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1. Introduction

Aging is the primary risk factor for most neurodegenerative diseases, yet the

cell-type-specific progression of brain aging remains poorly understood. Here,
human cell-type-specific transcriptomic aging clocks are developed using
high-quality single-nucleus RNA sequencing data from post mortem human
prefrontal cortex tissue of 31 donors aged 18-94 years, encompassing 73,941
high-quality nuclei. Distinct transcriptomic changes are observed across
major cell types, including upregulation of inflammatory response genes in
microglia from older samples. Aging clocks trained on each major cell type
accurately predict chronological age, capture biologically relevant pathways,
and remain robust in independent single-nucleus RNA-sequencing datasets,
underscoring their broad applicability. Notably, cell-type-specific age
acceleration is identified in individuals with Alzheimer’s disease and
schizophrenia, suggesting altered aging trajectories in these conditions.
These findings demonstrate the feasibility of cell-type-specific transcriptomic
clocks to measure biological aging in the human brain and highlight potential
mechanisms of selective vulnerability in neurodegenerative diseases. In

Aging involves complex molecular changes
that gradually lead to the functional decline
of cells and organs, including the different
cell types in the brain.['?] Aging is a major
risk factor for most neurodegenerative dis-
eases, including Alzheimer’s and Parkin-
son’s disease.’] However, our understand-
ing of how different cell types age in the
brain, the molecular mechanisms underly-
ing their aging processes and how these
changes contribute to the disease patho-
physiology remains limited. To better un-
derstand these processes and how they are
altered in disease, it will be important to de-
velop tools that accurately measure molecu-
lar age-related changes in the different cell
types in the brain.

recent vyears, several molecular
aging clocks have been developed that
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use different types of omics data in combination with machine
learning algorithms to predict biological age.*®! These tools of-
fer a quantitative measure of aging beyond chronological age, en-
abling the identification of individuals or tissues at risk for ac-
celerated aging and providing insights into underlying molec-
ular pathways. With few exceptions,[*1%13 these aging clocks
are derived from bulk tissuel®®#1*15] and therefore lack cell-type-
specific resolution. With an increasing number of studies point-
ing to cell-type-specific mechanisms of aging in the human
brain,['2%) such bulk-trained clocks have a major limitation in
accurately capturing age-related changes. In a recent study in
the mouse brain, cell-type-specific transcriptomic aging clocks
based on single-cell RNA sequencing were developed. They not
only accurately predicted the chronological age for different cell
types but also modelled the reversal of aging with exercise and
rejuvenation.I* This highlights the need to develop human brain
cell-type-specific aging clocks that can predict the age of individ-
ual cells from different cell types. Further, such a tool would have
the potential to identify the selective vulnerability of specific cell
types in human age-related neurodegenerative disorders.

In this study, we performed single-nuclei RNA sequencing
(snRNA-seq) on 31 post mortem human prefrontal cortex tissues
from young, middle-aged, and old donors. Using this dataset, we
found cell-type-specific age-related transcriptomic differences, al-
lowing us to develop human single-nuclei-based transcriptomic
aging clocks for different cell types in the brain, which could be
validated using publicly available snRNA-seq datasets. In addi-
tion, our approach showed cell-type-specific age acceleration in
Alzheimer’s disease and schizophrenia, highlighting its utility in
uncovering selective cellular vulnerability in age-related neurode-
generative disorders.

2. Results
2.1. Single-Nuclei RNA Sequencing of a Human Aging Cohort

To study cell-type-specific changes during human brain aging, we
performed snRNA-seq on post mortem human prefrontal cortex
tissue derived from 31 donors aged between 18 and 94 years at
death (Figure 1a—d, Table 1; Data S1a, Supporting Information).
We sequenced fresh frozen punch biopsies originating from the
ventrolateral prefrontal cortex or the middle frontal gyrus, two
brain regions that are a part of the prefrontal cortex, which has
been implicated in age-related neurodegenerative disorders such
as Alzheimer’s disease.l!* Tissue samples were distributed
across three age groups, including tissue coming from young
(18-39 years), middle-aged (40-59 years), and old (60 + years)
individuals (Figure 1b). Tissue was collected with a short me-
dian post mortem interval (PMI) of 4.5 (2-12) h (Figure 1c) and
was obtained from both sexes (Figure 1d). After sequencing and
quality control, we obtained data from 73,941 high-quality nuclei
(Figure Sla—d and Data S1b, Supporting Information). We per-
formed an unbiased clustering resulting in 19 distinct cell clus-
ters (Figure 1e). Using the expression of cell-type-specific marker
genes, we identified all the major cell types present in the human
prefrontal cortex, namely, oligodendrocytes, astrocytes, oligoden-
drocyte progenitor cells (OPCs), microglia, inhibitory neurons,
and excitatory neurons (Figure 1f,g; Figure Sle and Data S2,
Supporting Information). All the major cell types were repre-
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sented across all the samples (Figure 1h; Figure S1f and Data
S1c, Supporting Information) and across the different age groups
(Figure 1j). In addition, these cell types were the most abundant
in the dataset (Figure 1i), making them suitable for comparison.

2.2. Age-Related Transcriptomic Changes in Microglia and
Astrocytes

First, we investigated cell-type-specific age-related changes in
our dataset by performing differential gene expression analy-
sis between the different age groups. We found distinct age-
related transcriptomic changes in each of the different cell types
(Figure 2a,d; Figure S2a,c,df, and Data S3, Supporting Infor-
mation). For example, in microglia, we observed inflammatory
response genes significantly upregulated in the old age group
when compared to the young or the middle age groups, such as
FOXP1, TLR2, and CD163, while homeostatic microglial mark-
ers, such as CX3CR1, P2RY12, and P2RY13, were downregu-
lated (Figure 2b; Data S3g-1, Supporting Information). Gene
over-representation test of the differentially expressed genes re-
vealed an enrichment of terms related to inflammatory response
(Figure 2¢; Figure S2a and Data S4d—f, Supporting Information).
These observations are consistent with previous studies on mi-
croglial aging, which reported an increased inflammatory re-
sponse during aging.[?>?! In astrocytes, we found an upregula-
tion of genes associated with reactive astrogliosis, such as TPST1,
SAMD4A, CNN3, STAT3, and SORBS]1 (Figure 2e; Data S3m-r,
Supporting Information), in the old group when compared to
the young or middle-aged groups. This was in line with previ-
ous studies showing that reactive astrogliosis occurs during in-
flammation in the aging brain.[?-?’! Gene ontology (GO) anal-
ysis on differentially expressed genes in each of the major cell
types revealed enrichment of terms related to protein misfold-
ing, a hallmark of brain aging,[!?! were enriched in astrocytes
(Figure 2f; Data S4g,h, Supporting Information). In oligodendro-
cytes, the chaperone-mediated protein-folding term was enriched
(Figure S2b and Data S4a—c, Supporting Information). On the
other hand, in excitatory neurons terms related to protein trans-
lation were enriched (Figure S2e and Data S4j-1, Supporting In-
formation), while in inhibitory neurons and OPCs, no significant
terms were enriched in old versus young age group comparisons.

In summary, the results demonstrated that age-related tran-
scriptomic changes are present and can be detected in our
snRNA-seq dataset. Importantly, the transcriptional response to
aging is different in each cell type, highlighting the relevance of
the development of cell-type-specific transcriptional clock algo-
rithms using this dataset.

2.3. Development and Evaluation of Cell-Type-Specific
Transcriptomic Aging Clocks for the Human Brain

To measure the extent of aging in each cell type based on
transcriptomic information, we trained ElasticNet regression
models?®3! on our dataset via fivefold cross-validation using
genes as features and age as the target. We focused on the most
abundant cell types in the dataset, namely, oligodendrocytes,
microglia, astrocytes, OPCs, inhibitory neurons, and excitatory
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Figure 1. Single-nucleus RNA sequencing of human post mortem prefrontal cortex tissue from an aging cohort. a) Schematic of the experimental
workflow for snRNA-seq. Nuclei were isolated and sorted from frozen human post mortem prefrontal cortex tissue samples from 31 donors, followed by
snRNA-seq and downstream analysis. b) Box plot showing the age distribution of samples in the different age groups. Samples in the young age group
(Y, n = 8), range 18-39 years, 40-59 years in the middle-aged group (M, n = 7), and 60-94 years in the old age group (O, n = 14). c) Box plot showing

Adv. Sci. 2025, 06109 e06109 (3 of 16) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH

d 0 ‘¥i8€861T

dny woy papeoy

IpUOD) PUE SWID, a4} 938 *[SZ0Z/60/10] U0 AIeIqT AUUQ AS[IA *ANSIOALUT) SIOMOWIWIAS QG 60190SZOTSAPE/ZO0 1 01/10P/w0"o[1mA

10)/w0d Ka[1m KIeaqp //:sdny)

pue-s

2SI suowo)) 2ANeal) a[qearjdde ayy £q pauraaos ae sa[onIE Y asn Jo sani 1oy K1eiqiy auljuQ K31 UO (¢


http://www.advancedsciencenews.com
http://www.advancedscience.com

ADVANCED
SCIENCE NEWS

ADVANCED
SCIENCE

Open Access,

www.advancedsciencenews.com

www.advancedscience.com

Table 1. Demographic and clinical data of the human prefrontal cortical samples.

Sample ID Age [years] Sex PMI [h] Brain Region Cause of Death

y1 22 Male 8 Middle frontal gyrus suicide

y2 36 Female 2 Middle frontal gyrus suicide

y3 31 Male 8 Middle frontal gyrus suicide

y4 31 Male 7 Middle frontal gyrus suicide

y5 36 Male 6 Ventrolateral prefrontal cortex suicide

y6 35 Male 6 Middle frontal gyrus suicide

y7 18 Male 8 Middle frontal gyrus suicide

y8 25 Male 8 Middle frontal gyrus suicide

y9 39 Female 12 Middle frontal gyrus suicide (hanging)

m1l 42 Male 35 Ventrolateral prefrontal cortex cardiac insufficiency

m2 55 Male 1 Ventrolateral prefrontal cortex acute myocardial infarction

m3 47 Male 1 Ventrolateral prefrontal cortex cardiac insufficiency

m4 50 Male 2 Ventrolateral prefrontal cortex myocardial infarction

m5 53 Male 5 Ventrolateral prefrontal cortex pulmonary embolism

mé 56 Female 6 Ventrolateral prefrontal cortex cardiorespiratory insufficiency

m7 49 Female 6 Ventrolateral prefrontal cortex suicide (drug overdose)

m8 44 Female 5 Dorsolateral prefrontal cortex acute cardiac insufficiency

ol 86 Male 3 Ventrolateral prefrontal cortex acute cardiac insufficiency

02 73 Male 6 Ventrolateral prefrontal cortex acute cardiac failure; general arteriosclerosis
03 81 Male 5 Ventrolateral prefrontal cortex acute ischaemic heart failure; cardiogenic shock
o4 80 Male 45 Ventrolateral prefrontal cortex cardiorespiratory insufficiency

o5 76 Male 5.5 Ventrolateral prefrontal cortex stroke?)

06 94 Female 6 Ventrolateral prefrontal cortex cardiac failure

o7 74 Female 1.5 Ventrolateral prefrontal cortex cardiac insufficiency; pulmonary embolism
08 70 Female 7 Ventrolateral prefrontal cortex stroke?)

09 75 Male 8 Ventrolateral prefrontal cortex stroke?)

010 74 Male 1 Ventrolateral prefrontal cortex acute cardiac insufficiency

oll 80 Female 1 Ventrolateral prefrontal cortex acute respiratory insufficiency

012 85 Female 4 Ventrolateral prefrontal cortex acute cardiorespiratory; renal insufficiency
013 72 Female 1 Ventrolateral prefrontal cortex pulmonary embolism

ol4 85 Female 8 Ventrolateral prefrontal cortex stroke®); hypertension

? The microdissected region was distinct from the stroke-affected region.

neurons. We used three different approaches to train the aging
clock models for each cell type. In the first approach, we used
the log-normalized gene expression values of individual cells,
while in the second approach, we used the average of the log-
normalized gene expression across all cells from a given donor
and cell type, resulting in cell-type-specific simple pseudobulk
samples (Figure 3a; Data S5a-1, Supporting Information). Given
that the averaging in the simple pseudobulk approach would re-
sult in only one data point per donor per cell type, thereby reduc-
ing variance, we further used a third approach similar to what
was previously described in Buckley et al.l¥ We randomly sam-
pled (i.e., bootstrapped) a fixed number of cells and averaged the

expressions into cell-type-specific bootstrapped-pseudobulk sam-
ples (Figure 3a), resulting in multiple data points per donor per
cell type (Data S5m-r, Supporting Information).

We found that the cell-type-specific single-cell aging clocks
showed a statistically significant positive correlation between the
predicted age and the chronological age for all cell types ex-
amined, with correlation coefficients 0.74-0.83 and mean abso-
lute errors (MAE) of 10.2-12.2 years (Figure 3b; Data S6a—f and
S7, Supporting Information). The age prediction performance
was improved when we tested the cell-type-specific bootstrapped-
pseudobulk aging clocks (correlations 0.78-0.89, and MAEs 8.5—
11.2 years) (Figure 3c; Data Sém-r and S7, Supporting Informa-

the distribution of the post mortem interval (PMI) of samples in the different age groups. d) Bar chart showing the proportion of the samples of each
sex in the different age groups. e) UMAP plot annotated with the 19 identified cell clusters. f) Projection of gene expression of canonical markers of
different cell types in the adult human prefrontal cortex. g) UMAP plot annotated with the identified cell types. h) Bar plot showing the proportion of
cells of different cell types in all the samples. i) Bar graph showing the number of cells in the dataset from each identified cell type. j) Bar graph showing

the proportion of cells of different age groups within each cell type.
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Figure 2. Age-related transcriptomic changes are present in microglia and astrocytes. a) Heatmap showing the expression of the top differentially
expressed genes (—0.75 > average log2 fold-change > 0.75, adj. p-value < 0.05) in microglia when comparing old versus young age groups. Different
colours below the young, middle, and old ages bar represent cells originating from different individuals. b) Violin plots showing the expression of several
previously identified microglial aging genes. c) Plot showing selected gene ontology terms enriched from genes differentially expressed in old microglia.
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tion). However, the cell-type-specific simple pseudobulk aging
clocks, with the exception of OPCs, performed relatively poorly
with correlation coefficients as low as 0.4 and MAE as high as 18
years in oligodendrocytes (Figure 3d; Data S6g—1and S7, Support-
ing Information), suggesting that the bootstrapped-pseudobulk
and the single-cell approaches captured more variation, allowing
for greater accuracy in age predictions.

Next, we evaluated non-cell-type-specific pseudobulk aging
clocks at the neuron level (based on aggregated gene expres-
sion data across inhibitory neurons and excitatory neurons), glia
level (based on aggregated gene expression data across oligoden-
drocytes, astrocytes and OPCs) and across cells of all major cell
types (based on aggregated gene expression) (Figure S3a; Data
S6s—aa, Supporting Information). The bootstrapped-pseudobulk
clocks in all three cases made predictions with high positive
correlation, with a correlation coefficient of 0.9 and MAE of 8
years in the all-cells pseudobulk clock, for example (Figure S3b,
Data S6s—aa and S7, Supporting Information). Like the cell-type-
specific case, we observed that the bootstrapped-pseudobulk ag-
ing clocks showed better performance in age prediction com-
pared to the simple pseudobulk clocks. For instance, the glia-
level simple pseudobulk clock had a correlation coefficient of
0.2, while in the bootstrapped versions, the correlation coeffi-
cient was around 0.8 (Figure S3b, Data S6s—aa and S7, Support-
ing Information). This further suggests that bootstrapping prior
to training leads to more accurate predictions, possibly by sam-
pling a greater range of variation in the data. Additionally, the
similar performance in the bootstrapped neuron and glia level
clocks suggests that the age-related transcriptomic changes can
also be modelled across cells in the neuronal lineage and in the
glial lineage. These results highlight the importance of captur-
ing dynamic differences between cell types, which non-cell-type-
specific clocks, despite their high performance, fail to address.

In summary, the overall performance of the cell-type-specific
aging clocks indicates that human brain aging can be accu-
rately defined in each of the major cell types at the single-cell
level, based on single-nuclei transcriptomic data from the human
post mortem prefrontal cortex tissue. In addition, these results
strongly suggest the differences in age-related dynamics between
cell types in the brain and the importance of studying aging at a
cell-type-specific level.

2.4. Clock Genes Capture Cell-Type-Specific and Biologically
Relevant Aging Pathways

While the clocks effectively predict age in the training datasets,
it is important for the feature gene set to have biological rele-
vance to aging. To check this, we examined the feature genes
corresponding to each clock model, defined as those with non-
zero coefficients across all the training rounds (Data S5, Sup-
porting Information). In both the single-cell and bootstrapped-
pseudobulk cell-type-specific clocks, we observed that most of the

www.advancedscience.com

feature genes were unique to each cell-type-specific clock, while
only a small proportion overlapped between them (Figure S4a—c
and Data S5, Supporting Information)—further suggesting that
the transcriptomic signatures captured by the clock models are
largely cell-typespecific. Notably, the total number of genes as-
sociated with the cell-type-specific clock models was consistently
lower in the bootstrapped-pseudobulk approach when compared
to the single-cell approach (Figure S4b—f, Supporting Informa-
tion), possibly because single-cell data captures greater variation
at the individual cell level.

In all the different clock models, we observed feature genes
with both positive and negative average coefficients (Figure S4d—f
and Data S5, Supporting Information), suggesting that the clocks
capture genes with both an increasing and decreasing age-related
trend. With the gene over-representation test of the various
single-cell-clock feature genes, we found several age-related path-
ways to be enriched (Figure S4g and Data S9, Supporting Infor-
mation). In microglia, terms related to cytokine production and
inflammatory response were enriched for feature genes with a
positive coefficient (Data S9b, Supporting Information), suggest-
ing an association with increased inflammatory response, as was
observed in the differential gene expression analysis (Figure 2c).
Genes such as SLC1A3, FOXP1, and MS4AGA, associated with
inflammatory response, and microglia in aging and Alzheimer’s
disease, had positive average coefficients among the microglia
clock feature genes (Data S5c,0, Supporting Information). Ad-
ditionally, the homeostatic microglia marker, CX3CR1, showed
a negative average coefficient, consistent with our findings in
the differential gene expression analysis. In the clocks trained
on oligodendrocytes, astrocytes, OPCs, and inhibitory neurons,
feature genes with negative average coefficients were enriched
for terms related to synaptic transmission (Figure S4g, Data
S9e,fh,j, Supporting Information). Interestingly, in the excita-
tory neuron clock, synaptic transmission terms were enriched
among genes with positive average coefficients (Figure S4g and
Data S9i, Supporting Information). This aligns with prior re-
ports showing that synaptic function is particularly vulnerable in
the aging prefrontal cortex.['¥32-%] The involvement of glial cell
clocks- particularly oligodendrocytes and astrocytes in synaptic
pathways- may reflect age-related impairment of their support-
ive roles in neuronal communication. Furthermore, gene over-
representation analysis of feature genes from the glial and neu-
ronal non-cell-type specific clocks showed similar pathway en-
richment (Data S91,m, Supporting Information), suggesting that
while aging trajectories differ between cell types, certain biolog-
ical functions—such as synaptic signaling—are commonly af-
fected across the aging brain.

Overall, the only common feature gene we observed among all
the cell-type-specific clocks was FKBP5, which had a positive av-
erage coefficient (Data S5, Supporting Information), suggesting
an increasing trend. Spearman’s correlation test of FKBP5 expres-
sion across all the cell types further confirmed the predicted trend

d) Heatmap showing the expression of the top differentially expressed genes (—0.75 > average log2 fold-change > 0.75, adj. p-value < 0.05) in astrocytes
when comparing old versus young age groups. Different colours below the young, middle, and old ages bar represent cells originating from different
individuals. e) Violin plots showing the expression of selected reactive astrogliosis genes. f) Plots showing selected gene ontology terms enriched from
genes differentially expressed in old astrocytes. “P < 0.05; Wilcoxon rank sum test was used for each comparison in b and e, while ClusterProfiler’s
gene-overrepresentation analysis, along with Benjamini-Hochberg correction for multiplicity, was used in e and f.
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Figure 3. Development and evaluation of cell-type-specific transcriptomic aging clocks for the human brain. a) Schematic representation of the different
approaches in the development of the aging clocks using the ElasticNet regression model via the GImNet algorithm. Cell-type-specific single-cell aging
clocks were trained and tested directly on the (log-normalised) single-cell gene expression values, while the cell-type-specific (simple or bootstrapped-)
pseudobulk aging clocks were trained and tested on aggregated gene expression data of cells derived from a given cell type (b, c) Relationship between
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with a significant positive correlation (Correlation coefficient =
0.7) (Figure S4h, Supporting Information). FKBP5 has been as-
sociated with aging by showing altered cognitive function in older
adults and modulating brain connectivity.*¢3’]

In summary, these results show that clock feature genes cap-
ture distinct, biologically relevant, cell-type-specific aging path-
ways, including several known aging biomarkers—highlighting
the interpretability and physiological relevance of the models.

2.5. Validation of Cell-Type-Specific Aging Clocks on Independent
Single-Nuclei RNA Sequencing Datasets

To test the applicability of the aging clock models on independent
datasets, we selected publicly available snRNA-seq datasets con-
taining neurotypical adult human post mortem prefrontal cor-
tex cohorts from two recent studies that have a broad and con-
tinuous age range and come from different subregions of the
prefrontal cortex!!®38] (Table S1, Supporting Information). In the
Frohlich et al. dataset,['® we used 33 control samples from the or-
bitofrontal cortex, which ranged in age from 26 to 84 years with
a median PMI of 29.75 (6.5-50) h (Table S1, Supporting Infor-
mation). From the Velmeshev et al. dataset,*®! we used 12 adult
frontal cortex samples, aged 19 to 54 years, with a median PMI
of 16.5 (6-27) h (Table S1, Supporting Information). In all cases,
we focused on the major cell types as used above. In addition, to
verify whether the datasets were comparable, we performed label
transfer and projected the Uniform Manifold Approximation and
Projection (UMAP) structure using common anchors between
the training and the independent datasets (Figure S5 and Data
S10, Supporting Information). We found that the clusters corre-
sponding to various cell types in the UMAPs of both Frohlich
et al.'8! (Figure S5a, Supporting Information) and Velmeshev et

8] (Figure S5b, Supporting Information) aligned with those of
the training dataset. Further, the predicted labels had high pre-
diction scores for the matching original labels of all the cell types
(Figure S5c,d, Data S10a,c, Supporting Information), with 90.5%
matches in the Frohlich et al. dataset!'®! (Data S10b, Supporting
Information), and 98% matches in the Velmeshev et al. dataset!*®)
(Data S10d, Supporting Information), suggesting that majority of
the cells were comparable. We used the label predictions only for
the above comparison and used the original annotations when
applying the clocks on the external datasets.

We applied the trained clocks to the different datasets and
checked the correlation of the predictions with the chronologi-
cal age of the donors using Pearson’s correlation coefficient and
the mean absolute error (MAE) of the predictions. In the Froh-
lich et al. dataset,!*®) all clocks showed a statistically significant
positive correlation between the predicted age and the chronolog-
ical age. The level of correlation varied between the different cell
types, with excitatory neurons showing the highest correlation
and inhibitory neurons showing the lowest (Figure 4a—c; Data
S11 and S13, Supporting Information). The cell-type-specific
single-cell aging clocks predicted with low correlation coeffi-

www.advancedscience.com

cients between 0.22 and 0.54 and MAE between 7.6 and 10
years (Figure 4a,c; Data S1la—f and S13, Supporting Informa-
tion), while the cell-type-specific bootstrapped-pseudobulk ag-
ing clocks predicted with higher correlation coefficients between
0.56 and 0.78 and MAE between 7.1 and 15.6 years (Figure 4b,c;
Data S11m-r and S13, Supporting Information). In the cohort of
Velmeshev et al,*8] the cell-type-specific single-cell aging clocks
showed statistically significant, but generally low correlations be-
tween 0.15 and 0.3 (Figure S6a,c, Data S12a—f and S13, Sup-
porting Information), whereas the predictions of the cell-type-
specific bootstrapped-pseudobulk aging clocks showed no statis-
tically significant correlation in any of the cell types except in-
hibitory neurons and OPCs (Figure S6b,c, Data S12m-r and S13,
Supporting Information).

The non-cell-type-specific bootstrapped-pseudobulk aging
clocks (for all cells, neurons, and glia levels) showed overall
high positive correlations (r = 0.64-0.71) in the Frohlich cohort
(Figure 4d,e; Data S11s-y and S13, Supporting Information).
In the Velmeshev cohort, on the other hand, interestingly, none
except the neuron-level clock showed a statistically significant
correlation (Figure S6d,e, Data S12s-y and S13, Supporting
Information).

The aging clocks depend on their feature gene sets for effective
predictions. Given the dataset-specific differences, such as in the
number of genes detected per nucleus (Table S1, Supporting In-
formation), we checked the expression of the clock feature genes
in the external datasets to assess their potential influence on the
varied performance. Across all the clock models and approaches,
95%-100% of the feature genes were found to be expressed in
the dataset from Fréhlich et al.'®! (Figure S7a, Supporting In-
formation). In contrast, a lower proportion, ~52%-85% of the
genes, were expressed in the dataset from Velmeshev et al.l*®]
(Figure S7a, Supporting Information), which may have possibly
contributed to the lower performance.

Further, given that the clock models predict age based on the
average regression coeflicients of the feature genes across train-
ing rounds—with the sign of each coefficient indicating the di-
rection of the gene’s expression change with age—we examined
how consistent these trends were across the datasets. Specifically,
we calculated the proportion of genes that correlated with age in
the same direction as those in the clock feature set (Data S14,
Supporting Information). In the training dataset, 709%-99% of
the genes significantly correlated in the same direction as the
feature gene sets across all the clock models (Figure S7b, Sup-
porting Information). On the other hand, in the Fréhlich et al.l8]
dataset, 40%—-80% of the genes correlated in the same direction
as the single-cell clock feature sets, while it was 8 to 40% in
the bootstrapped-pseudobulk clocks (Figure S7b, Supporting In-
formation). In the Velmeshev et al.*®] dataset, the proportions
were much lower, with only 15%—40% matching the trend in the
single-cell clocks, while almost none were significantly correlated
in the bootstrapped-pseudobulk clocks (Figure S7b, Supporting
Information). The lower proportion of the feature gene set ex-

chronological age and the age predicted from the test rounds of (b) cell-type-specific single-cell aging clocks and (c) cell-type-specific bootstrapped-
pseudobulk clocks. The horizontal line (orange) represents predictions from a naive mean prediction model. d) Bar plots showing Pearson’s correlation
coefficients and mean absolute errors (MAE, represented by the intensity of blue colour in the bars) of each approach in each cell type. All correlation
tests were performed using the stats.pearsonr function in SciPy, with significance based on a p-value < 0.05.
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Figure 4. Validation of aging clocks on Frohlich et al. dataset.["®] All plots show results from the validation of various aging clocks in the Fréhlich et al.
dataset.l'8] a, b) Relationship between chronological age and predicted age in each cell, upon using (a) the cell-type-specific single-cell aging clock, and (b)
the cell-type-specific bootstrapped-pseudobulk aging clock approaches. c) Bar plots showing Pearson’s correlation coefficients and mean absolute errors
(MAE, represented by the intensity of blue colour in the bars) of each of the cell-type-specific approaches in each cell type. d) Relationship between the
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pression with age conforming to the clocks’ average coefficients
may offer additional explanation for the lower performance in the
Velmeshev et al.[®] dataset.

In summary, we found that the cell-type-specific bootstrapped-
pseudobulk clocks showed a higher correlation and lower MAE
in comparison to the single-cell clocks, possibly due to lower tran-
scriptional noise. Importantly, our analysis revealed that perfor-
mance differences across external datasets are partly explained
Dby variation in the expression and age-correlation patterns of the
clock feature genes. Despite these differences, the bootstrapped-
pseudobulk clocks demonstrated the ability to predict biological
age at a cell-type-specific level in independent datasets, support-
ing their robustness and generalizability.

2.6. Aging Clocks Suggest Age Acceleration in Neurological
Disorders

Age-related changes have previously been reported to accelerate
in various neurological disorders.['71839-4] Given that our clocks
capture age-related dynamics at a cell-type-specific level, we in-
vestigated whether they could also detect age acceleration in data
from individuals diagnosed with age-associated neurological dis-
eases. We applied our various clocks to two publicly available
snRNA-seq datasets derived from post mortem prefrontal cor-
tex tissue of individuals diagnosed with schizophrenial'®l and
Alzheimer’s disease,[*®! respectively (Data S15 and S17, Support-
ing Information). Further, we compared the age acceleration!’]
in the disease cohorts versus control samples within each dataset
(Data S16 and S18, Supporting Information).

In the schizophrenia cohort (Frohlich et al.l’®), all cell-
type-specific clocks — except those for microglia, and the
bootstrapped-pseudobulk approach in excitatory neurons —
showed statistically significant age acceleration in patients com-
pared to controls (Figure 5a; Figure S8a and Data S16, Supporting
Information). Notably, the microglia clock predictions showed a
deceleration of age relative to the controls.

In the Alzheimer’s disease cohort (Gabitto et al*¢l), the oligo-
dendrocyte and microglia clocks consistently indicated signifi-
cant age acceleration in High-AD samples compared to the con-
trols across all approaches (Figure 5b; Figure S8c and Data S18,
Supporting Information). Other cell-type-specific clock predic-
tions showed trends toward accelerated age, but the differences
were not statistically significant (Figure 5b; Figure S8c and Data
S17 and S18, Supporting Information).

All the non-cell-type-specific clocks revealed significant age
acceleration in the schizophrenia samples but not in the
Alzheimer’s disease samples (Figure S8b,d and Data S16 and
S18, Supporting Information).

In summary, these findings demonstrate the applicability of
our aging clocks to external datasets and highlight cell-type-
specific patterns of age acceleration in neurological disorders,
underscoring their relevance and potential as tools for studying
disease-associated aging.

www.advancedscience.com

3. Discussion

In this study, we have generated a high-quality snRNA-seq dataset
of post mortem human brains from a variety of prefrontal cortex
subregions, with short PMIs and a broad age range spanning all
three age groups of adulthood. The dataset has been used to de-
velop human single-nucleus-based transcriptomic aging clocks
for each of the major cell types in the human prefrontal cor-
tex, which can closely predict age at a cell-type-specific level. The
clocks predict age in all the major cell types, with the best per-
formance in the bootstrapped-pseudobulk aging clocks, where
for example in the OPCs, microglia and excitatory neuron clocks
have correlation coefficients of around 0.9, and in the single-cell
clocks of the same cell types with almost equal accuracy with cor-
relation coefficients around 0.8, in the test samples of the training
dataset.

Epigenetic clocks have previously been applied to the
brain[!>*-52] and make predictions with high accuracy. However,
they do not capture the cell-type-specific information that is im-
portant for the brain, given its wide range of cell types®*! and
cell-type-specific vulnerabilities.’*] While cell-type-specific epi-
genetic clocks have been developed by using bulk brain tissue,
sorted brain cells, and deconvolution algorithms, such meth-
ods have limitations (e.g., lower cell-type resolution) when com-
pared to the analysis of directly measured single cells.>>] Al-
though single-cell DNA methylation approaches exist and single-
cell DNA methylation clocks have been developed for other or-
gan systems,1%1] high cost, high sparsity, low-throughput, and
low and random coverage in combination with the binary nature
of the data pose major limitations for the development of aging
clocks and their applicability.’*=#! In this context, snRNA-seq of-
fers higher coverage, is scalable and high-throughput at a lower
cost,® and its quantitative nature makes it more feasible for the
development of cell-type-specific aging clocks. Further, the use of
cell-type-specific transcriptomic clocks is more feasible given the
high prevalence of single-nucleus transcriptomics in the study of
human brain aging and neurodegenerative diseases.

It is important to note that while both single-cell and
bootstrapped-pseudobulk clocks showed high correlations in the
training dataset, their performance in independent datasets was
lower and varied. For example, the Velmeshev et al.?®] post
mortem samples originated from across the frontal cortex, which
broadly encompasses the prefrontal cortex. Such regional gen-
erality could have introduced an increased variability in the
cell-type-specific transcriptomic aging profiles. Additionally, the
dataset included several middle-aged samples, where the direc-
tion of changes could be more complex when compared to the
remaining age groups.l®! Further, given the dependence of the
clock models on the feature gene sets, the high number of miss-
ing clock features may have also hampered the performance of
the clocks. Overall, the differences in performance may have been
due to variations in sample preparation method, tissue quality,
PMI, quality control thresholds, brain regional specificity, and
sequencing. Establishing thresholds for the minimum number

chronological age and the predicted age based on using the different non-cell-type-specific pseudobulk clock approaches. e) Bar plots showing Pearson’s
correlation coefficients and mean absolute errors (MAE, represented by the intensity of green colour in the bars) of each of the non-cell-type-specific
approaches. All correlation tests were performed using stats.pearsonr function of SciPy with significance based on a p-value < 0.05.
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Figure 5. Age acceleration in Alzheimer’s disease and schizophrenia. All plots show results from the application of bootstrapped-pseudobulk cell-type-
specific aging clocks in each of the major cell types in snRNA-seq data of post mortem prefrontal cortex tissue from Fréhlich et al.l'8! and Gabitto
et al.l*] a) Left-Relationship between chronological age and predicted age in schizophrenia (red) and control samples (grey). The line was computed
with seaborn.regplot function represents the regression line fitted to the points of the given condition. Right-Box plots showing the age acceleration in
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of genes or cells required for optimal clock accuracy may help to
better understand such differences. In addition, the donors in the
training dataset were of limited geographical origin, so the vari-
ations were under-represented. Although increasing the sample
size with equal representation of different ethnicities and sexes
may help to mitigate the above issue, the availability of good-
quality post mortem tissue in adulthood in such large numbers
is a major challenge. The single-cell clocks showed particularly
poor performance, whereas the bootstrapped-pseudobulk clocks
showed much better performance; for example, excitatory neu-
ron and OPC clocks made predictions with correlation coeffi-
cients close to 0.8. This falls in line with previous observations in
Buckley et al.*l and suggests that aggregating and bootstrapping
the data may have overcome the transcriptomic noise associated
with snRNA-seq. There is an urgent need to set standards and de-
fine the minimum criteria for further cell-type-specific single-cell
transcriptomic clock development.

In summary, we describe here a human brain aging snRNA-
seq dataset that has allowed us to construct transcriptomic clocks
for all major cell types of the human brain. In age-related neuro-
logical disorders, such as Alzheimer’s disease and schizophrenia,
several age-related changes are often accelerated.?*#548-5161] Qur
clocks reveal widespread acceleration of aging across nearly all
cell types in the schizophrenia patient samples. In Alzheimer’s
disease, the clocks show significant age acceleration, specifi-
cally in oligodendrocytes and microglia from High-AD samples.
The variable performance of the clocks in other cell types in
Alzheimer’s disease may reflect the influence of more specific
cellular subtypes within these populations. This highlights the
need to further refine aging clocks with improved resolution
for specific cell subtypes, cell states, and brain regions. Such
advancements could offer critical insights into how aging con-
tributes to cellular vulnerability and disease progression in the
human brain.

4. Experimental Section

Ethics Statement:  This study adhered to the principles outlined in the
Declaration of Helsinki and the Ethical Rules for Using Human Tissues for
Medical Research in Budapest, Hungary (HM 34/1999). Activity of Hu-
man Brain Tissue Bank, Semmelweis University has been authorised by
the Committee of Science and Research of Ethics of the Ministry of Health,
Hungary (189/K0/02.6008/2002/ETT) and the Regional Committee of Sci-
ence and Research Ethics (No.32/1992/TUKEB). All experiments involving
human post mortem samples described in this study were conducted un-
der the ethical approval number (IV/2627- 1 /2021/EKU).

Human Post Mortem Prefrontal Cortex Tissue: Human post mortem
brain tissue samples (Table 1) were obtained from the Human Brain Tis-
sue Bank (Semmelweis University, Budapest, Hungary). The tissue sam-
ples were collected from 31 individuals who were not diagnosed with any
psychiatric disorder or neurodegenerative disorder. The brains were re-
moved with a PMI of 2-12h, dropped frozen using dry ice, and stored
at —80 °C until further dissection. Samples were punched out from the
lateral surface of the prefrontal cortices of the diseased subjects using
specialized microdissection needles with 8- and 15-mm internal diame-
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ters. While most of the samples were dissected from the ventrolateral pre-
frontal cortex, some originated from the dorsolateral prefrontal cortex and
from the middle frontal gyrus (the dorsal part of which belongs to the
dorsolateral prefrontal cortex and its ventral part to the ventrolateral pre-
frontal cortex). The dissected cortical tissue pellets included both gray and
white matter portions within the gyrus. Samples were collected in 1.5 mL
Eppendorf tubes and stored at —80 °C until further use. Throughout the
microdissection procedure, the tissue samples were kept frozen.

Single-Nuclei Isolation: The nuclei isolation from the frozen post
mortem brain tissue was performed as described previously.[5263] Briefly,
the tissue was thawed and dissociated in ice-cold lysis buffer [0.32 mol L™
sucrose, 5 mmol L' CaCl,, 3 mmol L™! MgAc, 0.1 mmol L~" EDTA,
10 mmol L™ Tris-HCl (pH 8.0), and 1 mmol L™ dithiothreitol] using a
1 mL tissue douncer (Wheaton). The homogenate was carefully layered
on top of a sucrose solution [1.8 mol L™' sucrose, 3 mmol L~! MgAc,
10 mmol L= Tris-HCI (pH 8.0), and 1 mmol L~ dithiothreitol] before cen-
trifugation at 30 000 X g for 2 h and 15 min. After supernatant removal,
the pelleted nuclei were softened for 10 min in 50 L of nuclear storage
buffer [15% sucrose, 10 mmol L~ Tris-HCl (pH 7.2), 70 mmol L= KCl,
and 2 mmol L~! MgCl,] before being resuspended in 300 L of dilution
buffer [10 mmol L= Tris-HCl (pH 7.2), 70 mmol L= KCI, and 2 mmol L~
MgCl,] and filtered through a cell strainer (70 um). Nuclei were stained
with Draq7 and run through fluorescence-activated cell sorting (FACS Aria,
BD Biosciences) at 4 °C at a low flow rate using a 100 um nozzle (reanal-
ysis showed >99% purity). 8500 nuclei were sorted and used for down-
stream applications (snRNA-seq). Detailed protocol can be found at doi:
https://doi.org/10.17504/protocols.io.5jyl8j678g2w/v1.

Single-Nucleus RNA  Sequencing: Nuclei intended for snRNA-
seq (8,500 nuclei per sample) were directly loaded onto the Chromium
Next GEM Chip G or Chromium Next GEM Chip K Single Cell Kit along
with the reverse transcription master mix following the manufacturer’s
protocol for the Chromium Next GEM single cell 3’ kit (PN-1000268,
10x Genomics), to generate single-cell gel beads in emulsion. cDNA
amplification was done as per the guidelines from 10x Genomics using 13
cycles of amplification. Sequencing libraries were generated with unique
dual indices (TT set A) and pooled for sequencing on a Novaseq6000
using a 100-cycle kit and 28-10-10-90 reads.

Single-Nucleus RNA Sequencing Analysis:  Raw base calls were demulti-
plexed to obtain sample-specific FastQ files, and reads were aligned to the
GRCh38 genome assembly using the Cell Ranger pipeline (10x Genomics
Cell Ranger 7.0.0; RRID:SCR_017344)15%] with default parameters and the
include-introns options set to true. The resulting matrix files were used for
further analysis.

All downstream analysis was done using R (v4.3.1; RRID:SCR_001905)
and the standard workflow of Seurat (v4.3.0; RRID:SCR_016341).[64] Nu-
clei with read counts between 1,200 and 100,000, gene counts between
800 and 12,000, and less than 5% mitochondrial transcripts were included
for the analysis. After log-normalization and scaling, the data were in-
tegrated using Harmony (v0.1.1; RRID:SCR_022206),[6°] where both se-
quencing batches and individual samples were regressed out, and the first
39 principal components were chosen. Clusters resolved at a resolution
of 0.2 were annotated based on canonical cell type markers of the hu-
man prefrontal cortex. Further, any doublets or multiplets detected using
scDblFinder (v1.13.10; RRID:SCR_022700)%¢] were removed. Differential
gene expression analysis was done using the FindMarkers function and
the Wilcoxon Rank Sum Test, between different age groups, namely, old
versus young, old versus middle-aged, and middle-aged versus young,
followed by Benjamini—Hochberg correction for multiplicity. Genes with
adjusted p value < 0.05 and absolute log two-fold-change greater > 0.5
were considered significant. Mitochondrial genes and sex genes were ex-
cluded from further downstream analysis. Enrichment of GO terms cor-

control samples (grey) and schizophrenia (red). b) Left-Relationship between chronological age and predicted age in High-AD (red) and control samples
(grey). The line was computed with seaborn.regplot function represents the regression line fitted to the points of the given condition. Right-Box plots
showing the age acceleration in control samples (grey) and High-AD samples (red). “P < 0.05; Generalized Linear Model was used to determine the
significance of the difference between the age acceleration of control and disease samples (Experimental Section).
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responding to significantly differentially expressed genes was tested with
the gene over-representation test using the ClusterProfiler package (v4.8.2;
RRID:SCR_016884), with Benjamini-Hochberg correction for multiplicity.

Aging Clock Models: Chronological age was predicted based on the
log-normalized gene expression values using the Python implementation
of the Glmnet algorithm for the ElasticNet regression model.3%3] Mito-
chondrial and sex-related genes were removed from the data, resulting in
35,578 genes in total to use as features. Separate models were trained di-
rectly on the cell data of the six major cell types, yielding cell-type-specific
single-cell age prediction models (i.e., aging clock) for oligodendrocytes,
astrocytes, microglia, OPCs, excitatory neurons, and inhibitory neurons.
To prevent information leakage between training and test data, the age
prediction models were trained and tested with donor-level 5-fold cross-
validation (i.e., in one iteration, a model was trained using cells of 80%
of the donors and predicted the age of cells of the remaining 20% of the
donors). Different alpha parameter values (alpha = 0, 0.5, and 1) were
experimented with and selected the models trained with alpha = 0.5 due
to their best overall performance (also considering external performance)
of predicting the age of single cells. Performance was measured by Pear-
son’s correlation coefficient (r) between the chronological and predicted
age, as well as by mean absolute error (MAE) of the predictions (Data S3,
Supporting Information).

Besides the cell-type-specific single-cell aging clock approach, cell-type-
specific pseudobulk aging clocks were also developed using generated
pseudobulk samples in two ways: i) simple pseudobulk where gene ex-
pressions were averaged over all cells of a given cell type of a given donor,
resulting in one pseudobulk sample for each donor and cell-type; and
ii) bootstrapped-pseudobulk where 100 samples were generated for each
donor and cell-type by randomly sampling and averaging a given number
of cells (for oligodendrocytes: 200, astrocytes: 50, microglia: 50, OPCs:
50, excitatory neurons: 100, and inhibitory neurons: 100). The number of
cells sampled was determined so that at least 80% of the donors have
more cells available in the data to ensure variability in the bootstrapped-
pseudobulk samples. Then, similarly to the single-cell approach, sepa-
rate models were trained for each cell type with donor-level 5-fold cross-
validation, and with different values for parameter alpha (alpha = 0,
0.5, and 1). The predicted age of a donor given by the cell-type-specific
bootstrapped-pseudobulk aging clocks was calculated by the average pre-
diction of the donor’s 100 pseudobulk samples for the given cell type.

Non-cell-type-specific pseudobulk aging clocks were also developed at
the glia-level, neuron-level, and for all cells (simple and bootstrapped). The
glia-level clocks were based on oligodendrocytes, astrocytes, and OPCs;
the neuron-level clocks were based on excitatory and inhibitory neurons;
and the all-cells clocks used all cells from the six major cell types. Both sim-
ple and bootstrapped-pseudobulk approaches were tested for the three
levels. For the simple pseudobulk approach, samples were generated by
averaging the gene expressions over all cells of the given cell types (neu-
ron, glia, and all cells) of a donor. For the bootstrapped approach, 100
samples per donor were generated by taking the average over k randomly
sampled cells of the given level. The approach was tested with k = 500
and 100 cells. In total, nine types of non-cell-type-specific aging clocks
(glia-level/neuron-level/all-cells by simple, bootstrapped with 100 cells,
and bootstrapped with 500 cells approach) were tested. The training and
validation of the clocks were performed in the same way as described
previously.[?]

In addition to the Glmnet algorithm, the decision tree-based ExtraTrees
Regressor model was also tested, implemented via the scikit-learn Python
package. However, due to its lower predictive performance for age esti-
mation, the Glmnet models were relied on for this study. The summary of
performance metrics of the ExtraTrees clock model can be found in Data
S8 (Supporting Information).

Naive Mean Prediction Model:  As a baseline model, the age of the test
samples were predicted as the mean age of the training samples. The same
sample generation, model training, and testing approach as described in
“Aging clock models” was used. Further, instead of training an ElasticNet
model in each round of cross-validation on the training samples, the mean
age of the samples was calculated and assigned as the predicted age to
the test samples.
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For simpler visualization, the average prediction of the 5 folds is shown
in Figure 3 and Figure S3 (Supporting Information) as a reference predic-
tion.

Label Transfer and UMAP  Projection: Using Seurat (v4.4.0;
RRID:SCR_016341)[64] "and R (v4.3.1; RRID:SCR_001905),I67] Seu-
rat's recommended workflow for label transfer and UMAP projection
was used. The processed snRNA-seq data of the training dataset and
the external datasets were subset to include only the major cell types.
Additionally, in the Velmeshev et al.38] dataset, samples corresponding
to adulthood, over 18 years of age, and originating from the frontal cortex
were alone included. The raw counts from the Frohlich et al.['®] dataset
were log-normalized to keep them comparable to the training dataset.
Further, the top 2,000 highly variable genes in the Frohlich et al.['®]
dataset were identified using the FindVariableFeatures function, followed
by re-computing PCs and UMAP embeddings, using the RunPCA and
RunUMAP functions, respectively.

With default parameters, the FindTransferAnchors function with PCA as
reference reduction was used to find common anchors, where the train-
ing dataset with the first 18 PCs was used as reference, while the Frohlich
et al,["8 or Velmeshev et al.38] datasets were used as query. Using the
derived anchors, the TransferData function was used to predict cell type
annotations, and the MapQuery function was used to project UMAP em-
beddings in the query datasets. The predicted labels were only used for
inferring the comparability of the datasets and did not replace the original
annotations provided by the respective authors when applying the aging
clocks.

Aging Clock Validation on Independent External Datasets: To examine
the generalizability of the proposed aging clocks, we applied them to two
independent external datasets. A subset of the snRNA-seq data of Velme-
shev et al.38] namely, the frontal cortex samples of adult donors (age
> 18 years) were used for external validation of the clocks, as well as
orbitofrontal cortex snRNA-seq data of the control samples of Fréhlich
et al.l"® In both cases, the processed gene expression data were utilized,
and further processing of the samples was performed as described above
in the section “Aging clock models”. Missing values were imputed by the
average expressions of the missing genes of the training dataset, where
the mean was calculated on the samples the clocks were trained on (e.g.,
on the bootstrapped samples for the bootstrapped clocks). Due to the
5-fold cross-validation described above, five regression models were gen-
erated for each clock. All five models were applied to each external sample,
and their mean prediction was used for evaluation. The evaluation of the
clocks on the independent datasets was done as described in “Aging clock
models”.

Correlation Analysis of Aging Clock Feature Genes in External
Datasets: Using R (v4.3.1; RRID:SCR_001905)7] and Seurat (v4.4.0;
RRID:SCR_016341),[54] the single-cell expression matrices in the different
datasets were extracted, and the correlation between chronological
age and clock-selected feature genes of Single-cell clocks was tested
using Spearman’s correlation test. Benjamini-Hochberg correction was
performed on the p-values, and significance was measured at an adjusted
p-value < 0.05. For the clock-selected feature genes of cell-type-specific
bootstrapped-pseudobulk clocks, the average expression was used across
cells in each cell type per sample. While in the non-cell-type-specific
clocks, the expression was averaged across the different cell groups in
each sample, i.e., across all major cell types for the all-cells clock genes,
across glial cells for the glia-level clock genes, and across neurons for the
neuron-level clock genes.

Application and Evaluation of Aging Clocks on Neurological Disorder
Datasets: The most prominent aging clocks, namely, the single-cell, cell-
type-specific bootstrapped-pseudobulk, all-cells, glia-level, and neuron-
level bootstrapped-pseudobulk clocks with 100 cells, were applied to two
neurological disorder datasets: the subset of the data of Frohlich et al.l3]
of patients with schizophrenia and the subset of the data of Gabitto
et al.[*] of High-AD and control samples. The raw expression counts were
log-normalized, and the clocks were applied as described in “Aging clock
validation on independent external datasets”. Age acceleration of samples
was calculated by fitting a least-squares linear regression model on the pre-
dicted age with chronological age as the independent variable. Then, age
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acceleration was given by the difference between the predicted age and the
regression line.l4’]

Age acceleration of disease and control groups based on the single-cell
samples was compared using a Mixed Linear Model (dependent variable:
age acceleration, independent variables: age, sex, disease, PMI, brain.ph
for the Gabitto et al.[*¢] data and additionally hemisphere for the Fréhlich
et al.["® data) using the donors as the grouping variable to account for the
batch effect caused by having multiple samples from each donor. For the
other types of clocks, the disease and control groups were compared using
a Generalized Linear Model with the above-described dependent and in-
dependent variables. Then, the significance of the difference between the
two groups was determined by the p-value of the coefficient of the disease
variable (0: control, 1: diseased) in the above models.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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