CRUDE DRUGS CONTAINING SAPONINS

1. MACROMORPHOLOGICAL EVALUATION

Saponariae albae radix

Primulae radix

Liquiritiae radix

Hippocastani folium

Hippocastani semen

Ginseng radix

Sarsaparillae radix

Hederae folium

2. MICROSCOPIC EVALUATION

Cross section: Saponariae albae radix

Primulae radix Liquiritiae radix Ginseng radix

Powder preparation: Saponariae albae radix

Liquiritiae radix

3. PHYSICOCHEMICAL AND CHEMICAL QUALITATIVE INVESTIGATIONS

- 3.1. Detection of saponins (Liebermann-Bourchard reaction)
 (Saponariae albae radix, Primulae radix, Liquiritiae radix, Hippocastani folium, Hippocastani semen)
- 3.2. Foaming-test
- 3.3. TLC detection of saponins

4. QUANTITATIVE EVALUATIONS

- 4.1. Determination of foam number
 - (Saponariae albae radix, Primulae radix, Liquiritiae radix, Hederae folium)
- 4.2. Determination of haemolytic index (Ph.Hg. VII.)

1. MACROMORPHOLOGICAL EVALUATION

Saponariae albae radix *Gipsophila paniculata* L.

Ph.Hg.VII.

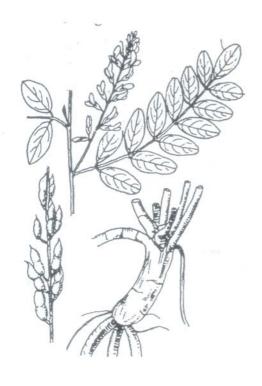
Soap root Caryophyllaceae

Consisting of the root and the short rhizome, the entire drug may be as thick as 4 to 8 cm and as long as 40 to 80 cm. White-coloured outside, sometimes twisted. Inside light yellow, radially cracked. The concentrically enclosed xylem is separated by brown cambium from the white bark. The pieces covered with cork are yellowish brown outside, with many, transversally elongated protuberances united almost to a transversal ring.

Store the drug in the pharmacy cut into oblique disces of 2 to 5 mm width or into small pieces.

Primulae radix
Primula vulgaris Huds.
Primula veris L. ssp. inflata
(Lehm.) Domin

Ph.Hg.VII.


Primrose root Primulaceae

The short rhizome in 8 to 10 cm long, 4 to 5 mm thick, straight or curved, light brown or brownish red, with cicatrices on the surface which are traces of the leaves and the scape. Filiform cylindrical roots grow out in large number thickly all around from the rhizome. Roots light yellow or brownish, 8 to 10 cm long, 1 mm thick, finely striated lengthwise, standing out mostly in the same direction from the rhizome, very fragile. White inside.

Liquiritiae rhizoma

Glycyrrhiza glabra L. Glycyrrhiza glabra ssp. glandulifera Glycyrrhiza uralensis

Ph.HgVIII., Ph.Eur.

Liquorice root Fabaceae

Liquorice consists of the cried unpeeled roots and stolons of *Glycyrrhiza glabra* L.

The plants yielding most of the commercial drug are: *Glycyrrhiza glabra* L.varia *typica* Reg. et Herd., a plant about 1.5 m high bearing typical papilionacaeous flowers of a purplish-blue colour. Its fruit is hairless. The underground portion consists of long roots and thin rhizomes or stolons. This plant is grown in Spain, Italy, England, France, Germany, Hungary and the USA. They are sold as "Spanish" liquorice.

G.glabra L. var. glandulifera Wald et Kit. is abundant in the wild state in Galicia and central and southern Russia. ("Russian" liqu. Its fruit is glandous. The underground portion consists of a large rootstock, which bears numerous long roots but no stolons.

Description and macroscopic characters Typical "Spanish" liquorice occurs in straight pieces from 5 to 20 mm in diameter. If unpeeled, they have a dark, reddish-brown cork, and the runners, which are more numerous than the roots, bear buds. The peeled drug has a yellow, fibrous exterior. Fracture-fibrous; odour-faint, but characteristic; taste-sweet and almost free from bitterness.

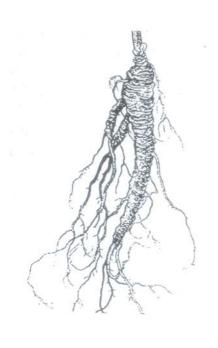
Hippocastani folium *Aesculus hippocastanum* L.

Horse-chestnut leaf Hippocastanaceae

A large deciduous tree with a finely scaly, greybrown bark. The leaves are opposite, palmate with 5-7 leaflets; these are obovate-lanceolate, up to 22 cm long, tapering to a wedge-shapedbase, strongly ribbbed; the petioles are long; the leafbuds rather sticky.

The drug has no odor, taste is bitterish acrid.

Hippocastani semen *Aesculus hippocastanum* L.


Horse-chestnut seed Hippocastanaceae

The fruit is a leathery prickly capsule. The seeds number 1 to 2. large, nut-like, shining brown, with large whitish scar. They are odorless, their taste is sharp.

Ginseng radix

Panax ginseng C.A. Meyer

Ph.Hg. VIII., Ph. Eur.

Ginseng root Araliaceae

The drug consists of the root of the perennial plant. The plant evolves very slowly, it brings flower only in the 4-5 th year.

The plant is indigenous in East-Asien and Tibet, it is cultivated in Russian and Bulgaria.

The plant is 60 cm in hight and has characteristic complex leaves. Two varieties are known: the yellow and red roots. From the yellow root the cork is removed before the drying (on sun), the red root is put into hot water before drying. The yellow root is the more valuable.

The root is in shape human formig therefore it is named as the "root of life" - it means the immortality.

The grown root is 8-20 cm long and 2 cm thick. Surface is longitudinally wrinkled. At the upper part of root cicatries are visible, the remains of petioles and leaves of shoot from the previous year.

Odour - mild aromatic; in closed pot – very strong, characteristic. Taste - flavouring, first bitter then sweet. fracture - white, mealy.

Sarsaparillae radix

Smilax species

Sarsaparilla root Liliaceae

The crude drug consists of roots of the tropic plants Smilax species. The roots are washed and dried by sun or fire and put in budles.

The roots are 1-2 m in length and 3-5 mm in diameter, greyish brown coloured, longitudinally wrinkled and inside yellowish white.

Odourless, taste - mucilaginous.

Hederae folium Hedera helix L. Ph.Hg. VIII., Ph. Eur.

Hedera leaf Yery Araliaceae

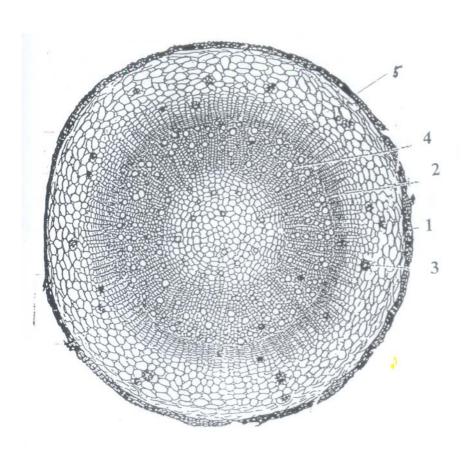
A woody climbing plant, often creeping and covering large areas on the ground, or climbing up to over 25 m. The leaves are simple, dark green and glossy of 2 kinds: those on flowering shoots entire, ovate to diamond-shaped; the others palmately 3-5 lobed, up to 10 cm long, the lobes triangular.

Odourless taste is bitterish, sharp.

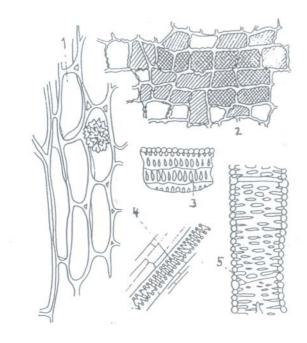
2. MICROSCOPIC EVALUATION

Cross section of Saponariae albae radix

The Soap root is a secondary thickened one below of the periderm the cortex is foundable, which is rich in $Ca(C00)_2$ rosettes.


The medullary rays of phloem and xylem contains Ca(C00)₂ rosettes. In the phloem part we find only "soft" phloem constituents. The cambium consists from several cell-lines. The xylem contains trachea, tracheide and parenchymatoes tissue. Xylem fibres are only in the elder roots.

Powder of Saponariae albae radix


The powder can be characterized by the Ca(C00)₂ rosettes and tracheas of pitted, spiral walls as well as oblique perforated transversal walls.

In the case of unpealed drug we can also see the part of cork.

Cross section of Saponariae albae radix

- 1 = periderm
- 2 = phloem body
- $3 = Ca(C00)_2$ rosettes
- 4 = wood body
- 5 = cambium

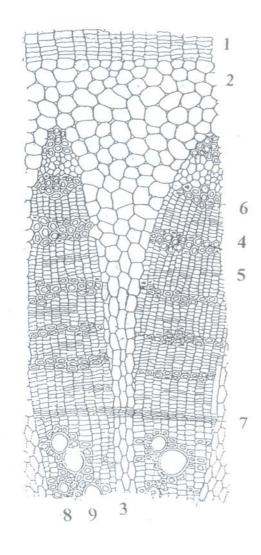
Powder of Saponariae albae radix

- 1 = Cortex-parenchym with cells containing Ca oxalate rosettes
- 2 = cork in surface view
- 3 = trachea of pitted thickened wall
- 4 = trachea of spiral thickened wall
- 5= trachea of oblique perforated transversal walls

Cross section of Liquiritiae radix

Below the periderm is the cortex-parenchym (dilatation zone). Then we find the phloem wood which is devided by phloem and pit medullary rays.

The parenchym-cells of the phloem wood contain starch. The phloem wood consists from hard and soft parts. The sieve tubulars of the soft-phloem are function-able, close to the cambium but far from cambium we find non-functional sieve tissue (keratenchym).

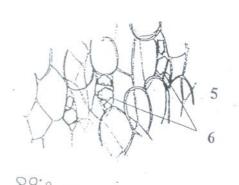

The hard phloem consists from sclerenchymatous bast fibre bundles and locular fibres containing single Ca oxalate crystals.

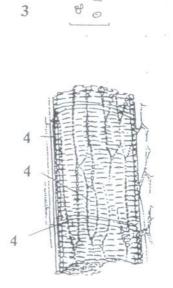
The cambium is building from several cell-lines. The wood part is devided by pit and xylem medullary rays. In the xylem medillary rays tracheides, tracheas, xylem fibres and locular fibres are findable.

Powder of Liquiritiae radix

The powder is characterized by sclerenchymatous phloem fibre bundles and locular fibres containing simple Ca oxalate crystals.

The parenchym fragiles contain starches. At the unpeeled drug we find also cork-part.




Powder of Liquiritiae radix


- 1 = phloem fibre
- 2 = locular fibres
- 3 = starch
- 4 = trachea of pittily thikened wall
- 5 = cortex parenchym
- $6 = \text{simple Ca } (C00)_2 \text{ crystals}$

Cross section of Liquiritiae radix

- 1 = periderm
- 2 = outer cortex
- 3 = pit-medullary ray
- 4 =phloem fibre
- 5 = phloem parenchym
- 6 = locular fibre
- 7 = cambium
- 8 = xylem fibre
- 9 = trachea

Cross section of Primulae radix

A part of the cells of rhyzoderm transformed to root-hairs.

Inside of rhizoderm we find the wide primery cortex-parenchim. It consists from 15-20 cell-layers, with pitted-thickened wall and full of starch.

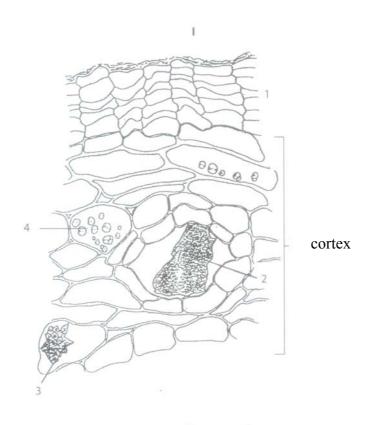
The central cylinder is devidid from cortex-parenchym by endodermis. The endodermis consists of thin walled cells with radial walls thickened by Caspary-dotes.

The central clinder contains the xylem and phloem boundles which give xylem, phloem rings if the the root is elder.

Cross section of Primulae radix

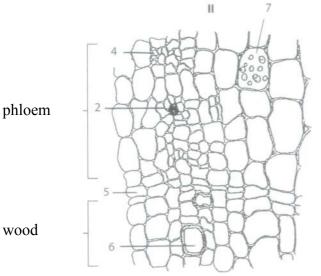
1 = root-hair

2 = rhizoderm


3 = cortex parenchym

4 = endoderm

5 = xylem vessels


Cross section of Ginseng radix

Below of the periderm the cortex is foundable, which consists from the external dilatation zone (cortex-parenchym) and the phloem-wood, which is separated from the xylem-wood by the cambium. The xylem-wood is devided by xylem and pitty medullary rays.

Cross section of Ginseng radix

- I. Periderm and cortex-part
- 1 = periderm
- 2 = schizogene oil cell system and
- 3 = calcium oxalate clubeshaped crystals (rosettes)
- 4 = starches in parenchima

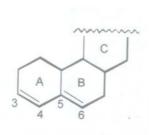
- II. Phloem- and wood parts
- 2 = oil holder
- 4 = sive-tube group bark in internal bark
- 5 = cambium
- 6 =trachea in xylem body
- 7. = starches in parenchyma

3. PHISICOCHEMICAL AND CHEMICAL QUALITATIVE INVESTIGATIONS

3.1. Detection of saponins (triterpenes, sterins) by LiebErmann-Bourchard reation.

Samples

Saponariae albae radix Primulae radix Liquiritiae radix Hederae folium Hippocastani folium Hippocastani semen


Agitate 1 g of powdered drug (IV) with 10 ml of chloroform for 2 minutes, filter through a filter paper and evaporate the filtrate in a porcelain dish to dryness. Dissolve the residue in 1 ml of glacial acetic acid and transfer cautiously over

5 ml of cc. sulphuric acid in a test tube.

The interface of both liquids becomes brown or reddish brown; the colour of the glacial acetic acid layer in various influenced by the drug samples.

Essence of reaction

A conjugated double boundle system is formed by the loose of water molecule from the secundary alcohol group sitting in the third position of the triterpene ring-system.

3.2. Foaming test

Samples

Saponariae albae radix

Shake the powdered drug with water (1 + 10); the liquid foams strougly and the foam is lasting.

3.3 TLC detection of saponins

Prepare of samples

Boil 1 g of crude drug powder with 20 ml of 70% ethanol on water bath for 20 minutes. Filter and evaporate the extract to 4,0 ml; 5μ l of the solution is investigated by TLC, beside saponin reference solution (0,1% 10μ l).

Chromatographic condition

Adsorbent: Kieselgel 60 F ₂₅₄ Developing system: CHCl₃

Reagent for spray: sulphur acidic anise aldehyde reagent.

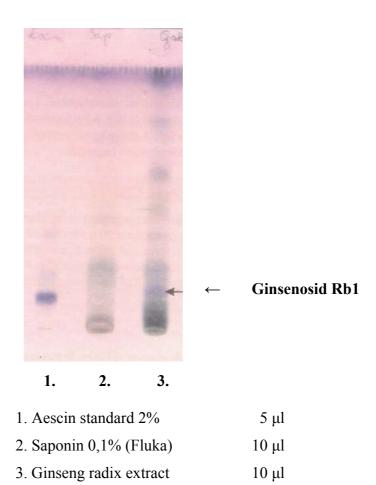
Warm the layer for 10 minutes at 100°C

TLC investigation of saponins

1. Hederae folium	10 µl
2. Aescin standard 2%	10 μl
3. Hippocastani semen	5 μl
4. Saponariae albae radix	10 µl

Chromatographic parameters:

Adsorbent: Kieselgel G60 F₂₅₄


Developing system: n-butanol-acetic acid- H_2O (3:1:1)

Dying reagent: sulphuric acidic anis-aldehyde

spry and warm it at 100°C for 5 minutes

Evaluation: visually

TLC investigation of saponins in Ginseng radix (According to prescribtion of Ph.Hg. VIII. and Ph. Eur.)

Chromatographic parameters:

Adsorbent: Kieselgel G60 F₂₅₄

Developing system: ethyl acetate- H₂O -1-butanol (25:50:100 V/V)

use the upper phase!

Dying reagent: sulphuric acidic anis-aldehyde

spray and warm it at 100°C for 5 minutes

Evaluation: visually

4. QUANTITATIVE EVALUATIONS

4.1. Determination of foam number

Samples

Saponariae albae radix Liquiritiae radix Hederae folium

Definiation

The biggest dilution of extract (relative to 1 g of the crude drug) which gives 1 cm high foam if its 10 ml is shaked for 15 sec in test tube of 16 mm.

Description of determination

Warm 0.25 g of crude drug + 100 ml of water (30 min on water bath, filter, complete to 100 ml with water) Basis solution.

1. test tube	2. tube	3. tube	4. tube	5. tube	
0.4 ml	1.0 ml	2.0 ml	4.0 ml	8.0 ml	of stock solution
9.6 ml	9.0 ml	8.0 ml	6.0 ml	2.0 ml	of water

Shake the tubes for 15 sec, leave to stand 15 min! Search the dilution, where the thickness of the foam is 1.0 cm!

Calculation

$$F = foam number of crude drug$$

$$F = \underline{10}$$

$$p = is the amount (g) of crude drug in the test tube.$$

$$in wich the foam 1 cm thick$$

4.2. Determination of haemolytic index (Ph.Hg.VII.)

Reagents

Buffer solution (pH = 7.4). In a volumetric flask, dissolve 1.743 g of potassium hydrogen-phosphate (KH₂PO₄), 9.596 g of disodium hydrogen-phosphate (Na₂HPO₄ . $2H_2O$) and 9.00 g of sodium chloride to 1000 ml in water.

2 per cent blood suspension. Agitate in a widemouthed glass-stoppered flask (containing a few glass-pearls) fresh bovine blood until the separation of fibrin is completed. Filter the blood then through a double layer of gauze in a vessel placed into a 200 water bath, then dilute a 10.00 ml portion in a volumetric flask with 200 buffer solution to 500 ml. Prepare blood suspension freshly on the day of the test.

R-saponin solution, 0.02 per cent. Dissolve 0.0200 g of saponin in a volumetric flask with the buffer solution to 100 ml. Prepare the solution freshly on the day of the test.

Preparation of Extract

Wash the powdered (IV) and air-dry drug in a quantity specified by the different monographs, and weigh accurately into a 250 ml flask with 100 g of the buffer solution. Heat the content of the flask covered by a small glass funnel on hot water bath for 30 minutes, while the content of the flask is agitated four times by concentric swinging. Filter the hot extract into a 100 ml volumetric flask through a 0.15 g piece of cotton plug, placed between two layers of gauze (about 7x7 cm).

Informative Test of Extract

Transfer 0.2, 0.4, 0.6, 0.8, 1.00 and 1.2 ml of drug extract into 6 test tubes, make up the content of the test tubes with buffer solution to 5.0 ml, and add 5 ml of blood suspension to every test tube:

Test tube	1	2	3	4	5	6	7
Drug extract (ml)	0.2	0.4	0.6	0.8	1.0	1.2	1.4
Buffer solution (ml)	4.8	4.6	4.4	4.2	4.0	3.8	3.6
Blood suspension (ml)	5.0	5.0	5.0	5.0	5.0	5.0	5.0

Seal the mouth of the test tube with the dry fingertip, washed in soap and water and dried with alcohol, homogenize its content by turning the mouth of the test tube downwards. Strong agitation should be avoided in order to prevent foaming. Observe the results of the informative test in 2 hours. The limit is indicated by the test tube the content of which is still transparent, but that of the next one in the order of decreasing drug amount is already opalescent.

Determination of Apparent Hemolytic Index (hi)

Since, after the informative test of 2 hours, it may be expected that a hemolysis may be produced also by an amount of drug extract inferior to that determined as the limit, prepare a series of 12 test tubes of the same drug extract. The 12th member of the test tube series will be the limit dilution of the informative test thus transfer a gradually decreasing quantity of the extract into the following tubes each dose being inferior to the previous one by 0.05 ml. (The first test tube will therefore contain 0.55 ml less drug extract than the 12th.) Make up the content of each test tube with buffer solution to 5.0 ml and then mix with 5.0 ml of blood suspension. Continue the test in the way described at the informative test with the difference that the limit dilution (h) should be determined in 6 hours.

Calculate the apparent hemolytic index (hi) of the drug from the value H with the help of the following formula:

$$hi = \underline{10}$$

where p = drug content of the extract filled into the test tube, expressed in ction of free cinnamic acid

ጥ

In order to obtain the hemolytic index (HI) of the drug, the apparent hemolytic index (hi) must be multiplied with the factor (F) of the blood employed

$$HI = hi \times F$$

Determine the blood factor (F) as follows. In the way described for the drug extract prepare 0.02 per cent R-saponin solution with the buffer solution and dispense into 7 test tubes, starting from 1 ml and increasing the doses by 0.5 ml, and complete with buffer solution to 5.0 ml; dispense finally 5.0 mg (related to the drug dried at 1000).

In order to obtain the hemolytic index (HI) of the drug, the apparent hemolytic index (hi) must be multiplied with the factor (F) of the blood employed

$$HI = hi \times F$$

Determine the blood factor (F) as follows. In the way described for the drug extract prepare 0.02 per cent R-saponin solution with the buffer solution and dispense into 7 test tubes, starting from 1 ml and increasing the doses by 0.5 ml, and complete with buffer solution to 5.0 ml; dispense finally 5.0 ml of blood suspension into each test tube. Perform the informative test and the subsequent detailed test in the way described for the drug extract. The apparent hemolytic index (hi_s) of R-saponin is thus established. The blood factor can be obtained by dividing the hemolytical index of standard saponin ($25\,000$) with the apparent hemolytic index (hi_s)

$$F = \frac{25.000}{\text{hi}_{\text{s}}}$$

Ginseng radix-Examine by liquid chromatography (Ph. Eur. 6.)

Test solution. Reduce about 50 g to a powder. Place 1.00 g of the powdered drug and 70 ml of a 50 per cent V/V solution of methanol in a 250 ml round-bottomed flask. After adding a few grains of pumice, boil on a wather-bath under a reflux condenser for 1 h. After cooling, centrifuge and collect the supernatant liquid. Treat the residue as described above. Mix the collected liquids and evaporate to dryness under reduced pressure at a temperature not exceeding 60°C. Tace up the residue with 20.0 ml of acetonitrile (20 per cent V/V) and water (80 per cent V/V). Dilute 2.0 ml of the solution to 10.0 ml.

Reference solution. Dissolve 3.0 mg of ginsenoside Rgl 3.0 mg ginsenoside Re, 3.0 mg of ginsenoside Rf and 3.0 mg of ginsenoside Rbl in 10 ml methanol.

Column:

size: $l = 0.125 \text{ m}, \acute{Q} = 4.6 \text{ mm},$

stationary phase: octadecylsilyl silica gel for chromatography (5 µm),

temperature: 25°C

Mobile phase:

Mobile phase A: Water, pH set to 2 with H₃PO₄

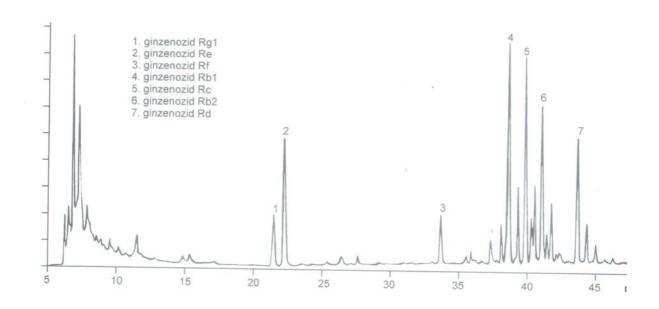
Mobile phase B: Acetonitrile

Time (min)	Mobile phase A (per cent <i>V/V</i>)	Mobile phase B (per cent <i>V/V</i>)	
0-8 8-40 40-45 45-47 47-52 52-55	$ 80 80 \rightarrow 60 60 \rightarrow 40 40 \rightarrow 0 0 0 \rightarrow 80 $	$ 20 \\ 20 \to 40 \\ 40 \to 60 \\ 60 \to 100 \\ 100 \\ 100 \to 20 $	

Flow rate: 1.0ml/min.

Detector: Spectrophotometer at 203 nm.

Equilibration time: 20 min. Injection: 20µl.


Elution order: As given above in Reference solution. Record the retention times of

compounds.

Resolution: Minimum 1.0 between the peaks due to ginsenoside Rgl and to

ginsenoside Re.

Identify the peaks due to ginsenoside Rbl (4) and ginsenoside Rgl (1) on the chromatogram of the test solution.

HPLC Chromatogram of a Ginseng radix test solution

Results in report

- Result of test tube reactions, summerized in table
- Haemolytic index
- TLC of saponins
- Foam number