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MicroRNAs (miRNAs) are a recently discovered class of small, non-coding RNAs which do not code proteins. 
MiRNAs regulate gene expression by inhibiting protein translation from the messenger RNA. MiRNAs may 
function in networks, forming a complex relationship with diseases. Furthermore, specific miRNAs have significant 
correlation with diseases of divergent origin. After identification of disease-associated miRNAs, their tissue 
expression could be altered in a beneficial way by inhibiting or mimicking their effects. Thus, modifying the 
expression of miRNAs is a potential future gene-therapeutic tool to influence post-transcriptional regulation of 
multiple genes in a single therapy. In this review we introduce the biogenesis, mechanism of action and future 
aspects of miRNAs. Research on the post-transcriptional regulation of gene expression by miRNA may reshape our 
understanding of diseases and consequently may bring new diagnostic markers and therapeutic agents. Therapeutic 
use of miRNAs is already under clinical investigation in RNA interference trials. 
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Since the first description of the genetic material in 1953 by James Watson and Francis 
Crick (65) three discoveries honoured by a Nobel Prize have reshaped our understanding of 
gene-expression regulation. The “central dogma” of unidirectional genetic information flow 
(DNA → RNA → protein) by Francis Crick, 1958 (7) has been broken first in 1970 by David 
Baltimore’s discovery of reverse transcriptase (54), and than in 1982 by Stanley Prusiner’s 
description of a proteinaceous infectious substance (prion) (47). In 1986 Ecker and Davis 
described that antisense RNA can inhibit gene expression in plants (10) providing a new role 
for RNAs. However, the relevance of this discovery was not given wide attention until 1998 
when Craig C. Mello and Andrew Fire described RNA interference (RNAi) in eukaryotes 
(C. elegans) (14). This discovery of small RNAs not coding proteins opened a brand new 
field in biology: investigating regulatory roles of RNAs, previously thought to merely pass 
information from DNA to proteins.

Analysis of the human transcriptome revealed that it contains thousands of functioning 
RNAs that are not included in protein synthesis (non-coding RNAs) (41). Some of these non-
coding RNAs are short microRNAs (miRNAs) with gene expression regulatory function first 
described in 1993 (38). Genes encoding miRNAs have been shown to make up to 1% of the 
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genome (5). MiRNAs are short: 18–25 nucleotide (nt), double stranded RNAs (58), and their 
action is achieved through RNAi, following DNA → RNA transcription (36). Understanding 
the effects of miRNAs could dramatically change our schemes of gene regulation.

Controlling functions in our body form networks, in which miRNAs might play a crucial 
role (30). A single miRNA can alter the expression of many messenger RNAs (mRNA), 
furthermore, expression of one mRNA might be under the control of several miRNAs. The 
disease and stage specific miRNA expression profile can be detected by multiplex methods, 
such as microarray or microbead hybridization methods (Luminex /Biomedica Hungaria/, 
Bioplex /Biorad/). Together with these methods, real time quantitative polymerase chain 
reaction (qPCR) might give us more precise results on individual miRNA expressions leading 
to a better insight into the mechanism of miRNome network.

Fig. 1. MiRNA mechanism: biogenesis and function (9, 12, 20, 32, 44)

Micro RNAs function by post-transcriptional gene silencing, meaning silencing the messenger 
RNA also called RNA interference (RNAi). Micro RNAs bind to and inhibit the translation of 
the complementary sequence messenger RNAs. Molecular mechanisms of RNAi were first 
described in detail for short interfering RNAs (siRNAs). For further information on siRNAs 
we refer to our recent reviews (52, 53). Double-stranded (ds)RNA can also activate gene 
expression (RNAa) by targeting gene promoters thus, inducing transcriptional activation (37).

MiRNAs are generated from endogenously transcribed, hairpin structures (5). MiRNA 
coding genes are transcribed by RNA polymerase II (pol II) and the transcript is named 
primary miRNA (pri-miRNA) (39), from which nucleotides are cleaved by Drosha (RNase 
enzyme) inside the nucleus. This second product is called pre-miRNAs and is recognized by 
nuclear export factor Exportin-5 (Exp5/Xpo5), which traffics pre-miRNAs into the cytoplasm 
(40). The following steps are mediated by Dicer (RNase III enzyme): it cleaves the hairpin 
structure and forms the miRNA-specific ends. The outcome of this processing is a double-
stranded, 18–25 nt long dsRNA, named miRNA (28). The so-called guide (antisense) strand 
keeps its strong contact with the RNA-induced silencing complex (RISC), while the other 
strand is degraded (31). The guide strand binds the complementary messenger RNA (mRNA), 
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and is followed by the degradation of the complementary mRNA, a mechanism, that requires 
full match complementarity and predominantly occurs in plants (5). The mechanisms of post-
transcriptional gene silencing mediated by miRNAs are summarized in Table I (27): 

Table I. Possible gene silencing mechanisms of miRNAs

Inhibiting the translation:
       Blocking the initiation of translation (on eukaryotic initiation factor, eIF)
       Blocking the elongation
Degradation of newly synthesized proteins
Sequestration of miRNAs (i.e. in the P-bodies) (27)

Further silencing mechanisms of miRs

While miRNAs in plants direct cleavage of the targeted mRNA as described above, in 
animals there is usually a lack of extensive complementarity required for cleavage by 
Argonaute proteins (29), revealing prominent regulation at the protein level by ribosome 
drop off during elongation of translation (50). Furthermore, mRNA decreases are associated 
with poly(A)-tail shortening, leading to mRNA de-adenylation, de-capping and consequent 
rapid degradation (67). This indicates that microRNAs act as rheostats to make fine-scale 
adjustments of protein level (4). Further experiments suggest that miRNAs repress translation 
initiation by preventing 60S ribosome subunit joining to miRNA-targeted mRNAs (63). As 
to Guo and colleagues lowered mRNA levels account for most (≥84%) of the decreased 
protein production, indicating that mRNA destabilization plays a key role in reduced protein 
translation (18). Thus, miRNA-mediated silencing manifests at both protein and mRNA 
levels. Although there are abundant data on the proposed model of influencing translation 
initiation by miRNAs (8), further experiments are needed to reveal the mechanism of action 
of miRNAs in eucariots. 

Nomenclature of miRNAs

The correct naming of miRNAs necessitated the establishment of a universal nomenclature 
of miRNAs (Table II). There are many online data bases, which help scientists to explore 
the sequence of different miRNAs or the structure of their precursor pri-miRNA molecule. 
Other online tools may be useful in identifying possible miRNA–mRNA interactions (Table 
III) (23–25). The new identification number is activated when the article describing the new 
miRNA is published (2, 17). 
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Table II. Short summary of miRNA nomenclature 

Abbreviation Description
miR Mature miRNA
Mir Precursor micro RNA
Identifying number Is given in the order of description
Prefix made up by 3–4 letters (hsa-miR, mmu-miR) Host organism (Homo Sapiens, Mus Musculus)
Number in the suffix (hsa-miR-194-1, hsa-
miR-194-2)

Chromosomal localization (of same miRNAs)

Small letter in the suffix (hsa-miR-200a, hsa-miR-
200b, hsa-miR-200c)

Paralogous miRNA sequences (differing only in a few 
nucleotides from each other)

Table III. Online microRNA databases and target prediction tools

Database name Website Description
miRBase http://www.mirbase.org The miRBase database is a searchable 

database of published miRNA sequences 
and annotations. The miRBase Registry 
provides miRNA gene hunters with unique 
names for novel miRNA genes prior to 
publication of results.

microRNA.org 
(miRanda)

http://www.microrna.org/microrna/home.do Contains predicted microRNA targets and 
target downregulation scores. Experimental-
ly observed expression patterns (target sites 
by: miRanda, scores by: mirSVR).

PicTar http://www.pictar.org PicTar is an algorithm for the identification 
of microRNA targets.

miRNA – Target 
Gene Prediction at 
EMBL

http://www.russelllab.org/miRNAs The website provides access to miRNA-
Target predictions for Drosophila miRNAs

DIANA Lab http://diana.cslab.ece.ntua.gr The activities of the DIANA lab range from 
the analysis of expression regulation from 
deep sequencing data, the annotation of 
miRNA regulatory elements and targets to 
the interpretation of the role of miRNAs in 
various diseases.

TarBase http://diana.cslab.ece.ntua.gr/tarbase/ Contains more than 1300 experimentally 
supported miRNA target interactions.

miRGen http://diana.cslab.ece.ntua.gr/mirgen/ miRGen is an integrated database of miR-
NA gene transcripts, Transcription Factor 
Binding Sites, miRNA expression profiles 
and Single Nucleotide Polymorphisms as-
sociated with miRNAs

TargetScan http://www.targetscan.org On the TargetScan website one can search 
for predicted microRNA targets in mammals 
(human, mouse, worm, fly)
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Database name Website Description
microCosm (miR-
Base Targets)

http://www.ebi.ac.uk/enright-srv/microcosm/
htdocs/targets/v5/

MicroCosm is a web resource developed by 
the Enright Lab at the EMBL-EBI contain-
ing computationally predicted targets for 
microRNAs across many species.

miRDB http://mirdb.org/miRDB/ miRDB is an online database for miRNA 
target prediction and functional annotations 
in animals.

miR2Disease http://www.mir2disease.org/ Provides a comprehensive resource of 
miRNA deregulation in various human 
diseases.

Human MiRNA & 
Disease Database 
(HMDD)

http://202.38.126.151/hmdd/mirna/md/ Contains miRNA names, disease names, 
dysfunction evidences, and the literature 
PubMed ID. The tissue expression pictures 
of some miRNAs in 40 tissues are also 
provided.

RegRNA http://regrna.mbc.nctu.edu.tw/index.php RegRNA is an integrated web server for 
identifying the homologs of Regulatory 
RNA motifs and elements against an input 
mRNA sequence.

miRNAMap http://mirnamap.mbc.nctu.edu.tw/index.php Collects experimental verified microRNAs 
and experimental verified miRNA target 
genes in human, mouse, rat, and other 
metazoan genomes.

miRacle http://miracle.igib.res.in/miracle/ Predicts microRNA targets based on RNA 
secondary structure.

miRU http://bioinfo3.noble.org/miRNA/miRU.htm Predicts plant miRNA target genes.
RNA22 http://cbcsrv.watson.ibm.com/rna22.html microRNA target detection and precursor 

prediction.
miRTar http://mirtar.mbc.nctu.edu.tw/human/ An integrated web server for identify-

ing miRNA-target interactions in human. 
(Mouse, rat and dog are in progress.)

RNAhybrid http://bibiserv.techfak.uni-bielefeld.de/
rnahybrid/

RNAhybrid is a tool for finding the mini-
mum free energy hybridisation of a long and 
a short RNA. The tool is primarily meant as 
a means for microRNA target prediction.

ViTa http://vita.mbc.nctu.edu.tw/index.php ViTa is a database which collects virus data 
from miRBase and ICTV, VirGne, VBRC., 
etc., including known miRNAs on virus and 
supporting predicted host miRNA targets by 
miRanda and TargetScan.

Table III (continued)
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Function of microRNAs

MiRNAs have crucial role in divergent mechanisms, such as embryonic (miR-51 family) 
(43, 56) and haematopoietic (miR-155) (16) development, apoptosis (miR-15, miR-16) (6), 
genesis and progression of malignancies (miR-17–92 cluster, miR-21, miR-372) (42), electric 
functions of the heart (miR-1, miR-2) (69), cardiomyopathies (upregulated: miR-23a and b, 
miR-24, miR-125b, miR-195, miR-199a, miR-214, downregulated: miR-93, miR-133a, miR-
150, miR-181b) (61) or endocrine mechanisms (miR-375) (51). Thus, miRNAs are associated 
to many physiological (5) and pathophysiological mechanisms (13).

Altering miRNA expression in vivo

Since miRNA expression is altered in many diseases, therapeutic influence on miRNA 
function may be beneficial. One major problem of in vivo nucleic acid (siRNA, miRNA, 
antisense oligodesoxynucleotide, plasmid DNA) therapy is the delivery of the nucleic acid 
to target organs and into cells (49). The issues of in vivo therapy are assessed in Table IV.

Table IV. Problems of in vivo nucleotide therapy

Instability of nucleic acids in extracellular fluids
Short half-life (seconds) due to nuclease degeneration in body fluids (22)
Fast filtration by the kidney (15)
Low cell membrane penetration due to negative charge (52) 

Several methods have been investigated to support in vivo delivery of nucleotides, the 
main groups of which are summarized below: 

Physical forces (high pressure, high volume): Local or systemic injection of nucleic 
acids dissolved in a large volume helps them to cross their cellular uptake (19), since the high 
volume diminishes the efficacy of nucleases, while high pressure presses the nucleotides 
into the interstitium of parenchymal organs, and then through the cell membrane into the 
cytoplasm, the place of RNAi. Similar pore openings can be achieved with sonoporation (60) 
or electroporation (21, 66).

Chemical modifications: Altering the structure of a nucleic acid with the aim of 
therapeutic application includes the modification of the ribose backbone (35) the terminals 
(by addition of methyl, alkyl (11) or cholesterol group (59) or synthetic molecules: non-ionic 
DNA analogues=morpholinos) (55) or locked nucleic acids (LNA)  (62). 

Vectors, plasmid DNA (pDNA): Viral and non-viral vectors, polycations (polyplexes 
(57): poly-ethylene-imine (PEI) (17), polyethylene glycol (PEG) or poly-L-lysine), 
complexing with molecules of lipid nature (developing liposomes with for instance 
Lipofectamine RNAiMax®) can enhance cellular nucleic acid uptake (68). 

Conjugation with cell surface receptor ligands: enables cell specific uptake (45).
Depo-products (carriers, such as gelatine (46), hydrogels (33), atelocollagen (3) or 

citosan) can elongate silencing effect.
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Diagnostic value of miRNAs

Many disease-specific miRNA expression patterns and/or miRNA amounts could be 
clinically used in diagnosing and evaluating prognosis, for instance with real-time PCR (34). 
Human malignant tumor-specific miRNA chips are already commercially available (48) 
Huang and colleagues described that the plasma level of some miRNAs (miR-29a, miR-92a) 
have diagnostic value in advanced colorectal cancer (26). Other miRNAs (miR-146a, miR-
223) have been shown to be significantly associated with sepsis (miR-146a, miR-223) (64). 
Furthermore, miR-1 is a new biomarker of cardiac muscle ischemia, independent of many 
factors (age, sex, blood pressure, diabetes mellitus) (1).

Conclusions

MiRNAs play a crucial role in the development and course of diseases. Multiplex 
understanding of the miRNome may have diagnostic and therapeutic relevance. 
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