

250 years in medical education, research & innovation and healthcare

Biomechanical principles of orthodontics The possibilities of tooth movement

dr. Radó Zsuzsanna Stefánia dr. Löchli Heike

Semmelweis University http://semmelweis.hu/

Department of Pediatric Dentistry and Orthodontics

Effect of continuous optimal force

<1 second		PDL fluid incompressible, alveolar bone bends, piezoelectric signal generated				
1-2 seconds		PDL fluid expressed, tooth moves within PDL space				
3-5 seconds		Blood vessels within PDL partially compressed on pressure side, dilated on tension side; PDL fibers and cells mechanically distorted				
Minutes		Blood flow altered, oxygen tension begins to change; prostaglandins and cytokines released				
Hours		Metabolic changes occurring: chemical messengers affect cellular activity, enzyme levels change				
~4 hours		Increased cAMP levels detectable, cellular differentiation begins within PDL				
~2 days		Tooth movement beginning as osteoclasts and osteoblasts remodel bony socket				
W.R. Proffit, H.W. Fields, and D.M. Sarver. :Contemporary Orthodontics, 2012, Elsevier: St. Louis, United States.						
	melweis University /semmelweis.hu/	Biomechanical principles of orthodontics The possibilities of tooth movement	dr. Radó Zsuzsanna Stefánia dr. Löchli Heike			

Effect of heavy force

W.R. Proffit, H.W. Fields, and D.M. Sarver. :Contemporary Orthodontics, 2012, Elsevier: St. Louis, United States.

<1 second		PDL fluid incompressible, alveolar bone bends, piezoelectric signal generated			
1-2 seconds		PDL fluid expressed, tooth moves within PDL space			
3-5 seconds		Blood vessels within PDL occluded on pressure side			
Minutes		Blood flow cut off to compressed PDL area			
Hours		Cell death in compressed area			
3-5 days		Cell differentiation in adjacent narrow spaces, undermining resorption begins			
	7-14 days Undermining resorption removes lamina dura adjacent to compressed PDL, tooth movement occurs				
(1250)	Semmelweis Univ		Biomechanical principles of orthodontics The possibilities of tooth movement	dr. Radó Zsuzsanna Stefánia dr. Löchli Heike	

Force

Can be described mathematically as a vector

- → Magnitude
- Point of application
- Line of action
- ➡ Sense

Measurement unit is N (cN), or in orthodontics usually gramms

Biomechanical principles of orthodontics The possibilities of tooth movement

Principle of transmissibility

The principle of transmissibility states that the point of application of a force can be moved anywhere along its line of action without changing the external reaction forces on a rigid body

Biomechanical principles of orthodontics The possibilities of tooth movement

Center of resistance – CR

- The movement of a rigid body through a force can be described by the body's center of resistance
- Should be distinguished from the center of mass, the 2 points are only equal to free bodies
- Clinical definition: When the line of action of force runs through the center of resistance, we get physical movement (Burstone and Choy 2015)

Biomechanical principles of orthodontics The possibilities of tooth movement

Center of resistance

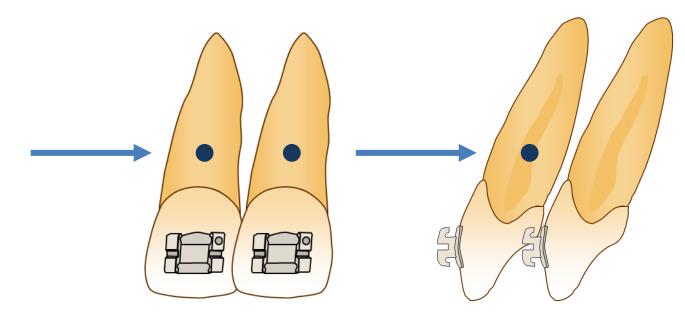
- The center of resistance depends more on the environment in which the body is fixed than on the shape of the body itself
- In the case of an upper incisor, the CR is approximately 1 / 3-2 / 3 the length of the root in the alveolus

Biomechanical principles of orthodontics The possibilities of tooth movement

Moment

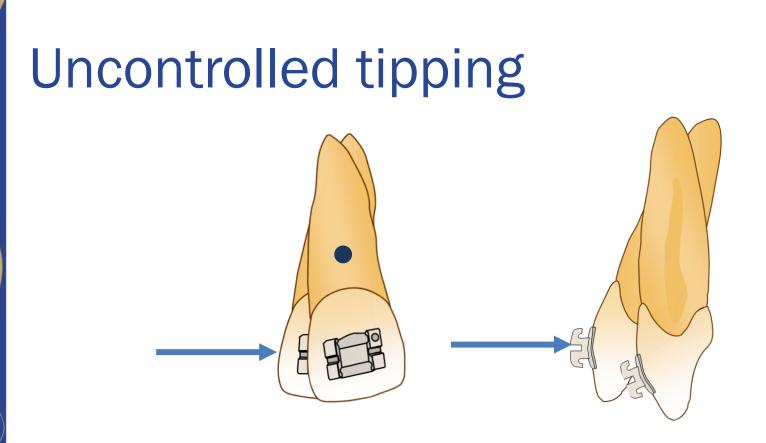
- When the line of action of the force does not pass through the CR, a Moment is generated
- The moment is a mathematical description of the body's tendency to rotate around its CR under the influence of force.
- it is represented by a curved arrow, with the arrow indicating the direction of rotation (CW, CCW).
- Its unit of measurement in orthodontics is typically gmm (SI: Nm)
- When a force couple acts on the tooth, pure rotation can occur in which all points of the tooth rotate around the CR

Biomechanical principles of orthodontics The possibilities of tooth movement

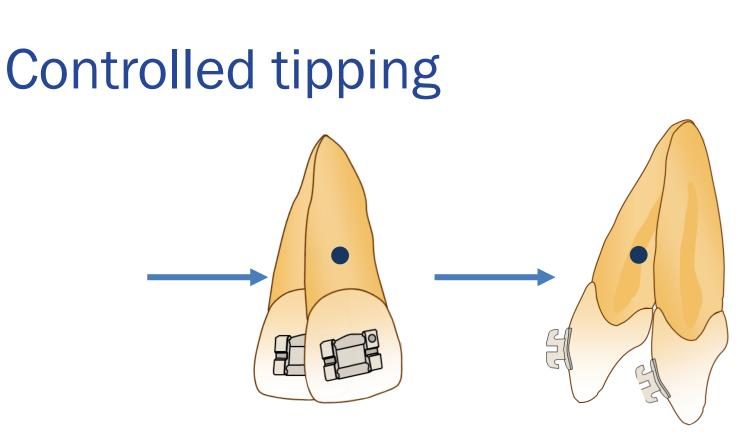

Forces and moments needed for tooth movement

- Type of movement (intrusion / extrusion, body movement)
- ♦ Loaded area of PDL
- ✤ Biology of the PDL and the alveolus
 - ➡ Age
 - Underlying diseases
 - → Hormonal Effects (Pregnancy)

Biomechanical principles of orthodontics The possibilities of tooth movement

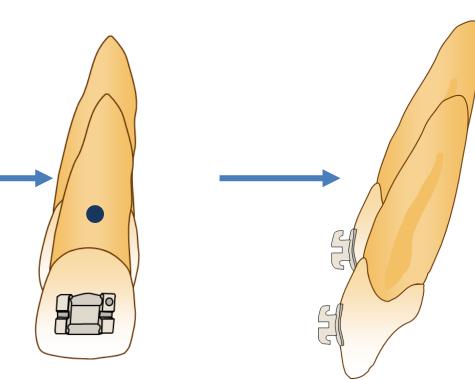

Translation

Semmelweis University http://semmelweis.hu/


Biomechanical principles of orthodontics The possibilities of tooth movement

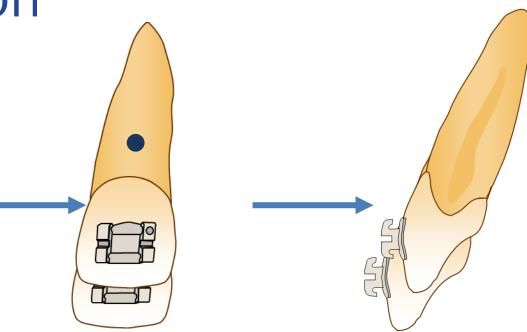
Semmelweis University http://semmelweis.hu/

Biomechanical principles of orthodontics The possibilities of tooth movement



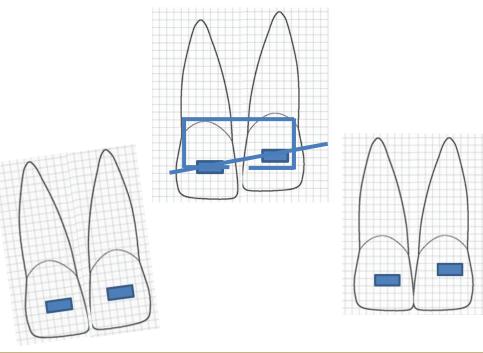
Semmelweis University http://semmelweis.hu/

Biomechanical principles of orthodontics The possibilities of tooth movement


Extrusion

Semmelweis University http://semmelweis.hu/ Biomechanical principles of orthodontics The possibilities of tooth movement

Intrusion



Semmelweis University http://semmelweis.hu/

Biomechanical principles of orthodontics The possibilities of tooth movement

Shapedriven vs forcedriven

Semmelweis University http://semmelweis.hu/

Biomechanical principles of orthodontics The possibilities of tooth movement

Equilibrium (Newton lex tertia)

- Within the orthodontic system there is an opposing force to any force, the two cancel each other out so that the system remains in equilibrium
- Because of this, we cannot move all teeth in one direction without the use of an external anchor
- We must always carefully consider the opponents of our exerted forces and the desired / potentially undesirable tooth movements that they create

Biomechanical principles of orthodontics The possibilities of tooth movement

Anchorage

- Anchorage: Resistance to unwanted tooth movement (Proffit, 2018)
- ♥ For most orthodontic treatments that fail, the cause of failure is loss of anchorage; → undesirable displacement of the passive unit
- \clubsuit What is to be considered?
 - → What kind of tooth movement our forces and opposing forces will cause
 - How much resistance can the units of this movement offer?
 - → occlusion
 - → Anatomy of the PDL (intrusion / extrusion, inclination / body displacement)

Biomechanical principles of orthodontics The possibilities of tooth movement

Friction

♥ Resistance to sliding (clearance)

- ♥ Binding (interference)
- ✤ Notching (obstruction)

Semmelweis University

Biomechanical principles of orthodontics The possibilities of tooth movement

Statically determined systems

- A biomechanical system is considered statically determinable if its mechanical effect can be determined clinically by simple measurements.
- Dynamometers and callipers are used for the measurement
- The moment can be easily and precisely determined from the force and distance measured (M = F.d)
- Solution Moment cannot be measured clinically

Biomechanical principles of orthodontics The possibilities of tooth movement

Statically determined systems

- In orthodontics, only the system can be biomechanically determined in which the arch is integrated in a maximum of one unit in the slot or in the tube and the connection at the other unit is pointlike
 - Such a system could be, for example, a rubber chain between two extension arms (if the units are not also connected with an arch)
- The most typical representatives of this system are the cantilevers
- These systems are characterized by their high quality constancy

P

Biomechanical principles of orthodontics The possibilities of tooth movement

Statically undetermined systems

- The arch is ligated into two or more slots
- The resulting forces and torques cannot be determined under clinical conditions
- A typical example is the straight wire technique, in which the tooth movement forces between the brackets are generated due to the elastic deformation of the superelastic arch.
- A NiTi arch that has been tied into all brackets and slots is in fact a series of statically indeterminate systems in which the resulting tooth movement forces cannot be estimated.
- \mathcal{O}
- It is not characterized by qualitative inconsistency

Biomechanical principles of orthodontics The possibilities of tooth movement

General considerations when designing appliances

♥ Bracket width

- friction
- → Interbracket distance
- ♦ Active elements
 - Uniform force delivery over a long period below the iatrogenic range
 - → Good flexibility (formability)

♥ Passive elements

- → The goal is to form rigid, stable units
- It should be rigid and malleable
- Cross section of the arch
 - Control of movement
 - ➡ flexibility
 - → Movement along the arch

Stainless Steel - SS

🏷 NiTi

Titanium Molibdenium Alloy – TMA or β-Titan

Semmelweis University http://semmelweis.hu/ Biomechanical principles of orthodontics The possibilities of tooth movement

Semmelweis University http://semmelweis.hu/ Biomechanical principles of orthodontics The possibilities of tooth movement