Surgical treatment of intradural extramedullary spinal tumours

Péter Banczerowski

Semmelweis University, Department of Neurosurgery & Neurointervention

Spine tumours

- 15% of the primary tumours of the CNS affect the spine
- The spine manifestation appear around 10% of cancer patient (growing [↑])

Location:

- Extradural (55%)
- Intradural-extramedullary (40%)
- Intramedullary (5%)

Classification

The classification of CNS tumors is based on the WHO histological criteria.

 In addition to morphological and immuno-histochemical examinations, molecular biological examinations (e.g. FISH; fluorescent in situ hybridization) play an increasing role in tumor analysis and therapy.

WHO CNS 5 2021 (simplified) classification

MOLECULAR GENETICS: IDH1, 1p19q, ATRX (MGMT METILATION)

NOS – No Genetic examination

7.1.b. táblázat: Agydaganatok WHO (CNS 5, 2021) feltüntettük a morfológiai jegyek alapján lehetséges WHO fokozatbeosztásokat is

GLIOMÁK, GLIONEURONÁLIS ÉS NEURONÁLIS DAGANATOK

Felnőttkori diffúz gliomák

Astrocytoma, IDH mutáns	CNS WHO Gr 2,3,4
Oligondendroglioma, IDH mutáns,	
1p/19 kodelécióval	CNS WHO Gr 2,3,4
Glioblastoma, IDH vad-típus	CNS WHO Gr 4

Gyermekkori típusú diffúz kis malignitású (low-grade) gliomák

Diffúz astrocytoma, MYB vagy MYBL-1	
alterációval	CNS WHO Gr 1
Diffúz low-grade glioma, MAPK útvonal alterációval	
Angiocentrikus glioma	CNS WHO Gr 1

Gyermekkori típusú diffúz nagy malignitású (high-grade) gliomák

-		
Diffúz közévonalas (midline) glioma, H3 K27		
alterációval	CNS WHO Gr 4	
Diffúz hemisphaerialis glioma, H3 G34		
mutációval	CNS WHO Gr 4	
Diffúz gyermekkori típusú high-grade glioma,		
H3 és IDH vad típus		

Körülírt astrocytás gliomák

Pilocytás astrocytoma	CNS WHO Gr 1
Subependymalis óriássejtes astrocytoma	
(SEGA)	CNS WHO Gr 1
Pleomorph xanthoastrocytoma	CNS WHO Gr 2, 3
Chordoid glioma	CNS WHO Gr 2
Astroblastoma, MN1-alterációval	

7.1.b. táblázat folytatása

GLIOMÁK, GLIONEURONÁLIS ÉS NEURONÁLIS DAGANATOK

Glioneuronalis és neuronális tumorok	
Sanglioglioma	CNS WHO Gr 1, 3
Desmoplasticusis infantilis	
ganglioglioma/astrocytoma	CNS WHO Gr 1
Dysembryoplasticus neuroepithelialis	
turnor (DNET)	CNS WHO Gr 1
Centralis és extraventricularis neurocytoma	CNS WHO Gr 2
Dyslplasticus cerebellaris gangliocytoma	
(Lhermitte Duclos)	CNS WHO Gr 1
Ependyma eredetű tumorok	
Supratentorialis ependymoma	CNS WHO Gr 2, 3
supratentorialis ependymoma, ZFTA-fúzióval	
iuprarentorilais ependymorna, YAP1 fúzióval	
látsó scala ependymorna	CNS WHO Gr 2, 3
Hátsó scala ependymorna, PFA csoport	
Hátsó scala ependymorna, PFB csoport	
spinális ependymoma	CNS WHO Gr 2,3
spinális ependymorna, MYCN amplifikációv	a
Myxoplapillrais ependymoma	CNS WHO Gr 2
PLEXUS CHOROIDEUS TUMOROK	
Plexus choroideus papilloma	CNS WHO Gr 1

Plexus choroideus papilloma	CNS WHO Gr 1
Atípusos plexus choroideus papilloma	CNS WHO Gr 2
Plexus choroideus carcinoma	CNS WHO Gr 3

EMBRIONÁLIS TUMOROK

Medulloblastoma CNS WHO Gr 4 Medulloblastoma, WNT-aktivált Medulloblastoma, SHH-aktivált, TP53 vad-típus Medulloblastoma, SHH-aktivált, TP53 mutációval Medulloblastoma, nem WNT/nem SHH akitvált Egyéb idegrendszeri embrinálius tumorok

Atipusos teratoid/rhabdoid turnor (ATRT) CNS WHO Gr 4 Központi idegrendszeri neuroblastorna CNS WHO Gr 4

PINEALIS TUMOROK

Pinealocytoma	CNS WHO Gr 1
Köztes differnciáltságú pinealis parenchymális tumor	
CNS WHO Gr 2, 3	
Pinealoblastoma	CNS WHO Gr 4

WHO CNS 5 2021 (simplified) classification

7. féjezet Az agy daganatos megbetegedései

7.1.b. táblázat folytatása: Ágydaganatok WHO (CNS 5, 2021) szerinti egyszerűsített klasszífikációja, a táblázatban egyes daganatoknál feltüntettük a morfológi jegyek alapján lehetséges WHO fokozatbeosztásokat is (CNS WHO Grad

AZ AGYIDEGEK ÉS A PARASPINALIS IDEGEK TUMORAI

Schwannoma	CNS WHO Gr 1
Neurofibroma	CNS WHO Gr 1
Melanocytás schwannoma	
Perineurinoma	CNS WHO Gr 1
Malignus melanocytás ideghűvely tumor	
Malignus perifériás ideghüvely turnor (MP	NST)
	CNS WHO Gr 2, 3, 4
Paraganglioma	CNS WHO Gr 1

MENINGEOMÁK

Meningeoma

118

CNS WHO Gr 1, 2, 3

MESENHCYMALIS, NEM MENINGOENDOTHELIALIS TUMOROK

Lágyrésztumorok

Solitaer fibrosus tumor CNS WHO Gr 1, 2, 3 Haemangioma és vasculáris malformációk Haemangioblastoma CNS WHO Gr 1 Rhabdomyosarcoma Primer intracranialis sarcoma, DICER-1 mutációval Ewing-sarcoma

Porc-csontszövet eredetű daganatok Mesenhcymalis chondrosarcoma Chondrosarcoma Chordoma és rosszul differenciált chordoma

MELANOCYTÁS TUMOROK

Diffúz melanocytás tumorok Diffúz meningealis melanocytomatosis és meningealis melanomatosis

Körülírt melanocytás tumorok Menigealis melanocytoma és meningealis melanoma

7.1.b. táblázat folytatása

VÉR- ÉS NYIROKEREDETŰ (HAEMATOLYMPHOID) DAGANATOK

Lymphomák

Központi idegrendszzeri lymphomák

Központi idegrendszeri diffúz nagy B sejtes lymphoma Immundeficienciához társuló központi idegrendszerei lymphoma Lyphomatoid granulomatosis Inravascularis B sejtes lymphoma

Egyéb ritka idegrendszeri lymphomák

Dura MALT lymphomája Eyyéb központi idegrendszeri low-grade B sejtes lymphoma Anaplsticus nagy sejtes lymphoma (ALKT+/ALK–) T sejtes és NK/T sejtes lymphomák

Histiocyta eredetű tumorok

Langerhans-sejtes histiocytosis Histiocytás sarcoma

CSÍRASEJTES TUMOROK

Érett teratoma Éretlen teratoma Germinoma Embryonalis carcinoma Yolk sac tumor Choriocarcinoma Kevert csírasejtes tumor

SELLARIS VIDÉK DAGANATAI

Adamantinomatosus craniopharyngioma CNS WHO Gr 1 Papillaris craniopharyngioma CNS WHO Gr 1 Pituicytoma, sellavidék granuláris sejtes tumora, orsósejtes oncocytoma CNS WHO Gr 1 Hypophysis adenoma/adenohyphysis neuroendocrin tumora (PitNET) Hypophysis blastoma

METASTASISOK

Az agy és a gerincvelő állományi áttétes daganatai Az agyburkok áttétes daganatai

Location of spine tumours in the spinal canal

szegmental-lateral (confined to one side) - e.g. neurinoma, meningeoma axial-longitudinal - e.g. intramedullary tu. szegmental-axial - e.g. intramedullary cavernous haemangioma Iateral-longitudinal - e.g. cauda ependymoma

Intradural-extramedullary

80 % meningeoma & neurinoma/neurofibroma
15 % filum terminale ependymoma
5 % etc. (paraganglioma, metastatic etc.)

Meningeoma

 Originate from arachnoid layer (or coming from fibroblast attached to dura and pia mater)

- 5th & 6th decade most frequent
- 75-85 % female
- 80 % dorsal spine
- 10 % extra and intradural

Intradural extramedullary tumours: meningeoma

Schwannoma & neurofibroma

- 25 % of intradural tumor
- 4th-6th decade
- 1:1 male-female
- 10-15 % spread into neuroforamen and extradurally
- 10 % epidural or paraspinal
- 1% intramedullar (perivascular nerve sheet)
- 2.5 % malignant (nerve sheet 50% M. Recklinghausen)

Intradural extramedullary tumours : neurinoma

Filum terminale ependymoma

- Neuroectodermal derivation of filum terminale
- 40 % of ependymomas localised in the spinal canal
- 3th-5th decade
- 1:1 male-female
- Benign (in younger age can be more agressive)

Myxopapillary ependymoma

Intraoperative electrofiziology

Intraoperative electrofiziology

Minimal invazivity

allow to minimize resection of and injury to tissues not directly involved in the pathologic process possible to decrease the secondary demages These principles are valid under the surgical removal of the tumour, and the approach also.

Standard spinal canal approach

Multilevel laminectomies

Disadvantages:

- -spinal deformities
- -instability
- -subluxation
- -invasion of haematoma and scar tissue into the spinal canal
- -lack of posterior bony protection of the spinal cord
 -etc.

Postlaminectomy deformity

Correction is difficult or impossible

The alternative approaches

Alternative laminectomies
 Laminotomies, laminoplasty
 Partial hemilaminectomy

The new minimal invasive surgical approaches to remove spine tumours

Laterally located pathologies : partial unilateral laminectomy

Applicable along the whole spine, multiple "windows" if necessary

Technique

Partial unilateral laminectomy

The bone removal depend on the localization of the lesion (pre- & intraoperative localization)

Multilevel partial unilateral laminectomy: laterally-longitudinally located pathologies

Hemi-semi laminectomy

Tumour removal: meningeoma

Tumour removal : meningeoma

The tumour confined to both side

CI-II neurinoma

CI-II neurinoma

CI-II neurinoma

CII neurinoma postoperative CT

CII meningeoma

CII meningeoma

Hemi-semi laminectomy

The unilateral partial hemilaminectomy (named hemi-semi laminectomy) approach suitable for the mainly laterally located intra- or extradural lesions, confined to one side

Tumours extending into the neuroforamen

approximately 15 % extend along the cervical nerve root inside the foramen and extraforaminally

Modified hemi-semi laminectomy

Supraforaminal "burr hole" technique: no facetectomy

Modified hemi-semi laminectomy

"Open tunnel" technique partial facetectomy

extent of extraforaminal component

Supraforaminal "burr hole" and "open tunnel" technic

Suitable approach for tumours extending into the neuroforamen, and extraforaminally

Neurofibroma (shape of a sandglass)

Tumours extending paraspinally

Paraspinal approach

Advantages

Less bone removal

Sparing with facet joint ↓ Static stability improvement

Advantages

No contralateral muscle detachment and no touch of supra- and interspinosus ligaments

✓ Dinamic stability improvement

 Cosmetic (incision to be limited to the immediate region of exploration of the spinal canal, normal posterior median furrow)

Laterally longitudinally located pathologies multi hemi-semi laminectomy

Multi hemi-semi laminectomy

The surgical removal of intradural, ventrally located tumours in the spinal canal

C V ventrally located meningeoma

Corpectomy

Dural opening

Dural closure

Postoperative MR

X-ray 2 years later

Transoral approaches

CC junction – intradural tumour (meningeoma)

Navigation assisted approach

CC junction – intradural tumour (meningeoma)

Summary

The novel minimally invasive techniques enables surgeons to obtain a sufficient field for exploring different spinal pathologies with preservation of the posterior structures of the spine and the attachments of the muscles.

Thank you for your attention!