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ABSTRACT
Epigenetic drift, which is gradual age-related changes in DNA methylation patterns, plays a significant role in aging and age-
related diseases. However, the relationship between exercise, epigenetics, and aging, and the molecular mechanisms underlying 
their interactions are poorly understood. Here, we investigated the relationship between cardiorespiratory fitness (CRF), epi-
genetic aging, and promoter methylation of individual genes across multiple organs in selectively bred low- and high-capacity 
runner (LCR and HCR) aged rats. Epigenetic clocks, trained on available rat blood-derived reduced representation bisulfite 
sequencing data, did not reflect differences in CRF between LCR and HCR rats across all four organs. However, we observed 
organ-specific differences in global mean DNA methylation and mean methylation entropy between LCR and HCR rats, and the 
direction of these differences was the opposite compared to the age-related changes in the rat blood. Notably, the soleus muscle 
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exhibited the most pronounced differences in promoter methylation due to CRF. We also identified seven genes whose promoter 
methylation was consistently influenced by CRF in all four organs. Moreover, we found that age acceleration of the soleus muscle 
was significantly higher compared to the heart and the hippocampus, and significantly lower compared to the large intestine. 
Finally, we found that the age acceleration was not consistent across organs. Our data suggest that CRF associates with epige-
netic aging in an organ-specific and organ-common manner. Our findings provide important insights into the biology of aging 
and emphasize the need to validate rejuvenation strategies in the context of the organ-specific nature of epigenetic aging.

1   |   Introduction

Aging is a complex biological process characterized by a gradual 
decline in physiological integrity, which leads to impaired function 
and increased vulnerability to death (López-Otín et al. 2013). The 
aging rate is influenced by various genetic and environmental fac-
tors. Among these factors, interest in epigenetics as an important 
regulator of aging has been increasing. Epigenetic modifications, 
including DNA methylation, histone modifications, and non-
coding RNA regulation, play a pivotal role in regulating gene ex-
pression patterns and consequently contribute significantly to the 
aging process. Notably, alterations in DNA methylation patterns 
during aging, termed epigenetic drift, occur across various tissues 
and cells and contribute to the progressive dysregulation of gene 
expression. Therefore, clinical trials have begun to evaluate the ef-
ficacy of rejuvenation strategies targeting epigenetic drift, such as 
lifestyle interventions, plasmapheresis, and the utilization of drugs 
and dietary supplements (Moqri et al. 2023).

The beneficial effects of exercise on healthy aging are well docu-
mented. In particular, cardiorespiratory fitness (CRF), represented 
by maximal oxygen uptake (V̇O2max), is an indicator of longevity 
(Blair et  al.  1989; Wei et  al.  1999). However, understanding the 
relationship among exercise, epigenetics, and aging is a complex 
endeavor, and the molecular mechanisms underlying this inter-
action remain an ongoing scientific pursuit. Previous research 
has demonstrated the influence of acute and regular exercise 
on global and gene-specific promoter methylation, primarily in 
peripheral blood and skeletal muscle (Barrès et  al.  2012; Voisin 
et al. 2024). Recent findings, including those of our study, also in-
dicate a negative relationship between physical fitness (including 
activity levels and CRF) and epigenetic aging based on age-related 
changes in DNA methylation levels at CpG sites (Fox et al. 2023; 
Jokai et al. 2023; Kawamura et al. 2024; Quach et al. 2017). These 
lines of evidence suggest that exercise exerts a rejuvenating effect 
on epigenetic aging and has a favorable effect on the aging pro-
cess. Importantly, the health-promoting effects of maintaining 
and improving CRF extend to multiple organs and the whole 
body (Ashcroft et al. 2024). However, only a conference abstract 
reported the relationship between CRF and epigenetic aging 
across multiple organs (Rossiter et al. 2023). To the best of authors’ 
knowledge, no study has explored the organ specificity and com-
monality of promoter methylation in individual genes according to 
differences in CRF.

Based on extensive epidemiological studies that have shown 
that CRF is a strong predictor of morbidity and mortality (Blair 
et al. 1989; Wei et al. 1999), Koch and Britton formulated the “aer-
obic hypothesis” that variation in the capacity for oxygen metab-
olism is the central mechanistic determinant of the difference 
between complex diseases and health (Koch et al. 2012). To test 

this hypothesis, low- and high-running capacity strains were es-
tablished by divergent selection breeding for running capacity 
using a founder population of a genetically heterogeneous N:NIH 
rat stock (i.e., eight inbred lines: ACI, BN, BUF, F344, M520, MR, 
WKY, WN) (Koch and Britton 2001; Koch et al. 2011). Notably, 
CRF, measured throughout adulthood, was a reliable predictor of 
lifespan, and the median lifespan was extended by 8–10 months 
in high-capacity runners (HCRs) than in low-capacity runners 
(LCRs) without extending maximum lifespan (Koch et al. 2011). 
This finding implies that the LCR rats were more susceptible to 
disease, supporting the healthspan-extending effects (not lifespan-
extending effects) of exercise. Therefore, this rat strain is ideal for 
elucidating the unknown mechanisms underlying the correlation 
between CRF and healthspan, and how CRF regulates epigenetic 
aging and promoter methylation, which are associated with mor-
bidity and mortality, across multiple organs.

In this study, we performed reduced representation bisulfite se-
quencing (RRBS) on the hippocampus, heart, soleus muscle, and 
large intestine of selectively bred LCR and HCR aged rats, which 
are known for their different disease risks and life expectancy 
(Koch et al. 2011; Wisløff et al. 2005). Our aim was to elucidate the 
relationship between CRF, epigenetic aging, and promoter methyl-
ation of individual genes across multiple organs in this rat model.

2   |   Methods

2.1   |   Experimental Animals

Sixteen female LCR and HCR rats of the 44th generation (23–
24 months old) were used in this study. LCR and HCR rat mod-
els were obtained by artificially selecting low- and high-running 
capacities from genetically heterogeneous N:NIH stock rats 
(Koch and Britton  2001). Rats were transported by air from 
The University of Toledo (Toledo, OH, USA) to the Hungarian 
University of Sport Sciences (Budapest, Hungary). The rats were 
housed in temperature-controlled animal rooms maintained on a 
12:12-h light–dark cycle. The animals were fed ad libitum on a stan-
dard chow diet and water. This study was conducted in accordance 
with the requirements of The Guiding Principles for Care and 
Use of Animals, EU, and was approved by The National Animal 
Research Ethical Committee (Hungary) (PE/EA/62-2/2021).

2.2   |   Maximal Oxygen Uptake Test

All rats were acclimated to a motor-driven animal treadmill in 
a closed chamber customized for rats (Columbus Instruments, 
USA) prior to V̇O2max measurements. Briefly, the animals 
rested on a running belt for 5 min, and the running speed was 
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gently increased. Acclimatization runs were performed for 
5–10 min at speeds of 5–25 m/min for two consecutive days. 
V̇O2max was measured in the HCR/LCR rats by beginning the 
run at a speed of 5 m/min after 5 min of rest and then increas-
ing the speed by 5 m/min every 2 min until exhaustion. The 
V̇O2max was determined for each animal using the following 
criteria: (i) no change in V̇O2 with increasing speed, (ii) rats 
could no longer maintain their posture on the treadmill, and 
(iii) the respiratory quotient (RQ = V̇CO2/V̇O2) > 1 (Marton 
et  al.  2015; Torma et  al.  2014). More specifically, V̇O2max 
values were recorded when the animal met one of the three 
criteria. We also calculated the total running time and total 
running distance at the time point of V̇O2max value onset. 
Notably, V̇O2max measurements were carried out in an infra-
red light–dark environment, at a temperature of 22°C ± 2°C 
and a humidity of approximately 55 ± 10%.

2.3   |   Organ Removal and DNA Extractions

After completing the V̇O2max measurements, dissection was 
performed after at least 48 h of rest. More specifically, rats were 
deeply anesthetized by intraperitoneal injection of a ketamine 
(Richter, concentration: 100 mg/mL)/xylazine (Produlab 
Pharma, concentration: 20 mg/mL) cocktail at a dose of 
0.1 mL/10 g body weight and intraperitoneally perfused with 
heparinized ice-cold saline. The hippocampus, heart, soleus 
muscle, and large intestine were removed when the rats did 
not respond to tail compression. Organ samples were stored 
at −80°C until DNA extraction. One whole side of the hippo-
campus, left side of the soleus muscle, and middle part of the 
large intestine, which corresponds to the colon, were used for 
further analysis. Whole hearts were pre-homogenized in 2× 
volume of phosphate-buffered saline for each organ weight. 
DNA was extracted using the PureLink Genomic DNA Mini 
Kit (Thermo Fisher Scientific, USA) according to the manu-
facturer's instructions. The extracted DNA was dissolved in 
50 μL of PureLink Genomic Elution Buffer (10 mM Tris–HCl, 
pH 9.0, 0.1 mM ethylenediaminetetraacetic acid). Prior to 
DNA methylation measurement, DNA samples were adjusted 
to a concentration of ≥ 35 ng/μL with a purity of A260/280 
> 1.7.

2.4   |   Global Methylation Measurement by RRBS

RRBS libraries were generated using the Premium RRBS Kit V2 
(Diagenode, Seraing, Belgium) as described previously (Veillard 
et al. 2016). Briefly, 100 ng of isolated DNA was digested with 
the MspI restriction enzyme, followed by end repair, adaptor li-
gation, and size selection using Ampure beads. Each library was 
quantified by quantitative PCR to determine the library concen-
tration, and eight samples were pooled in equimolar amounts 
using an Excel pooling tool provided by the manufacturer. The 
pooled samples were subjected to bisulfite treatment, purifica-
tion, and PCR amplification, according to the manufacturer's 
instructions. Library concentrations were quantified using the 
Qubit dsDNA HS Assay (Life Technologies) and library size dis-
tribution was measured using a Bioanalyzer High-Sensitivity 
DNA chip. The libraries were sequenced by multiplexing eight 
libraries per lane on an Illumina HiSeq2500 sequencer in 1 

× 50 single-end mode. Sequencing reads were trimmed using 
CutAdapt to remove adapter sequences. After read trimming, 
bisulfite alignment to the mRatBN7.2 (GCA_015227675.2) 
reference sequence and methylation calling were performed 
using Bismark v0.24.129. We filtered the aligned data to retain 
only cytosines with > 5× coverage in at least 90% of samples. 
Methylation values for samples at CpG sites with < 5× coverage 
were set to Not Available. There were 1,327,821 such highly cov-
ered and mostly common CpG sites.

2.5   |   Development of RRBS-Based Rat 
Epigenetic Clocks

We developed RRBS-based rat clocks using an available data-
set from the GSE161141 dataset (Levine et al. 2020). First, we 
downloaded the processed methylation files (CGmaps) for the 
134 whole blood samples of male rats (Rattus norvegicus, F344 
strain). Then, we lifted the genomic positions from the rn6 to the 
rn7 genomes using the liftover Python package. For further anal-
ysis, we used only the CpG sites that were covered by at least five 
reads in at least 90% of the samples (there were 1,028,452 such 
highly covered and mostly common CpG sites).

2.5.1   |   Rat Clock 1

We filled in the missing values using the mean meth-
ylation values of the whole data, then trained glmnet 
(ElasticNet with alpha = 0.5) at 80% and tested it on 20% of 
the samples (Figure S1A). The performance of the test set was 
MAE = 4.3 months and r = 0.88 (Figure  S1A). The clock used 
39 CpG sites in total. We applied the clock (Rat clock 1) on our 
RRBS rat data after selecting the data for highly covered meth-
ylation values (≥ 5 reads) and filling missing values by the mean 
methylation values of the covered clock CpG sites.

2.5.2   |   Rat Clock 2

First, we found common CpG sites in the two methylation tables 
(Levine et al.'s (2020) dataset and our rat dataset). In total, 307,337 
common CpG sites were identified. We then trained glmnet on 
80% of the samples from Levine et al.'s (2020) dataset and tested 
it on 20% using only 307,337 common CpG sites (Figure S1B). 
The performance of the test set was: MAE = 4.4 months and 
r = 0.88 (Figure S1B). The clock used 29 CpG sites in total. We 
applied this clock (Rat clock 2) to our rat data, which were re-
stricted to common CpG sites. We filled missing values by the 
mean methylation values of the covered clock CpG sites. Given 
the number of samples fulfilling the number of CpG sites used 
for each Rat clock (39 and 29 sites, respectively), Rat clock 2 had 
a higher prediction reliability than Rat clock 1.

2.5.3   |   Rat Intersection Clock

We applied our new epigenetic clock method (Kerepesi and 
Gladyshev 2023) to 64 rat samples. We trained the intersection 
clock on the Levine et al.  (2020) dataset to obtain a rat clock. 
Details of the intersection clock are provided in Section 2 of the 

 14749726, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/acel.70110, W

iley O
nline L

ibrary on [10/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 15 Aging Cell, 2025

original study. In this section, we describe it here briefly. The 
goal of this approach was to maximize the use of CpG sites in the 
training and test sets. For each test sample, we determined the 
intersection of CpG sites between the training and test datasets. 
Subsequently, we restricted the training set and test sample to 
the intersected CpG sites and used the restricted training set and 
test sample to train and test clocks by fivefold cross-validation 
using ElasticNet (glmnet) (Figure  S1C). The mean prediction 
(MeanPred) of the five final models was used to predict the age 
of the restricted test sample.

2.5.4   |   Rat rDNA Clock

we obtained the raw sequence reads (paired-end) of 134 rat blood 
DNA methylation samples of the Levine et al. (2020) study from 
the Sequence Read Archive. Bismark (v0.24.2) with Bowtie2 
(v2.4.5) was employed to align bisulfite sequencing reads to the 
rat rDNA sequence (NR_046239.1). Samtools (v1.17) was used 
for handling and indexing .bam files. We used Bismark's meth-
ylation extraction function with the—cytosine_report option 
to generate cov files containing methylation percentages at the 
CpG sites of the rDNA. Then, we merged the cov files into a fea-
ture table (Table S7). We applied four imputation techniques—
mean, KNN, SoftImpute, and PCA—across 2194 CpG sites of 
the rDNA. For age prediction, we split the dataset into training 
(80%) and testing (20%) sets. Using each imputation method, 
we trained three models: ElasticNet (glmnet v2.2.1), gradient 
boosting, and random forest (RandomForestRegressor and 
GradientBoostingRegressor of scikit-learn v1.3.2). The training 
and testing were repeated for each imputation technique. The 
best performing results were achieved by gradient boosting with 
KNN imputation (MAE = 4.03 months and Pearson r = 0.77, see 
Figure  S1D). We processed the 64 samples of the LCR/HCR 
dataset by Bismark in a similar way as described above. We ob-
tained 2253 CpG sites (see Table S8), and after filtering, we iden-
tified 2094 common features between the LCR/HCR and Levine 
et al.'s dataset. Missing values were imputed by the mean of all 
methylation percentages.

2.6   |   Global Methylation Analysis (GMM 
and MME)

We calculated the GMM for each sample as the average methyla-
tion level. Furthermore, we calculated MME for each sample as 
the average methylation entropy. Methylation entropy (Hershey 
and Lee III 1987) was calculated using the Shannon entropy of 
each individual CpG site of a sample:

where m_i is the methylation level of the CpG site and log is the 
two-based logarithm.

2.7   |   Promoter Analysis of Individual Genes

We used the methylation table of the 64 rat samples described 
above (containing only 1,327,821 CpG sites covered by at least 
five reads in at least 90% of the samples). The promoter region 

of each gene was determined as [−1500, +500] bp from the 
transcription start site following the direction of transcription. 
We used the annotation file GCF_015227675.2_mRatBN7.2_
genomic.gtf downloaded from the National Center for 
Biotechnology Information File Transfer Protocol repository 
(https://​ftp.​ncbi.​nlm.​nih.​gov/​genom​es/​all/​GCF/​015/​227/​675/​
GCF_​01522​7675.2_​mRatB​N7.2/​). The mean methylation levels 
of the CpG sites in the promoter region of each sample were cal-
culated (Table S6).

2.8   |   Gene Enrichment Analysis

Enrichment analysis of gene sets showing significant pro-
moter methylation differences between the LCR and HCR 
was performed for each organ. The Database for Annotation, 
Visualization, and Integrated Discovery was used for functional 
enrichment analysis of significantly different gene sets, focusing 
on biological processes (Huang et al. 2009; Sherman et al. 2022).

2.9   |   Quantitative Real-Time PCR

Total RNA was extracted from rat tissues using the RNeasy 
Mini Kit (Qiagen). Reverse transcription was performed with 
a Maxima First Strand cDNA Synthesis Kit (Qiagen) for qRT-
PCR, using 39.2–700 μg of RNA per sample, depending on the 
tissue type. For qRT-PCR, 1 μL of cDNA was mixed with 5 μL of 
LightCycler 480 SYBR Green I Master (Roche) and 4 μL of the 
appropriate primers (Eurofins, see below) using the Bravo pi-
petting robot (Agilent). All samples were analyzed in technical 
triplicates, and the average CT values were used to determine rel-
ative gene expression via the ΔΔCT method. Fold changes were 
calculated as the mean fold change relative to the housekeeping 
genes beta-actin and HPRT-1. Two reference genes were used for 
each qRT-PCR analysis (ACTB and HPRT). Sequences were:

ACTB,

fw: CCCGCGAGTACAACCTTCTTG

rev: TCATCCATGGCGAACTGGTGG

HPRT1,

fw: CTCATGGACTGATTATGGACAGGAC

rev: GCAGGTCAGCAAAGAACTTATAGCC.Acot5-ps1, Stk24, 
Tuba4a, Sfmbt2, Klk5l, hist1h2ail2, and Clec2d expression 
levels were tested using at least two alternative primer pairs. 
Sequences were:

Acot5-ps1 primer pair 1,

fw: GGACAATCCCAGCAAAACTGT

rev: ATCCTTCCTCAAACACAGTCCA

Acot5-ps1 primer pair 2,

fw: TACACGGCATTTGCACTACG

Entropy(CpG_i) = −m_i × log (m_i) − (1 −m_i) × log (1 −m_i),
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rev: CGAGGGATTGGAACCTGGAC

Stk24 primer pair 1,

fw: AAGGCATCGACAATCGGACT

rev: CCTCTATCTCGTCCTCCGCT

Stk24 primer pair 2,

fw: GGCATCGACAATCGGACTCA

rev: TCCTCTATCTCGTCCTCCGC

Tuba4a primer pair 1,

fw: TATGCCCGTGGTCACTACAC

rev: TCCTGTACACTGATCAGACAGC

Tuba4a primer pair 2,

fw: AGGGGATGACTCCTTCACCA

rev: GCCATTTCGGATCTCATCAATTACA

Sfmbt2 primer pair 1,

fw: ACTGCAAGTTCCTGCAAGGT

rev: CCTTAATTCATCAAACTCCTCTCGG

Sfmbt2 primer pair 2,

fw: CAGGAGCCGCCAATGAGAA

rev: TTAAGCACCAGCACGCACTT

Clec2d primer pair 1,

fw: GCTTCAGCAAGAAGAAGGTGC

rev: GGCATTTAGTAGGGCCGGTT

Clec2d primer pair 2,

fw: ACAGAGAGTCATCAGCGCAC

rev: CTCCTCCGATGGAAACCGAG

Clec2d primer pair 3,

fw: AGCAAGAAGAAGGTGCAGAT

rev: GCATTTAGTAGGGCCGGTT

Clec2d primer pair 4,

fw: ACAGAGAGTCATCAGCGCAC

rev: CTCCTCCGATGGAAACCGAG

hist1h2ail2 primer pair 1,

fw: CGGCGTTCTGCCAAACATC

rev: GAGCCTTTGGTGATCCCTGG

hist1h2ail2 primer pair 2,

fw: TTCGTTTCTTTGCTATGTCTGGA

rev: TAGTTGCCCTTACGCAGCAG

Klk5l primer pair 1,

fw: CCACAATGAGCACTTCTCCC

rev: GTGTGGGATGGAATGTCGGA

Klk5l primer pair 2,

fw: AGAGACACCTGCATGGGTGA

rev: GGGTTACCACCCCATGATGTAA.

2.10   |   Statistical Analysis

Correlations were evaluated by Pearson correlation coeffi-
cient (“r”) and the corresponding two-sided p-values using 
the stats.pearsonr function of the python package scipy (stats 
module). We used a two-sided p-value in the study; statisti-
cal significance was set at p < 0.05. If p-values were indicated 
by an asterisk, we used the following notations: ns, p > 0.05; 
*, 0.01 < p ≤ 0.05; **, 0.001 < p ≤ 0.01; ***, p ≤ 0.001; and ****, 
p ≤ 1.00e-04. For the gene enrichment analysis, multiple test-
ing correction was applied using the Benjamini–Hochberg 
method to calculate the FDR, with significance set at FDR 
< 0.05.

3   |   Results

3.1   |   Global Changes in the Rat Methylome During 
Aging Is Delayed in HCR Compared to LCR Rats

To determine the relationship between differences in CRF, epi-
genetic age, and global changes in the methylome with aging 
across multiple organs, we obtained DNA methylome data from 
the hippocampus, heart, soleus muscle, and large intestine of 16 
(LCR: n = 8 and HCR: n = 8) 23–24 months old rats, which were 
selectively bred for 44 generations based on endurance running 
capacity (Koch and Britton  2001) (Figure  1A and Table  1). At 
least 48 h before organ sample collection, the maximum tread-
mill running capacity of LCR and HCR rats was measured, 
which revealed that CRF total running time and total running 
distance were higher in the HCR group than in the LCR group. 
These results indicated that CRF, which gradually declines 
with age, retains differences in these rat models even at this age 
(Figure 1B). Genomic DNA extracted from each organ sample 
was subjected to RRBS, and we obtained data for > 6 million 
CpG sites in the 64 samples.
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To develop an RRBS-based rat epigenetic clock of our rat data, 
we downloaded the processed methylation files (CGMap) of 
the GSE161141 dataset (Levine et  al.  2020) and developed “Rat 

clock 1” and “Rat clock 2” (see details in Section 2). Both clocks 
were trained on 80% (n = 107) of the random samples using the 
machine-learning tool glmnet and tested on 20% of the sam-
ples (n = 27). The performance on the test set was mean abso-
lute error (MAE) = 4.3 months and r = 0.88 by Rat clock 1 and 
MAE = 4.4 months and r = 0.88 by Rat clock 2 (Figure  S1A,B). 
A total of 39 CpG sites were used by Rat clock 1 (Table S4), and 
29 CpG sites were used by Rat clock 2 (Table S5). Age accelera-
tion was calculated from the residuals of the regression line on 
the test set for the two rat clocks. Owing to the random nature of 
RRBS, the number of clock CpG sites in the application dataset 
may be limited. Therefore, we found common CpG sites in the 
training dataset (i.e., the Levine et al. rat data) and the samples 
of the application dataset (i.e., our rat data) and developed a ‘Rat 
intersection clock,’ on the common CpG sites according to the in-
tersection clock method (Kerepesi and Gladyshev 2023, also see 
Figure  S1C). Furthermore, we developed a rat ribosomal DNA 
(rDNA) clock again using the 134 blood samples of the Levine 
et al. rat dataset (see Section 2). Its performance on the test set 
was MAE = 4 months and r = 0.77 (Figure S1D). The benefit of the 
rDNA clock is that the multiplicity of the rDNA in the genome leads 

FIGURE 1    |    Global changes in the rat methylome during aging is delayed in HCR rats compared to LCR rats. (A) The overview of the study de-
sign. (B) Maximal treadmill running capacity of LCR and HCR rats. (C) Epigenetic age accelerations of four rat clocks in multiple organs of LCR and 
HCR rats. (D) Global DNAm levels of 1,028,452 CpG sites during aging (using the Levine et al. rat blood dataset) and their comparison in multiple 
organs of LCR and HCR rats. (E) Mean methylation entropy of CpG sites during aging (using the Levine et al. rat blood dataset) and their compari-
son in multiple organs of LCR and HCR rats. ca, heart; HCR, high-capacity runner; hp, hippocampus; LCR, low-capacity runner; li, large intestine; 
ms, soleus muscle; ns: not significant; r, Pearson's correlation coefficient. p, P value of each test, *: 0.01 < p ≤ 0.05, **: 0.001 < p ≤ 0.01, ***: p ≤ 0.001.

TABLE 1    |    Chronological age, body, and organ weight of LCR and 
HCR rats.

LCR (n = 8) HCR (n = 8) p

Age (months) 25.3 ± 0.3 25.4 ± 0.4 0.888

Body weight (g) 312 ± 40 277 ± 50 0.154

Hippocampus (mg) 59 ± 5 58 ± 4 0.430

Heart (mg) 933 ± 79 926 ± 53 0.830

Soleus (mg) 99 ± 16 108 ± 16 0.297

Large intestine N.A. N.A. —

Note: Age indicates the chronological age at the time of the dissection. Organ 
weights are not shown for the large intestine, as part of it was cut off and stored. 
LCR: low-capacity runner, HCR; high-capacity runner, N.A: not applicable.
Abbreviations: HCR, high-capacity runner; LCR, low-capacity runner; N.A, not 
applicable.
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to higher read coverage of the CpG sites resulting in an improved 
applicability on external datasets. The top features of the rat rDNA 
clock were the CpG sites that showed strong positive correlation 
with age. Interestingly, there was no strong negative correlation 
with age among the CpGs sites of the rat rDNA (Figure S1E,F). As 
we applied these four rat clocks to our dataset, we unexpectedly 
observed no difference between the LCR and HCR groups in the 
acceleration of the age of the rat clocks in any organ (Figure 1C).

We also used the Levine et al. rat blood dataset to test the associ-
ation between the global mean DNA methylation (GMM), mean 
methylation entropy (MME), and aging. We found that GMM 
was negatively correlated (r = −0.45; p = 4.48e-08) (Figure  1D) 
and MME was positively correlated (r = 0.48; p = 4.14e-09) 
(Figure 1E) with age. We then compared the GMM and MME in 
each organ between the LCR and HCR groups. GMM in the LCR 
soleus muscle samples was lower than that in the HCR samples 
(Figure 1D). The MME was higher in the LCR heart and large 
intestine samples than in the HCR samples (Figure 1E).

Altogether, while the applied blood-based epigenetic clocks did 
not show age acceleration differences between LCR and HCR 
rats for any of the examined organs, we observed that the HCR 
rat methylome as a whole expressed a younger state compared to 
the LCR rat methylome.

3.2   |   LCR and HCR Rat Had the Top Hit Genes in 
the Soleus Muscle and Seven Common Genes Across 
All Four Organs

To identify the best-hit genes and common genes affected by 
CRF-induced promoter methylation across all four organs, we 
calculated the mean methylation levels of CpG sites in the pro-
moter region of each sample. Among the 14,366 examined genes, 
we identified the six best-hit genes with the lowest p-values 
across all four organs in the LCR and HCR groups. These best-
hit genes were Acot5-ps1 (Acyl-CoA Thioesterase 5 Pseudogene 
1; p = 5.813623e-08, p_bonf = 0.000835), LOC102547081 (un-
characterized gene; p = 1.517911e-07, p_bonf = 0.002181), 
Stk24 (Serine/Threonine Kinase 24, p = 3.676357e-07, p_
bonf = 0.005281), Tuba4a (Tubulin Alpha 4a; p = 7.127704e-07, 
p_bonf = 0.01024), Sfmbt2 (Scm-Like with Four Mbt Domains 
2; p = 1.774531e-06, p_bonf = 0.025493), and LOC100359655 
(uncharacterized gene; p = 3.207110e-06, p_bonf = 0.046073), 
all of which were observed in the soleus muscle with an uncor-
rected p-value lower than 3.208E-06 and Bonferroni corrected 
p < 0.0461 (Figure 2A). Pseudogenes, such as Acot5-ps1, do not 
typically have a functional role and are non-coding DNA se-
quences. Stk24 is a serine/threonine kinase involved in signal 
transduction pathways that influence cellular processes asso-
ciated with growth, differentiation, and various physiological 
functions. Tuba4a encodes the tubulin protein, which is a struc-
tural component of microtubules. Microtubules are essential for 
various cellular processes, including cell division, intracellular 
transport, and cell shape maintenance. Sfmbt2 is associated 
with epigenetic regulation, involved in the maintenance of chro-
matin structure, and plays a role in controlling gene expression 
and cellular development. LOC102547081 and LOC100359655 
are uncharacterized genes and their precise physiological roles 
remain unknown.

We also identified a distinct set of seven genes that exhibited 
consistently significant (p < 0.05) differential methylation 
levels across all four organs examined in the LCR and HCR 
groups (Figure 2B). The seven identified common genes com-
prised Ddx46 (DEAD-Box Helicase 46), Dsc3 (Desmocollin-3), 
Klf5-ps2 (Kruppel-Like Factor 5 Pseudogene 2), LOC690718 
(uncharacterized gene), LOC100911237 (uncharacterized gene), 
LOC120095374 (uncharacterized gene), and Stk24 (Serine/
Threonine Kinase 24), and except for LOC120095374, hypometh-
ylation was observed in the HCR group when compared to the 
LCR group across all four organs (Figure 2B). Ddx46 is an RNA 
helicase involved in RNA processing and translational regula-
tion. Dsc3 is a component of desmosomes that plays a critical 
role in cell–cell adhesion, contributing to tissue integrity and 
cohesion. Klf5-ps2 is a transcription factor implicated in the reg-
ulation of cell proliferation, differentiation, and growth. Stk24 is 
a serine/threonine kinase associated with various cellular func-
tions including signal transduction and cell growth regulation. 
The precise physiological roles of LOC690718, LOC100911237, 
and LOC120095374 are yet to be elucidated. Therefore, further 
investigation is required to determine the specific functions of 
these genes.

3.3   |   LCR and HCR Rats Had Different 
Methylation Levels in Gene-Specific Promoter 
Regions Depending on Organs

Next, we identified gene characteristics of each organ with dif-
ferent methylation levels in their promoter regions. We used the 
data on the mean methylation level at the CpG site of the pro-
moter region of each sample, calculated by the method described 
above, and illustrated the six best-hit genes for each organ with 
the lowest p-value in the comparison between the LCR and HCR 
groups (Figure 3A–D).

In the heart, the best-hit genes were LOC100911237 (uncharac-
terized gene; p = 0.000005), Clec2d (C-type lectin domain family 
2, member D; p = 0.000012), Stk24 (Serine/Threonine Kinase 24; 
p = 0.000031), Rara (Retinoic Acid Receptor Alpha; p = 0.00012), 
Mansc4 (Mansc4; p = 0.000143), and Zdhhc7 (Zinc Finger 
DHHC-Type containing 7; p = 0.000159) (Figure 3A). Clec2d is 
associated with the immune system and possibly plays a role in 
immune responses and cell–cell interactions, particularly in the 
context of immunity and defense against pathogens. Stk24 is a 
serine/threonine kinase that is involved in signal transduction 
pathways, influences cellular processes related to growth and 
differentiation, and potentially plays a role in various physi-
ological functions. Rara is a nuclear receptor that responds to 
retinoic acid, a form of vitamin A, which plays a crucial role in 
regulating gene expression and is involved in processes such as 
cell differentiation and development. Information regarding the 
specific physiological role of Mansc4 is limited, and further re-
search is required to elucidate its function. Zdhhc7 encodes a 
protein with a DHHC domain potentially involved in palmitoy-
lation, which can affect the function and localization of various 
proteins, including those involved in cell signaling.

The best-hit genes in the hippocampus were LOC100910200 (un-
characterized gene; p = 0.000048), hist1h2ail2 (Histone Cluster 
1 H2A Family Member L2; p = 0.000048), LOC120095374 
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(uncharacterized gene; p = 0.000137), Kcnt2 (Potassium Channel, 
Sodium-Activated, Subfamily T, Member 2; p = 0.000199), Xrcc5 
(X-Ray Repair Cross Complementing 5; p = 0.000261), and 
Pth2 (Parathyroid Hormone 2; p = 0.0009) (Figure  3B). The 
hist1h2ail2 protein is involved in DNA packaging and gene reg-
ulation and is possibly associated with chromatin structure and 
epigenetic regulation. Kcnt2 encodes a sodium-activated potas-
sium channel that regulates the electrical activity of cells and is 
involved in ion transport and cellular excitability. Xrcc5 is in-
volved in DNA repair and associated with the maintenance of 
genomic stability and repair of DNA damage caused by various 
factors. Pth2 encodes a parathyroid hormone that plays a role in 
calcium and phosphate homeostasis, thereby influencing bone 
health and mineral metabolism.

In the large intestine, the best-hit genes were Klk5l (Kallikrein-
related peptidase 5-like; p = 0.000005), LOC120103016 (un-
characterized gene; p = 0.000147), Nup42 (nucleoporin 42; 
p = 0.000531), Hibadh (3-hydroxyisobutyrate dehydrogenase; 
p = 0.000668), H2aj (histone H2AJ; p = 0.000826), and Stk24 
(serine/threonine kinase 24; p = 0.00094) (Figure  3C). Klk5l 
is possibly a member of the kallikrein-related peptidase 
family, which includes enzymes involved in various phys-
iological processes such as tissue remodeling, inflamma-
tion, and blood pressure regulation. Nup42 is a nucleoporin 
component of the nuclear pore complex that regulates the 
transport of molecules between the nucleus and cytoplasm. 
Hibadh is involved in fatty acid metabolism and the break-
down of 3-hydroxyisobutyrate, a metabolite associated with 

FIGURE 2    |    Organ commonality of promoter methylation in individual genes in LCR and HCR rats. (A) Six best hit genes across the four tar-
geted organs of LCR and HCR rats. (B) The seven common genes influenced in promoter methylation by CRF across four organs. ca, heart; HCR, 
high-capacity runner; hp, hippocampus; LCR, low-capacity runner; li, large intestine; ms, soleus muscle; ns: not significant. Acot5-ps1: Acyl-
CoA Thioesterase 5 Pseudogene 1, Stk24: Serine/Threonine Kinase 24, Tuba4a: Tubulin Alpha 4a, Sfmbt2: Scm-Like with Four Mbt Domains 
2, LOC102547081/LOC100359655: uncharacterized genes. Ddx46: DEAD-Box Helicase 46, Dsc3: Desmocollin-3, Klf5-ps2: Kruppel-Like Factor 5 
Pseudogene 2, LOC690718/LOC100911237/LOC120095374: Uncharacterized genes. *: 0.01 < p ≤ 0.05, **: 0.001 < p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001, 
ns: not significant.
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valine catabolism and energy production. The H2aj protein 
is involved in DNA packaging and gene regulation and may 
play a role in chromatin structure and epigenetic regulation. 
Stk24 is a serine/threonine kinase involved in signal trans-
duction pathways that influence cellular processes associ-
ated with growth, differentiation, and various physiological  
functions.

The best hit genes in soleus muscle were Acot5-ps1, 
LOC102547081, Stk24, Tuba4a, Sfmbt2, and LOC100359655 
(Figure 3D), which have been described above.

We also performed enrichment analysis focusing on gene sets that 
showed significant promoter methylation differences between 
LCR and HCR in each organ (Figure S2). The analysis revealed 
that only three biological processes in the soleus muscle—tran-
scription, transcription regulation, and neurogenesis—reached 
the significance threshold (p < 0.05) after Benjamini–Hochberg 
correction. In contrast, no biological processes in the heart, 
hippocampus, and large intestine exhibited a corrected p-value 
below 0.05. These results indicate that the soleus muscle is partic-
ularly susceptible to CRF, demonstrating significant involvement 
of gene regulation-related biological processes.

FIGURE 3    |    Organ specificity of promoter methylation in individual genes in LCR and HCR rats. Six best hit genes influenced in promoter 
methylation in the (A) Heart, (B) Hippocampus, (C) Large intestine, and (D) Soleus muscle. ca, heart; HCR, high-capacity runner; hp, hippocam-
pus; LCR, low-capacity runner; li, large intestine; ms, soleus muscle; ns: not significant. Clec2d: C-type lectin domain family 2, member D, Stk24: 
Serine/Threonine Kinase 24, Rara: Retinoic Acid Receptor Alpha, Mansc4: MANSC Domain Containing 4, Zdhhc7: Zinc Finger DHHC-Type 
Containing 7, hist1h2ail2: Histone Cluster 1 H2A Family Member L2, Kcnt2: Potassium Channel, Sodium-Activated, Subfamily T, Member 2, Xrcc5: 
X-Ray Repair Cross Complementing 5, Pth2: Parathyroid Hormone 2, Klk5l: Kallikrein-Related Peptidase 5-Like, Nup42: Nucleoporin 42, Hibadh: 
3-Hydroxyisobutyrate Dehydrogenase, H2aj: Histone H2AJ, Acot5-ps1: Acyl-CoA Thioesterase 5 Pseudogene 1, Tuba4a: Tubulin Alpha 4a, Sfmbt2: 
Scm-Like with Four Mbt Domains 2. LOC100911237, LOC100910200, LOC120095374, LOC120103016, LOC102547081, and LOC100359655 are cur-
rently uncharacterized genes. ***: p ≤ 0.001, ****: p ≤ 0.0001.
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3.4   |   Gene Expression Analysis of the Top 
Differently Methylated Genes Between LCR 
and HCR Rats

We performed quantitative real-time PCR (qRT-PCR) experi-
ments to evaluate the gene expression of the top differentially 
methylated genes between LCR and HCR rats for each organ. 
No detectable expression was observed for Acot5-ps1, Sfmbt2, 
Klk5l, and Clec2d across all tissues. Clear expression of Stk24 
was detected using two primer pairs; no significant differences 
were observed in the soleus muscle (Figure  S4A), whereas 
Stk24 expression was significantly higher in the heart of HCR 
rats compared to LCR rats (Figure S4B). Expression of Tuba4a 
(Figure S4C) and Hist1h2ail2 (Figure S4D) showed no signifi-
cant differences in the soleus muscle and the hippocampus.

3.5   |   Age Acceleration of the Soleus Muscle 
Was Significantly Higher Compared to the Heart 
and the Hippocampus, and Significantly Lower 
Compared to the Large Intestine

In addition to the comparisons between the LCR and HCR 
groups, we compared the rates of epigenetic aging between 
organs using data from 16 samples from both the LCR and 
HCR groups. The epigenetic age and age acceleration accord-
ing to the Rat clock 1 were significantly higher in the large 
intestine than in the heart, hippocampus, and soleus muscle 
(Figure  4A,B). The Rat clock 2 showed significantly higher 
epigenetic age and age acceleration of the large intestine com-
pared to the hippocampus (Figure  4A,B). Using the Rat in-
tersection clock, that is expected to be the most robust and 
reliable method, the epigenetic age and age acceleration were 
significantly higher in the large intestine than in the heart, 
hippocampus, and soleus muscle. Additionally, the epigene-
tic age and age acceleration of the soleus muscle was signifi-
cantly higher compared to the heart and the hippocampus 
(Figure  4A,B). The rat rDNA clock showed significantly 
higher epigenetic age and age acceleration of the large intes-
tine compared to the heart and hippocampus (Figure 4A,B). 
GMM was significantly higher in the large intestine than in 
the heart, hippocampus, and soleus muscle, and it was signifi-
cantly lower in the soleus muscle compared to the heart and 
hippocampus (Figure  4C). MME was significantly higher in 
the large intestine than in the heart, hippocampus, and soleus 
muscle, and was significantly higher in the heart compared 
to the hippocampus (Figure 4C). Overall, the set of epigenetic 
aging measurements in the large intestine and soleus muscle 
showed different signatures compared to the other two or-
gans. The most remarkable and consistent finding is that the 
large intestine is epigenetically older compared to the remain-
ing organs.

3.6   |   Inconsistency of Epigenetic Age Acceleration 
Across Organs Within the Same Individual

As we measured the epigenome of four organs per individual, 
we had the unique opportunity to investigate whether accel-
erated (or decelerated) aging is a global process affecting the 
whole body or rather appears only locally for a specific organ. 

We found no significant correlations between any organ pair, 
meaning that epigenetic age acceleration is not consistent across 
organs (Figure S3).

4   |   Discussion

Epigenetic clocks are a promising aging biomarker that can esti-
mate biological age across organs based on age-related changes 
in DNA methylation patterns, and have demonstrated high 
predictive power for age-related disease onset and mortality in 
humans (Horvath and Raj 2018; Oblak et al. 2021). Epigenetic 
clocks have also been developed in rodents such as mice (Meer 
et al. 2018; Petkovich et al. 2017; Stubbs et al. 2017; Thompson 
et al. 2018; Wang and Lemos 2019) and rats (Kerepesi et al. 2022; 
Levine et al. 2020) and pan-species clocks have been proposed, 
including the human-rat pan-tissue clock (Horvath et al. 2024; 
Lu et  al.  2023). These findings and the latest studies (Crofts 
et al. 2024) suggest that age-related changes in DNA methyla-
tion patterns are a common mechanism of aging across mam-
mals and, simultaneously, provide a useful tool for evaluating 
the effectiveness of intervention strategies to delay aging in a rel-
atively short timescale. Epigenetic age can be delayed by caloric 
restriction, diet quality, growth hormone receptor knockout, 
plasmapheresis, and lifestyle interventions in rodents and hu-
mans (Fahy et al. 2019; Fiorito et al. 2021; Fitzgerald et al. 2021; 
Meer et  al.  2018; Petkovich et  al.  2017; Sae-Lee et  al.  2018; 
Stubbs et al. 2017; Thompson et al. 2018; Wang and Lemos 2019; 
Waziry et al. 2023; Zhang et al. 2023). Cross-sectional studies 
in human populations have shown that physical activity and 
CRF are associated with delayed epigenetic age progression 
(Fox et al. 2023; Jokai et al. 2023; Kawamura et al. 2024; Quach 
et al. 2017). In mice, late-life exercise training may delay skel-
etal muscle epigenetic aging via skeletal muscle-specific epi-
genetic clock(s) (Jones et  al.  2023; Murach et  al.  2022). Based 
on these findings, we applied four rat epigenetic clocks to our 
LCR/HCR rat dataset. Among them, we determined the genes 
and gene features associated with the CpG sites of Rat clocks 
1 and 2 (Tables  S9, S10), aside from the complex intersection 
clock containing 5 × 64 clocks and the rDNA clock developed 
from the CpG sites of rDNA. Our data provide valuable insight 
into the relationship between DNA methylation and aging, as 
shared genes such as GDF11 were identified in both clocks; 
GDF11 has been actively discussed in relation to aging and de-
serves attention (Sinha et al. 2014). In contrast to the previous 
studies, we demonstrated that blood-based rat epigenetic clocks 
do not consistently reflect differences in CRF across all organs. 
These findings may have resulted from the difference in exper-
imental design between the two studies, which compared two 
groups of mice with 8 weeks of voluntary endurance/resistance 
exercise training and the present study, which compared groups 
of rats with different CRF that did not undergo regular exer-
cise training. In addition, this result may be partly explained by 
the fact that the rat clocks were based on whole blood samples 
and that our dataset consisted of organ samples. However, in 
previous studies, blood-based RRBS clocks successfully cap-
tured rejuvenation effects in other tissues and cells (Kerepesi 
et al. 2021; Petkovich et al. 2017; Zhang et al. 2023). Another 
possible limitation of our analysis is that the training set of the 
rat clocks contained only males while our dataset contained 
only females. This may influence the accuracy of the clocks and 
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explain the lower predicted age compared to the chronological 
age (Figure 4A). The tissue-specific analyses of another study 
using the same rat model but the mammalian methylation array 
platform revealed a lower epigenetic age (adjusted for chrono-
logic age, generation, sex and treadmill running distance at 
3 months of age) in HCR rats for adipose, skeletal muscle, car-
diac muscle (pan-tissue rat clock; p < 0.04), and liver (human-
rat clock for relative and chronologic age; p < 0.01) compared to 
LCR rats (Rossiter et al. 2023). However, they did not examine 
the hippocampus, soleus muscle, and large intestine. The study 

also demonstrated that the effect of CRF on epigenetic age was 
strongest in young rats compared to old rats; therefore, we can-
not exclude the possibility that the effect of CRF may be reduced 
in old rats (Rossiter et  al.  2023). Finally, the study measured 
male and female rats, while we measured only females. It is pos-
sible that the effect of high CRF on the rate of aging is milder 
in females compared to males. This would be consistent with 
our recent study where we found that standard blood test-based 
age acceleration largely decreased in male athletes compared 
to the healthy male controls but did not significantly decrease 

FIGURE 4    |    Multi-organ comparisons of epigenetic aging considering all of the 64 samples including LCR and HCR rats. (A) Multi-organ compar-
isons of epigenetic age of four rat clocks. (B) Multi-organ comparisons of epigenetic age acceleration of four rat clocks. (C) Multi-organ comparisons 
of global mean DNAm level and mean methylation entropy. ca, heart; hp, hippocampus; li, large intestine; ms, soleus muscle. *: 0.01 < p ≤ 0.05, **: 
0.001 < p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001, ns: not significant. Paired t tests were applied.
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in female athletes compared to healthy female controls (Juhász 
et al. 2024). Another previous study has shown that the age ac-
celeration in the high-fit group was significantly lower than in 
the medium- to low-fit group for both men and women, but the 
difference was slightly lower for women (Jokai et al. 2023). Our 
previous study also found a significant negative relationship be-
tween CRF and age acceleration, but this study included only 
men (Kawamura et al. 2024). Most other previous studies have 
examined the relationship between physical activity and age ac-
celeration in the same cohort of men and women (adjusted for 
sex) through cross-sectional designs (Quach et al. 2017). Given 
the findings of previous studies that showed sex differences 
in the relationship between physical activity and healthspan 
(Arem et  al.  2015; Ji et  al.  2024), it is also possible that there 
are sex differences in the relationship between physical fitness 
and epigenetic aging. Taken together, the relationship between 
exercise and multi-organ epigenetic age is worth investigating, 
along with the development of a rat clock that can capture bio-
logical aging with high precision across multiple organs, as well 
as exercise training interventions that take into account the 
mode, intensity, duration, and frequency should also be inves-
tigated. In addition, future comparisons of epigenetic aging in 
LCR/HCR rats at several life stages and between sexes will be 
needed to elucidate the relationship between CRF and trajecto-
ries of epigenetic aging in both males and females.

Measurements that may capture changes in DNA methylation 
during aging include GMM and MME. Although evidence sug-
gests that GMM generally declines with age, the relationship 
between these factors appears to vary among organs and mea-
surement methods (Seale et al. 2022). Results from blood-based 
methylation assays indicated a negative correlation between 
GMM and age in mice (Sziráki et al. 2018); however, this rela-
tionship was unknown in rats. In this study, we showed for the 
first time in rats that a negative correlation exists between blood 
GMM and age and that high CRF mitigates the age-related de-
cline in GMM only in the rat soleus muscle. Entropy is a measure 
of disorder in an aging system, in which death is the maximum 
disorder (Hershey and Lee III 1987). MME has been shown to 
increase during aging in mice, naked mole-rats, and humans 
(Hannum et al. 2013; Kerepesi et al. 2022; Sziráki et al. 2018); 
however, the relationship between the MME and aging in rats 
remains unknown. We found a positive correlation between 
MME and age, and high CRF mitigated age-related increases 
in MME in the rat heart and large intestine. These findings 
on GMM and MME suggest that maintaining high CRF levels 
may delay age-related changes in DNA methylation patterns in 
an organ-specific manner. A previous study showed that acute 
exercise decreases global promoter methylation in human skel-
etal muscles (Barrès et al.  2012). Chronic exercise also affects 
global promoter methylation in human skeletal muscles (Voisin 
et  al.  2024). However, no study has investigated the relation-
ship between the GMM, MME, and CRF in multiple organs. 
Considering these facts, the results of this study may provide 
an insight into the mechanism of the systemic “geroprotective” 
effect of exercise. However, GMM and MME are not direct mea-
sures of epigenetic age, and the differences between the LCR 
and HCR groups were organ-specific and inconsistent between 
GMM and MME, that is, there were group differences in the so-
leus muscle for GMM, while in the heart and large intestine for 
MME. Therefore, further studies on the relationship between 

epigenetic aging and CRF are needed to clarify their organ spec-
ificity and organ commonality.

The results of the promoter analysis of individual genes suggest 
that the soleus muscle methylome is more strongly and exten-
sively affected by CRF than other organs known to be affected 
by exercise, such as the hippocampus, heart, and large intestine. 
In contrast, our results identified common genes that showed 
differences in promoter methylation levels across all four organs 
between the LCR and HCR groups, as well as top-hit genes that 
differed between organs. Enrichment analysis revealed that 
transcription and transcription regulation were consistently en-
riched biological processes across all organs; however, adjusted 
FDR showed significant processes only in the soleus muscle, 
including transcription, transcription regulation, and neuro-
genesis. This suggests that while there are shared regulatory 
mechanisms influenced by CRF, the functional impact on DNA 
methylation exhibits organ-specific variation. In addition to 
this result, the number of organ-specific genes whose promoter 
methylation is affected by CRF exceeds the number of organ-
common genes, indicating that the relationship between CRF 
and DNA methylation levels is partially common across organs 
but tends to be more organ-specific. Although most studies ex-
amining the relationship between exercise and DNA methyla-
tion have focused on skeletal muscle (Bittel and Chen 2024), it 
is well known that the health-promoting effects of exercise ex-
tend throughout the whole body (Ashcroft et al. 2024; Hawley 
et al. 2014; Chow et al. 2022). A recent study using a multi-omics 
analysis investigated the multi-tissue molecular response to 
endurance exercise training and identified 22 genes common 
to skeletal muscle, white adipose tissue, liver, heart, lung, and 
kidney, while many of the training-responsive genes are tissue-
specific (MoTrPAC Study Group 2024). The present study differs 
from this previous study in its design because we did not subject 
the animals to endurance exercise training; our results are in 
line with this previous study in that the effects of high CRF on 
DNA methylation profiles tend to be organ specific. Additionally, 
our study evaluated the top differentially methylated gene pro-
moters in LCR/HCR rats. Consistent with the promoter methyl-
ation changes, Stk24 expression was significantly higher in the 
heart of HCR rats compared to LCR rats. Surprisingly, we have 
not found significant gene expression changes in the remaining 
three examined cases. Our data suggest that changes in DNA 
methylation may influence gene expression processes; however, 
to fully elucidate the functional significance of these methyla-
tion alterations, future studies incorporating more comprehen-
sive transcriptomic and proteomic analyses will be essential. 
Furthermore, the relationship between CpG methylation and 
changes in gene expression has been suggested to be stronger 
for endurance exercise than for resistance exercise (Bittel and 
Chen 2024); it would be worthwhile to elucidate organ-specific 
and/or organ-common regulatory mechanisms of DNA meth-
ylation patterns and their organ interactions in exercise adap-
tation through endurance exercise interventions. In addition, 
further validation in both sexes is warranted, as some studies 
suggest that skeletal muscle methylation responses to exercise 
training may differ between sexes, although a consensus has yet 
to be reached (Lindholm et al. 2014; Landen et al. 2023).

Notably, statistical analysis revealed that epigenetic age, epi-
genetic age acceleration, GMM, and MME exhibited different 
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signatures among the four organs targeted in this study. More 
specifically, both epigenetic age and epigenetic age accelera-
tion values were highest in the large intestine, and the values 
of the intersection clock were highest in the large intestine, fol-
lowed by the soleus muscle. GMM and MME exhibited higher 
values in the large intestine than in the heart, hippocampus, 
and soleus muscle. Moreover, GMM and MME values were 
second highest in the heart. Furthermore, epigenetic age ac-
celeration was not associated across organs within the same 
individual. Recent results from animal studies using proteom-
ics and transcriptomics suggest that the rate of aging varies not 
only between individuals but also between organs within indi-
viduals (Schaum et al. 2020; Tabula Muris Consortium 2020), 
consistent with our results on organ distinctions in epigene-
tic aging. Similar studies have been reported in humans (Oh 
et  al.  2023), and part of the multi-organ aging network has 
also been elucidated, in which biological aging in specific or-
gans influences the progression of aging in other organs (Tian 
et  al.  2023). On the other hand, epigenomics-based studies 
suggest that age-related DNA methylation changes are organ-
specific in rodents (Thompson et al. 2010) and humans (Slieker 
et al. 2018), but the differences in epigenetic age acceleration 
among organs are largely unknown. Therefore, our findings 
provide important insights into the biology of aging and em-
phasize the need to validate rejuvenation strategies in the con-
text of the organ-specific nature of epigenetic aging. Further 
evidence is required to elucidate the organ-specific effects of 
exercise on organ-specific epigenetic aging. In addition, each 
of the four clocks we used may capture a different aspect of 
aging due to differences in their developmental processes. As 
noted above, our data consistently showed the highest values 
in the large intestine. However, given the slight differences in 
values between clocks in the same organ, the assessment of bi-
ological aging using multiple clocks would require the integra-
tion of all available data and careful biological interpretation 
of the clocks.

5   |   Conclusions

In conclusion, while the applied blood-based rat epigenetic 
clocks do not consistently reflect the differences in CRF in any 
organ, higher CRF is associated with a younger state according 
to GMM and MME. Our results also indicate that CRF regulates 
promoter methylation of various genes in an organ-specific and 
organ-common manner. We also demonstrated that epigenetic 
aging exhibits different signatures in different organs and that 
they are not consistent across organs. These findings emphasize 
the potential involvement of CRF in organ-specific epigenetic 
aging and gene-specific regulation of promoter methylation, 
providing novel insights into the complicated interplay between 
CRF, epigenetic regulation, and aging processes.
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