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Role of Regulatory Micro RNAs in Type 2
Diabetes Mellitus—Related Inflammation
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Micro RNAs (miRNAs) are small, non-coding RNAs with the function of post-transcriptional gene expression
regulation. Micro RNAs may function in networks, forming a complex relationship with diseases. Alterations of
specific miRNA levels have significant correlation with diseases of divergent origin, such as diabetes. Type 2
diabetes mellitus (T2DM) has an increasing worldwide epidemic with serious complications. However, T2DM is
a chronic process, and from early metabolic alterations to manifest complications decades may pass, during
which our diagnostic arsenal is limited. Micro RNAs may thus serve as novel diagnostic tools as well as
therapeutic targets in pre-diabetes.

Recent Fundings: Micro RNAs (miRNAs) involved in inflammatory processes contributing to the development of
type 2 diabetes mellitus (T2DM) published mostly in the past 2 years. MiRNAs are involved in such early diabetic
processes as non-alcoholic steatohepatitis (NASH) and inflammation of the visceral adipose tissue. Evidence is
emerging regarding the continuous spectrum between type 1 diabetes (TIDM) and T2DM being just 2 endpoints of
the same disease with different genetic background. Thus, miRNA regulation of autoimmune components in
T2DM may shed new light on pathogenesis. Finally, the involvement of miRNAs in inflammation as a key driving
force of diabetic complications is also summarized.

Conclusion: Inflammation is emerging as a central pathophysiological process in the development of T2DM.
Visceral adipose tissue inflammation and non-alcoholic steatohepatitis together with insulitis are probably the first
events leading to a complex metabolic disorder. These early events may be diagnosed or even influenced through
our increasing knowledge about the involvement of post-transcriptional gene regulation by miRNAs.

Introduction double between 2005 and 2030 (WHO, 2010). Once thought
of as a disease of the West, the prevalence of diabetes
NVESTIGATIONS OF THE human transcriptome following mellitus is increasing at alarming rates worldwide (Lam
completion of the Human Genome Projectin 2003 revealed  and LeRoith, 2012). T2DM is characterized by insulin re-
that our genome encodes non-coding RNAs. First described  sistance of muscle, adipose, and liver tissue combined with
in 1993 (Lee et al., 1993), miRNAs play an important role dysfunction and later failure of insulin-producing pancre-
in posttranscriptional gene-expression regulation (Lagos- atic beta cells (B cells). Both insulin resistance and B cell
Quintana et al., 2001). MiRNAs are thought to fine-tune entire ~ dysfunction precede the clinical manifestation of T2DM by
intracellular molecular cascades such as intracellular signal- years to decades. Thus, early recognition of insulin resis-
ing (Berezikov, 2011). MiRNA networks are differentially ~tance or pre-diabetes may have an enormous clinical rele-
expressed: miRNA expression is organ /tissue specific (Lagos- ~ vance for early interventions to delay or prevent the onset
Quintana et al, 2002) and is differentially altered during of manifest T2DM.

disease states. Thus, induction or inhibition of miRNA ex- Inflammation is emerging as an important cause of T2DM.
pression may be unique therapeutic tools (Davidson and A comprehensive review has recently summarized miRNAs
McCray, 2011; Kaucsér et al., 2010). in B-cell biology, insulin resistance, and T1 and T2 diabetes

T2DM is a lifelong, debilitating disease and is the leading and its complications (Fernandez-Valverde et al, 2011).
cause of cardiovascular mortality, blindness, and renal failure However, miRNAs involved in inflammatory processes
in the developed world. According to World Health Organi-  during pre-diabetes have not been reviewed yet. Micro RNA
zation (WHO) key facts, 346 million people worldwide have alterations may function as early markers of diabetic ho-
diabetes in 2012, and WHO projects that diabetes deaths will meostasis changes or may offer new therapeutic targets.
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Inflammatory Pathomechanisms Leading to T2DM

T2DM is a slowly and gradually developing loss of insulin-
dependent glucose uptake into cells. Preceding states of
T2DM are summarized as pre-diabetes when plasma glucose
level is above the reference range but below manifest diabetes.
Clinical manifestations of disturbed glucose homeostasis can
be either impaired fasting glucose (IFG) or impaired glucose
tolerance (IGT), both being risk factors of T2DM. Pre-diabetes
commonly associates with the metabolic syndrome, where the
metabolic disequilibrium includes not only glucose but also
lipid homeostasis problems leading to accelerated athero-
sclerosis and consequent hypertension. (Grundy, 2012).

All components of the pre-diabetic (metabolic) syndrome
involve inflammation:

® Non-alcoholic steatohepatitis NASH): fatty liver inflammation;

e Visceral obesity with inflammatory infiltration of the
visceral adipose tissue;

e Pre-digbetic glucose homeostasis: insulin resistance of the
muscle (IFG) and the liver (IGT);

* Dyslipidemia with inflammatory alterations of lipopro-
teins, and accumulation of altered lipoproteins in mac-
rophages and the vascular intima; and

* Hypertension.

Furthermore, inflammation of the islet cells has been
demonstrated in pre-diabetes. Diabetes progression has been
associated to markers of inflammatory processes such as se-
rum interleukin (IL)-6 levels (Lieb et al., 2012). The association
of pro-inflammatory mechanisms with T2DM has been re-
viewed (Wellen and Hotamisligil, 2005).

Since recognition of adipokines such as adiponektin and
leptin, the visceral adipose tissue is recognized as an active
endocrine organ and macrophage infiltration of the visceral
adipose tissue is considered a low-grade inflammatory condi-
tion linking obesity to insulin resistance (Kershaw and Flier,
2004). The presence of macrophages in visceral adipose tissue
and pro-inflammatory TNF-alpha and leucotriene produc-
tion has been strongly associated with T2DM development
(Martinez-Clemente et al., 2011). The relationship between
visceral adipose tissue accumulation and chronic inflammation
has been reviewed recently (Gong and Muzumdar, 2012).
However, (visceral) obesity is not an absolute prerequisite of
T2DM. Not all people with visceral obesity develop diabetes,
and some patients develop dyslipidemia and T2DM without
substantial visceral obesity. Accumulation of visceral adipose
tissue contributes to chronic inflammation. A possible expla-
nation of lean patients developing dyslipidemia and T2DM
could be that body fat distribution, not only localized to the
visceral adipose tissue but espedially to the liver, predisposes to
T2DM. Jim Bell’s group have demonstrated with whole body
magnetic resonance imaging scan that lipid content within the
liver and musde are differentially associated with metabolic
risk factors, obesity, and insulin resistance (Thomas et al., 2012).
Hepatic fat may be responsible for T2DM development in non-
obese people. Based on these observations they propose the
thin-on-the-outside fat-on-the-inside type as a sub-phenotype
for individuals at increased metabolic risk. Thus, visceral adi-
pose tissue inflammation of liver fat accumulation may lay in
the background of pre-diabetes and T2DM development in
non-obese patients. Micro RNA expression changes may help
to diagnose this early state of metabolic disorder.
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Autoimmune Mechanisms in T2DM

The pathomechanism of diabetes is not yet fully under-
stood, and it is often accompanied by other autoimmune
diseases. The spectrum of diabetes is continuous from the
autoimmune T1DM to T2DM, as their clinical appearance is
not clearly separated. TIDM is an autoimmune disease with
autoantibody production against insulin producing pancre-
atic islet B cells leading to rapid deterioration of B beta cells
and absolute insulin deficiency in children and young adults.
T2DM is a complex metabolic disorder developing from in-
sulin resistance later in life, characterized by combination of
defects in insulin secretion and action (Shaw et al., 2000).
However, there are forms of diabetes that can be less clearly
characterized into either type, such as latent autoimmune
diabetes in adults (Thomas et al.,, 2012; Stone et al., 2010).
Approximately 10% of phenotypic type 2 diabetic patients
are positive for at least one of the islet autoantibodies, and
this group is often referred to as latent autoimmune diabe-
tes in adults (Naik et al., 2009). Islet inflammation and anti-
islet autoantibodies are present in T2DM contributing to the
progressive nature of T2DM (Brooks-Worrell and Palmer,
2012). Furthermore, T2DM may appear in children with au-
toimmune components to B cells and is also referred to as type
1.5 diabetes, double diabetes, latent autoimmune diabetes in
youth, and hybrid diabetes (Badaru and Pihoker, 2012). Fur-
thermore, insulin resistance appears to play a significant role
in the pathogenesis of TIDM and the incidence of TIDM is
increasing due to environmental factors (Hummel et al., 2012;
Cizza et al., 2012) (accelerator hypothesis), supporting that
these 2 forms (T1DM and T2DM) are 2 endpoints of the same
disorder of insulin resistance with different genetic back-
grounds (Nokoff et al., 2012). In the pathomechanism of both
types of diabetes, inflammation of B cells leads to their de-
struction due to cytokines activated by a previous infection
(T1IDM) or by increased concentration of free fatty acids
(T2DM) in individiials with different genetic backgrounds
(Skrha, 2011).

As shown in this review already, inflammatory mecha-
nisms participate in the development of T2DM. T2DM may
be associated with autoimmune diseases (e.g., thyroiditis).
Furthermore, in patients with T2DM, autoantibodies
against islet cell antigens such as glutamate decarboxylase
and tyrosine phosphatase 2 can be detected (Atkinson and és
Eisenbarth, 2011). Besides anti-islet-cell autoantibodies, other
autoimmune manifestations accompanying T2DM have been
described. Based on the inflammatory components of the pa-
thomechanism, the accompanying autoimmune diseases, and
autoantibodies, it can be assumed that anti-islet-cell autoim-
mune mechanisms also participate in the development of
T2DM.

Autoimmune mechanisms have also been described in
metabolic syndrome, such as anti-oxidized low-density lipo-
protein autoantibodies (Virella and Lopes-Virella, 2001). Auto-
immunity in T2DM and common pathomechanisms in TIDM
and T2DM have been recently reviewed. Innate immune
cells accumulate and become activated in metabolic tissues
(visceral adipose tissue, liver, pancreas) and release inflam-
matory mediators, in particular, IL-1p and tumor necrosis
factor o (TNFa). The inflammatory process promotes systemic
insulin resistance leading to T2DM and/or p-cell damage in
both types of diabetes (Odegaard and Chawla, 2012).




NAT-2012-0381-ver9-Hamar_3P.3d 08/31/12

MIRNAS IN T2DM

Inflammation Associated with Diabetic Complications

Complications of diabetes are consequences of chronically
elevated glucose concentration causing tissue injury through
non-enzymatic glycation of macromolecules such as base-
ment membrane collagen, leading to micro- (eye, kidney) and
macro-angiopathy (cardiovascular disease), neuropathy, and
wounds. Advanced glycation end products are formed in
target tissues, inducing a chronic inflammatory reaction
leading to fibrosis and scarring of the target organs (Ban and
Twigg, 2012). Micro- and macro-angiopathy aggravates the
chronic inflammation by leading to organ hypoxia. Also hy-
perglycemia per se can induce oxidative stress by stimulating
mitochondrial reactive oxygen species production, further
aggravating oxidative stress causing endothelial dysfunction
and consequent inflammation (van den Oever et al., 2010).

Micro RNAs Associated with Pre-Diabetic
Inflammatory Processes

Micro RNAs involved in nonalcoholic steatohepatitis

Nonalcoholic steatohepatitis (NASH) is part of a spectrum
of nonalcoholic fatty liver disease (Adams et al., 2005). NASH
is characterized by abnormal lipid metabolism, activation of
apoptosis, cellular regenerative responses, and inflammation
(Reddy and Rao, 2006). Saturated free fatty acids induce he-
patocyte lipoapoptosis, a key mediator of liver injury in
NASH (Cazanave et al., 2011).

The importance of dysregulation of miRNA expression in
nonalcoholic steatohepatitis (NASH) has been increasingly
recognized (Pogribny et al., 2010).

Altered hepatic miRNA expression in nonalcoholic steato-
hepatitis was first reported by Cheung et al. in 2008: The au-
thors detected 63% reduction of miR-122 in patients with
metabolic syndrome and NASH versus healthy controls.
Underexpression of miR-122 contributed to altered lipid me-
tabolism implicated in the pathogenesis of NASH.

Next, mouse studies have indentified miR-155 in diet-
induced hepatocellular carcinoma (Wang et al., 2009). More
importantly, human TagMan miRNA array analysis of
visceral adipose tissue from patients with NASH and mul-
tiple test correction revealed 7 significantly differentially
expressed miRs (hsa-miR-132, 150, 433, 28-3p, 511, 517a, and
671) in the visceral adipose tissue of patients with NASH
(vs. non-NASH patients). Furthermore, hsa-miR-197 and
hsa-miR-99 were significantly associated with pericellular
fibrosis in NASH patients. Predicted target genes for the
identified miRNAs include insulin receptor pathway com-
ponents, cytokines (IL-6), adipokines (ghrelin), and inflam-
mation-related genes (NFKB1, RELB, FAS) (Estep et al.,
2010). These data further support the pathophysiological
relationship between NASH progression and visceral adi-
pose tissue inflammation.

Recently (2010), the connection between susceptibility
to NASH and altered expression of miRNAs has been
demonstrated by a study in which strain specific suscepti-
bility to dietary NASH in mice have been attributed to hepatic
differential expression of 4 miRNAs (miR-29¢, 34a, 155, and
200b) (Pogribny et al., 2010).

Finally, in silico identification of miR-296-5p as a potential
regulator of lipoapoptosis has been demonstrated to be sup-
pressed by a saturated free fatty acid (palmitate), and miR-
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296-5-p expression was reduced in liver samples of NASH
patients (Martinez-Clemente et al., 2011).

Micro RNAs involved in inflammatory infiltration
of the visceral adipose tissue

Low-grade inflammation of the visceral adipose tissue
contributes to adiposity, metabolic syndrome, and the de-
velopment of T2DM, as reviewed repeatedly (Waki and
Tontonoz, 2007; Ouchi et al., 2011; Scarpellini and Tack, 2012).
Adipose tissue is now considered an endocrine organ as it
releases adipokines with pro- or anti-inflammatory effects.
Adipose tissue dysfunction leads to dysregulated adipokine
secretion leading to obesity-linked complications (Virella and
Lopes-Virella, 2001) such as the metabolic dysfunction—
insulin resistance of liver and muscle—thus contributing to
the development of T2DM (Skrha, 2011). Inflammation of the
visceral adipose tissue may result from altered chemoat-
tractant expression leading to macrophage infiltration (Arner
et al,, 2012). Infiltrating macrophages produce TNFa, induc-
ing a vidous circle of inflammation and altering adipokine
production and insulin resistance of the adipose tissue (e
and Lodish, 2009). Furthermore, visceral adipose tissue se-
creted molecules contribute to the development of non-
alcoholic fatty liver disease and inflammation (NASH) (Estep
et al., 2010).

As described above, visceral adipose tissue miRNA mi-
croarray expression pattern has been associated with devel-
opment and severity of NASH (Nokoff et al., 2012). Also,
miRNA microarray analysis of skeletal muscle tissue revealed
miR-29 family (miR-29a, b, ¢) upregulation in Goto-Kakizaki
hyperinsulinemic/type-2 diabetic rats versus healthy con-
trols. MiR-29 upregulation was confirmed by northern blot-
ting in muscle, adipose tissue, and liver; and miR-29
overexpression induced insulin resistance in cultured adipo-
cytes. These data reveal the negative effects of miR-29 on in-
sulin signaling (He et al., 2007). Investigating miRNA
expression in human subcutaneous white adipose tissue ob-
tained from 56 subjects revealed 11 miRNAs present in
all subjects and downregulated in obesity, and 2 of them
{(miR-126 and miR-193b) were demonstrated to regulate in-
flammatory infiltration of the adipose tissue via regulating
inflammatory chemokine expression of adipocytes (Odegaard
and Chawla, 2012). The relationship between the innate im-
mune system and obesity has been recently reviewed (Foley
and O'Neill, 2012). This review identified miR-107 as a key
factor linking inflammation and obesity through muliple
mechanisms such as

* toll-like receptor-4 (bacterial lipopolysacharide /LPS/
receptor) downregulation of miR-107 in macrophages,
and

¢ miR-107 dysregulation in rodent models of both obesity
and insulin resistance.

A recent review on inflammatory processes in aging-
related pathologies summarizes the miRNAs linking obesity
and diabetes through inflammation. This paper summarizes
inverse regulation of miRNAs during adipogenesis and
adiposity by TNFa which regulated miRs-221 and -222 but
reduced miRs-103 and -104 (Schroen, 2012). Furthermore,
miRs 17-5p and 132 correlated with blood glucose and body
mass index and were upregulated in adipose tissue and
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circulation of obese subjects (Heneghan et al, 2011; Xie
and Lodish, 2009). MiR-132 also induced the central pro-
inflammatory nuclear factor: nuclear factor kappa-beta and
transcription of IL-8 and macrophage chemoattractant pro-
tein (Strum et al., 2009; Xie and Lodish, 2009).

Micro RNAs in Autoimmune Processes of T2DM

Although islet cell autoimmunity in T2DM have been de-
scribed (Pietropaolo et al., 2000) and reviewed (Syed et al.,
2002) a decade ago, and substantial evidence has accumulated
about the continuous spectrum between TIDM and T2DM,
and autoimmune mechanisms in T2DM have been reviewed
recently (Skrha, 2011; Nokoff et al., 2012; Brooks-Worrell and
Palmer, 2012), very little information is available regarding
miRNAs in autoimmune processes of T2DM. However,
miRNAs identified in the autoimmune processes of islet au-

toimmunity in TIDM, such as miR-326 (Sebastiani et al., 2011)

and miR-375, may prove to be relevant in T2DM. Indeed a
recent study demonstrated that in addition to known islet-
specific miR-375, miRs 127-3p, 184, 195, and 493 were also
enriched in pancreatic islets. Insulin synthesis and secretion
correlated with the expression of these miRs; however, these
correlations diminished in glucose intolerant glycosilated
hemoglobin (HbAlc) ~ 6.1 subjects. The authors conclude
that an islet-specific miRNA network consists of at least miR-
375, 127-3p, and 184, potentially involved in insulin secretion
(Bolmeson et al., 2011). Even more recently, miRNA inacti-
vation (dicer knockout) in B-cells of adult mice resulted in
diminished insulin production and diabetes development.
Specific knockdown experiments in p-cell culture revealed
that miR-24, miR-26, miR-182, or miR-148 were responsible
for insulin production through regulation of transcriptional
repressors of insulin synthesis (Melkman-Zehavi et al., 2011).

Micro RNAs involved in Diabetic Complications

Zinc finger E-box-binding homeobox 1 (Zeb-1) is a zinc
finger protein that inhibits IL-2 gene expression by binding
to a negative regulatory domain of the IL-2 transcription start
site in T-lymphocytes and thus is an important inhibitor of T-
lymphocyte orchestrated inflammation (Williams et al., 1992).

Reddy et al. (2012) found that in vascular smooth muscle
cells (VSMC), miR-200 family members (miR-200b, ¢, and 429)
were overexpressed in T2DM (db/db) mice aortas. By mimic
and inhibitor treatments, the authors observed that miR-200
target (Zeb-1) was downregulated by miR-200, and this lead
to upregulation of inflammatory genes (cyclooxygenase-2 and
monocyte chemoattractant protein-1) and consequent mono-
cyte binding to VSMCs. Thus, upregulation of miR-200 family
in diabetes enhanced vascular inflammation. Also, miR-98
expression was significantly reduced in endothelial and ad-
ventitial cells of aortas removed from Goto-Kakizaki rats
compared with Wistar rats (Xie et al., 2012).

Similarly, Zeb-1 is the target of miR-192, an important
regulator of diabetic renal fibrosis. The involvement of miR-
192 (Kato et al., 2009; Chung et al., 2010; Wang et al., 2010; Sun
et al., 2011; Jenkins et al., 2012) and miR-200 (Kasinath and
Feliers, 2011) in fibrotic processes and their relationship to
transferring growth factor beta (TGF-B), a central pro-fibrotic
cytokine, are well documented but controversial. Expression
profiling of proximal tubular cells under high glucose condi-
tions and of renal biopsy samples from patients with estab-
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lished diabetic nephropathy found miR-192 to be reduced in
renal fibrosis, and TGF-beta treatment diminished miR-192
expression. MiR-192 suppressed ZEB1 expression (Krupa
et al., 2010). Similarly, Jenkins et al. (2012) reported that TGF-
B1 repressed proximal tubular cell miRNA-192 expression. On
the other hand, both Putta et al. (2012) and Sun et al. (2011)
demonstrated that TGF-beta upregulated miR-192. Locked
nucleic acid-modified inhibitor of miR-192 upregulated Zeb-1
and reduced proteinuria, fibrosis, and TGF-beta levels in dia-
betic nephropathy in streptozotocin-induced diabetes in mice
(Putta et al. 2012).

Another TGF- related miRNA is miR-29 (Winbanks et al.,
2011), which is also involved in insulin resistance of adipo-
cytes (Skrha, 2011). MiR-29 family members (a/b/c) target
collagen and other extracellular matrix proteins. TGF-1
treatment reduced expression of miR-29 family members in
proximal tubular cells, primary mesangjal cells, and podo-
cytes. Furthermore, in models of renal fibrosis miR-29 was
suppressed, but pharmacologic restoration of miR-29 dimin-
ished renal fibrosis (Wang et al., 2012).

Out of 14 differentially expressed miRNAs from diabetic
and contro] mice, miR-21 expression increased in diabetic skin
but decreased during wound healing in diabetic mice. Using
gain-of and loss-of function approaches, the involvement of
miR-21 in fibroblast migration was demonstrated (Mad-
hyastha et al., 2012).

MiR-146a, a fibronectin-targeting miRNA, was stimulated
by high glucose during chronic inflammation, leading to fi-
brosis in endothelial cells from large vessels and retinal micro
vessels. MiR-146a mimic injection restored miR-146a and
decreased fibronectin in diabetes in the retinas, kidneys, and
hearts in type 2 diabetic animals (Feng et al., 2011).

In summary, TGF-B1 regulates miRNAs (miR-21, 29, 146,
192, and 200) that mediate renal fibrosis (Lan, 2011) and may
be involved in vascular diabetic complications as well.
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