X-Ray Diagnosis

Dr. Kaán László Miklós

Semmelweis University, Department of Paediatric Dentistry and Orthodontics

Cephalometric Analysis

X-RAYS USED IN ORTHODONTICS

- Extraoral x-rays
 - Orthopanthomogram
 - Lateral cephalogram
 - (Antero-posterior cephalogram)
 - TMJ (if necessary)
- Intraoral x-rays
 - Periapical x-rays (if necessary)
 - Bitewing x-rays (if necessary to locate the impacted, retained teeth)

Orthopanthomogram

- •To identify general and dental pathology: caries and periodontal deseases
- To localize unerupted teeth (impaction, retention)
- To asses numerical anomalies (aplasia, supernumerary teeth)
- To assess dental development
- To compare the denture before the treatment and after the end of treatment

Limitation: anterior maxillary region is not clearly visible upper anterior occlusal vie

Antero-posterior x-rays

- Rarely used in orthodontics, mostly to examine asymmetry
- Fractures, tumors may also be seen

Semmelweis University, Department of Paediatric Dentistry and Orthodontics

Rules of taking (lateral) cephalommetric X-rays 1.

- The distance between the head's median-sagittal plane and the focus of the x-ray is 1.5m
- The main beam is perpendicular to the head's mediansagittal plane
- The main beam pass through the two auditory meatus
- The film is parallel to the head's median sagittal plane /15-18 cm/
- Because of the paralell beams the picture is proportional
- The denture is in central occlusion

Use of lateral cephalometric

- Diagnosis and treatment planning
- To identify the reason of the anomaly: wether it is a sceletal or dentoalveolar anomaly
- Which part of the craniofacial complex is responsible for the anomaly (which jaw) ?
- Growth forecast
- Estimation of skeletal age by assessing the development of the cervical vertebra
- Monitoring treatment changes (before, during and after treatment)
- Soft tissue analysis
- Audit, documentation, research and teaching

The sequence of the examination

- Visual control of the whole X-ray
- Superimposing the important landmarks
- • Signs of the anatomical points and lines
- • Measurement of the angles
- • Linear measurements

CC Point (Centre of cranium) :

formed at the intersection of the Ba-N & Pt-Gn(facial axis) lines.

Semmelweis University, Department of Paediatric Dentistry and Orthodontics

To evaluate the relationships, both sagittally & vertically, of the five major components of face:

- 1. the cranium & cranial base
- 2. the skeletal maxillae control related to the basis of the skull and to each-other,
- 3. the skeletal mandible \int in the vertical and sagittal dimension
- 4. the maxillary dentition and alveolar process
- 5. the mandibular dentition and alveolar process
- 6. Soft tissue analysis face harmony
- 7. Growth analysis

i.e to estimate the relationships, sagittally & horizontally, of the jaws to the cranial base & to each other & the relationship of the teeth to their surrounding bone.

Hasund, Steiner

Basion (Ba)-The most inferior posterior point in the sagital plane on the anterior rim of the foramen magnum Posterior nasal spine (PNS)-The most posterior point on the bony hard palate in the sagital plane Sella (S)-The center of the hypophyseal fossa

Orbitale (Or)-The lowest point of the bony orbit. Usually the lowest point on the averaged outline is use for construction of Frankfurt Plane

Gonion (Go)-The most posterior inferior point at the angle of the mandible.

Articulare (Ar)-The intersection of three radiographic shadows :the inferior surface of the cranial base and the posterior surface of the necks of the condyles of the mandible

Pterygomaxillary fissure (PTM)-Bilateral teardrop shaped area of radiolucency, the anterior shadow of which is the posterior surfaces of the maxillary tuberosities

- Nasion (Na)- frontonasal suture at its most superior point on the curve at the bridge of nose
- Anterior nasal spine (ANS)-the most anterior point on the maxilla at the level of the palate
- Subspinale("A" point)-the most posterior point on the curve between ANS and superior Prosthion

Supramentale ("B" point)-The most posterior point of the bony curvature of the mandible below Infradentale and above Pogonion .

Pogonion (Pog)-the most anterior point on the contour of the chin

Gnathion (Gn)-The most anterior inferior point on the lateral shadow of the chin

Menton (Me)-The lowest point on the

Fig 6-1 Traditional lateral cephalometric headfil symphyseal outline of the chin marks used with Steiner analysis.

SN line is the anterior cranial base (used as reference line) Hasund, Steiner

Skeletal: SNA angle

Hasund, Steiner

SNA is used to assess the anteroposterior position of maxilla relative to anterior cranial base.

Skeletal: SNA angle

Hasund, Steiner

Fig 7-3 SNA angle. (a) The mean SNA reading is 82 degrees. (b) An SNA angle of 91 degrees suggests a protrusive maxilla. (c) An SNA angle of 77 degrees suggests a recessive maxilla.

Skeletal: SNB angle

Hasund, Steiner

SNB is used to assess the anteroposterior position of mandible relative to anterior cranial base.

Hasund, Steiner

Skeletal: SNB angle

Fig 7-4 SNB angle. (a) The mean SNB reading is 80 degrees. (b) An SNB angle of 77 degrees suggests a recessive mandible. (c) An SNB angle of 86 degrees suggests a protrusive mandible.

Skeletal: ANB angle

ANB angle indicates magnitude of the discrepancy between the maxilla and mandible.

Hasund, Steiner

- ANB angle tell us only about "magnitude of the discrepancy between the jaws (maxilla and mandible)" not the absolute discrepancy.
- If treatment is based on obtaining the ideal ANB angle of 2^o it may not necessarily obtain the ideal position of either the maxilla or mandible.

N-Pog line is also used by Hasund and Steiner

SNPog szög = 81°, normally SNPog is 1 degree larger than SNB and shows the size of the chin. (Can be corrected only with surgical intervention).

N

Pogonion = the most anterior point on the chin

Occiput

Hasund, Steiner

Line of maxillary base – NL = nasal line (vertical !!)

Fig 6-1 Traditional lateral cephalometric headfilm landmarks used with Steiner analysis.

The relationship between the skull and the maxilla in the vertical dimension (Hasund, Steiner) Sella-Nasion line --- Maxillary base (NL)

Normal 8-10 °

Hasund, Steiner

Skeletal: MP (mandibular plane) angle

ML = base of the mandible

Hasund, Steiner

Fig 5-8 Various methods of constructing the mandibular plane: 1, as a plane joining gonion and gnothion; 2, as a plane joining gonion and menton; 3, as a tangent to the lower border of the mandible and menton (Downs). [Adapted from Graber TM. Reports on the first workshop in roentgenographic cephalometrics. In Saltzmann JA: Proceedings of the Second Research Workshop Conducted by the Special Committee of the American Association of Orthodontics. Philadelphia: J B Lippincott; 1961, Used with permission.)

Vertical position of maxilla SN line – Go,Gn (base of mandible)

Hasund, Steiner

Normal value: 32°

Semmelweis University, Department of Paediatric Dentistry and Orthodontics

The angle between the mandible and maxilla 24° Hasund, Steiner

Gonion angle(Hasund, Steiner, Ricketts) a the angle between corpus and ramus of the lower jaw 126° Hasund, Steiner

iszló Miklós, Professor

Hasund, Steiner

This angle is relatively small in individuals whose incisors are tipped forward.

A measurement of the degree of procumbency of the incisor teeth, introduced by W. B. Downs as the (posterior) angle formed by the intersection of the long axes of the maxillary and mandibular central incisors.

- Highly variable according to the positions of these teeth in different biotypes.
- Dolichofacial patients will have vertical upper incisors & high interincisal angles eg. Deep overbite
- Brachycephalic patients have more horizontal incisors and lower angles eg. The most biprotrusions are accompanied by a lower IIA.

Dental: UI-NA distance Dental: UI-NA angle

Hasund, Steiner

- Maxillary Incisors Position: The relative location and axial inclination of the upper incisors are determined by relating the teeth to N-A line.
- To precisely determine the relative anteroposterior position of the incisors, it is necessary to measure the distance of the most labial surface of the incisor to the NA line.

Dental: LI-NB distance Dental: LI-NB angle

Fig 7-10 Relationship of mandibular incisor to NB line, 4 mm and 25 degrees.

Hasund, Steiner

- Angle greater than 25° may be seen in class II div 1.
- Angle less than 25° may be seen in class II div II OR class III.

Mandibular Incisors Position: The relative location and axial inclination of the lower incisors are determined by relating the teeth to N-B line.

 To precisely determine the relative anteroposterior position of the incisors, it is necessary to measure the distance of the most labial surface of the incisor to the N-B line. Soft tissue: Steiner's S - Line

Hasund, Steiner

Fig 7-12 Steiner's S-line. (a) Lips in balance at rest; (b) lips too protrusive; (c) lips or lower facial profile too recessive.

11. Lower lip to E-plane:

The lower lip protrusion is evaluated by measuring the lower lip from an aesthetic line constructed by joining the tip of the nose and the tip of the chin.

Esthetic plane: tip of nose to tip of chin Lower lip protrusion: lower lip to E-plane

Soft tissue evaluation by:

1. Nasolabial angle

Soft tissue analysis - H angle soft tissue N-Pog(signed N'-Pog') – Pog'Upper lip **Normal value: 8**°

Semmelweis University, Department of Paediatric Dentistry and Orthodontics

Harmony table and harmony box (moving) by Hasund

SNA NL-NSL NSBa ML-NSL SNB ML-NL ANB 302 944 141 432 944 94 949 94 949 94 949 28 949 -3 131 139 400 98 949 26 949 -2 -2 133 139 400 98 949 26 949 -1 -1 133 139 400 98 949 26 94 -1 -1 141 136 356 73 12 24 -1 -1 141 136 356 73 13 24 -1 -1 10 134 333 76 22 -1 1 10 134 332 76 20 -2 -1 131 29 90 13 31 7 10 -1 131 29 25 85 18 -3 -1 -1 127 23 17 94 15 -1 -3								-4.3
Retro- gnáth 141 43 14 64 14 28 12 -3 13 139 40 65 57 27 -2 13 139 40 65 57 27 -2 13 139 40 65 57 27 -2 12 137 37 11 25 -1 11 136 35 13 24 -1 10 134 33 16 22 -1 9 133 31 17 23 0 0rtho- gnáth 9 133 31 17 22 -1 10 134 33 17 22 -1 1 0 133 31 17 20 20 -3 9 133 31 28 81 20 2 12 6 129 26 84 18 3 9 126 221 86		SNA	NL-NSL	NSBa	ML-NSL	SNB	ML-NL	ANB
Retro- gnáth 14 140 421 66 27 13 139 40 68 26 -2 12 137 37 71 25 -1 11 136 36 72 24 -1 gnáth 10 134 33 15 23 0 gnáth 9 133 31 15 24 -1 0 134 33 15 23 0 0 gnáth 9 133 31 17 22 -1 0rtho- 8 132 30 17 22 -1 gnáth 7 130 27 88 12 0 gnáth 7 130 27 88 19 2 6 129 26 84 18 3 3 127 23 87 17 3 3 3 126 22 12 88 13 3 3 126 22		61 62		141	43	64 85	28	-3
Retro- gnáth 13 139 40 68 26 -2 12 137 37 71 25 -1 11 136 36 72 24 -1 11 136 36 72 24 -1 gnáth 9 133 31 75 23 0 Ortho- 9 133 31 76 22 1 gnáth 9 133 31 76 22 1 Ortho- 8 132 30 79 21 1 9 133 31 78 20 2 2 9 132 30 79 21 1 1 9 132 30 79 21 1 20 <th></th> <th>503 54</th> <th>14</th> <th>140</th> <th>42 41</th> <th>65 67</th> <th>27</th> <th></th>		503 54	14	140	42 41	65 67	27	
Retro- gnáth 12 137 38 10 25 -1 Retro- gnáth 11 136 36 12 24 -1 11 136 35 13 24 -1 10 134 33 15 23 0 gnáth 9 133 31 17 22 1 Ortho- gnáth 9 133 31 178 20 2 gnáth 7 130 27 82 19 2 6 129 26 84 18 3 9 127 23 17 3 9 127 23 87 17 3 9 127 23 87 17 3 9 127 23 87 17 3 9 126 21 16 4 3 12 9 12 16 4 3 12 14 5 9 121 14 97 12		55	13	139	40 39	68 69	26	-2
Retro- gnáth 11 136 36 12^2 24 -1 gnáth 10 135 34 14 23 0 gnáth 9 133 31 16 22 0 Ortho- gnáth 8 132 30 19 21 1 Ortho- gnáth 8 131 29 80 20 20 gnáth 7 130 27 83 19 2 Pro- gnáth 6 129 26 84 18 3 9 127 23 87 17 3 3 9 127 23 87 17 3 3 9 128 24 85 18 3 3 9 3 124 19 99 15 4 3 3 9 2 123 17 94 14 5 9 1 15 95 13 6 3 14 5 90 1		69 69	12	130	38 37	7D 71	25	
Hetro- gnáth 1135 34 74 23 0 gnáth 10 134 33 75 22 0 Ortho- gnáth 9 133 31 75 22 11 Ortho- gnáth 8 132 30 79 21 1 gnáth 7 130 27 82 19 2 gnáth 6 129 26 84 19 2 gnáth 34 7 130 27 82 19 2 gnáth 9 128 24 95 18 3 gnáth 9 127 23 87 17 3 gnáth 95 3 124 19 95 16 4 95 3 124 19 95 14 5 95 121 15 95 13 14 5 95 121 15 95 13 6 121 14 5 95 1	_	11 12 13	11	136	36 35	72 73	24	-1
gnath 134 332 165 22 Ortho- 9 133 31 178 22 Ortho- 8 132 30 179 21 1 gnáth 7 130 27 82 19 2 Pro- 9 131 28 81 20 20 gnáth 7 130 27 82 19 2 Pro- 9 128 24 96 18 3 gnáth 33 127 23 87 17 3 gnáth 33 124 19 91 15 4 33 124 19 91 15 4 35 3 124 19 91 15 95 2 123 17 94 14 5 95 121 14 97 12 6 96 121 14 97 12 6 90 13 98 12 6	Retro-	74 75	10	135	34	74 75	23	0
Ortho- gnáth 132 30 19 21 1 gnáth 31 29 30 79 21 1 gnáth 7 130 27 82 81 20 20 gnáth 85 7 130 27 82 81 20 2 Pro- 90 6 129 26 84 18 3 gnáth 85 6 129 26 84 18 3 gnáth 90 51 127 23 87 17 3 gnáth 90 3 124 19 90 16 4 95 3 124 19 90 14 5 96 2 123 17 90 14 5 96 1 121 14 97 12 6	gnath	10 11 18	9	134	32	76 77	22	
gnáth 32 131 29 30 20 gnáth 7 130 27 32 19 2 Pro- 30 6 129 26 84 19 2 gnáth 5 6 128 24 35 18 3 gnáth 52 4 126 22 85 18 3 gnáth 52 4 126 22 85 16 4 95 3 124 19 95 14 5 95 2 123 17 94 14 5 95 2 123 17 94 14 5 95 2 123 17 94 14 5 95 1 121 15 96 13 6 95 1 121 16 55 13 6 100 121 14	Ortho	19 80 81	8	132	30	78 79	21	1
gradii 33 7 130 27 82 19 2 Pro- 33 6 129 26 84 18 3 gnáth 50 5 128 24 955 18 3 gnáth 50 4 126 22 85 18 3 gnáth 50 4 126 22 89 16 4 95 3 124 19 91 15 30 14 5 95 2 123 17 94 14 5 95 2 123 17 94 14 5 95 2 123 17 94 14 5 100 121 15 96 13 6 6 100 121 14 97 12 6	onuno-	82 83 8	-	131	29 28	80 81	20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	gnau	85 85		130	27	82 83	19	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pro-		6	123	25	84 85	18	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	anáth	90 91 62	-	127	23	87 87	17	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Juran	93 94	4	126	21	89 -	16	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		90 95	3	124	19	91	15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		98 99 100	2	123	18 17	94	14	5
0 13 96 12 6		101 102	1	122	16 15	95 95	13	
	Lein	105	0	121	14 13	97 98	12	6

Most values has to be in the box
 The position of the box
 determines the face type

3. Which value is outside the box !!!

Semmelweis University, Department of Paediatric Dentistry and Orthodontics

Don't Confuse facial axis with facial plane !!

Facial Axis is: Pt to Gn Ricketts uses other important planes Facial Plane is: N to Pog Reference line: Frankfurt horizontal (Porion – Orbitale) 0 Po Pod GN

Cephalometric Analysis

Growth analysis

Maxilla – mandible, when?

• In CVMS 1 é CVMS 2 phase worth expanding the upperjaw

The application of the CVM method has revealed that:

1. Class II treatment is most effective when it includes the peak in mandibular growth; CS3 – CS 4 and CI III ttt to restrict mandibular growth

 Class III treatment with maxillary expansion and protraction is effective in the maxilla on when it is performed before the peak (CS1 or CS2).

3. Skeletal effects of rapid maxillary expansion for the correction of transverse maxillary deficiency are greater at prepubertal stages. (CS1-CS2) while pubertal or post pubertal us of the rapid maxillary expander entails more dentoalveolar effects

4. Deficiency of mandibular ramus height can be enhanced significantly in subjects with increased vertical facial dimension when orthopedic treatment is performed at the peak in mandibular growth (CS3).

To summarize, effects of therapies aimed to enhance/restrict mandibular growth appear to be of greater magnitude at the circumpubertal period during which the growth spurt occurs in comparison to earlier intervention, while effects of therapies aimed to alter the maxilla orthopedically (maxillary

protraction/maxillary expansion) are greater at prepubertal stages

Semmelweis University, Department of Paediatric Dentistry and Orthodontics

Hand-wrist radiographs

• To determine skeletal age by assessment of pattern of ossification of bones

Maxilla in the sagittalis dimension - Ricketts)

Normal value: 90°

ászló Miklós, e Professor 2. Facial depth angle: The sagittal position of the mandible Ricketts The inferior posterior angle formed by the intersection of the Frankfort horizontal and the facial plane (N-Pog).

This angle gives the clinician an indication mandible (pogonion) in sagittal direction. Increase in facial depth angle suggests a forward position of pog (brachyfacial type) while decrease implies a retrusion, as in dolichofacial patterns,

- This facial depth angle increases 1° every 3 years as the mandible grows forward and downward. This change with age is mainly due to a differential growth magnitude of the anterior cranial base with respect to mandibular corpous.
- In adulthood, the mean measurement is 90°.

Skeletal: occlusal plane angle (SN-Occlusal plane)

The mean reading for normal occlusions is 14°.

The angle is increased in long face or vertically growing individuals and also skeletal open bite cases.

It may be decreased in horizontally growing individuals or cases with a skeletal deep bite.

Ricketts Measurements to determine convexity

Ricketts

6. Convexity of point A :

Facial convexity is the distance in millimeters from A point to the facial plane, when measured perpendicular to that plane. The normal growth trend shows more anterior growth of the mandible than the maxilla. Thereby a decreases in its measurement with age. At maturity, the form is 9 mm, indicating that A point lies along the facial plane. A high convexity indicates a Class II skeletal pattern; negative convexity, a skeletal Class III.

3. Mandibular plane angle:

Mandible in the vertical plane - Ricketts

The mandibular plane angle is formed by the intersection of mandibular plane and the Frankfort horizontal plane.

This angle gives the clinician an indication of the cant of the mandibular corpous and its value depends on the shape & position of the mandible within the craniofacial complex.

High mandibular plane angle is seen in dolichofacial patients with weak musculature and prone to open bite or vertical growth problems.

Low mandibular plane angle is found in brachyfacial types with strong musculature and deep bites who tend to have square jaws.

Conus angle Ricketts

• NPog – mandible line (go-Gn) = 68°

Skeletal: Facial Angle

Department of Paediatric Dentistry and Orthodontics

1. Facial axis angle of Ricketts (Ba-N - Pt-Gn):

The angle describes the direction of growth of mandible at chin.

The inferior angle formed by the intersection of the facial axis of Ricketts and the Ba-N line. This angle on the average approximates 90°.

Facial axis angle remains stable in a normally growing child or reduce a little.

A value smaller than 90 indicates (smaller angle) facial growth primarily in the vertical direction and/or a Class II pattern,

whereas a value greater than 90 degrees indicates (larger angle) a horizontal growth pattern and/or a Class III tendency.

Ricketts - another way.....

Position of the upper incisors related to the Frankfurt horizontal Normal: 110°

Fig 6-1 Traditional lateral cephalometric headfilm landmarks used with Steiner analysis.

Semmelweis University, Department of Paediatric Dentistry and Orthodontics

Ricketts – another way.....

Dental:

The lower incisors related to the mandible line Normal: 90°

The angle is positive when incisors are tipped forward. i.e, they are proclined forward. The value increases as the proclination increases.

Gonion angle(Hasund, Steiner, Ricketts) a the angle between corpus and ramus of the lower jaw 126°

In sceletal progeny and/or open bite the angle is larger						
ARD BONN						
H BAR						
Ar = Articulare = determined by the border of						
ramus and basis of the skull						

iszló Miklós, Professor

5. Mandibular arc:

Ricketts

The mandibular arc is the angle formed by the intersection of the condylar axis (DC-Xi) and the distal extrapolation of the corpus axis.

It describes the configuration of the mandible;

A large angle is indicative of a 'strong' and 'square' mandible; (brachyfacial pattern)

Smaller angles suggest a short ramus, obtuse-shaped mandible and vertical growth pattern. (dolichofacial)

Ricketts

4. Lower facial height:

This is the angle formed by the intersection of a line from anterior nasal spine (ANS) to Xi-point and the corpus axis (Xi-Pm).

A larger angle indicates a divergence of mandible and maxilla or vertical growth trend. (Dolichofacial pattern with weak musculature & prone to skeletal open bite)

Low values of angle are suggestive of horizontal facial pattern.

(Brachyfacial pattern with strong musculature & a deep overbite)

