Epilepsy surgery

Loránd Eross

Dept. of Neurosurgery and Neurointervention

Semmelweis University, 2024.

Epilepsy surgery

Epilepsy

Montreal Neurological Institute1954

Neuronavigation

New intracranial electrodes

Medical treatment of the epilepsies

Patients without previous medication (n=470)

Seizure free after 1. AE Seizure free after 2. AE Seizure free after 3. or more AE Drug resistant epielpsy

Kwan P, Brodie MJ. N Engl J Med. 2000;342:314-319

Worst prognostic factors of medical management in partial epilepsies

- Localization: temporal, multilobar
- MRI morfology: HS(11%), dual pathology(3%), dysgenesis(24%)
- Long duration(every 10 years increse the probability of refracterity 1.3 times)
- Early onset

"Drug-resistant patients are unlikely to become seizure-free through participation in future drug trials and should be evaluated for epilepsy surgery."(Brodie)

Indication of epilepsy surgery

- Drug resistency for two basic antiepileptic drugs in monotherapy
- Good prognosis of surgery:
- 1. Temporomedial epilepsy syndrome
- 2. Neocortical focal lesional epilepsy
- 3. Hemispheric epilepsy

Treatment algorythm for epilepsy

Epilepsy surgery

• Aim: to improve the psychosocial status of the patient with reduction or stop the seizures or changing seizure semiology.

Preoperative phase I.

- Aim: seizure origin hypothesis
- Noninvasive phase:
- Lesion oriented investigations (MRI)
- Interictal, ictal EEG
- Interictal and ictal SPECT, PET, fMRI, MEG, MSI
- The degree of convergence of non invasively obtained data with seizure origin hypothesis is established and decisions on further procedures are made
 - lesion oriented surgery
 - epilepsy oriented lesional surgery
 - surgery for epilepsy "sensu stricto"

MR-PET fusion in a patient with epilepsy

Preoperative phase II. Invasive investigations

- Semi-invasive and invasive (subdural strips, grids, foramen ovale, intracerebral electrodes)
- Amytal test (dominant hemisphere, speech functions, memory)
- Decision: surgery? type of procedure?

Invasive electrodes: strips, grids

The aim to use intracranial electrodes

To find the seizure origin in space and describe the spatio-temporal seizure propagation

The role of invasive electrodes in epilepsy surgery

- 1. Semiology specific electrode implantation
- 2. Postoperative electrode localisation with MR-CT image fusion to interpretate the electroclinical findings
- 3. Intraoperative localisation technique to localise the invasive electrodes position during implantation

Subdural electrode localisation

(Winkler 2000, Schulze-Bonhage 2002)

3D surface reconstruction (Barsi 2002)

Semiology specific subdural electrode implantation protocol

3D MRI - strips

2D - strips

3D localisation

Subdural electrode localization with CT

Sagittal CT rekonstruction

Subdural electrode localization with CT

Electrodes are localized with appropriate windowing

Localization of subdural electrodes with CT

CT based definition of the coordinates of electrodes

Localization of subdural electrodes with CT

 Transformation of electrode coordinates to MRI space

Localization of subdural electrodes

- Kortikális felszin rekonstrukció külön software-el
- Az elektródák CT képének fúziója a preop és postop MR képpel

Surgery

- Aim: to remove
 - the primary epileptogenic zone and/or
 - regions which involved in the early seizure propagation
 - secunder "rele stations" pl: amygdalohippocampal complex
 without the deficit of the elecuent area
 - without the deficit of the eloquent areas
- "standard resection" "tailored surgery"

Surgical procedures

- Lesionectomy
- Topectomy
- Standard surgeries: lobectomies, selective amygdalohipocampectomy
- Extratemporal resections
- Hemispherotomy
- Callosocomissurotomy
- MST

The extent of dominant hemispheric temporal resect

Multiple subpial transsection in eloquent region epilepsy

FIG. 3. Artist's drawing to illustrate the anatomical principles involved in multiple subpial transection.

FIG. 2. Artist's drawing to illustrate the technique of insertion and movement of the subpial transactor.

Long term results in resective epielpsy surgery (metaanalizes)

Type of procedure (lobectomy)	No of patients	Seizure free (%)	
Temporal	3895 66		
Hemispherectomy	169 61		
Temporal and extratemporal	2334	59	
Parietal	82 46		
Occipital	35	46	
Callosotomy	99	99 35	
Extratemporal	169 34		
Frontal	486 27		
Multiple subpial transsection	74	16	

José F. Téllez-Zenteno, Raj Dhar and Samuel Wiebe: Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain (2005), 128, 1188-1198

Results in temporal epilepsies (Rásonyi, Halász et al. 2004)

Neuromodulation in epilepsy

The role of VNS in the treatment of epilepsy

Electrodes

Illustration, Copyright © 2010; Cyberonics Inc., Houston TX

VNS Therapy - Implantation - Demipulse

Changes in seizure frequency in blinded phase of the SANTE study

2 years seizure changes in SANTE vs. VNS

- Median Seizure freq reduction @ 13Mo: 41%
- Median Seizure freq reduction @ 25Mo: 56%
- 50% responder rate @ 13Mo: 43% (VNS: 37%)
- 50% responder rate @ 25Mo: 54% (VNS: 43%)
- 50% responder rate @ 37Mo: 67% (VNS: 43%)

Responsive neurostimulation S/E studies 43 sites in the USA

>100Hz, closed-loop

Direct stimulation of the epileptogenic focus, seizure inhibition

Responsive neurostimulation S/E studies on 43 sites in the USA

RNS-Neuropace 45% seizure reduction, neaerly the same like VNS or DBS

Randomized neuromodulation trials for epilepsy

Table 1 Pandombad triak for direct brain stimulation as a treatment for collensu

	Trial	Target	Protocol	Inclusion criteria	Status
SANTE®	Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy	Schoduled anterior nucleus of the thalamus	Stimulation on versus off in study period	Focal opilopsy	Completed 110 patient implanted
Neuropace TM Pivotal Trial	- RNS TM System Prvotal Clinical Investigation	Responsive – seizure onset zono	Stimulation on versus off	Focal epilepsy with well Identified setzure onset zone	Enrollment completed 191 patients implanted
CoRaSlir	Prospective Randomized Controlled Study of Neurostimulation in the Medial Temporal Lobe for Patients With Medically RefraTactory Medial Temporal Lobe Epilepsy: Controlled Bandomized Stimulation Versus Resection)	Scheduled — hippocampus	1. Stimulator on 2. Stimulator off 3. Surgery	Unilateral temporal lobe epilepsy as defined on video/EEG	Orgoing
METTLE	Randomized Controlled Trial of Hippocampal Stimulation for Temporal Lobe Epitepsy	Scheduled — hippocampus	 Stimulator Stimulator Stimulator Stimulator No Intervention 	Mesial temporal epilepsy	Crigolog
STIMEP	Scheduled stimulation of the subthalamic nucleus/substantia nigra reticulata	Schoduled subthalamic nucleus		Bing chromosome 20 epilepsy	Ongoing

Jobst 2009 Epilepsy Research

Gamma knife(Rejis 2010)

Hypothalamus hamartomas

MTLE

"The silent gap between epilepsy surgery evaluations and clinical practice guidelines"

European Journal of Neurology, 2010 Apr;17(4):619-25, de Flon (Uppsala)

- Out of 48 surgical candidates 28 (58%) were not referred to the epilepsy surgery team
- Inspite of the guidelines in 45% of the patients the EEG, 33% of the patients the MRI was missing
- The prevalence of 0,54%, 100 000/60 the ratio of the non-referred epileptic patients in this swedish county

Robot assisted epilepsy surgery

Rosa: neurosurgical robot

SEEG with Rosa

Robot assisted SEEG

Summary

- The number of patients referred to epilepsy surgery is significantly lower all over the World than the criteria indicates
- Epilepsy surgery has to be done in comprehensive epilepsy centers
- The results of antiepileptic neuromodulation techniques are promising, but the outcome still much less than the outcome of resective surgeries

Thank you for your attention!

ms