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Abstract 

Altered microRNA (miRNA) expression is a common feature of Huntington’s disease (HD) and could participate in 
disease onset and progression. However, little is known about the underlying causes of miRNA disruption in HD. We 
and others have previously shown that mutant Huntingtin binds to Ago2, a central component of miRNA biogenesis, 
and disrupts mature miRNA levels. In this study, we sought to determine if miRNA maturation per se was compro‑
mised in HD. Towards this end, we characterized major miRNA biogenesis pathway components and miRNA matura‑
tion products (pri‑miRNA, pre‑miRNA, and mature) in human HD (N = 41, Vonsattel grades HD2‑4) and healthy control 
(N = 25) subjects. Notably, the striatum (putamen) and cortex (BA39) from the same individuals were analyzed in 
parallel. We show that Ago2, Drosha, and Dicer were strongly downregulated in human HD at the early stages of the 
disease. Using a panel of HD‑related miRNAs (miR‑10b, miR‑196b, miR‑132, miR‑212, miR‑127, miR‑128), we uncov‑
ered various types of maturation defects in the HD brain, the most prominent occurring at the pre‑miRNA to mature 
miRNA maturation step. Consistent with earlier findings, we provide evidence that alterations in autophagy could 
participate in miRNA maturation defects. Notably, most changes occurred in the striatum, which is more prone to HTT 
aggregation and neurodegeneration. Likewise, we observed no significant alterations in miRNA biogenesis in human 
HD cortex and blood, strengthening tissue‑specific effects. Overall, these data provide important clues into the 
underlying mechanisms behind miRNA alterations in HD‑susceptible tissues. Further investigations are now required 
to understand the biological, diagnostic, and therapeutic implications of miRNA/RNAi biogenesis defects in HD and 
related neurodegenerative disorders.
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Introduction
Huntington’s disease (HD) is an incurable, hereditary 
neurodegenerative disorder caused by a CAG trinu-
cleotide repeat expansion in exon 1 of the Huntingtin 
(Htt) gene. At the protein level, this results in the gen-
eration of abnormal polyglutamine (PolyQ) repeats at 
the N-terminus of Htt. HD typically manifests itself in 
midlife with motor and cognitive symptoms associated 
with neurodegeneration in the striatum and, to a lesser 
degree, cortex. The molecular mechanisms leading to 
Htt-mediated neurodegeneration are still unresolved, 
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although it is well recognized that abnormal regulation 
of gene expression is an early and critical feature of HD 
neuropathology [26, 35, 38].

The small non-coding microRNAs (miRNAs) play a 
central role in gene expression regulation by promoting 
messenger RNA (mRNA) translation inhibition and/
or degradation [48, 49]. MiRNA function is inherently 
related to its maturation that follows two major pro-
cessing steps [15, 32]. First, the long primary miRNA 
transcript (pri-miRNA) is cleaved by the Drosha/
DGCR8 complex to generate a ~ 70 nucleotide (nt) pre-
cursor miRNA (pre-miRNA). The pre-miRNA is trans-
ported to the cytoplasm by Exportin 5, where it is then 
cleaved by Dicer to generate a ~ 22 nt mature miRNA. 
The mature miRNA is finally loaded with Ago2 and 
associated proteins (e.g., TRBP) into the endogenous 
RNA-induced silencing complex (RISC) that binds to 
the 3’untranslated region (3’UTR) of target mRNAs. 
Interestingly, miRNAs can control diverse biological 
pathways by modulating one or several key target genes 
simultaneously [43]. Therefore, any disruption in this 
pathway could have deleterious consequences on gene 
expression networks and cell homeostasis.

Indeed, it is now well established that miRNAs are 
essential to the survival of striatal and cortical neurons 
[5, 16]. Loss of neuronal Dicer in adult mice leads to 
alterations in transcription, reduced brain size, behav-
ioural defects, and decreased lifespan [6, 9], remi-
niscent of some HD features. In HD mice (YAC128 
model), Lee et  al. observed a global upregulation or 
downregulation of mature miRNAs in the early and late 
stages of the disease, respectively [28]. These changes 
coincided with transient changes in Dicer, Drosha and 
Exportin mRNA levels. Recently, we and others have 
shown that mHtt binds to Ago2 protein [34, 41, 42], 
whereas transient overexpression of mHtt in cells and 
mice leads to higher Ago2 expression and widespread 
alterations in mature miRNA levels [34]. Furthermore, 
post-mortem studies have detected changes in mature 
miRNA expression and editing profiles in the brains of 
HD mice and humans [13, 20–22, 27, 29, 30, 33].

Despite these observations, there is surprisingly no 
clear evidence that miRNA maturation per se is defec-
tive in HD, especially in humans. This could have impor-
tant implications for understanding miRNA regulation 
and function within cell survival pathways and current 
therapeutic efforts using the endogenous RISC (com-
posed of Ago2 and Dicer) to silence mHtt [1, 8]. Towards 
this end, we have analyzed, for the first time, all major 
miRNA pathway components and maturation products 
(pri-miRNA, pre-miRNA, mature) in human HD tissue 
samples. Notably, our experiments were conducted in 
different tissues collected from patients at various stages 
of the disease. In sum, our data implicate widespread 
defects in the pre-miRNA to mature miRNA step in HD, 
which overlaps with mHtt pathology and overt neurode-
generation in the striatum.

Materials and methods
Human brain samples
Dissected frozen human putamen and matching corti-
cal (BA39 region) tissues (0.5–1.2  g per sample) were 
obtained from the Harvard Brain Tissues Resource 
Center via NIH Neurobiobank (Table  1) as before [47]. 
This specific study included brain tissues from 25 control 
and 41 HD individuals. Frozen post-mortem tissues were 
prepared as described previously and used for protein 
and RNA analysis [47]. CAG-repeat length was deter-
mined by the CHU de Québec Sequencing and Genotyp-
ing platform using a 6-FAM fluorescent primer (Applied 
Biosystems Inc, Foster City, CA, USA) in a polymerase 
chain reaction (PCR), followed by the determination of 
the product size by capillary electrophoresis in a 3130xl 
Genetic analyzers. We used the disease burden score 
(DBS) to estimate the lifetime exposure to mutant hun-
tingtin in individuals with HD with the following equa-
tion: DBS = age at death × (CAG-repeat length − 35.5).

Protein and RNA extraction
Total proteins were extracted as previously described 
[47]. In brief, frozen tissues were mechanically homog-
enized in seven volumes of lysis buffer (150 nM NaCl, 

Table 1 Characteristics of the individuals providing post‑mortem brain samples (NIH NeuroBioBank)

N Age PMI Women (%) Men (%) CAG Allele 1 CAG Allele 2 Disease score

Control 25 67 [35–79] 20 [8–24] 40 60 21 24 –

HD2 10 64 [49–80] 21 [12–27] 60 40 22 47 703

HD3 23 59 [47–75] 20 [8–27] 39 61 25 48 726

HD4 8 52 [47–64] 19 [12–24] 50 50 23 52 844

HD 41 59 [43–75] 20 [12–27] 46 54 24 49 758
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50  mM Tris, 0.5% deoxycholate, 1% Triton X-100, 
0.5% sodium dodecyl sulfate (SDS), cOmplete™ pro-
tease inhibitor cocktail (Roche), 1  mM of sodium 
fluoride and 1 mM of activated orthovanadate as phos-
phatase inhibitor), then sonicated three times for 5 
X 1-s pulses. The solution was spun at 100,000  g for 
20 min at 4 °C. The supernatant (soluble proteins) was 
kept at −80 °C until processed. The pellet was further 
homogenized in formic acid (FA) and spun for 20 min 
at 17,500  g at 4  °C. FA-soluble proteins (FA frac-
tion) were dried before being sonicated in NuPAGE® 
LDS sample buffer (Life Technologies) supplemented 
with 0.1  M of dithiothreitol, incubated 10  min at 
70  °C and kept at −80  °C until processed. Soluble 
proteins were quantified with Pierce™ BCA Protein 
Assay Kit (ThermoFisher Scientific) and mixed to the 
NuPAGE® LDS sample buffer with 5% final volume of 
β-mercaptoethanol, then boiled 10  min at 95  °C for 
Western blot analysis. Total RNA was extracted from 
frozen tissues using TRIzol reagent (Ambion by Life 
Technologies) according to the manufacturer’s instruc-
tions. Total RNA pellet was suspended in RNase free 
water, quantified, and diluted to a final concentration 
of 100 ng/µL. RNA was kept at −80 °C until processed 
for qRT-PCR analysis.

Western blotting
Five to twenty micrograms of soluble proteins were 
separated by two different systems: 10% SDS–poly-
acrylamide gels (SDS-Page) and gradient 3–15% 
tris–acetate polyacrylamide gels for higher and lower 
molecular weight proteins. For the 10% SDS-Page, 
proteins were transferred onto a 0.45  μm nitrocel-
lulose membrane (Bio-Rad, catalogue no 1620115) 
for 1 h at RT at 100 V. For the gradient gels, proteins 
were transferred onto a 0.45  μm methanol-activated 
PVDF membrane (Immobilon, Millipore) overnight at 
4  °C at 25 V and 45 min at 4  °C at 75 V the next day. 
The membrane was blocked with 5% non-fat milk and 
1% bovine serum albumin, then incubated overnight 
at 4  °C with the appropriate primary antibodies (see 
Additional file 2: Table S1). On the second day, mem-
branes were incubated with appropriate secondary 
anti-IgG-HRP antibodies (Jackson ImmunoResearch: 
anti-mouse, catalogue no 115-035-146 or anti-rabbit, 
catalogue no 111-035-144) at RT for 1 h. The immune-
reactive bands were acquired using Immobilon West-
ern Chemiluminescent HRP Substrate (Millipore) and 
visualized with the Fusion FX (Vilber Lourmat, Eber-
hardzell, Germany) imaging system. Normalization 

was performed on total proteins obtained with Pon-
ceau Red or StainFree staining. Band intensities were 
quantified using the ImageJ software.

Dot blot
Two microliters of each sample were slowly spot-
ted on the nitrocellulose membrane. After drying the 
membrane, non-specific sites were blocked, and the 
membrane was processed as described in the Western 
Blotting section. Dot intensity was normalized on the 
total amount of tissue used for the extraction.

Primary microRNA real time quantitative RT‑PCR
The reverse transcription was performed with 500  ng 
of total RNA using the High-capacity cDNA reverse 
transcription kit (ThermoFisher Scientific, catalog no 
4368814) according to the manufacturer’s instructions. 
Program: 25 °C for 10 min, 37 °C for 120 min and 85 °C 
for 5 min. cDNA was stored at -20 °C until further pro-
cessing. The real-time quantitative PCR (qRT-PCR) was 
performed with TaqMan Fast Advanced Master mix 
(ThermoFisher Scientific, catalog no 4444963) according 
to manufacturer’s instructions. Primers were purchased 
from ThermoFisher Scientific (Hs03302879_pri, hsa-
mir-10b; Hs03303255_pri, hsa-mir-127; Hs03303101_
pri, hsa-mir-128-1; Hs03303111_pri, hsa-mir-132; 
Hs03293754_pri, hsa-mir-196b; Hs03302957_pri, hsa-
mir-212). Primary microRNAs were normalized to the 
geographic mean of GAPDH and RPL32. The relative 
amount of each primary microRNA was calculated using 
the comparative Ct  (2–ΔΔCt) method as before [46].

Precursor microRNA real time quantitative RT‑PCR
The reverse transcription was performed with 500 ng of 
total RNA using the miScript RT II kit (Qiagen) accord-
ing to the manufacturer’s instructions. The RT-PCR was 
performed with the Hiflex buffer, as recommended by the 
manufacturer to study precursor microRNAs. Program: 
38 °C for 60 min and 95 °C for 5 min. cDNA was stored 
at -20  °C until further processing. The qRT-PCR was 
performed with QuantiTect SYBR Green PCR Master 
Mix (Qiagen) according to the manufacturer’s instruc-
tions. miScript precursor assay primers were purchased 
from Qiagen (mir-10b ID: MP00003983; mir-127-1 ID: 
MP00004123; mir-128-1 ID: MP00004137; mir-132 
MP00004179; mir-196b ID: MP00004935; mir-212 ID: 
MP00004256). Precursor microRNAs were normalized 
to SNORD95 (ID: MS00033726). The relative amount of 
each precursor microRNA was calculated using the com-
parative Ct  (2–ΔΔCt) method.
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Mature microRNA real time quantitative RT‑PCR
The reverse transcription was performed with 10  ng of 
total RNA using the TaqMan MicroRNA Reverse tran-
scription kit (ThermoFisher) according to the manufac-
turer’s instructions. Program: 16 °C for 30 min, 42 °C for 
30 min and 85 °C for 5 min. cDNA was stored at -20 °C 
until further processing. The qRT-PCR was performed 
with TaqMan Fast Advanced Master mix (ThermoFisher 
Scientific) according to the manufacturer’s instruc-
tions. miRNA assay primers were purchased from Ther-
moFisher Scientific (hsa-miR10b, 002218; hsa-miR127, 
000452; hsa-miR128, 002216; hsa-miR132, 000457; hsa-
miR196b, 002215; hsa-miR212, 000515). Mature microR-
NAs were normalized to the geographic mean of RNU48 
(hsa-RNU48, 001006) and Let-7f (hsa-Let-7f, 000382). 
The relative amount of each mature microRNA was cal-
culated using the comparative Ct  (2–ΔΔCt) method.

Statistical analysis
All graphics and statistical analyses were performed 
using GraphPad Prism 9 Software (Graph Pad Software, 
Inc., La Jolla, CA, USA). Normality and lognormality 
tests were performed, and parametric or non-parametric 
tests were used accordingly. When sample distribution 
passed the normality test, a parametric one-way analysis 
of variance (ANOVA) test followed by Dunnett’s multi-
ple comparisons and parametric unpaired student t-test 
were performed. When sample distribution did not pass 
the normality test, a non-parametric Kruskal–Wallis test 
followed by Dunn’s multiple comparisons and a non-par-
ametric Mann Whitney student t-test were performed. 
The threshold for statistical significance was set to p-val-
ues < 0.05.

Results
Comparative biochemical analysis of Htt pathology 
in cortex and striatum
To understand the impact of endogenous human Htt on 
miRNA maturation, we first evaluated Htt expression and 
pathology in two different brain regions in human HD 
(Table 1). We quantified the amount of Htt protein in 41 
HD patients (N = 10 HD2, N = 23 HD3, N = 8 HD4) and 
25 Controls from matching striatal and cortical tissues. 
Consistent with earlier findings, we observed a decrease 
in soluble total (full-length) Htt in the HD striatum using 
1HU-4C8 and CH00146 antibodies (Fig.  1A–E). How-
ever, no significant changes in total Htt were shown in 
the HD cortex. Using the 1HU-4C8 clone, we detected 
an increase in N-terminal fragments (MW ~ 40–50 KDa) 
in both brain regions. As expected, an increase in formic 
acid (FA)-insoluble aggregated mHtt was also observed 

in both regions using an anti-PolyQ antibody, although 
higher levels were apparent in the striatum (Fig.  1H, I). 
Along with these results, significant decreases in NeuN 
(neuronal marker), DARPP-32 (striatal neuron marker), 
and PSD-95 (postsynaptic marker) protein levels were 
observed in the HD striatum while the cortex was mostly 
spared (Fig. 1L–N). Our results support that the relative 
expression level of these proteins is modulated between 
brain regions (Additional file 3: Fig. S1). These data sug-
gest that Htt aggregation is not the consequence of an 
increased expression level of endogenous Htt and cannot 
be directly correlated with neuronal loss. Thus overall, in 
line with previous results suggesting that HD pathology 
starts in the striatum, the striatal tissue samples analyzed 
herein presented severe signs of Htt pathology and neu-
rodegeneration compared to the parietal cortex of the 
same individuals.

Early‑stage alterations of miRNA pathway components 
in human HD striatum
Previous studies in mice [28, 34] showed that specific 
members of the miRNA biogenesis pathway are compro-
mised in HD models. In human brains, we observed a 
robust decrease in Drosha, Dicer, and Ago2 protein levels 
from HD2 in the striatum but not in the cortex (Fig. 2A–
H). No significant changes in Dicer mRNA were noted in 
either region (Additional file  3: Fig. S2), suggesting that 
alterations in expression occurred at the post-transcrip-
tional level. Modest or transient variations in DGCR8 
and TRBP proteins were seen in these samples with no 
changes in Exportin 5. Taken together, these results sug-
gest that core miRNA biogenesis pathway components 
are rapidly and specifically compromised in the human 
HD striatum and precede overt neurodegeneration.

miRNA expression analysis in HD brain
Having shown that several major miRNA biogenesis 
components were compromised in the human HD brain, 
we next aimed to determine potential effects on miRNA 
levels. We performed a literature search to identify 
HD-related miRNAs for downstream functional analy-
ses. Following an initial screen of 16 candidates previ-
ously associated with HD, we selected a panel of six 
conserved miRNAs that were commonly misregulated 
in both HD striatum and cortex (Fig.  3 and Additional 
file 3: Fig. S3). These included miR-10b, miR-196b, miR-
127, miR-128, miR-132 and miR-212. To avoid bias, we 
chose up and downregulated miRNAs in HD. The differ-
ent genomic sources of miRNAs further influenced our 
final choice: miR-10b and miR-196b are generated from 
introns of host coding genes, miR-132 and miR-212 are 
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co-expressed as a cluster from the same non-coding gene, 
miR-127 is expressed from a much larger non-coding 
miRNA cluster, whereas miR-128 is transcribed from an 
individual intergenic non-coding gene.

We quantified all three types of miRNA maturation 
products (primary, precursor, mature) in the human 
striatum (Fig.  3A) and cortex (Fig.  3B) using a distinct 
set of normalization genes (Additional file 3: Fig. S4). As 
expected, we observed a co-expression of intronic miR-
NAs and host genes in HD (i.e., miR-10b and miR-196b 
in the striatum), as documented before [20] (Additional 
file 3: Fig. S2). Surprisingly, however, various other types 
of phenomena were observed outside of this canoni-
cal pattern, some of which were tissue and disease-stage 
specific. One example includes the downregulation of 
pri-miR-127 and mature miR-127, but not pre-miR-127, 
in the HD striatum. Another example consists of the 
specific downregulation of mature miR-132 in HD stri-
atum but an overall downregulation of pri-miR-132, 

pre-miR-132 and mature miR-132 in HD cortex. In sum, 
these results suggest that miRNA maturation is con-
trolled at both transcriptional and post-transcriptional 
levels in the HD brain.

Prominent pre‑miRNA to mature miRNA maturation 
deficits in HD
To better grasp any changes in miRNA maturation per 
se in HD, we analyzed overall ratios (inhibition scores) 
between a given miRNA precursor and its substrate, 
as initially proposed by Emde et  al. [10]. Despite rare 
exceptions, the inhibition scores between pri-miRNA 
and pre-mRNA were essentially normal in the HD 
striatum and cortex (Fig.  3C). On the other hand, the 
inhibition scores between pre-mRNA and mature 
miRNA were drastically altered for all tested miRNAs 
in the HD striatum (Fig. 3D). In contrast, only miR-10b 
and miR-196b reached significance in the late-stage 
HD cortex. Interestingly, miRNA levels and inhibition 

Fig. 1 Differential Htt pathology between HD striatum and cortex. Representative immunoblots of endogenous full‑length Huntingtin (Htt) 
(1HU‑4C8 antibody) and N‑terminal Htt fragments (1HU‑4C8 antibody) in the soluble fraction of A the striatum or B the cortex of HD patients 
and Controls. C–E Protein quantifications of soluble full‑length Htt (1HU‑4C8 and CH00146 antibodies) and N‑terminal Htt (1HU‑4C8 antibody). 
Representative dot blots of formic acid (FA)‑insoluble full‑length Htt (1HU‑4C8) and mutant Htt (Poly‑Gln) in F the striatum and G the cortex of HD 
patients and Controls. H, I Protein quantifications of dot blots. Representative immunoblots of endogenous NeuN, Darpp32 and PSD95 in J the 
striatum or K the cortex on HD patients and Controls with quantifications in (L, M). Bar graphs with standard error of the mean (SEM) are shown, 
where the average of Controls is set as 100%. In all cases, the HD group is presented as pooled or per stage. Statistics: Ctl vs. HD as a group was 
calculated using a Mann–Whitney test. Ctl vs. HD stages was calculated using an analysis of covariance followed by the Kruskal–Wallis multiple 
comparison test. Significant fold changes are provided for each group. * P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Abbreviations: Ctl, Controls; 
HD, Huntington’s disease; HD2, Vonsattel grade 2; HD3, Vonsattel grade 3; HD4, Vonsattel grade 4
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scores were unaffected in human HD blood in a sepa-
rate cohort (Additional file 3: Fig. S5). Taken together, 
these results implicate early and robust deficits in the 
pre-miRNA to mature miRNA maturation step in the 
human HD striatum.

Autophagy dysfunction overlaps with miRNA maturation 
defects in HD
Finally, we set out to better understand the molecular 
mechanisms responsible for miRNA maturation defects 
in HD. Autophagy dysfunction is an inherent feature 
of HD, and we have previously shown that it influ-
ences mature miRNA levels in  vivo [34]. Accordingly, 
we observed a strong and significant downregulation of 
major markers of autophagy, namely P62, LC3 and Bec-
lin, in human HD striatum but not cortex at all stages of 
the disease (Fig. 4A–G). A detailed analysis of LC3-I and 
LC3-II using a 20% acrylamide gel revealed a non-signif-
icant trend for higher LC3-II in HD3 and HD4 stages in 
the putamen (data not shown). Interestingly, TDP-43 lev-
els, previously implicated in regulating miRNA matura-
tion in vitro [3, 23], did not correlate with miRNA defects 
(Fig. 4A, B, H). Taken together, these results strengthen 
the role of autophagy in modulating miRNA maturation 
in HD-susceptible brain regions.

Discussion
This study provides the first in vivo evidence that miRNA 
maturation is dysregulated in human HD and sheds new 
light on the causes and potential implications of miRNA 
dysregulation in HD. The importance of our findings is 
severalfold: (1) they provide important clues on intra-
individual variability and susceptibility towards mHtt 
pathology, (2) they could explain a substantial propor-
tion of miRNA alterations previously documented in 
HD brain, (3) they provide a first in-depth analysis of the 
RISC components necessary for endogenous RNA inter-
ference (RNAi), (4) they support the potential impor-
tance of specific miRNAs (and downstream targets) in 
HD pathogenesis, and finally, (5) they strengthen the 
broad implications of autophagy dysregulation in HD 
pathogenesis.

To our knowledge, this is the first characterization of 
human Htt expression and aggregation in two different 
brain regions in HD from the same individuals. These 
experiments validate and extend our previous biochemi-
cal studies on Htt pathology and other proteinopathies 
exclusively in the striatum (putamen) [47]. In agreement 
with earlier reports, lower Htt (mHtt) expression (loss-
of-function) and higher mHtt aggregation (gain-of-func-
tion) are likely both contributing factors to the severe 

Fig. 2 miRNA biogenesis components go awry in human HD striatum. Representative immunoblots of endogenous DGCR8, TRBP, Drosha, Dicer, 
Ago2 and Exportin in the soluble fraction of A the striatum or B the cortex of HD patients and Controls. See Methods for the list of antibodies. C–E 
Protein quantifications of each protein according to disease or brain region. Bar graphs with standard error of the mean (SEM) are shown, where 
the average of Controls is set as 100%. In all cases, the HD group is presented as pooled or per stage. Statistics: Ctl vs. HD as a group was calculated 
using a Mann–Whitney test. Ctl vs. HD stages was calculated using an analysis of covariance followed by the Kruskal–Wallis comparison test. 
Significant fold changes are provided for each group. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Abbreviations: Ctl, Controls; HD, Huntington’s 
disease; HD2, Vonsattel grade 2; HD3, Vonsattel grade 3; HD4, Vonsattel grade 4
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neurodegeneration observed in the striatum, although 
other biological factors might also come into play (see 
also below). Interestingly, (at least some of ) the proposed 

toxic Htt N-terminal fragments [36, 51] were upregulated 
in both brain regions analyzed, further suggesting that 
additional factors participate in Htt-mediated toxicity. 

Fig. 3 The imbalance between miRNA maturation products in HD brain. Side‑by‑side comparison of selected primary, precursor, and mature 
miRNA transcripts in the striatum (A) and matching cortex (B) of HD patients and Controls. In all assays, we used probe‑specific miRNA quantitative 
RT‑PCRs. See Additional file 3, Fig. S4 for normalization procedures. Heatmaps of fold change are shown, where HD samples were normalized to 
the average of Controls set as onefold for each miRNA species. C Overview of candidate miRNA primary/precursor inhibition scores (ratios) in the 
striatum and matching cortex of HD patients and Controls. Heatmaps were generated using corresponding qRT‑PCR data. Significant differences 
were observed for only a subset of tested miRNAs. D Overview of miRNA precursor/mature inhibition scores (ratios) in the striatum and cortex of 
HD patients and Controls. Here, all the tested miRNAs were significantly affected in the striatum. Statistics: Ctl vs. HD as a group was calculated using 
a Mann–Whitney test. Ctl vs. HD stages was calculated using an analysis of covariance followed by the Kruskal–Wallis multiple comparison test. 
Significant fold changes (colour‑coded and bold) are provided for each group. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Trends (P < 0.1) are 
shown as well as the # sign. Abbreviations: Ctl, Controls; HD, Huntington’s disease; HD2, Vonsattel grade 2; HD3, Vonsattel grade 3; HD4, Vonsattel 
grade 4
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This hypothesis is consistent with the role of miRNA-
dependent survival pathways in this process.

Remarkably, very little is known about the underly-
ing causes of miRNA alterations in HD, which is key to 
understanding the role, impact, diagnostic, and thera-
peutic potential of miRNAs in human brain diseases. 
In this regard, the BA39 cortical region is of interest 
because excluding neuronal cell death as a direct or indi-
rect cause of miRNA changes. The inhibitory effects of 
mHtt on transcription [26, 35, 38] are readily evident in 
this study on both coding (e.g., miR-10b) and non-coding 
(e.g., miR-127) genes and their host miRNA transcripts. 
In addition to transcriptional effects, our observations 
implicate other molecular mechanisms as significant 
causes of mature miRNA disruption in HD. Identifying 
factors that control pre-miRNA to miRNA maturation 
abnormalities in HD (e.g., transport, cleavage, sequestra-
tion, degradation) will require further investigation.

Interestingly, cellular stress has been shown to disrupt 
pre-miRNA to mature miRNA genesis in ALS [10]. Stress 
can influence miRNA maturation in several ways, includ-
ing the sequestration of pre-miRNAs and pathway com-
ponents (e.g., Ago2) to P bodies and/or stress granules. In 
this line of thought, autophagy is functionally implicated 
in mHtt protein turnover and aggregation and, more 
recently, miRNA maturation [2, 50]. More studies are 

required to understand the cause-and-effect relationship 
between these factors during HD progression.

Interestingly, most miRNA biogenesis components 
were downregulated in the human HD striatum. This 
observation is somewhat consistent with earlier find-
ings in mice that showed a transient shift (up to down) 
in miRNA expression levels during disease progression. 
It remains to be elucidated whether the triggering fac-
tor is a unique component (e.g., Ago2 downregulation 
[28]) or a more general mechanism in humans. Also, it is 
uncertain if changes in RISC components could explain 
miRNA editing patterns in HD [13]. The study of pre-
symptomatic HD patients (i.e., Vonsattel grades HD0-1) 
or humanized cell models (e.g., iPSC) would help address 
these questions. In any case, our results are consistent 
with abnormal regulation of miRNA biogenesis in HD.

We did not observe changes in mature miRNA levels 
(not shown) or miRNA maturation defects in HD blood. 
We and others have previously reported high expres-
sion levels of Htt in blood cells [7, 37], further strength-
ening the hypothesis of tissue-specific effects. However, 
we cannot exclude maturation defects for other miR-
NAs and/or cohorts at this stage. A critical question is 
how mature miRNAs become dysregulated in tissues or 
cell types with seemingly normal miRNA biogenesis. As 
shown herein, changes in gene transcription can lead 

Fig. 4 Altered autophagy in HD brain. Representative immunoblots of endogenous ATG9a, P62, LC3, Beclin, ATG5a, and TDP‑43 in the soluble 
fraction of A the striatum or B the cortex of HD patients and Controls. See Additional file 2: Table S1 for the list of antibodies. C–E Protein 
quantifications of each protein according to disease or brain region. Bar graphs with standard error of the mean (SEM) are shown, where the 
average of Controls is set as 100%. In all cases, the HD group is presented as pooled or per stage. Statistics: Ctl vs. HD as a group was calculated 
using a Mann–Whitney test. Ctl vs. HD stages was calculated using an analysis of covariance followed by the Kruskal–Wallis multiple comparison 
test. Significant fold changes are provided for each group. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Abbreviations: Ctl, Controls; HD, 
Huntington’s disease; HD2, Vonsattel grade 2; HD3, Vonsattel grade 3; HD4, Vonsattel grade 4



Page 9 of 11Petry et al. Acta Neuropathologica Communications          (2022) 10:106  

to alternations of miRNA host genes and, henceforth, 
mature miRNA output. In addition, and as mentioned 
above, mature miRNA levels are subjected to multiple 
regulatory mechanisms (e.g., degradation) and feed-
back loops that can go awry in disease conditions. An 
attractive hypothesis is that the specific disruption of 
miRNA biogenesis—and not the indirect effects of neu-
rodegeneration on mature miRNA levels—is responsible 
for the early susceptibility of cell loss in HD. This could 
have context-specific consequences on key miRNAs or 
other RISC-dependent RNAs required to maintain cell 
homeostasis.

In this line of thought, several groups have already 
tested the regulatory effects of candidate miRNAs on HD 
pathology, behaviour, and cell survival. For example, an 
increased expression of miR-196a (homologue of miR-
196b) in transgenic mice caused lower mHtt expression 
and aggregation in an HD model [4]. Overexpression of 
miR-10b in PC12 cells expressing mHtt also increased 
cell survival [20]. Finally, the brain supplementation of 
miR-132 in HD mice partially rescued behavioural and 
motor symptoms [11]. Interestingly, the miR-132/212 
cluster is among the most strongly affected miRNA (fam-
ily) in the HD brain (this study and [11, 27]). We have 
previously shown that miR-132/212 knockout mice dis-
play autophagy abnormalities and lower BDNF levels 
in the brain, as seen in HD [17, 18, 40, 52]. Additional 
studies are required to establish the underlying causes 
of Drosha, Dicer and Ago2 downregulation in HD stria-
tum, although autophagy is a reasonable candidate. The 
challenge now is to identify the targets and pathways 
regulated by mature and possibly immature miRNA 
transcripts for in-depth functional analyses in vivo, con-
sidering the occurrence of potential transient changes as 
observed in HD mice and tissue-specific effects.

Interestingly, recent evidence suggests that impaired 
miRNA maturation occurs in other trinucleotide repeat 
disorders. For instance, the expanded CGG repeats 
in FMRP (causing Fragile X-associated tremor/ataxia 
syndrome) sequester DGCR8 and Drosha and disrupt 
miRNA maturation in mice [44]. In drosophila, mutant 
ataxin-2 (causing spinocerebellar ataxia type 2) disrupts 
Ago expression and miRNA function [31]. MiRNA mat-
uration is also impaired in models of expanded polyQ 
within ataxin-3 (causing Machado-Joseph disease), 
whereas blocking miRNA biogenesis increased ataxin-3 
aggregation [24]. These observations strongly suggest 
that miRNA alterations in these disorders are a direct 
consequence of disease genes (e.g., sequestration) rather 
than an indirect effect of cell stress or other factors. The 
fact that Htt binds to Ago2 is consistent with this hypoth-
esis, although a role for additional genetic or molecular 
mechanisms cannot be excluded in these diseases.

The endogenous RISC complex is central to the silenc-
ing of genes by miRNAs and other small interfering 
RNAs such as small interfering RNAs (siRNAs). Interest-
ingly, various therapeutic tools under development use 
miRNAs, siRNAs, or other antisense oligonucleotides 
(including miRNA-like backbones) that silence mHtt 
expression in  vivo [1, 8]. The clinical testing of these 
compounds in the human brain will need to be carefully 
monitored for potential loss of RISC biological function. 
Much more work is required to understand better the 
role and impact of miRNA biogenesis abnormalities in 
HD and related trinucleotide disorders.

Conclusions
In summary, we show that pre-miRNA to mature miRNA 
biogenesis is strongly compromised in the human HD 
striatum. This observation could help understand the 
pathological relationship between Htt-Ago2 binding 
in vivo. Furthermore, this study suggests that indirect or 
small changes in mature miRNA levels are insufficient 
to promote cell degeneration per se in trinucleotide dis-
eases, compared to a “multiple-hit” scenario implicating 
deficits in miRNA biogenesis or other RISC-dependent 
mechanisms. This study, therefore, contributes to the 
ongoing debate about the contribution of mHtt in pro-
moting selective cell death in the human brain [12, 14, 
19, 25, 39, 45]. Our observations support the hypoth-
esis that aggregated Htt is not directly correlated with 
neurodegeneration and that other cell, organ or system-
dependent mechanisms are involved. Finally, the results 
herein will guide current and future therapeutic strate-
gies involving the endogenous RISC in the human brain.
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