet) and macrometastases (macromet). B, Operating point of individual
pathologists with and without assistance for micrometastases and negative cases, overlayed on the receiver operating characteristic
curve of the algorithm. AUC indicates area under the curve.
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Model Interpretation and Data Visualization
To gain further intuition into how the network derived its de-
cisions, one average saliency map taken across 10% ADNI test 
set and one across independent test set were shown. Saliency 
map plots the gradient of AD class score regarding each in-
put pixel and thereby visualizes areas on the images that were 
deemed important for the classification result (17). To illus-
trate the connection between the saliency map and anatomy, 
an additional example individual saliency map was presented 
with anatomy overlay. All saliency maps were produced by 
using Keras 2.0.

t-Distributed stochastic neighbor embedding (t-SNE) (18), 
a dimension reduction method that preserves relative closeness 
of data points, was then performed on features extracted by the 
deep learning network on training data. By using package scikit-
learn (19), the 1024 features were first reduced to dimension 
30 with principal component analysis before t-SNE was applied 
with learning rate 200 and 1000 iterations to reduce the dimen-
sion further to 2.

Clinical Interpretation of 18F-FDG PET
To obtain reader performance on the independent test set, 
three board-certified nuclear medicine physicians (R.A.H., 
nuclear medicine; B.L.F., nuclear medicine; S.C.B., ab-
dominal imaging and nuclear medicine) with 36, 14, and 5 
years of experience, respectively, performed independent in-
terpretations of the 40 18F-FDG PET imaging studies from 
the independent test set. Interpretations consisted of two 
components: qualitative interpretation of the PET emission 
images in axial, sagittal, and coronal planes, followed by a 
semiquantitative regional metabolic analysis using a com-
mercially available clinical neuro-analysis software package 
(MIM Software, Cleveland, Ohio). Only 18F-FDG PET im-
aging data, name, age, and date of scan were visible to the 
readers. Qualitative and quantitative interpretations for one 
patient were performed consecutively before moving on to 
the next patient. If any of the three qualitative interpreta-
tions disagreed, the imaging study was interpreted by two ad-
ditional radiology readers (L.N, nuclear medicine; C.M.A., 
nuclear medicine) with 1 year and 13 years of experience, 
respectively. The diagnosis of the majority of the five radiol-
ogy readers was taken as the final clinical imaging diagnosis.

Model Testing and Statistical Analysis
The trained deep learning model was tested on two test data 
sets: 10% ADNI set as internal hold-out test set and indepen-
dent test set from local institution as external test set. Prob-
ability that an image belongs to class AD, MCI, and non-AD/
MCI was output by the model, and the class with the highest 
probability was chosen as the classification result.

Receiver operating characteristic (ROC) curves of the 
model on 10% ADNI set were plotted and the area under 
the ROC curve (AUC) was calculated. To compare the per-
formance of deep learning model to reader performance, the 
ROC curves of deep learning model on independent test set 
were plotted with 95% confidence interval (CI), calculated by 
using package pROC 1.12.1 in R 3.5.1 with 200 iterations 

Adam, a first-order gradient-based stochastic optimization al-
gorithm, with a learning rate of 0.0001, categorical cross entropy 
loss function, and batch size of 8 was used for model training 
(16). The trained algorithm was tested by the accuracy on the 
held-out ADNI data set (n = 188) and the independent test set 
(n = 40). Keras 2.0 (2017; Google, Mountain View, Calif ) with 
Tensorflow 1.3 (2015; Google) backend was used for designing 
neural networks and loading pretrained weights. All programs 
were run in Python 2.7.

Figure 1: Inclusion and exclusion criteria for the independent test set. 
Patient must have had at least one follow-up with a neurologist at our lo-
cal institution. ADNI = Alzheimer’s Disease Neuroimaging Initiative.

Figure 2: Example of fluorine 18 fluorodeoxyglucose PET images 
from Alzheimer’s Disease Neuroimaging Initiative set preprocessed 
with the grid method for patients with Alzheimer disease (AD). One 
representative zoomed-in section was provided for each of three ex-
ample patients: A, 76-year-old man with AD, B, 83-year-old woman 
with mild cognitive impairment (MCI), and, C, 80-year-old man with 
non-AD/MCI. In this example, the patient with AD presented slightly 
less gray matter than did the patient with non-AD/MCI. The difference 
between the patient with MCI and the patient with non-AD/MCI ap-
peared minimal to the naked eye. 

Deep Learning Model to Predict Alzheimer Disease by Using FDG PET of the Brain
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PET images has implications in differentiating AD or MCI 
from a normal brain; however, 18F-FDG itself is not a defini-
tive imaging biomarker for AD or MCI. The past decade has 
produced several tools for the early diagnosis of AD, includ-
ing increasingly specific biomarkers of the disease (24,25). For 
example, b-amyloid (Ab), a marker of AD, can be detected in 
the cerebral spinal fluid or at imaging with PET by using ra-
diolabeled Ab ligands, such as 18F-florbetapir, flutemetamol, 
and florbetaben (3,26,27). However, these innovations are 

prediction on the independent test set. Furthermore, in pre-
dicting the final diagnosis of AD on the independent test set, 
it outperformed three radiology readers in ROC space, with 
statistical significance. With further validation with larger and 
more diverse datasets, this algorithm may be able to augment 
radiologist reader performance and improve the prediction of 
AD diagnosis, providing an opportunity for early intervention.

Multiple previous studies have shown that the distinctive 
distribution of areas of cortical hypometabolism on 18F-FDG 

Figure 4: Receiver operating characteristic (ROC) curves of deep learning model Inception V3 trained on 90% of Al-
zheimer’s Disease Neuroimaging Initiative (ADNI) data and tested on the remaining 10% of ADNI set and independent 
test set. (a) ROC curves of trained deep learning model tested on the remaining 10% of ADNI set. ROC curve labeled 
AD (Alzheimer disease) represents the core model performance for distinguishing AD versus all other cases. ROC curves 
for mild cognitive impairment (MCI) and non-AD/MCI are also reported for technical completeness. (b) ROC curves 
including the 95% confidence interval of trained deep learning model tested on the independent test set together with 
reader performance plotted on ROC space. The deep learning algorithm performs statistically significantly better at rec-
ognizing patients with AD on the independent test set. The algorithm is also better at recognizing patient with non-AD/
MCI and worse at recognizing patients with MCI, but did not reach statistical significance.

Table 2: Performance Comparison of Deep Learning Algorithm and Radiology Readers

Parameter Sensitivity (%)* Specificity (%)* Precision (%)* F1 Score (%)
No. of Imaging 
Studies

Deep learning model on 10% ADNI set
 AD 81 (29/36) 94 (143/152) 76 (29/38) 78 36
 MCI 54 (43/79) 68 (74/109) 55 (43/78) 55 79
 Non-AD/MCI 59 (43/73) 75 (86/115) 60 (43/72) 59 73
Deep learning model on independent test set
 AD 100 (7/7)† 82 (27/33) 54 (7/13) 70† 7
 MCI 43 (3/7)† 58 (19/33) 18 (3/17)† 25† 7
 Non-AD/MCI 35 (9/26) 93 (13/14)† 90 (9/10)† 50 26
Radiology readers on independent test set
 AD 57 (4/7) 91 (30/33) 57 (4/7) 57 7
 MCI 14 (1/7) 76 (25/33) 11 (1/9) 13 7
 Non-AD/MCI 77 (20/26) 71 (10/14) 83 (20/24) 80 26

Note.–Unless otherwise indicated, data are averages ± standard deviation. ADNI = Alzheimer’s Disease Neuroimaging Initiative, AD = 
Alzheimer disease, MCI = mild cognitive impairment, Non-AD/MCI = neither Alzheimer disease nor mild cognitive impairment.
* Numbers in parentheses are raw data used to calculate the percentage.
† Numbers indicate higher performance from deep learning algorithm compared with reader performance on independent test set. 
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ÖSSZEFOGLALÓ A NEURÁLIS HALÓ ALAPÚ KÉPFELISMERÉS 
HELYZETÉRŐL A KÉPALKOTÓ DIAGNISZTIKÁBAN
▸ Több különböző területen megközelítette vagy elérte 

szakorvosok kép osztályozó (diagnosztizáló) pontosságát,  
ezeknek a területeknek a száma csak növekedni fog 

▸ Még több adattal tovább fog nőni a pontossága 

▸ Szűk, jól definiált feladatokat tud megoldani 

▸ Nagy volumenű szűrővizsgálatokban lesz a leghasznosabb  

▸ Monoton, fárasztó, koncentrációt igénylő, nem embernek 
való feladatokban segítheti az embert és lassan 
tehermentesítheti.  Az emberek az embernek való 
feladatokkal tudnak foglalkozni. (Számológép van, 
matematikusok is vannak.)



MESTERSÉGES NEURÁLIS HÁLÓK A KÉPALKOTÓ DIAGNOSZTIKÁBAN

ÖSSZEFOGLALÓ A NEURÁLIS HALÓ ALAPÚ KÉPFELISMERÉS 
HELYZETÉRŐL A KÉPALKOTÓ DIAGNISZTIKÁBAN
▸ Több különböző területen megközelítette vagy elérte szakorvosok kép 

osztályozó (diagnosztizáló) pontosságát, ezeknek a területeknek a száma 
csak növekedni fog 

▸ Még több adattal tovább fog nőni a pontossága 

▸ Szűk, jól definiált feladatokat tud megoldani 

▸ Nagy volumenű szűrővizsgálatokban lesz a leghasznosabb  

▸ Monoton, fárasztó, koncentrációt igénylő, nem embernek való 
feladatokban segítheti az embert és lassan tehermentesítheti.  Az 
emberek az embernek való feladatokkal tudnak foglalkozni. 
(Számológép van, matematikusok is vannak.) 

▸ Az orvos feladata nem (csak) kép klasszifikáció. A CNN nem mesterséges 
intelligencia, hanem mesterséges (vizuális) percepció. 

▸ A betegellátás komplex folyamatában nem helyettesítheti az orvost. 
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