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The Rowett rat strain is resistant to renal fibrosis
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Abstract
Background. Genetic susceptibility to renal fibrosis may
determine the individual rate of progression to renal fail-
ure. We aimed to study the progression in Rowett (RO)
rats, a strain we found resistant to subtotal nephrectomy
(SNX), comparing to Sprague–Dawley (SD) rats, a strain
with established sensitivity in a radical ablation/infarction
and diet-induced SNX model.
Methods. Eight-week-old male RO (RO-SNX) and SD
(SD-SNX, n = 5/group) rats underwent SNX and were kept
on high protein and salt diet. Kidney function was moni-
tored and the kidneys were evaluated by histology and im-
munohistochemistry 5 weeks after SNX.
Results. RO-SNX rats had only mild proteinuria and less
glomerulosclerosis, accompanied by less fibronectin and
TGF-β staining as compared to SD-SNX rats. Glomerular
nitrotyrosine staining was less intense in RO-SNX vs SD-
SNX, accompanied by less podocyte damage as demon-
strated by desmin staining.
Conclusion. Our results demonstrate the importance of
podocyte damage in glomerulosclerosis and that Rowett
rats are protected from renal fibrosis. To our knowledge,
this is the first strain of rats with unknown genetic resis-
tance, which makes the strain attractive for studying the
genetic background of renal fibrosis.
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Introduction

Chronic kidney disease is a major healthcare problem
worldwide. The key lesions are glomerular sclerosis and
tubulointerstitial fibrosis, secondary to various renal dis-
eases such as diabetes mellitus, hypertension, renal ischae-
mia, infection or systemic lupus erythematosus. However,
there are significant interindividual differences in progres-
sion of chronic renal failure (CRF), which suggests the in-
volvement of genetic factors [1,2].

The influence of gender and strain on glomerulosclero-
sis (GS) in rodents has been established [3,4]. Several
studies demonstrated differences in susceptibility to CRF
in rats using models of experimentally induced GS [5], ne-
phrosis [6], mesangial injury [7] or hypertension [8,9]. In
mouse strains, genetic background of susceptibility to glo-

merulosclerosis has been reported as well. In search for a
genetically determined glomerular disease model, strain
dependence was found to rely on a single gene defect in
susceptible BALB/cJ and resistant C57BL/6J strains
[10]. Furthermore, susceptibility to HIV nephropathy
was demonstrated to depend on a network of podocyte-
expressed genes [11].

Although several mechanisms have been demonstrated
to participate in the development of GS, its pathogenesis
is still incompletely understood. Nephron number, high in-
traglomerular capillary pressure [12,13], glomerular hyper-
trophy [14,15], podocyte damage, extracellular matrix
(type IV collagen and fibronectin) accumulation [16,17],
synthesis of profibrotic growth factors (TGF-β, CTGF)
and albuminuria are characteristic determinants of progres-
sion [18,19].

Podocytes seem to play a central role in the pathogenesis
of GS. During compensatory glomerular hypertrophy
[12,16,20], effacement of podocyte foot processes leads to
albuminuria and podocyte detachment from the basement
membrane, further leading to tuft adhesion to the Bowman’s
capsule (focal sclerosis) [21,22]. Besides the mechanical in-
jury of podocytes during glomerular hypertrophy, oxidative
stress also contributes to podocyte damage [23,24].

In a pilot study, we detected resistance to subtotal ne-
phrectomy (SNX) of Rowett black-hooded (RO) rats, an
inbred strain with a 10% mortality compared to 60% of
Sprague–Dawley (SD) rats 8 weeks after radical SNX.
Thus, in the present study, we investigated the background
of resistance by comparing resistant RO rats to the sensi-
tive SD strain in an accelerated ablation–infarction (A/I)
model. In this model, renal ablation is followed by high
protein and salt intake leading to elevated plasma renin
and rapid development of glomerulosclerosis [25], pro-
gressing to renal failure in SD rats.

Materials and methods

Animals and study protocol

Eight-week-old male SD and RO rats weighing 330–380 g were used
(Charles River, Hungary). All animals were housed under standard con-
ditions (light on 08:00–20:00 hr; 40–70% relative humidity, 22 ± 1°C)
and had free access to water and chow (Altromin standard diet, Germany).

After 1 week of acclimatization, rats underwent SNX using the surgi-
cal A/I method (SD-SNX, RO-SNX, n = 5/group) [25]. The animals were
anesthetized with diethyl ether, and then the right kidney was removed by
median laparotomy. The left kidney was carefully decapsulated and
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branches of the left renal artery were localized under a Zeiss operation
microscope (Zeiss, Germany), and two branches were sequentially ligated
using Prolene 6-0 (Johnson and Johnson, Hungary) sutures, leaving only
one branch intact which supplied the lower frontal quadrant of the kidney.
The area of ischaemia was macroscopically checked on both the frontal
and rear sides of the kidney. As a result of the operation, ∼75% of the left
kidney mass was infarcted. In order to closely model the clinical situation
of complex and ongoing renal injury and to accelerate kidney damage,
operated rats received high protein diet (40% casein, Altromin special di-
et, Germany) and water supplemented with 0.25% NaCl [25].

Functional measurements

Twenty-four-hour urine was collected in metabolic cages (Techniplast,
Italy) before the operation and at harvest. Simultaneously, blood samples
were taken. Blood urea nitrogen and urine creatinine were evaluated using
specific test stripes with a Reflotron IV analyzer (Roche Diagnostics,
Hungary). Urinary protein was measured with the Bradford assay. Urinary
protein excretion was then calculated as the urinary protein/creatinine ra-
tio to normalize for the glomerular filtration rate. Also, urinary albumin
excretion was determined using a microplate sandwich enzyme-linked im-
munosorbent assay (ELISA) [26] modified by using a rabbit anti-rat al-
bumin peroxidase conjugate.

Renal tissue harvest

For basic histologic and immunohistochemical analysis, SNX animals
were harvested 5 weeks after SNX. Upon harvest, blood was taken from
the aorta, and kidneys were immersion-fixed in 4% buffered formalde-
hyde, embedded in paraffin and cut into 4-μm-thick sections. Slides were
periodic acid Schiff (PAS)- or immunostained.

Glomerular damage indices

In SNX animals, the glomerulosclerosis index was assessed on PAS-
stained paraffin sections according to the scoring system (scores 0–4) of
El Nahas et al. [27]. Using light microscopy and a magnification of ×400,
the glomerular score of each animal was derived as the arithmetic mean of
100 glomeruli. The tubular and interstitial damage scores were assessed
on PAS-stained paraffin sections using a similar scoring system (scores 0–
4) at a magnification of ×100 as described in detail elsewhere [28].

Immunohistochemistry

Paraffin sections of SNX animals were prepared and incubated with anti-
bodies, using the avidin–biotin method [29], to detect fibronectin (anti-
fibronectin rabbit polyclonal antibody, 1:1000, Sigma, Germany), TGF-
β1 (anti-TGF-β1 rabbit polyclonal antibody, 1:100, Santa Cruz, USA),
desmin (anti-desmin monoclonal mouse antibody, 1:50; DAKO, Ger-
many) and nitrotyrosine (sheep polyclonal antibody, 1:400, Oxis Re-
search, USA). Immunohistochemical reactivity was examined with light
microscopy at a magnification of ×200. Semiquantitative scoring (scores
0–4; 0: no staining, 1: weak, 2: mild, 3: strong, 4: very strong staining)
was performed as described elsewhere [30].

Statistics

Data are presented as mean ± SD. Non-parametric Mann–Whitney U test
was performed to compare the groups. A P value of <0.05 was considered
statistically significant.

Results

Animal data and kidney function following SNX

There was no difference in body weight between the
groups either before the operations (SD-SNX: 368 ±
39 g vs RO-SNX: 351 ± 15 g, ns) or at the end of the
study (SD-SNX: 373 ± 38 g vs RO-SNX: 362 ± 34 g,
ns). Blood urea concentrations at the end of the study
were significantly elevated in SD-SNX vs age-matched
SD rats (Table 1). Blood urea was significantly lower
in RO-SNX rats. The urinary protein/creatinine ratio
was equally normal in both groups before SNX. Five
weeks after SNX (at the time of harvest), SD-SNX rats
developed significant proteinuria vs during the start of
the study. Proteinuria did not develop in RO-SNX rats.
Urinary albumin ELISA confirmed the proteinuria data:
urinary albumin excretion progressively increased in
SD-SNX but stayed normal in RO-SNX rats.

Histological indices of renal damage and
immunohistochemical evaluation of SNX animals

On PAS-stained slides (Figure 1A–B), several glomeruli
were sclerotic to some extent in SD-SNX rats (Tables 2
and 3; Figure 1). Glomeruli had dilated capillaries in both
groups; however, glomerular damage was significantly
milder in the RO-SNX group. Tubulointerstitial damage
was characterized as interstitial infiltration and tubular di-
latation and/or atrophy. In SD-SNX kidneys, severe tubu-
lointerstitial damage was observed. Tubulointerstitial
damage was significantly alleviated in RO-SNX rats.

Fibronectin accumulation observed both in the glomer-
uli and the tubulointerstitial space of SD-SNX was signif-
icantly ameliorated in RO-SNX. Strong staining for TGF-
β1 (Figure 1C, D) was observed in SD-SNX kidneys vs
significantly less intense staining in the glomeruli of
RO-SNX. Staining for desmin (Figure 1E, F), a marker
of podocyte damage, was strong in glomeruli of SD-
SNX rats, but desmin staining was significantly reduced
in RO-SNX animals. Nitrotyrosine staining was localized
to glomerular capillaries and podocytes. Intense staining
was observed in SD-SNX but not in RO-SNX rats.

Discussion

Different susceptibility to GS is well known in humans.
Individual rate of progression to end stage can be very dif-
ferent despite a similar etiology.

Table 1. Renal function

Group Blood urea (μmol/l) Urine protein/creatinine ratio Albuminuria (g)

Time Harvest Initial Harvest Initial Harvest

SD-NX 24.3 ± 8.6 1.5 ± 0.3 22.7 ± 11 32.5 ± 17.8 247.7 ± 136
RO-NX 11.4 ± 2.3 1.3 ± 0.4 3.5 ± 1.7 13.1 ± 3.8 45.4 ± 32.6
Significance P < 0.05 NS P < 0.05 NS P < 0.05

Mean ± SD, n = 5/group. Statistics: SD-SNX vs RO-SNX. Blood urea in age-matched healthy SD rats is 5 ± 1 μmol/l.
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The present study demonstrates a new rat strain with ge-
netic resistance to a complex model of renal scarring with
significantly reduced oxidative damage to podocytes.

Rat strains resistant to progression of renal damage have
been previously demonstrated. A central role of the renin–
angiotensin–aldosterone system in renal fibrosis is sup-
ported by the resistance of Wistar–Furth rats to remnant

nephropathy [3]; however, aldosterone levels were similar
and not elevated (data not shown) in our study 5 weeks
after SNX. Another previous study has demonstrated re-
duced sensitivity of Lewis rats vs Fischer (F344) rats to
renal mass reduction-induced chronic renal failure. In the
background, 30% less glomeruli/kidney was demonstrated
in F344 rats [31]. A difference in glomerular number was

Fig. 1. Kidney samples of subtotally nephrectomized (SNX) rats from Sprague–Dawley (SD; right column: SD-SNX) and Rowett (RO; left column:
RO-SNX) rats: (A,B) PAS staining; (C,D) TGF-β staining; (E,F) desmin staining (magnification ×400).

Table 2. Evaluation of histology and immunohistochemical staining of fibrosis markers

Group GSI TDI

Fibronectin

TGF-β1 in glomeruliGlomeruli Tubulointerstitium

SD-SNX 2.1 ± 0.1 2.7 ± 0.4 0.6 ± 0.1 1.1 ± 0.2 1.5 ± 0.2
RO-SNX 1.5 ± 0.1 1.2 ± 0.5 0.1 ± 0.1 0.6 ± 0.1 0.9 ± 0.3
Significance P < 0.05 P < 0.05 P < 0.05 P < 0.05 P < 0.05

GSI, glomerulosclerosis index; TDI, tubulointerstitial damage index, PAS staining. Mean ± SD, n = 5/group.
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not responsible for the resistance in the Rowett strain ac-
cording to our histomorphometric study, as glomerular
number was similar in naïve animals of the studied strains
(data not shown).

We used a complex model of progressive renal failure
with the A/I method in SD rats leading to a more rapid
progression of kidney disease [32] presumably caused by
the early upregulation of renin [33]. High salt accelerates
CRF as it increases renal angiotensin-converting enzyme
activity [34], and both angiotensin II and aldosterone in-
duce profibrotic factors and consequent renal scarring
[35,36]. Protein overload leads to tubulointerstitial damage
[37]. Thus, salt and protein loading was included in the
study protocol in order to model an ongoing injury to
the kidney and to induce renal failure.

Five weeks after SNX, both blood urea levels and urinary
protein/albumin loss were lower in Rowett rats. Although
differences in blood urea levels could be the influence of
the catabolic state of the animals, body weights were similar
in the two groups throughout the study; thus, lower blood
ureawas probably due to better renal function in Rowett rats.

It has been described in the rat remnant kidneymodel that
glomerular hypertrophy and structural changes in podocytes
appear early following SNX, accompanied by increased
desmin expression in podocytes [20], supporting the hy-
pothesis that podocyte injury may be the central event initi-
ating GS. Podocytes are usually attached to several
capillaries; therefore, hypertrophy of the glomerular tuft it-
self increases the mechanical stress to podocytes. Because
of the lack of cell proliferation, podocytes adapt to the de-
crease in cell number and glomerular growth by cell hyper-
trophy [12,13]. Under physiological conditions, desmin
staining in podocytes cannot be detected in vivo [38]. The
expression of desmin is enhanced in response to mechanical
injury to stabilize the cytoskeleton of podocytes during hy-
pertrophy [39]. Therefore, enhanced staining for desmin in
podocytes is a reliable marker of podocyte injury and can be
observed in a variety of experimental models of CRF
[40,41]. Less glomerulosclerosis in RO rats could be a con-
sequence of less podocyte damage as demonstrated by a re-
duced glomerular desmin and nitrotyrosine staining. The
background of less nitroxidative stress and podocyte injury
in RO rats needs further clarification. Less tubulointerstitial
fibrosis is also possibly due to less podocyte damage and
protection from albuminuria in RO animals. Podocyte dam-
age was reduced in RO animals as demonstrated by desmin
and nitrotyrosine staining, invoking the hypothesis that po-
docyte-expressed genes may be responsible for protection
that is similar to the recent study in mouse HIV nephropathy
model [11].

In conclusion, we demonstrate a new rat strain that is ge-
netically resistant to a complexmodel of glomerulosclerosis
and renal fibrosis. Resistant Rowett rats had reduced oxida-
tive damage of podocytes, shedding light on the etiologic
role of podocyte oxidative damage in glomerulosclerosis.
This strain could be a valuable tool for the identification
of genetic resistance factors against renal fibrosis.
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Abstract
Background. Renal cell carcinoma (RCC) is a highly me-
tastatic and lethal disease with few efficacious treatments.
Many studies have shown that the ubiquitous transcription

factor nuclear factor kappa B (NF-κB) plays a key role in
the development and progression of many cancers includ-
ing RCC. The aim of this investigation was to evaluate
the anti-cancer effect of pyrrolidine dithiocarbamate
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