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During progressive tubulointerstitial fibrosis, renal tubular epithelial cells transform into a-smooth
muscle actin (SMA)eexpressing myofibroblasts via epithelial-mesenchymal transition (EMT). SMA
expression is regulated by transforming growth factor (TGF)-b1 and cell contact disruption, through
signaling events targeting the serum response factoremyocardin-related transcription factor (MRTF)
complex. MRTFs are important regulators of fibrosis, tumor cell invasion, and metastasis. Consistent
with the role of MRTFs in tumor progression, suppressor of cancer cell invasion (SCAI) was recently
identified as a negative regulator of MRTF. Herein, we studied the role of SCAI in a fibrotic EMT model
established on LLC-PK1 cells. SCAI overexpression prevented SMA promoter activation induced by
TGF-b1. When co-expressed, it inhibited the stimulatory effects of MRTF-A or MRTF-B or the constitutive
active forms of RhoA, Rac1, or Cdc42 on the SMA promoter. SCAI interfered with TGF-b1einduced
SMA, connective tissue growth factor, and calponin protein expression; it rescued TGF-b1einduced
E-cadherin down-regulation. IHC studies on human kidneys showed that SCAI expression is reduced
during fibrosis. Kidneys of diabetic rats and mice with unilateral ureteral obstruction depicted signif-
icant loss of SCAI expression. In parallel with the decrease of SCAI protein expression, diabetic rat and
mouse kidneys with unilateral ureteral obstruction showed SMA expression, as evidenced by using
Western blot analysis. Finally, TGF-b1 treatment of LLC-PK1 cells attenuated SCAI protein expression.
These data suggest that SCAI is a novel transcriptional cofactor that regulates EMT and renal fibrosis.
(Am J Pathol 2013, -: 1e13; http://dx.doi.org/10.1016/j.ajpath.2012.10.009)
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Progressive tubulointerstitial fibrosis (TIF) is a common
manifestation for a variety of chronic kidney diseases,
leading to end-stage renal failure. The histopathological
characteristics of TIF are characterized by deposition of
extracellular matrix, tubular cell loss, and a robust accu-
mulation of fibroblasts. These fibroblasts may have different
cellular origins: proliferation of resident fibroblasts, tubular
epithelial or endothelial cells may convert after epithelial-
or endothelial-mesenchymal transition (EMT), bone mar-
rowederived fibrocytes, and pericytes.1 EMT plays a key
role in organ development and during several pathological
conditions, such as cancer progression and fibrosis. At the
cellular level, EMT is regulated by similar signaling path-
ways, regulators, and effector molecules, both under phys-
iological and pathological conditions.2

The unequivocal importance of EMT during TIF was
described in a transgenic mouse model of TIF, in which
stigative Pathology.
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nearly 40% of fibroblasts originated from the tubular
epithelium that underwent EMT.3 Several fibrogenic stimuli
induce epithelial cell transformation to myofibroblasts, yet
the most potent regulator of renal EMT is transforming
growth factor (TGF)-b1.4 During renal EMT, tubular cells
lose their epithelial markers (eg, E-cadherin and zonula
occludens protein-1), express fibroblast-specific and
mesenchymal proteins (eg, fibroblast-specific protein 1 and
plasminogen activator inhibitor-1), start to synthesize extra-
cellular matrix (eg, fibronectin), and ultimately differentiate
into a-smooth muscle actin (SMA)epositive cells, showing
a myofibroblast-like phenotype. They follow a sequentially
orchestrated, defined chronology: down-regulation of the
epithelial program, activation of the mesenchymal-fibrogenic
program, and, finally, activation of the myogenic program.
124
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Myofibroblasts arise after a completed EMT, a sequence of
events eventually culminating in the appearance of myogenic
characteristics.5,6

De novo expression of SMA in cells that undergo EMT is
a hallmark of myofibroblast formation. Regulation of SMA
expression is highly complex, and it involves several
signaling steps. TGF-b1 and cell-cell contact-dependent
signaling, after an injury of intercellular contacts, are both
necessary to induce SMA expression.7,8 Activation of the
small GTPases (RhoA, Rac1, and Cdc42) and their down-
stream effectors (r kinase and P21-activated kinase) and
other downstream signaling steps, including myosin light
chain and p38 phosphorylation,8e12 regulate SMA expres-
sion. These signals converge toward serum response factor
(SRF), which coordinates gene expression by binding to
CArG boxes present in the promoters of several genes.13e16

Myocardin-related transcription factors (MRTFs) emerged
as key mediators of SMA expression,8,17 by binding and
activating SRF and regulating SRF functions as SRF tran-
scriptional cofactors.18e21 Nuclear translocation and accu-
mulation of MRTF was induced by TGF-b1, RhoA, Rac1,
and Cdc42 small GTPases,8,10,12,22 whereas MRTF inhibi-
tion prevented SMA expression.8,16

MRTFs have an important role during development of the
cardiovascular system,23 skeletal myogenic differentia-
tion,24 and brain development.25 MRTFs are also involved
in several pathological processes. In addition to their role in
fibrosis, MRTFs are important regulators of tumor cell
invasion and metastasis.26

Consistent with the role of MRTFs in tumor progression,
suppressor of cancer cell invasion (SCAI) was recently
identified as an inhibitor of MRTF, which is down-regulated
in various tumors.27 Mainly localized in nuclei, SCAI is
a cofactor of MRTF, rendering an inhibitory effect on
MRTF-SRFedependent protein expression. It antagonizes
the up-regulation of b1-integrin expression, leading to an
inhibition of tumor cell invasiveness. Recent data suggest
that MRTF contributes to dendritic complexity of rat cortical
neurons, and overexpression of SCAI blocks SRF-dependent
transcriptional responses and dendritic complexity.28

Because SCAI is also expressed in the kidneys, we
proposed to investigate its potential protective role in a model
of fibrotic EMT and in the regulation of SMA expression. For
this study, we used our previously described EMT model
established in LLC-PK1 cells. SCAI overexpression pre-
vented SMA promoter activation induced by TGF-b1. When
co-expressed with MRTF-A and MRTF-B, or the constitutive
active forms of RhoA, Rac1, or Cdc42, it inhibited the
stimulatory effect of these signaling molecules on the SMA
promoter. SCAI prevented TGF-b1einduced E-cadherin
down-regulation and interfered with TGF-b1einduced SMA,
connective tissue growth factor (CTGF), and calponin protein
expression. In concordance with findings in different tumors,
SCAI mRNA and protein expression was down-regulated in
fibrotic kidney samples, compared with nonfibrotic kidneys.
More important, in vivo studies revealed a significant decline
2
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in SCAI protein expression in an early phase of diabetic
nephropathy and in a mouse unilateral ureteral obstruction
(UUO) model. In parallel with the decrease of SCAI protein
expression, diabetic rat and UUO mouse kidneys showed
SMA expression, as evidenced by using Western blot anal-
ysis. Finally, TGF-b1 treatment led to the attenuation of
SCAI protein and mRNA expression in vitro. These data
suggest that SCAI may serve as a potential diagnostic, prog-
nostic, and therapeutic target in fibrotic diseases, renal
fibrosis, and EMT.

Materials and Methods

Cell Culture and Treatments

LLC-PK1 (CL4) proximal tubular epithelial cells and
mIMCD-3 inner medullary collecting duct cells were
cultured in Dulbecco’s modified Eagle’s medium (Invi-
trogen, Carlsbad, CA), supplemented with 10% fetal bovine
serum (Invitrogen) and 1% penicillin-streptomycin at 37�C
under a humidified atmosphere containing 5% CO2. Cells
were grown on 6- or 24-well plates, and then subjected to
various treatments. For long-term Ca2þ deprivation, cells
were washed three times with PBS (Invitrogen) and incu-
bated in low Ca2þ-containing Dulbecco’s modified Eagle’s
medium (Invitrogen). Control samples were incubated with
serum-free Dulbecco’s modified Eagle’s medium containing
Ca2þ. TGF-b1 (Sigma-Aldrich, St. Louis, MO) treatments
were performed as specified at the individual experiments
(10 ng/mL or vehicle for controls).

Plasmids

The PA3-Luc vector containing a 765-bp fragment of the
rat SMA promoter (pSMA-Luc) was a kind gift from
Dr. Raphael Nemenoff (Department of Medicine, University
of Colorado Q). The p152-SMA-Luc reporter construct,
containing a 152-bp portion of the rat SMA promoter in
a pGL3-basic vector, was provided by S. H. Phan (University
of Michigan Medical School, Ann Arbor). The thymidine
kinaseedriven Renilla luciferase vector (pRL-TK), used as
an internal control for transfection efficiency, was obtained
from Promega (Madison, WI).
Green fluorescent protein (GFP)etagged wild-type SCAI

and GFP-tagged construct containing the N-terminally
truncated version of SCAI (GFP-SCAI and GFP-SCAIDnt)
were obtained from Dr. Robert Grosse (Institute of
Pharmacology, University of Heidelberg, Heidelberg,
Germany) and were previously described.27 FLAG-tagged
MRTF-A and MRTF-B were kindly provided by Dr. Eric
N. Olson (Department of Molecular Biology, University of
Texas Q) and were previously described.18 The vector
encoding for Myc-tagged constitutive active RhoA (Q63L
and CA-Rho) was described and used in our previous
studies.8 GFP-tagged constitutively active Rac1 (Q61L) and
CA Cdc42 (Q61L) were obtained from Dr. Gary M. Bokoch
ajp.amjpathol.org - The American Journal of Pathology
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(The Scripps Research Institute, La Jolla, CA) and were
previously described.29

Transient Transfection and Luciferase Promoter
Activity Assays

Cells were grown on six-well plates and transfected using
2.5 mL of FuGene6 (Roche Applied Science, Rotkreuz,
Switzerland) reagent/1 mg DNA. For promoter activity
measurements, cells were cotransfected with 0.5 mg of
promoter construct, 0.05 mg of pRL-TK, and 2 mg of either
empty vector (pcDNA3.1) or the specific construct to be
tested. After a 24-hour incubation period, cells were washed
and placed in a serum-free medium, either containing or
lacking Ca2þ. TGF-b1 (10 ng/mL) or its vehicle was added
to the cells after 4 hours, and the incubation was continued
for an additional 16 hours. Firefly and Renilla luciferase
activities were measured by the Dual-Luciferase Reporter
Assay Kit (Promega) using a Victor X3 2030 Multilabel
Reader (Bad Wildbad, Germany), according to the manu-
facturer’s instructions. Cells were passively lysed in passive
lysis buffer, following the instructions of the manufacturer
(Promega). Results were normalized by dividing the Firefly
luciferase activity by the Renilla luciferase activity of the
same sample. For each condition, duplicate measurements
were performed, and experiments were repeated at least
three times. Results are presented as mean � SE. For
immunofluorescence analysis, typically 1 to 2 mg of plasmid
DNA was transfected per well.

LLC-PK1 Cells Stably Expressing GFP-SCAI

Cells were transfected with 1 mg of GFP-SCAI plasmid and
3 mL of FuGene6 reagent. Three days after transfection,
cells were sorted based on GFP fluorescence using the
fluorescence-activated cell sorting Aria High Speed Cell
Sorter (Becton-Dickinson, San Jose, CA). Sorted GFP-
positive cells were expanded and were subjected to
repeated sorting, 4 and 8 weeks after transfection. The cells
obtained after three sorting cycles were almost completely
GFP-SCAI positive, stably GFP-SCAIeexpressing LLC-
PK1 cells, as evidenced by flow cytometry. For flow
cytometry, GFP-SCAIetransfected LLC-PK1 cells were
analyzed based on GFP fluorescence. Propidium iodide
staining was used to gate out the nonviable cells. Samples
were analyzed by an FACSCalibur flow cytometer with
CellQuest acquisition software (both from Becton Dick-
inson Immunocytometry Systems).

Antibodies

Antiea-SMA, antieb-actin, anti-SCAI [used for immuno-
histochemical (IHC) studies of rat kidney samples and
Western blot analysis], antiea-tubulin antibodies, and
DAPI (used for nuclear staining) were obtained from Sigma.
AntieE-cadherin, anti-calponin, and peroxidase-conjugated
The American Journal of Pathology - ajp.amjpathol.org
FLA 5.1.0 DTD � AJPA1130_proof � 22 Novem
anti-goat antibodies were obtained from Dako (Glostrup,
Denmark). Anti-CTGF antibody was from Santa Cruz
Biotechnology (Santa Cruz, CA). Antieglyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was from Millipore
(Billerica, MA). Alexa 594elabeled anti-mouse and Alexa
568elabeled anti-rat antibodies were obtained from
Molecular QProbes/Invitrogen. The rat monoclonal SCAI
antibody (used in immunofluorescence and human IHC
studies) was obtained from Dr. Robert Grosse and was
previously described.27 UUO kidney samples were also
probed for SCAI expression by using Western blot analysis
using an anti-SCAI antibody obtained from Abcam (Cam-
bridge, MA). Peroxidase-conjugated anti-mouse and anti-
rabbit secondary antibodies were obtained from Jackson
Immunoresearch Laboratories Inc. (West Grove, PA) and
Cell Signaling (Danvers, MA).
Western Blot Analysis

Cells were scraped into Triton lysis buffer [30 mmol/L
HEPES (pH 7.4), 100 mmol/L NaCl, 1 mmol/L EGTA, 20
mmol/L NaF, 1% Triton X-100, 1 mmol/L Na3VO4, 1
mmol/L phenylmethylsulphonyl fluoride, and 20 mL/mL
protease inhibitory cocktail] (Pharmingen, San Diego, CA).
Protein concentration was determined using the BCA
Protein Assay (Pierce Thermo Scientific, Rockford, IL).
Samples were mixed in a 1:1 ratio with two times Laemmli
buffer and boiled for 5 minutes. Equal amounts of protein
were separated on 12% SDSepolyacrylamide gel and
transferred to nitrocellulose membranes. Membranes were
blocked with Tris-buffered saline, containing 0.1% Tween
20 and 5% skim milk for an hour, and then incubated
overnight with the primary antibody (in Tris-buffered
salineeTween Qplus 0.5% skim milk), extensively washed,
and incubated with the corresponding peroxidase-
conjugated secondary antibody. Blots were visualized by
the electrochemiluminescence detection system (Thermo
Scientific, Waltham, MA). Quantification results are pre-
sented as mean � SE.

For Western blot analysis of rat kidney samples, four
control and four diabetic kidneys were dissociated into
cortex and medulla. Medullas were then homogenized into
200 mL of radioimmunoprecipitation assay (RIPA) buffer
using a tissue glass Dounce Qhomogenizer. Protein concen-
tration was determined as previously described. Samples
were diluted into RIPA buffer, and 20 mg was loaded for
Western blot analysis.

For Western blot analysis of UUO mouse kidney
samples, tissues were homogenized into 200 mL of RIPA
buffer using a tissue glass Dounce homogenizer. Protein
concentration was determined as previously described.
Samples were diluted into RIPA buffer, and 20 mg was
loaded for Western blot analysis.
3
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Immunocytochemistry and Confocal Microscopy

Cells seeded onto eight-well Nunc Lab-Tek II Chambered
Coverglass (Nalge Nunc International, Rochester, NY) were
fixed with 4% paraformaldehyde in Dulbecco’s modified
PBS (DPBS) for 30 minutes at room temperature. After
DPBS, washing step samples were blocked for 1 hour in
DPBS containing 2 mg/mL bovine serum albumin, 1% fish
gelatin, 5% goat serum, and 0.1% Triton X-100. Samples
were then incubated for 1 hour with primary antibodies.
After extensive washes with DPBS, the corresponding flu-
orescently labeled secondary antibodies and DAPI (Invi-
trogen) for nuclear staining were added for another hour.
Samples were examined on an Olympus FV500-IX confocal
laser-scanning microscope.
21
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IHC Analysis of Human Renal Samples

To characterize SCAI expression patterns in clinical
samples, formalin-fixed, paraffin-embedded samples were
used. Renal tissues from core biopsy specimens were
previously diagnosed in routine pathological examinations
for different renal pathological conditions, and were
retrieved from the second Department of Pathology, Sem-
melweis University (Budapest, Hungary), after the approval
of the Semmelweis University Ethical Board (TUKEB 5/
2011). Samples were randomly selected for this study. A
brief diagnostic description of samples is included in the
respective figure legends.

Samples were fixed in 4% neutral-buffered formalin for
24 hours. Paraffin-embedded sections (3 to 4 mm thick)
were stained with rat monoclonal anti-SCAI obtained from
Dr. Robert Grosse. Antigen retrieval was performed with
0.1 mol/L citrate buffer, pH 6.0, in the microwave for
20 minutes. Blocking (Powerblock; BioGenex, Fremont,
CA), secondary antibodies (Supersensitive Link; BioGenex),
and alkalic phosphataseeconjugated streptavidin (BioGenex)
were used according to the manufacturer’s protocol. Samples
were developed using Fast Red (Dako). Nuclei were coun-
terstained with Mayer’s hematoxylin solution (Sigma). IHC
reactivity was examined by light microscopy (Leica DMR
HC; Leica Microsystems, Wetzlar, Germany).
22
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Induction of Diabetes Mellitus in Rats

Male Sprague-Dawley rats, weighing 250 to 300 g (Charles
River, Sulzfeld, Germany), were housed at a constant
temperature of 22�C � 2�C with 12-hour light-dark cycles,
with access to standard rodent chow and water ad libitum.
The investigation conforms to the Guide for the Care and
Use of Laboratory Animals, published by the US NIH
(publication 85-23, revised 1996). All procedures and
handling of animals during the investigations were reviewed
and approved by the local Ethical Committee for Animal
Experimentation (22.1/4268/003/2009).
4
FLA 5.1.0 DTD � AJPA1130_proof � 22 Nov
Type 1 diabetes mellitus was induced in rats with a single
60 mg/kg i.p. dose of streptozotocin (STZ). STZ was freshly
dissolved in 0.1 mol/L citrate buffer. Control animals
received only the buffer. After 72 hours, the blood glucose
concentration was determined using a digital blood glucose
meter and test strips (Accu-Chek Sensor; Roche Inc.,
Mannheim, Germany). Animals with a random blood
glucose level of >15 mmol/L were considered as diabetic
and were included into the study (STZ group, n Z 4). Rats
injected only with citrate buffer served as nondiabetic
controls (control group, n Z 4).
Eight weeks after the induction of diabetes, rats were

anesthetized with 100 mg/kg ketamine and 3 mg/kg xyla-
zine i.p., and kidneys were removed for further analysis. A
blood sample was taken from the inferior caval vein, and
serum was prepared. Urine samples were obtained by sterile
punction of the urinary bladder. Serum glucose and urea
levels and urine creatinine concentration were determined
by photometrical analysis on a Reflotron analyzer (Roche,
Boehringer-Mannheim, Mannheim). Urine protein concen-
tration was measured using the BCA Protein Assay, and
urinary protein/creatinine ratios were calculated. Statistical
analysis was performed by the U-test, with results being
considered significant when P < 0.05. Data are given as the
mean � SD.

IHC Analysis of Rat Kidneys

Rat kidney tissue samples were processed as human renal
samples, as described in IHC Analysis of Human Renal
Samples. Immunohistological stains using antibody against
SCAI (Sigma) were analyzed by two investigators Qblinded
with respect to the animal group using the following semi-
quantitative scoring system: 0, no expression; 1, weak
expression; 2, moderate expression; and 3, strong expres-
sion. Statistical analysis was performed by the f-test, with
results being considered significant when P < 0.05. Data are
given as the mean � SEM.

RT-qPCR Analysis of SCAI mRNA Expression in Diabetic
Mice and mIMCD-3 Cells

Diabetes was induced in male FVB/N mice (n Z 8) ob-
tained from Charles River at the age of 8 weeks, with daily
i.p. injections of STZ [50 mg/kg, freshly dissolved in citrate
buffer (pH 4.5)] for 5 days. Control mice (n Z 7) received
citrate buffer only. One week later, blood glucose levels
were measured after 4 hours of fasting with Accu-Check
test strips (Roche Q), and STZ-injected mice with a fasting
blood glucose level <20 mmol/L were excluded from
the study (n Z 3). Mice were sacrificed 8 weeks after the
induction of diabetes, and kidneys were analyzed. The
investigation conforms to the Guide for the Care and Use
of Laboratory Animals, published by the US NIH (publi-
cation 85-23, revised 1996). All procedures and handling
of animals during the investigations were reviewed and
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Localization of SCAI in LLC-PK1 cells. Endogenous SCAI is
localized in the nuclei of LLC-PK1 cells. Cells were stained for endogenous
SCAI as described in Materials and Methods and were analyzed by confocal
microscopy. Transfection of GFP-SCAI also led to the enrichment of SCAI in
the nuclei of LLC-PK1 cells, whereas the SCAIDnt version of the construct
was accumulated predominantly in the cytoplasm. Transfected cells were
fixed and examined by confocal microscopy.
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approved by the local Ethical Committee for Animal
Experimentation (22.1/4263/003/2009).

For quantitative RT-PCR (RT-qPCR) experiments, 100mg
of whole kidneys was homogenized and total RNA
was isolated according to the manufacturer’s protocol (SV
Total RNAKit; Promega). A total of 2 mg of RNAwas reverse
transcribed (High Capacity cDNA Reverse Transcription Kit;
Applied Biosystems, Foster City, CA) using random primers.
PCRs were performed on a BioRad CFX thermal cycler
(BioRad, Hercules, CA) using theMaxima SYBRGreen PCR
Master Mix (Thermo Scientific) and 95�C for 15 seconds and
60�C for 60 seconds for 40 cycles. The specificity and effi-
ciency of the PCR was confirmed with melting curve and
standard curve analysis, respectively. Duplicate samples were
normalized to GAPDH expression. Mean values are
expressed with the following formula: 2-DDCT . Primer
sequences were as follows: SCAI, 50-ACCCCTGT-
TCATCGTTGTG-30 (forward) and 50-CGAGTGGCTGTC-
CAAACAA-30 (reverse); and GAPDH, 50-CTTTGTCAA-
GCTCATTTCCTGG-30 (forward) and 50-TCTTGCTCA-
GTGTCCTTGC-30 (reverse). Results are given as mean� SD.

The mIMCD-3 cells were plated onto six-well plates and
subjected to treatments. After the treatments, cells were
washed once with PBS and total RNA was isolated using
TRIzol (Invitrogen), following the instructions of the manu-
facturer. Reverse transcription and RT-PCR were performed
as previously described. Three parallels were measured for
each treatment, and the experiment was repeated two times.

UUO in Mice

Male C57BL/6 mice, obtained from Charles River, were bred
at the animal facility of Semmelweis University. Animals
were kept on regular rodent chow and given water ad libitum.
All animal experiments were performed according to the
institutional regulations, the Hungarian law on animal care
and protection [1998/XVIII, 243/1998(XII.31)], and were
approved by the local Ethical Committee for Animal
Experimentation (22.1/4261/003/2009).

Mice weighing a mean � SD of 25.5 � 2.0 g were
anesthetized by an i.p. injection of a cocktail containing
ketamine (100 mg/kg body wt.) and xylazine (8 mg/kg body
wt.). Eight mice were subjected to UUO. Kidneys were
accessed from a median laparotomy. The left ureter was
ligated below the renal hilum to achieve complete obstruc-
tion using a 6.0 silk suture. The abdominal wound was
closed, and mice were observed for 14 days.

Mice were harvested on day 14 after UUO, as previously
described.30 Harvesting began with ether anesthesia
(Reanal, Budapest, Hungary) and heparinization (Sandoz,
Holzkirchen, Germany) of mice. Blood was taken from the
vena cava superior, and plasma was separated by centrifu-
gation of heparinized blood at 4�C and 2000 rpm for 10
minutes. Mice were perfused with 20 mL of ice-cold HBSS
(Sigma-Aldrich), administered through the left ventricle
using a 20-mL syringe and an 18-gauge needle. Obstructed
The American Journal of Pathology - ajp.amjpathol.org
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left and unobstructed right kidneys were excised, and renal
tissue was collected. Samples were prepared and analyzed
by using Western blot analysis, as previously described.
Results

SCAI Expression in LLC-PK1 Cells

SCAI mRNA was expressed earlier in kidney as well;
however, there were no data regarding the SCAI protein
expression pattern in proximal tubular epithelial cells. The
subcellular localization of SCAI was determined in LLC-PK1
cells. When endogenous SCAI was stained or GFP-tagged
SCAI was expressed in these cells, SCAI was enriched
mainly in the nuclei of LLC-PK1 cells, and cytoplasmic
expression was characteristic to a lesser degree. The GFP-
tagged N-terminally truncated version of SCAI (GFP-
SCAIDnt), on the other hand, was enriched in the cytoplasm;
its nuclear expression was less pronounced (Figure 1).
SCAI Inhibited TGF-b1eInduced SMA Promoter
Activation and Protein Expression in LLC-PK1 Cells,
Inhibited Calponin and CTGF Expression, and
Prevented TGF-b1eInduced E-Cadherin
Down-Regulation

We next addressed the potential involvement of SCAI in the
regulation of TGF-b1einduced SMA promoter activation
and protein expression.
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Transient transfection and luciferase assays were per-
formed to study the effects of SCAI expression on TGF-
b1einduced SMA promoter activation. As previously found,
TGF-b1 induced a fivefold increase in SMA promoter
activity in nonconfluent LLC-PK1 cells. Cotransfection and
expression of SCAI inhibited TGF-b1einduced SMA
promoter activation. Noticeably, GFP-SCAIDnt did not
show this marked inhibitory effect (Figure 2A). We showed
earlier that a Ca2þ deprivationeinduced increase in promoter
activity was also MRTF dependent.8 Therefore, we tested
whether SCAI influenced the effects of this stimulus. SMA-
Lucetransfected confluent cells yielded an eightfold increase
on Ca2þ deprivation, and this effect was reduced by
approximately 25% when GFP-SCAI was overexpressed
(Figure 2B), indicating that SCAI might, in part, interfere
with this stimulation.

Immunofluorescence staining and confocal microscopy
were applied to examine the potential impact of SCAI on
SMA protein expression. Cells were transfected with GFP-
SCAI, and treated with TGF-b1 for 3 days. Under similar
conditions, approximately 20% to 22% of LLC-PK1 cells
expressed SMA on TGF-b1 treatment. In this experiment,
most cells expressing SCAI were not positive for SMA
(Figure 2C): only <2% of GFP-SCAIetransfected cells
were positive for SMA on TGF-b1 stimulation, an indica-
tion that SCAI inhibited SMA protein expression. SMA
expression was also assessed in cells transfected with GFP-
SCAIDnt and stimulated with TGF-b1: approximately 26%
Figure 2 SCAI inhibits TGF-b1einduced SMA promoter activation and protein
activation, as shown by luciferase assays. Cells were transfected with SMA promote
not SCAIDnt, inhibited the activation of the SMA promoter induced by TGF-b1 (S
0.47). B: SCAI inhibits SMA promoter activation induced by cell contact disruptio
without GFP-SCAI or GFP-SCAIDnt and were treated with low Ca2þ-containing m
reduced the activation of the SMA promoter induced by cell contact disruption (SC
0.41). C: SCAI inhibits TGF-b1einduced SMA protein expression. Cells were transfe
Cells were then fixed, stained as indicated in Materials and Methods, and visualize
were positive for SMA, whereas the non-transfected population was approximatel
were performed, in which 240 randomly selected control (ctrl; non-transfected) c

6
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of cells transfected with GFP-SCAIDnt were SMA positive
(data not shown).
To obtain a more detailed view on the inhibition of SMA

expression by SCAI, LLC-PK1 cells stably expressing GFP-
SCAI were generated by transfection and three subsequent
rounds of GFP-based cell sorting. The stable cells were
almost completely positive for GFP-SCAI. Subconfluent
LLC-PK1 and LLC-PK1/SCAI cells were then treated with
TGF-b1 for 3 days, and analyzed by using Western blot
analysis. In LLC-PK1 cells, 3 days of TGF-b1 treatment
resulted in a robust expression of SMA, whereas in LLC-
PK1 cells, stably expressing GFP-SCAI, SMA protein
expression was almost entirely abolished (Figure 3A). To
further test the extent of the involvement of SCAI in EMT
and renal fibrosis, other CArG-driven markers were also
analyzed. First, calponin expression was also decreased in
TGF-b1etreated LLC-PK1/SCAI cells (Figure 3B).
Second, SCAI prevented TGF-b1einduced E-cadherin
down-regulation and SCAI rescued E-cadherin expression
in TGF-b1etreated LLC-PK1/SCAI cells (Figure 3C).
TGF-b1einduced CTGF expression is a well-known CArG-
dependent renal fibrosis marker.16,31,32 TGF-b1 induced
CTGF expression in LLC-PK1 cells, which was inhibited in
LLC-PK1/SCAI cells (Figure 3D). These results indicated
that SCAI was involved in the regulation of SMA promoter
and SMA protein expression, and that SCAI was an
endogenous inhibitory cofactor that controlled expression of
certain CArG-dependent TGF-b1 target genes.
expression in LLC-PK1 cells. A: SCAI inhibits TGF-b1einduced SMA promoter
r without GFP-SCAI or GFP-SCAIDnt and were treated with TGF-b1. SCAI, but
CAI, 4.96 � 0.33 versus 2.31 � 0.13; SCAIDnt, 4.96 � 0.33 versus 4.18 �
n, as shown by luciferase assays. Cells were transfected with SMA promoter
edium to achieve the disruption of cell contacts. SCAI, but not SCAIDnt,
AI, 8.57 � 0.31 versus 6.18 � 0.35; SCAIDnt, 8.57 � 0.31 versus 10.02 �
cted with GFP-SCAI and were treated with TGF-b1 for 3 days, after 24 hours.
d by confocal microscopy. Only approximately 2% of SCAI-transfected cells
y 20% positive for SMA. To quantify the effect, three separate experiments
ells and 106 GFP-SCAIetransfected cells were assessed for SMA expression.
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Figure 3 SCAI interferes with TGF-b1einduced SMA, calponin, and
CTGF expression, and rescues E-cadherin expression in LLC-PK1 cells stably
expressing SCAI. A: SCAI inhibits TGF-b1einduced SMA protein expression.
An LLC-PK1 cell line stably expressing GFP-SCAI was generated as described
in Materials and Methods. Subconfluent LLC-PK1 and LLC-PK1/GFP-SCAI cells
were treated with TGF-b1 for 3 days, and were then analyzed by using
Western blot analysis. SMA protein expression in the cells stably expressing
SCAI was inhibited (LLC-PK þ TGF versus LLC-PK/SCAI þ TGF, 0.6 � 0.15
versus 0.15 � 0.05). B: Three days of TGF-b1 treatment induced calponin
expression in LLC-PK1 cells. SCAI inhibited calponin expression (LLC-PK þ
TGF versus LLC-PK/SCAI/TGF, 0.47 � 0.08 versus 0.14 � 0.05). C: TGF-b1
treatment led to the down-regulation of E-cadherin expression in LLC-PK1
cells. SCAI rescued E-cadherin expression (LLC-PK þ TGF versus LLC-PK/
SCAI þ TGF, 0.005 � 0.002 versus 0.01 � 0.003). D: TGF-b1einduced
CTGF expression was reduced in LLC-PK1/SCAI cells (LLC-PK þ TGF versus
LLC-PK/SCAI þ TGF, 0.07 � 0.01 versus 0.05 � 0.006).
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SCAI Prevented SMA Promoter Activation Induced by
MRTF-A and MRTF-B and by RhoA, Rac1, and Cdc42

Because SMA expression was dependent on MRTFs, next
we assessed whether SCAI interfered with MRTF-Ae and
MRTF-Beinduced SMA promoter activation. Therefore,
we stimulated SMA promoter with MRTF-A or MRTF-B in
the presence or absence of GFP-SCAI. The robust activation
of the promoter induced by MRTF-A and MRTF-B was
abolished by SCAI cotransfection, indicating the MRTF
specificity of SCAI-dependent inhibition of the SMA
promoter (Figure 4, A and B).

SMA promoter was regulated by several signaling
molecules, such as RhoA, Rac1, and Cdc42, belonging to
the family of small GTPases, in an MRTF-SRFedependent
The American Journal of Pathology - ajp.amjpathol.org
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manner. Cotransfection and expression of the constitutively
active forms of these molecules induced the activation of the
SMA promoter. The initial activation induced by these small
GTPases was strongly inhibited by the expression of wild-
type GFP-SCAI (Figure 4, CeE). These results indicated
that, as expected, SCAI inhibited the SMA activation
signals that were dependent on MRTF and SRF. Based on
these results, SCAI emerged as a master inhibitory regulator
of TGF-b1einduced, SRF- and MRTF-dependent SMA
expression.

SCAI Prevented SMA Promoter Activation Induced by
TGF-b1, MRTF-A, and MRTF-B in a CArG-Dependent
Manner

MRTFs regulated the SMA promoter in a CArG
domainedependent manner. To test whether SCAI interfered
with SMA promoter activation via CArG domains, we used
the p152-SMA-Luc promoter construct, which contains
a 152-bp long sequence of the SMA promoter containing
the two CArGs and the QTCE, but lacking both SBEs and
the E-box. QCotransfection and expression of SCAI inhi-
bited TGF-b1einduced 152-bp SMA promoter activation
(Figure 5A). The activation of the 152-bp SMA promoter
induced by MRTF-A and MRTF-B was inhibited by SCAI
cotransfection (Figure 5, B and C). These results indicated
the CArG domain specificity of SCAI-dependent inhibition
of the SMA promoter.

TGF-b1 Attenuated SCAI Protein and mRNA Expression

Next, we assessed whether TGF-b1 could influence SCAI
protein expression. Control LLC-PK1 cells and LLC-PK1
cells subjected to 3 days of TGF-b1 treatment were
analyzed by using Western blot analysis. TGF-b1 treatment
of LLC-PK1 cells induced the attenuation of SCAI
(Figure 6, A and B). Furthermore, 12 hours of TGF-b1
treatment led to a decrease of SCAI mRNA in mIMCD-3
cells, as found in RT-PCR experiments (Figure 6C). These
results indicated that TGF-b1 could modulate SCAI mRNA
and protein expression in vitro.

IHC Analysis of SCAI Expression Patterns in Human
Kidneys

To substantiate our in vitro findings on the potential role of
SCAI, we proposed to characterize renal SCAI protein
expression patterns by IHC analysis of human kidney
samples.

We proposed to investigate the expression pattern of SCAI
protein in normal kidneys. In normal renal tissue, SCAI
expression was present as early as in embryonic kidneys:
SCAI was expressed both in glomerular and tubular cells
(Figure 7A). In adult kidneys, SCAI was expressed both in
glomerular cells and podocytes (Figure 7B). Proximal tubular
cells expressed SCAI mainly in nuclei (Figure 7C). Vascular
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smooth muscle cells weakly expressed SCAI; however,
endothelial cells were positive for SCAI (Figure 7D).

In fibrotic kidneys, the widened interstitial space contained
SCAI-negative cellular elements, and affected tubular cells
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stained weaker for SCAI (Figure 8A). More important, scle-
rotic glomeruli lost SCAI positivity (Figure 8B), and tubular
cells even showed severe loss of SCAI expression (Figure 8C).
Next, we examined SCAI expression in renal cell carci-

nomas. As expected, the tumor cells in renal cell carcinomas
did not express SCAI (Figure 9A). In contrast to renal cell
carcinomas, blastemic Wilms’ tumor was found positive for
SCAI, with some cells showing highly enriched nuclear
expression in cells with oval nuclei and scanty cytoplasm
(Figure 9B).

Diabetic Nephropathy in Rats Led to a Significant
Decline in Renal SCAI Protein Expression

To further characterize SCAI expression in diseased kidneys
and to obtain quantitative data on SCAI expression patterns
in fibrotic renal disease, in vivo studies were performed.
Diabetes was induced by STZ in male Sprague-Dawley rats,
and 8 weeks after the induction of diabetes, control and
diabetic kidneys were assessed by IHC. Diabetes was well-
known to induce diabetic nephropathy through renal fibrosis
with the involvement of TGF-b1. We used this model to
investigate the possible link between fibrosis and a potential
decline in SCAI expression in the kidney.
The induction of diabetes led to a significantly elevated urine

protein/creatinine ratio and serum glucose Qand elevated serum
urea levels in diabetic rats compared with nondiabetic controls
[urine protein/creatinine ratio (mg/mg): control, 6.4 � 0.6;
STZ, 51.3 � 8.0; serum glucose (mg/dL): control, 256.16 �
75.5; STZ, 911.14 � 239.4; serum urea (mg/dL): control,
31.68� 5.5; STZ, 45.51� 12.1]. Diabetic animals developed
glomerular and tubulointerstitial damage characterized by
mesangial expansion and tubular atrophy, hyaline deposits,
and mild mononuclear cell infiltration, corresponding to find-
ings in an early phase of nephropathy. Tubular cells in control
kidneys (Figure 10A) showed more intense nuclear SCAI
staining than tubular cells in diabetic kidneys (Figure 10B).
Intercalated cells stained similarly in both cases. When tubular
SCAI stainings were compared, control kidneys stained
significantly stronger than diabetic kidneys (1.273 � 0.118
versus 0.697 � 0.07; P Z 0.03) (Figure 10C).
To substantiate our findings, we next performed Western

blot analyses to test whether there was an inverse relation-
ship of SCAI and SMA or calponin expression in control
and diseased kidneys using control and diabetic rat
medullas. There was an inverse relationship between SCAI
and SMA or calponin expression: SCAI tended to be more
Figure 4 SCAI prevents SMA promoter activation induced by MRTF-A,
MRTF-B, RhoA, Rac1, and Cdc42. AeE: Cells were transfected with SMA
promoter and MRTF-A, MRTF-B, constitutive active RhoA, constitutive
active Rac1, or constitutive active Cdc42, respectively, and luciferase
assays were performed. SCAI prevented SMA promoter activation induced by
MRTF-A (87.97� 5.04 versus 16.53� 5.78), MRTF-B (68.61� 15.33 versus
16.43 � 1.54), constitutive active RhoA (10.57 � 0.69 versus 3.59 �
0.41), constitutive active Rac1 (3.69 � 0.39 versus 1.25 � 0.12), and
constitutive active Cdc42 (10.71 � 1.02 versus 5.43 � 0.43).
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Figure 6 TGF-b1 attenuates SCAI protein expression in LLC-PK1 cells
and SCAI mRNA expression in mIMCD-3 cells. A and B: LLC-PK1 cells were
subjected to 3 days of TGF-b1 treatment and were analyzed by using
Western blot analysis. TGF-b1 treatment led to an attenuation of SCAI
expression in LLC-PK1 cells. Quantification of the Western blot experiment
is as follows: control (Ctrl), 0.27 � 0.01; TGF, 0.19 � 0.06. C: mIMCD cells
were treated with TGF-b1 for 12 hours, and after RNA isolation and reverse
transcription, RT-qPCR was performed. TGF-b1 decreased SCAI mRNA
expression (0.92 � 0.05 versus 0.58 � 0.02; P Z 0.01).

Figure 5 SCAI prevents SMA promoter activation induced by TGF-b1,
MRTF-A, and MRTF-B in a CArG-dependent manner. A: SCAI inhibits TGF-
b1einduced activation of the 152-bp long SMA promoter sequence con-
taining the two CArGs and the TCE, but lacking both SBEs and the E-box
using luciferase assays. Cells were transfected with p152-SMA-Luc promoter
without GFP-SCAI and were treated with TGF-b1. SCAI inhibited the acti-
vation of the 152-bp SMA promoter induced by TGF-b1 (3.61 � 0.44 versus
1.81 � 0.05). B: Cells were transfected with p152-SMA-Luc promoter, and
MRTF-A and luciferase assays were performed. SCAI overexpression led to
a 60% decrease of p152-SMA promoter activation induced by MRTF-A. C:
Cells were transfected with p152-SMA-Luc promoter, and MRTF-B and
luciferase assays were performed. SCAI overexpression led to a 53%
decrease of p152-SMA promoter activation induced by MRTF-B. ctrl,
control.
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elevated in control samples, and its expression level
declined in kidneys affected by diabetic nephropathy,
whereas SMA and calponin expression was more
pronounced in diabetic samples (Figure 10, DeF).
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SCAI mRNA Was Down-Regulated in Kidneys of Diabetic
Mice

Next, SCAI mRNA expression patterns were characterized in
kidneys of diabetic mice. Type 1 diabetes mellitus was
induced in FVB/N mice, and RNA was isolated from 100 mg
of whole kidneys. After reverse transcription, SCAI cDNA
levels were assessed by RT-qPCR, and GAPDH was used as
an internal control, with results being normalized to GAPDH
cDNA levels. Similarly to SCAI expression patterns in
different malignant tissues,27 we found that SCAI mRNA
was markedly and significantly down-regulated in kidneys of
The American Journal of Pathology - ajp.amjpathol.org
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diabetic mice (0.59 � 0.23 versus 0.28 � 0.10; P Z 0.01)
(Figure 10G), in concordance with findings on SCAI protein
expression patterns in fibrotic kidneys.
Decreased SCAI Protein Expression in UUO Kidneys

To substantiate our in vivo findings on SCAI expression
patterns, we evaluated SCAI expression in a model of UUO
in mice. UUO was a widely used model of renal interstitial
fibrosis and obstructive nephropathy, generating progressive
renal fibrosis. We performed the experiment on male
C57BL/6 mice. UUO kidneys and contralateral kidneys
from the same animals were compared by using Western
blot analysis. SCAI expression was attenuated in UUO
kidneys, when compared with the contralateral control
kidneys. In parallel with the decreasing SCAI expression,
9
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Figure 7 SCAI protein expression patterns in normal renal tissues. A:
Embryonic kidneys (from a 20-week-old fetus) express SCAI in the nuclei of
glomerular and tubular cells. B: SCAI is expressed in both glomerular cells
and podocytes, and podocytes show more intense nuclear staining (normal
renal tissue area from a 4-year-old male patient with a Wilms’ tumor). C:
Proximal tubular cells express SCAI in nuclei (normal renal tissue area from
a 64-year-old patient with a renal cell carcinoma). D: Vascular smooth
muscle cells weakly expressed SCAI. The endothelial cells were positive for
SCAI (normal renal tissue area from a 64-year-old patient with a renal cell
carcinoma). Original magnification: �400 (AeD).
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Figure 9 SCAI protein expression in renal tumors. A: A renal cell
carcinoma (Fuhrman grade III; 60-year-old male patient) is negative for
SCAI expression. B: A blastemic Wilms’ tumor (high-risk type; 4-year-old
male patient) shows strong SCAI positivity. Original magnification: �400
(A and B). Q27
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robust SMA expression was observed in UUO kidneys
(Figure 11, AeC).

Finally, the same UUO sample set was probed with
a second SCAI antibody. Similar results were obtained with
both antibodies, an indication that both antibodies recog-
nized the same SCAI protein (Figure 11D).
F12�F12�

Figure 8 SCAI protein expression patterns in sclerotic renal tissues. A:
A widened interstitial space contained SCAI-negative cellular elements, and
the affected tubuli stain weaker for SCAI than the more intact tubular
structures (nephrosclerosis and chronic pyelonephritis; 61-year-old female
patient). B: Sclerotic glomeruli are negative for SCAI expression (arterio-
sclerotic nephrosclerosis and chronic pyelonephritis; 70-year-old male
patient). C: Tubular area that lost SCAI positivity (arteriosclerotic neph-
rosclerosis and chronic pyelonephritis; 70-year-old male patient). Original
magnification: �400 (A and C); �200 (B).
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Discussion

The complex regulation of EMTs during cancer progression
and fibrosis is achieved by several similar signaling events.
One such mechanism recently identified is the involvement
of MRTF, both during fibrotic EMT and metastasis.8,17,26

SCAI inhibits the activity of MRTF, the cofactor of the
transcription factor SRF, and it suppresses cancer cell
invasion by negatively regulating b1-integrin. Therefore, we
wanted to determine the potential inhibitory role of SCAI in
TGF-b1einduced SMA expression in a tubular model of
EMT and to test whether SCAI interferes with the SMA
promotereactivating effects of various signaling molecules,
such as MRTFs or small Rho GTPases.
Our results indicate that SCAI inhibited TGF-b1edependent

SMA promoter activation and protein expression, and
partially decreased the effect of cell contact disruption on
the promoter. It also prevented the activation of the promoter
induced by MRTFs and small Rho GTPases. In sclerotic
human kidneys, SCAI was not expressed in the cells forming
the fibrotic tissue; moreover, in an in vivo model of diabetic
nephropathy and in UUO kidneys, SCAI expression was
significantly reduced compared with control kidneys. In
fibrotic kidneys, the level of SCAI mRNA was down-
regulated, when compared with nonfibrotic kidney samples.
More important, one of themajor triggers offibrosis, TGF-b1,
down-regulated SCAI expression in vitro. In ourmodel, SCAI
may interfere with the expression of several CArG/MRTF-
dependent proteins induced by different stimuli, such as
TGF-b1, whereas SCAI expression might be TGF-b1
dependent as well, an observation that still needs to be
investigated (Figure 12 ½½).
SCAI emerged as an endogenous inhibitory cofactor that

regulates TGF-b1edependent SMA expression. The SMA
promoter contains CArG domains,33 and specific MRTF
effects are linked to these domains.34 TGF-b1 induces nuclear
translocation of MRTF, and specific inhibition of MRTF pre-
vented SMAexpression.8,17 Thismechanismmay explain how
SCAI, as an endogenous inhibitory cofactor of MRTF, can
interferewith these signals. This hypothesis is supported by the
TGF-b1einduced down-regulation of SCAI, and, as such,
removal of an important hurdle preventing SMA expression.
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Figure 10 SCAI protein expression is significantly down-regulated in
diabetic nephropathy. A: Tubular cells from control rat kidneys displayed
intense SCAI staining, whereas intercalated cells stained more intensely.
Arrows, Examples of intense nuclear staining in tubular cells. B: Tubular
cells from diabetic rat kidneys displayed weaker SCAI staining, whereas
intercalated cells stained similarly as in control samples. Arrows, Examples
of weak or negative nuclear staining of tubular cells. Original magnifica-
tion: �630 (A and B). C: Comparison and statistical analysis of SCAI IHC
stainings from control and diabetic rat kidneys: kidneys from control rats
stained significantly stronger than kidneys from diabetic rats (1.273 �
0.118 versus 0.697 � 0.07; P Z 0.03). D: Western blot analysis was per-
formed to test for the inverse relationship between SCAI and SMA or cal-
ponin. Rat kidney medullas from control and diabetic animals were
analyzed. SCAI tends to be more elevated in control samples, and its
expression level declines in kidneys affected by diabetic nephropathy,
whereas SMA and calponin expression were more pronounced in diabetic
samples. E: Quantification of SCAI protein expression in control and dia-
betic rat kidney medullas based on using Western blot analysis: control,
0.23 � 0.14; diabetes mellitus (DM), 0.02 � 0.009. F: Quantification of
SMA protein expression in control and diabetic rat kidney medullas based
on using Western blot analysis: control, 0.52 � 0.22; DM, 1.16 � 0.39. G:
SCAI mRNA is down-regulated in kidneys of diabetic mice. RT-qPCR analysis
showed a significant decrease of SCAI mRNA expression in kidneys of
diabetic FVB/N mice when compared with normal control kidneys. Results
were normalized to GAPDH (0.59 � 0.23 versus 0.28 � 0.10; P Z 0.01).

Figure 11 Decreased SCAI expression in UUO kidneys. A: C57BL/6 mice
were subjected to UUO, with contralateral kidneys serving as a control
(Ctrl). SCAI expression was reduced in UUO kidneys, as evidenced by using
Western blot analysis. Parallel to the decrease in SCAI expression on UUO,
UUO kidneys presented robust SMA expression. B: Quantification of SCAI
protein expression in control and UUO kidneys, based on using Western blot
analysis: control, 0.009 � 0.002; UUO, 0.0015 � 0.001. C: Quantification
of SMA protein expression in control and UUO kidneys based on using
Western blot analysis: control, 0.012 � 0.001; UUO, 0.56 � 0.05. D: Mouse
control and UUO kidney samples were probed with two SCAI antibodies, and
similar results were found: UUO led to a down-regulation of SCAI expres-
sion, as evidenced by the two antibodies in a similar manner.

Figure 12 The critical role of SCAI in SMA regulation. SMA is regulated
by TGF-b1, small GTPases, and various other stimuli and signals that lead to
the nuclear translocation of MRTF. Once in the nucleus, MRTF may be bound
by SCAI, and this may prevent MRTF- and SRF-dependent effects on the SMA
promoter. SCAI expression, on the other hand, may be under the control of
TGF-b1.
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An obvious question is whether these effects are in any
way restricted to the myogenic program of EMT. A
completed EMT, after the decline of the epithelial program
and the activation of a mesenchymal fibrogenic program,
The American Journal of Pathology - ajp.amjpathol.org
FLA 5.1.0 DTD � AJPA1130_proof � 22 Novem
culminates in a myogenic program.6,35 To evaluate the
extent of SCAI-dependent regulation of EMT, CArG-
dependent markers corresponding to the three programs
were assessed.
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SCAI rescued E-cadherin expression, which is down-
regulated on TGF-b1 treatments. MRTF already induced
the down-regulation of E-cadherin, because it was found in
MDCK cells.36 It is well-known that an important regulator
of EMT is slug, which down-regulates E-cadherin. The
trigger of this mechanism, slug, is under the control of MRTF
via a GCCG-like motif that binds MRTF/Smad3, and two
CArG box-like sequences also contribute to the responsibility
of the slug promoter construct to exogenous MRTF.36 This
regulation may explain how SCAI rescues E-cadherin: by
preventing MRTF-dependent slug expression.

TGF-b1 induces autocrine CTGF up-regulation in different
cell types. CTGF is a recognized fibrogenic cytokine that is
expressed in mesenchymal cells, including fibroblasts and
those arising from EMT in the kidney during renal fibrosis31;
thus, it is a marker of the mesenchymal-fibrogenic program.
The promoter of CTGF is activated by SRF in a CArG-
dependent manner.16,32 SCAI prevented TGF-b1einduced
CTGF expression in LLC-PK1 cells, indicating that it can
influence the expression of certain fibrotic markers.

As for the myogenic program, another marker was also
examined, to underline the findings on SMA expression.
Calponin is a well-known myofibroblast marker, and its
expression is increased on TGF-b1 treatment.37 Calponin
expression is SRF38 and MRTF dependent,39 via CArG
boxes present in the promoter of calponin.38 Herein, we
showed that SCAI prevents calponin expression. SCAI can
prevent the expression of at least two myogenic myofibro-
blast markers, SMA and calponin.

We showed herein that SCAI, a novel transcriptional
cofactor, elicits inhibitory effects on TGF-b1einduced
protein expression in a renal fibrotic EMT model. Concom-
itantly, we characterized SCAI expression patterns in the
setting of renal fibrosis: SCAI expression was significantly
decreased in fibrotic kidneys, and TGF-b1 down-regulated
SCAI protein levels. SCAI may emerge as an important
diagnostic, prognostic, and therapeutic target. SCAI may
have wider implications for several other fibrotic diseases in
which the essential role of MRTF has been established,
such as during myofibroblast activation and fibrosis in
response to myocardial infarction40 or during type I collagen
expression in lung fibrosis.41
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