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Abstract

Background

Detection of acute kidney injury (AKI) is still a challenge if conventional markers of kidney

function are within reference range. We studied the sensitivity and specificity of NGAL as an

AKI marker at different degrees of renal ischemia.

Methods

Male C57BL/6J mice were subjected to 10-, 20- or 30-min unilateral renal ischemia, to con-

trol operation or no operation, and AKI was evaluated 1 day later by histology, immunohis-

tochemistry, BUN, creatinine, NGAL (plasma and urine) and renal NGAL mRNA

expression.

Results

A short (10-min) ischemia did not alter BUN or kidney histology, but elevated plasma and

urinary NGAL level and renal NGAL mRNA expression although to a much smaller extent

than longer ischemia. Surprisingly, control operation elevated plasma NGAL and renal

NGAL mRNA expression to a similar extent as 10-min ischemia. Further, the ratio of urine to

plasma NGAL was the best parameter to differentiate a 10-min ischemic injury from control

operation, while it was similar in the non and control-operated groups.

Conclusions

These results suggest that urinary NGAL excretion and especially ratio of urine to plasma

NGAL are sensitive and specific markers of subclinical acute kidney injury in mice.

PLOS ONE | DOI:10.1371/journal.pone.0148043 January 29, 2016 1 / 16

OPEN ACCESS

Citation: Kaucsár T, Godó M, Révész C, Kovács M,
Mócsai A, Kiss N, et al. (2016) Urine/Plasma
Neutrophil Gelatinase Associated Lipocalin Ratio Is a
Sensitive and Specific Marker of Subclinical Acute
Kidney Injury in Mice. PLoS ONE 11(1): e0148043.
doi:10.1371/journal.pone.0148043

Editor: Jeff M Sands, Emory University, UNITED
STATES

Received: July 26, 2015

Accepted: January 12, 2016

Published: January 29, 2016

Copyright: © 2016 Kaucsár et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: Support was provided to PH from the
Hungarian Research Fund: OTKA ANN-110810,
SNN-114619, ETT 07-011/ 2009 and Bolyai
Research Scholarship of the Hungarian Academy of
Sciences and Merit Award of Semmelweis University
(to PH), as well as by the Lendület program of the
Hungarian Academy of Sciences (LP2013-66 to AM).
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0148043&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
Acute kidney injury (AKI) is a common and serious problem in clinical nephrology. Twenty
one percent of hospitalized adults experience AKI worldwide according to a recent meta-analy-
sis [1]. The most frequent cause of AKI is ischemia-reperfusion injury of the kidney [2]. AKI is
also increasingly recognized as a cause of chronic kidney disease [3]. Serious AKI can be easily
detected by conventional markers of kidney function such as blood urea nitrogen or creatinine.
Moreover, renal tubular functional test, like urinary specific gravity depend on the hydration
status of the animal and are thus, difficult to standardize. Thus, in the absence of simple meth-
ods, a specific and sensitive marker of tubular injury is especially needed to detect mild AKI
below the sensitivity of traditional kidney function markers.

Neutrophil gelatinase-associated lipocalin (NGAL) has been introduced as a biomarker of
AKI [4], as NGAL is produced by injured tubular epithelial cells [5, 6]. Following its promising
debut as an early biomarker for AKI after cardiac surgery [7] NGAL was frequently used to
asses kidney damage in human subjects after kidney transplantation, contrast agent adminis-
tration, or in the critically ill patients [4, 8, 9], and in mouse AKI models [4, 10, 11]. NGAL has
3 isoforms: most of the synthesized NGAL is monomeric (25 kDa) or dimeric (45 kDa) and
only a small fraction is heterodimeric (135 kDa–complexed with gelatinase) [12]. Human renal
tubular cells produce mainly the monomeric form and to some extent the heterodimeric form
[12]. Unlike urea or creatinine retention, which are markers of the overall excretory function of
the kidney, NGAL is considered to be a marker of acute tubular cell injury. Thus, NGAL may
be more sensitive than urea [4] in ischemia-reperfusion or contrast induced (CI-) AKI [13].

Nevertheless, NGAL is not an exclusive kidney damage marker as plasma NGAL (pNGAL)
can increase in patients due to epithelial injury, or neutrophil activation [14], however in the
latter case, the dimeric form prevails [12]. Moreover, NGAL expression increased in humans as
a consequence of intestinal [15] or bronchial [16] epithelial injury, inflammation or cancer
[17]. The variety of NGAL sources can make it difficult to identify the underlying pathology.
NGAL originating from the kidney after injury is largely excreted into the urine, and only a
small fraction appears in the plasma [18]. Furthermore, NGAL from other organs is filtered in
the glomeruli and is largely reabsorbed by proximal tubules if tubules are intact [19]. Thus,
tubular injury results in a huge increase in urinary NGAL accompanied by a relatively small
elevation in plasma NGAL, whereas other organ pathologies would elevate plasma but not
urine NGAL.

Therefore, we hypothesized that urinary NGAL excretion or urine/plasma NGALmay be sen-
sitive markers of subclinical AKI, which cannot be detected by conventional renal function mark-
ers. We measured NGAL in the plasma and urine, and blood urea retention after varying degrees
of renal ischemia-reperfusion injury or non-operated and control-operated mice. Mild ischemia-
reperfusion injury and control operation could be differentiated only with urinary/plasma NGAL
but not with BUN. Neutrophil deficiency did not alter renal NGAL production, supporting the
hypothesis that neutrophils are not a major source of NGAL in the mouse AKI model.

Materials and Methods

Animals
Twenty-week-old male C57BL/6 (Charles River, Germany) and bone marrow chimera (see
below) mice weighing 30.3±4.8 g were maintained under standardized (light on 08:00–20:00 h;
40–70% relative humidity, 22 ± 1°C), specified pathogen-free (SPF) conditions, with free access
to standard rodent chow (Altromin standard diet, Germany) and tap water. All procedures
were performed in accordance with guidelines set by the National Institutes of Health (USA),
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the Hungarian law on animal care and protection, and was approved by the “Institutional Ethi-
cal Committee for Animal Care and Use” of Semmelweis University (registration numbers:
XIV-I-001/2103-4/2012 and 22.1/321/3/2011).

The effect of neutrophil deficiency was tested with using bone marrow chimeras with a neu-
trophil-deficient Mcl-1flox/floxLysMCre/Cre hematopoietic system [20]. C57BL/6 recipients were
irradiated with 11.5 Gy from a 137Cs source and were injected intravenously with unfractio-
nated bone marrow cells from wild type (WT) or Mcl-1flox/floxLysMCre/Cre (referred to as Mcl-
1ΔMyelo) mice on the C57BL/6 background [20, 21]. On average, the bone marrow cells from
the femurs and tibias of one donor were injected into five recipients. Four weeks after trans-
plantation, the circulating neutrophil numbers were determined by flow cytometry as
described [20]. Neutrophils were defined as Ly6G-positive cells within a characteristic forward-
and side-scatter gate.

Kidney ischemia-reperfusion injury in mice
Unilateral renal ischemia-reperfusion (I/R) injury with contralateral nephrectomy was performed
as described previously [22]. Briefly, the experiments were carried out using standard operating
procedures. The intra-abdominal temperature was maintained using a heating pad (HK-3,
DOPS, Czech Republic). The animals were narcotized by an intraperitoneal (ip.) injection of 80
mg kg-1 bw ketamine (CP-Pharma Handelsgesellschaft mbH, Burgdorf, Germany) and 4 mg kg-1

bw xylazine cocktail (CP-Pharma Handelsgesellschaft mbH, Burgdorf, Germany). Postoperative
care included morphine hydrochloride (2.5 mg kg-1 bw sc after the operation) analgesia and cef-
triaxone (Rocephin, 20 mg kg-1 once after operation, sc. Roche Hungary Ltd., Budaörs, Hungary)
to prevent infectious complications. After decapsulation of the left kidney, the left renal pedicle
was prepared and clamped to induce ischemia. Ischemia duration was based on our previous
studies, which established 10-min ischemia as mild, 20-min ischemia as moderate and 30-min as
severe ischemia with high mortality. The right kidney was removed in all cases to allow func-
tional evaluation of the injured kidney. To clearly separate changes caused by renal ischemia
from those caused by surgery and manipulation of the kidney, control mice were operated in the
same manner but without renal pedicle clamping (control-operated, ctrl-op). An additional
group of non-operated (non-op) mice was sacrificed without prior surgery for the evaluation of
the marker changes caused by the invasive surgery performed in control-operated mice. The
right kidney was used for control purposes. The effects of 10-, 20- and 30-min (n = 7-17/group)
ischemia with 24 hours reperfusion were evaluated.

Animal sacrifice, blood, urine and organ collection
The animals were sacrificed by cervical dislocation performed by trained personnel. Right
before sacrifice, heparin (500 U/mouse; Merckle GmbH., Germany) was injected ip. and blood
was collected from the thoracic cavity after cross-section of the vena cava. Blood was centri-
fuged at 1500 g for 8 min at 4°C to obtain plasma. The animals were perfused transcardially
with 20 ml physiological saline pre-cooled to 4°C. The post-ischemic kidney was removed for
further processing. Plasma and renal tissue samples were snap frozen in liquid nitrogen and
kept at -80°C until use.

Urine was collected for 24 hours in metabolic cages (Techniplast, Italy). Urine samples were
centrifuged at 3000 g for 20 min at 4°C to remove the sediment, and were stored at -20°C.

Plasma urea and urinary creatinine measurements
Blood urea nitrogen (BUN) was measured from 32 μL total blood samples with Reflotron1
Urea test stripes (Roche Diagnostics GmbH, Mannheim, Germany) on Reflotron1 Plus device
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(Roche Diagnostics GmbH, Mannheim, Germany) as described in the manufacturer’s
protocol.

Urine creatinine concentration was assessed with a colorimetric, enzymatic assay (Diagnosti-
cum Ltd. Budapest, Hungary) in 96 well plates (Greiner Bio-One GmbH, Frickenhausen, Ger-
many) according to the manufacturer’s instructions. Optical density was measured at 555 nm with
the SpectraMax 340 Microplate Spectrophotometer (Molecular Devices, Sunnyvale, USA). Con-
centrations were calculated with SoftMax1 Pro Software (Molecular Devices, Sunnyvale, CA).

NGAL, IL-6 and p40 ELISA
The plasma and urinary NGAL levels were determined with a mouse Lipocalin-2/NGAL Duo-
Set ELISA Development kit (R&D Systems, Minneapolis, MI, USA), which according to the
manufacturer detects the recombinant and homodimer mouse Lipocalin-2/NGAL. Detection
of the heterodimer has not been tested. Plasma NGAL and IL-6 correlated in septic patients
[23], and increased levels of IL-6 [24] and IL-12 [25] were also reported after surgery, in mice.
Therefore, plasma IL-6, IL-12/IL-23 total p40 cytokine levels were measured with mouse IL-6
and IL-12/IL-23 total p40 ELISA Ready-SET-Go kits (eBioscience, San Diego, CA, USA), as
described by the manufacturer. Shortly, 96 well plates (Nunc™ GmbH & Co. KG, Langensel-
bold, Germany, Denmark) were coated with the capture antibody, and the non-specific binding
sites were blocked with reagent diluent (1% BSA in PBS, pH 7.2–7.4). Adequately diluted sam-
ples (103 to 105-fold for NGAL) were incubated in duplicates for 2 hours, and then the detec-
tion antibody was added. Next, Streptavidin-HRP was linked to the biotinylated detection
antibody, followed by a short incubation with TMB Substrate (Sigma-Aldrich Chemie GmbH,
Steinheim, Germany). A washing session (5 times with 300 μl of washing buffer) was per-
formed after each step until the addition of the substrate solution. The enzymatic reaction was
terminated by stop solution containing H2SO4. The optical density was measured with Vic-
tor3™ 1420 Multilabel Counter (PerkinElmer, Wallac Oy, Finland) at 450 nm with wavelength
correction set to 544 nm. The NGAL concentrations were calculated with WorkOut software
(Dazdaq Ltd., Brighton, England), using a four parameter logistic curve-fit.

Estimation of filtered NGAL
To differentiate between hypoxic renal damage and other causes of elevated urinary NGAL
excretion we calculated the quantity of filtered NGAL in non- and control-operated mice and
in mice subjected to 10-min ischemia. First we estimated the GFR from the body weight based
on previous observations on C57BL/6 mice (mean GFR: 951 ± 235 μL min-1 100 g-1 bw) [26]
and calculated the volume filtered in 24 hours. As the mouse NGAL is around 21 kDa [27], it is
freely filtered by the glomeruli [28]. Next, we calculated the amount of filtered NGAL accord-
ing to the following equation:

Filtered NGAL ¼ P½NGAL� � Vol½24h GFR�;

where P[NGAL] is the plasma NGAL concentration and Vol[24h GFR] is the 24-hour volume of
the glomerular filtrate. In the severe (20-, 30- min) ischemia groups increased BUN indicated
renal dysfunction, thus we could not calculate NGAL filtration in these groups.

Histology and NGAL immunohistochemistry of renal tissue in tissue
microarray (TMA) slides
Renal tissue samples fixed in 4% buffered formaldehyde were dehydrated and embedded in
paraffin wax (FFPE) for histology and immunohistochemistry. The renal tissue injury was
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evaluated morphologically by tissue microarray (TMA) as described previously [29]. Briefly,
blocks of 70-sample TMAs contained duplicates of 2 mm diameter cylinders cut by the com-
puter-controlled puncher of the TMAMaster Device (3DHISTECH Kft, Budapest, Hungary)
from each FFPE kidney. For morphology and immunohistology, 4 μm thick sections were cut
from the TMA blocks. Renal tubular necrosis, tubular dilation and cast formation were evalu-
ated in Periodic acid-Schiff (PAS) stained TMA sections. Each tissue section was scored by a
pathologist (MA) blinded to the origin of the tissue on a 0 to 4 scale as follows: 0 = no lesion;
1 = minimal or focal changes affecting less than 20% of the field; 2 = mild changes or the exten-
sion of the lesion to approx. 25% of the field; 3 = moderate changes or the extension of the
lesion from 25% to 50% of the field; 4 = severe changes or the extension of the lesion to more
than 50% of the field.

Renal tubular epithelial cell NGAL content was visualized by immunostaining. Dewaxed
and rehydrated TMA sections were cooked in a 0.01M Tris-HCl and 0.1 EDTA buffer (TBS;
pH 9.0) for 25 min at 100°C for antigen retrieval. The immunostaining involved consecutive
incubations of TMA sections in 1% bovine serum albumin (BSA) in TBS (pH 7.4) for 15 min,
rabbit anti-human NGAL IgG (1:100; R&D Systems, Minneapolis, MI, USA) for 16 h and in
goat anti-rabbit IgG EnVision-peroxidase polymer kit (Dako, Glostrup, Denmark) for 40 min,
all at room temperature. Tissue-bond peroxidase activity was developed with a DAB/H2O2

chromogen/substrate kit (Dako). Immunostained TMA slides were digitalized using a Pan-
noramic Scan instrument. Images were processed by Pannoramic Viewer (3DHISTECH). Gen-
eral staining intensity was quantified by ImageJ (NIH) software.

RNA preparation
Total RNA was extracted from the upper third of the kidney with TRI Reagent1 (Molecular
Research Center, Inc., Cincinnati, OH, USA) according to the protocol provided by the manu-
facturer [30]. In brief, the frozen renal tissues were homogenized by an IKA1 DI 18 basic
grinder (IKA1Works do Brasil Ltda., Taquora, Brazil). Chloroform (Sigma-Aldrich, Inc., St
Louis, MO, USA) was added to each sample and mixed by vortexing. The aqueous phase was
separated from the organic phase by centrifugation. RNA was precipitated from the transferred
aqueous phase with an equal quantity of isopropyl alcohol by incubation for 30 min at room
temperature. The RNA pellet was washed twice with 75% ethyl alcohol, and dissolved in 100 μl
RNase free water. The RNA pellet was treated with DNase I, RNase-free (Fermentas, St. Leon-
Rot, Germany) to eliminate possible DNA contamination. The DNase was inactivated by phe-
nol/chloroform extraction (Fluka, Sigma-Aldrich, Buchs, Switzerland). The RNA concentra-
tion and purity was assessed with a NanoDrop 2000c Spectrophotometer (Thermo Fisher
Scientific, Wilmington, DE, USA). All RNA samples had an absorbance ratio (260 nm / 280
nm) above 1.8. To check RNA integrity, the samples were electrophoresed on 1% agarose gel
(Invitrogen Ltd., Paisley, UK) in BioRad Wide mini-sub1 cell GT system (Bio-Rad Laborato-
ries, Inc., Hercules, CA, USA), and the ratio of 28S and 18S ribosomal RNA bands was calcu-
lated. The RNA solutions were kept at -80°C until further procedures.

Quantitative real-time PCR analysis of NGAL mRNA expression in renal
tissue
NGAL mRNA levels were measured by double-stranded DNA (dsDNA) dye based real-time
PCR. Reverse transcription into cDNA was carried out by the High-Capacity cDNA Archive
Kit (Applied Biosystem, Foster City, CA, USA) according to the manufacturer’s protocol.
Briefly, 1 μg total renal RNA was reverse transcribed into cDNA with random hexamer primers
at 37°C for 2 hours with Bio Rad iCycler™ Thermal Cycler (Bio-Rad Laboratories, Inc.,
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Hercules, CA, USA). The NGAL (Lcn2) gene expression from kidney tissue homogenates was
evaluated on the Bio-Rad C1000™ Thermal Cycler with CFX96™Optics Module real-time PCR
system (Bio-Rad Laboratories, Inc., Singapore). The PCR reaction was performed with Max-
ima™ SYBR Green qPCRMaster Mix (Fermentas, St. Leon-Rot, Germany), according to the
manufacturer’s protocol. Primers for NGAL were designed by the NCBI/Primer-BLAST online
software (Fwd: ACg gAC TAC AAC CAg TTC gC; Rev: AAT gCA TTg gTC ggT ggg g) and
synthesized by Integrated DNA Technologies (IDT, Inc., Coralville, IA, USA). The endogenous
reference gene was GAPDH (Fwd: CCA gAA TgA ggA TCC CAg AA, Rev: ACC ACC TgA
AAC ATg CAA CA). Primer annealing was set to 58°C and the melting curve was analysed to
detect any abnormality of the PCR product. All samples were measured in duplicates and
mRNA expressions were calculated using the relative quantification (ΔΔCq) method [31]. The
efficiency of the qPCR reaction was also verified with standard curves.

Statistical analysis
Results are presented as mean±standard error of the mean (SEM) unless otherwise indicated.
Logarithmic transformation was performed if Bartlett’s test indicated inhomogeneity of vari-
ances. Continuous variables were compared using either one-way analysis of variance
(ANOVA), followed by the Dunnett's multiple comparison post hoc test versus the control
operated group, or two-way ANOVA with Tukey’s multiple comparisons test. Linear correla-
tion was assessed with Pearson product-moment correlation coefficient. The null-hypothesis
was rejected if the p value reached statistical significance (�: p<0.05, ��: p<0.01, ���: p<0.001).

Results

Blood urea nitrogen (BUN) and renal histology in relation to the duration
of renal ischemia
BUN did not increase after 10-min renal ischemia (Fig 1S). Histological changes were also
mild: only tubular dilation score was higher than in the control-operated group (Fig 1P), other-
wise the kidneys had a normal histology in the 10-min renal ischemia group (Fig 1C, 1H, 1M,
1Q and 1R). After 20-min renal ischemia tubular necrosis and casts were obvious and quanti-
fied as elevated scores (Fig 1D, 1I, 1Q and 1R). Histological damage was also reflected function-
ally by higher BUN levels compared to control-operated mice in the 20-min renal ischemia
group (Fig 1S). Thirty min renal ischemia caused extensive tubular necrosis with cast forma-
tion in the renal medulla (Fig 1J and 1O).

Renal NGAL immunohistochemistry
In non-operated mice a slight, diffuse cytoplasmic NGAL staining was present only in the renal
cortex (Fig 2A). In control-operated mice, cortical NGAL staining area and intensity was
larger, and NGAL also appeared in the medulla (Fig 2B, 2G and 2L). Ischemia-reperfusion
injury increased NGAL staining further only in the medulla (Fig 2H–2J and 2M–2O). Interest-
ingly, overall cortical NGAL staining area and intensity increased markedly but to a similar
extent in all operated mice independent of the presence or absence of ischemia-reperfusion
injury (Fig 2A–2E and 2T). On the other hand, increasing ischemia times were accompanied
by a gradually increasing NGAL staining in the outer stripe of the medulla (Fig 2U). The area
of NGAL staining was also proportional to the duration of ischemia in the inner stripe of the
medulla (Fig 2V). Thus, only medullary but not cortical NGAL staining was influenced by
ischemia time per se.
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Fig 1. Severity of AKI after various renal ischemia times. The most sensitive parameter was (P) the tubular dilation score, which increased already after
10-min ischemia (C, H and M) compared to control-operated (ctrl-op; B, G and L) (* p<0.05 vs. non-operated (non-op) and p<0.001 vs. control-operated (ctrl-
op); ** p<0.001 vs. non-op and ctrl-op). (Q) Tubular necrosis and (R) casts were present mostly after 20- (D, I and N) and 30-min (E, J and O) ischemia
(† p<0.05 vs. non-op, p<0.01 vs. ctrl-op, 10- and 30-min ishemia; ‡ p<0.0001 non-op, ctrl-op and 10-min ischemia, p<0.01 vs. 20-min ischemia; ¶ p<0.05 vs.
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Besides an overall cytoplasmic staining we also observed a punctate NGAL staining pattern
in tubular epithelial cells exclusively in proximal tubules (Fig 2P–2R). The punctate staining
was present also in non- and control-operated mice (Fig 2P and 2Q) but it was more intense
after severe (30-min) ischemia (Fig 2R). After severe (30-min) ischemia tubular casts and
necrotic tubules were also NGAL positive (Fig 2J and 2O), while the control staining without
the primary antibody proved to be negative (Fig 2S).

Induction of NGAL after control operation and renal ischemia-
reperfusion injury
Normalization of urinary NGAL excretion to urinary creatinine gave similar results to that of
24-hour urinary NGAL excretion (Fig 3A). An intriguing finding of this study was that control
operation significantly increased plasma NGAL concentration (Fig 3B), renal NGAL mRNA
expression (Fig 3C), and urinary NGAL excretion (Fig 3D). Surprisingly, 10-min renal ische-
mia and control operation similarly increased renal NGAL mRNA expression (Fig 3C) and
plasma NGAL concentration (Fig 3B). However, urinary NGAL excretion increased much
more after 10-min renal ischemia than after control operation (Fig 3D). Thus, only urinary
NGAL excretion differentiated 10-min renal ischemia from control operation. Twenty-,
30-min ischemia resulted in drastic elevations of renal NGAL mRNA expression (Fig 3C) and
plasma NGAL concentration (Fig 3B). Urinary NGAL excretion markedly increased after
20-min ischemia in comparison to 10-min ischemia (Fig 3D).

Urinary NGAL excretion to plasma NGAL level ratio (u/pNGAL)
We calculated the ratio of urinary NGAL excretion to plasma NGAL levels. Importantly,
u/pNGAL values were similar in the control-operated and non-operated groups (Fig 3E). How-
ever, (u/pNGAL) significantly increased after 10-min ischemia compared to the control-oper-
ated mice, and was further elevated after more severe ischemia (Fig 3E). In order to better
understand the difference in urinary NGAL excretion after 10-min ischemia and control opera-
tion we compared the excreted urinary NGAL to the estimated filtered NGAL in both groups.
The excreted urinary NGAL was about 6-fold higher than the filtered NGAL after 10-min
ischemia while they were similar after control and no operation (Fig 3F), suggesting that the
post-ischemic kidney added a large amount of NGAL to the excreted fraction.

The diagnostic value of u/pNGAL in comparison to other kidney injury markers was further
evaluated using Receiver Operating Characteristics (ROC) curve analysis. Only urinary NGAL
discriminated successfully 10-min ischemia from control operation (Table 1). Furthermore,
only u/pNGAL values discriminated 10-min ischemia from control operation, when tested
against the non-operated controls (Table 2). On the other hand, plasma NGAL levels and renal
expression of NGAL mRNA discriminated only the more severe (20-min and 30-min) ische-
mia from control operation (Table 1). Plasma NGAL levels or renal mRNA expression of
NGAL also discriminated control-operated from non-operated (Table 2).

Inflammation after 20- and 30-min renal ischemia
To investigate the role of inflammation in NGAL induction IL-6 and IL-12/IL-23 total p40
plasma levels were monitored after renal ischemia and control operation. IL-6 levels rose

non-op, p<0.01 vs. ctrl-op and 10-min ischemia, p<0.0001 vs. 30-min ischemia; *¶ p<0.0001 vs. non-op, ctrl-op, 10- and 20-min ischemia). There was no
significant histologic change between non-op (A, F and K) and ctrl-op. (S) Renal function measured by blood urea nitrogen retention worsened after 20-min
ischemia (# p<0.0001 vs. non-op, ctrl-op (ctrl-op) and 10-min ischemia). (non-op: n = 4; ctrl-op: n = 6; 10-min: n = 7; 20 min: n = 7; 30 min: n = 16).

doi:10.1371/journal.pone.0148043.g001
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Fig 2. The intensity and extent of the NGAL immunostaining increased progressively with renal ischemia time. In the non-op kidneys (A, F and K)
only the cortex (A) was NGAL positive, where the intracellular punctate staining pattern intensified after ischemia-reperfusion injury (R) compared to non-op
(P) and control-op (Q). After control operation (ctrl-op; B, G and L) slight staining of the outer (G) and inner stripe (L) could be also observed. However, NGAL
staining score increased further after 10- (C, H and M), 20- (D, I and N) and 30-min (E, J and O) renal ischemia in the outer medulla (U and V). Without the
primary antibody no nonspecific staining was visible (S). * p<0.0001 vs. non-op; † p<0.05 vs. non-op and to 20-min, and p<0.001 vs. 30-min ischemia;
‡ p<0.001 vs. non-op, and p<0.05 vs. 30-min ischemia; ¶ p<0.0001 vs. non-op, and p<0.05 vs. ctrl-op; § p<0.0001 vs. non-op, p<0.001 compared ctrl-op, and
p<0.05 vs. 10-min ischemia; †* p<0.01 vs. 20-min, and p<0.001 vs. 30-min ischemia; ¶* p<0.0001 vs. non-op, and p<0.01 vs. ctrl-op. (non-op: n = 4; ctrl-op:
n = 7; 10 min: n = 9; 20 min: n = 8; 30 min: n = 17).

doi:10.1371/journal.pone.0148043.g002
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similarly from undetectable levels to peak at 3 hours post-surgery both after 30-min ischemia
and control operation (Fig 4A). The time-course of p40 plasma levels were similar to that of
IL-6 without any difference between the control-operated and ischemic groups (Fig 4B).

Fig 3. Urinary NGALwas sensitive enough to detect 10-min ischemia. (A) Urinary NGAL normalized to urinary creatinine correlated significantly with
24-hour urinary NGAL (r = 0.9082, p<0.0001). (B) Plasma NGAL levels and (C) NGAL renal mRNA expression increased both after 20-min ischemia and
control operation (# p<0.01 vs. non-op, 20- and 30-min ischemia; *# p<0.01 vs. non-op and ctrl-op; † p<0.0001 vs. non-op, 20- and 30-min ischemia,
‡ p<0.0001 vs. non-op, ctrl-op and 10-min ischemia). (D) Urinary NGAL increased significantly after 10-min ischemia, but also after control operation
(* p<0.0001 vs. non-op, p<0.05 vs. 10-min ischemia, p<0.0001 vs. 20-min ischemia; *& p<0.0001 vs. non-op and p<0.05 vs. ctrl-op; & p<0.0001 vs. non-op
and ctrl-op). (E) Urinary NGAL further normalized to (divided by) plasma NGAL increased significantly after ischemia-reperfusion injury, but not after control
operation (¶ p<0.001 vs. non-op and ctrl-op). (F) The ratio between urinary NGAL and calculated filtrered NGAL was significantly higher only after 10-min
ischemia and not after ctrl-op vs. non-op ($ p<0.001 vs. ctrl-op and non-op). (non-op: urine and plasma n = 23, kidney RNA n = 10; ctrl-op: n = 6; 10 min:
n = 6; 20 min: n = 5; 30 min: plasma and kidney RNA n = 17).

doi:10.1371/journal.pone.0148043.g003

Table 1. The ability of plasma and urinary NGAL and BUN levels to discriminate between the severity of renal ischemia-reperfusion injury com-
pared to control operation.

Ischemia vs. control-op. 10 min 20 min

Kidney damage marker Area SE P Cut-off Area SE P Cut-off

BUN (mg dl-1) 0.60 0.16 0.52 N/A 1.00 0.00 0.01 46.920

NGAL mRNA 0.67 0.16 0.32 N/A 1.00 0.00 0.01 0.410

pNGAL (μg ml-1) 0.58 0.18 0.63 N/A 0.93 0.08 0.05 3.498

uNGAL (μg 24h-1) 0.86 0.14 0.01 2.385 0.90 0.10 0.05 0.733

uNGAL/uCrea (μg ml-1) 0.94 0.07 0.05 6.655 1.00 0.00 0.01 24.830

uNGAL/uCrea/pNGAL (μg mgCrea-1 μg-1 ml-1) 0.97 0.04 0.01 2.335 1.00 0.00 0.01 3.879

The area under the receiver operating characteristic (ROC) curve (AUC), standard error (SE) of the AUC, the P value (vs. control-op) and the cut-off value

with the highest sensitivity and specificity are presented.

doi:10.1371/journal.pone.0148043.t001
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The involvement of neutrophil granulocytes in NGAL production was also evaluated in
Mcl-1ΔMyelo chimeric mice with a myeloid-specific deletion of the anti-apoptotic myeloid cell
leukemia-1 (MCL-1) factor resulting in neutrophil deficiency. In the absence of MCL-1 mice
have a severe defect in neutrophil survival [32, 20]. Although a dramatic drop in neutrophil
number was detected (Fig 4C) no decreases in plasma and urinary NGAL were revealed after
severe (20-min) ischemia in Mcl-1ΔMyelo compared to wild-type (WT) bone marrow chimeras
(Fig 4D–4G).

All raw data are available in S1 Dataset.

Discussion
Our results demonstrate that urinary NGAL (uNGAL) is a sensitive and specific marker of sub-
clinical (10-min) renal ischemia, which is undetectable by blood urea nitrogen (BUN) in mice.
NGAL is similarly sensitive to BUN in detecting severe kidney injury. Normalization of urinary
NGAL to plasma NGAL (u/pNGAL) discriminates renal from non-renal injury. Finally, neu-
trophil deficiency did not alter NGAL upregulation after renal ischemia-reperfusion injury in
mice, similarly to earlier findings [6], thus neutrophils are not a major source of NGAL in this
model.

Compared to non-operated mice, renal NGAL mRNA (NGAL-mRNA) expression, and
plasma and urinary NGAL (pNGAL and uNGAL) protein levels were elevated already by
10-min ischemia and were further elevated significantly from 10-min to more severe 20- or
30-min renal ischemia. There is growing evidence that plasma or urinary NGAL detects kidney
injury before kidney function impairment in clinical trials [33, 34]. Hence, for the diagnosis of
subclinical AKI, kidney damage markers, such as NGAL should be considered besides kidney
function markers [35]. However, further studies are needed to introduce NGAL into the stan-
dard clinical practice [34, 36].

A baseline systemic NGAL production has been demonstrated previously [28, 37]. NGAL is
filtered by the glomeruli [28], and is reabsorbed [18] and degraded [27] in proximal tubular
cells [38]. However, the capacity of proximal tubular NGAL reabsorption could be saturated at
relatively low plasma concentrations since in our study the intensity of renal cortical NGAL
immunostaining was similar in all groups subjected to surgery. Low NGAL mRNA staining
(with in situ hybridization) in spite of intense NGAL protein staining could demonstrate if this
hypothesis is true or not. Punctate NGAL staining pattern in the renal cortex was present
exclusively in the proximal tubules, therefore, they were probably endocytotic vacuoles

Table 2. The ability of plasma and urinary NGAL and BUN levels to discriminate between 10-min renal ischemia and control operation compared
to non-operated (non-op.) group.

Operation vs. non-op. Control-operated 10-min ischemia

Kidney damage marker Area SE P Cut-off Area SE P Cut-off

BUN (mg dl-1) 0.58 0.15 0.51 N/A 0.54 0.15 0.76 N/A

NGAL mRNA 1.00 0.00 0.01 0.030 1.00 0.00 0.001 0.034

pNGAL (μg ml-1) 1.00 0.00 0.001 0.604 1.00 0.00 0.001 1.118

uNGAL (μg 24h-1) 1.00 0.00 0.001 0.250 1.00 0.00 0.001 1.271

uNGAL/uCrea (μg ml-1) 1.00 0.00 0.001 0.775 1.00 0.00 0.001 4.066

uNGAL/uCrea/pNGAL (μg mgCrea-1 μg-1 ml-1) 0.53 0.10 0.81 N/A 0.88 0.06 0.01 2.474

The area under the receiver operating characteristic (ROC) curve (AUC), standard error (SE) of the AUC, the P value (vs. non-op) and the cut-off value

with the highest sensitivity and specificity are presented.

doi:10.1371/journal.pone.0148043.t002
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suggesting NGAL reabsorption. NGAL staining increased dose-dependently after ischemia-
reperfusion injury, as also reported previously [17].

After renal ischemia-reperfusion NGAL is mainly produced by the distal tubule [6]. In our
study, renal NGAL production was evidenced by NGAL mRNA (NGAL-mRNA) in the kidney
after ischemia-reperfusion. NGAL produced in the kidney is mainly excreted into the urine
and enters the circulation to a lesser degree [19]. These previous findings suggest that urinary
NGAL excretion increases much more in the case of kidney injury than due to injury of other
organs. In fact, our study demonstrated that mild renal ischemia-reperfusion injury increased
urinary NGAL (uNGAL) more than control operation, while plasma NGAL (pNGAL) was
similar in the mild ischemia and control groups.

An intriguing finding was that plasma NGAL (pNGAL) concentration and renal NGAL
mRNA (NGAL-mRNA) expression were similarly induced after control operation and 10-min
ischemia. These results highlight the fact that the invasive surgery performed in control-oper-
ated mice led to significant inflammation. Inflammatory cytokines (IL-6 and p40 (subunit of
both IL-12 and IL-23)) were elevated in the plasma demonstrating a prompt systemic inflam-
matory response that could contribute to the rise of plasma NGAL. Thus, systemic inflamma-
tion as a consequence of the operative procedure could induce extra-renal NGAL production,
leading to filtration and tubular reabsorption of NGAL. However, the extent of inflammation
was similar after control operation or even after severe (30-min) ischemia. On the other hand
RAS activation induced by general anaesthesia [39, 40], and fluid loss during surgery may also
lead to hypotension [41] and renal hypoperfusion, as we demonstrated renal NGAL mRNA

Fig 4. Inflammation after surgery induced NGAL production, but NGAL was not derived from neutrophils. Systemic inflammation markers (A) IL-6
and the (B) p40 subunit of IL-12/-23 peaked at 3 and 6 hours after both 30-min renal I/R injury and control. (C) In the Mcl-1ΔMyelo bone marrow chimeric mice
neutrophil deficiency was verified by FACS. There was no difference in (D) BUN, (E) pNGAL and (F, G) urinary NGAL levels normalized to urinary creatinine
and to plasma NGAL in Mcl-1ΔMyelo compared to wild type (WT) bone marrow chimeras. *, **, ***: p<0.05, 0.01, 0.001 vs. the groups indicated. (IL-6 and
p40 kinetics n = 5/group/time-point; WT-control-op n = 7; WT-IR20 n = 17; Mcl-1ΔMyelo-control-op n = 6; Mcl-1ΔMyelo-IR20 n = 8).

doi:10.1371/journal.pone.0148043.g004
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elevation in control operated mice. We were able to observe a step-by-step elevation of
uNGAL: first uNGAL increased in the control operation group compared to non-operated
mice. Thereafter uNGAL gradually increased with the severity of ischemia, demonstrating a
dose-response effect. Thus, we speculate that even a mild renal injury induced tubular secretion
and/or reduced tubular reabsorption of NGAL. This theory is also supported by others [18].

Normalization of urinary NGAL to plasma NGAL (u/pNGAL) can possibly differentiate
direct renal injury from extrarenal injury. Plasma to urinary NGAL (p/uNGAL) ratio has been
proposed to distinguish septic from non-septic AKI in humans previously [42]. Moreover, an
increase in the urinary to plasma NGAL ratio (u/pNGAL) but not plasma NGAL (pNGAL)
was a good AKI marker in diabetic patients [43], and urinary to plasma NGAL ratio (u/
pNGAL) was a slightly better AKI marker than urinary NGAL (uNGAL) alone. Our ROC
curve analysis demonstrated that plasma or urinary NGAL (pNGAL or uNGAL) and urea
(BUN) were similarly good markers of severe renal injury. Urinary NGAL (uNGAL) excretion
and urinary to plasma NGAL ratio (u/pNGAL) were similarly useful to differentiate 10- and
20-min ischemia from control operation. However, urinary NGAL (uNGAL) was superior to
plasma NGAL (pNGAL) to differentiate mild renal ischemia-reperfusion injury from control
operation. The urinary to plasma NGAL ratio (u/pNGAL) did not show kidney injury in con-
trol-operated vs. non-operated mice, while it did show kidney injury after 10-min ischemia.
These results support that urinary NGAL excretion normalized to plasma NGAL (u/pNGAL)
is specific to ischemic kidney injury. The estimated fractional excretion of NGAL also sup-
ported the advantage of studying the ratio between urinary and plasma NGAL. Therefore,
renal origin of urinary NGAL increase in pathologies leading not only to renal, but to other epi-
thelial cell injury could be detected with the fractional excretion of NGAL. However we could
calculate fractional excretion of NGAL in those groups only in which filtration markers did not
change. Further studies would be needed to test fractional excretion of NGAL in more severe
kidney injury that reduces GFR as well.

In cases when 24-hour urine collection is not feasible, concentration of excreted proteins
such as NGAL (uNGAL) can be measured from spot urine and normalized to urine creatinine
[44, 45, 46]. While the 24-hour urine normalization offers information about the average excre-
tion in 24 hours, normalization to creatinine allows monitoring of the actual state of tubular
injury. Here we demonstrated a significant correlation between the 24-hour and the creatinine
normalized NGAL excretion suggesting that both spot urine and 24-hour urine are suitable to
monitor tubular injury.

Limitations: in this study, the kidney function was measured only with blood urea nitrogen
(BUN). Even though serum creatinine is a more commonly used kidney function marker in
clinical practice, its levels were frequently unmeasurable in mice due to the low sensitivity of
the available measuring method. However BUN increases similarly to creatinine in AKI mouse
models [47, 48], therefore we used BUN.

In conclusion our study supports the diagnostic importance of NGAL in renal ischemia-
reperfusion injury and provides comprehensive data about NGAL in this mouse model of AKI.
Serious renal ischemia-reperfusion injury can be detected by conventional markers such as
blood urea nitrogen retention with similar sensitivity to urinary or plasma NGAL. On the
other hand, mild or very early stages of renal ischemia-reperfusion injury are only detected by
urinary NGAL even before overall renal function starts to decline. Precaution is needed by the
interpretation of plasma NGAL and if possible, the more sensitive and the more renal-specific
urinary NGAL should be used to diagnose renal ischemia-reperfusion injury. Moreover, nor-
malization of urinary NGAL to plasma NGAL could help to differentiate direct renal injury
from extrarenal causes of NGAL elevation, especially if experimental circumstances require a
sensitive distinction.
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