“Medical students can only be prepared for patient care when practising by hospital beds; Not only the teachers explaining diseases will teach them then, but diseases themselves… Let theory be combined with practice as it is in real life, and make students visit sickhouses once they are studying to be medical doctors; also have them take care of patients with all the knowledge that is expected from doctors.”

Lajos Markusovszky (1815-1893)
Detailed history of Semmelweis University

I. The history of the Medical Faculty (1769-1951)

The Nagyszombat (now Trnava) university founded in 1635 by PÁZMÁNY Péter archbishop of Esztergom and the former Jesuit order institution was given a royal rank during Maria Theresa’s reign and turned from a truncated university to a real one with the addition of the missing fourth faculty, the Medical Faculty. All of the above formed an integral part of the comprehensive, imperial level reform process with the recognition in the background that health care is a key interest of the state and requires a high level of public intervention. The plans of the Medical Faculty in Nagyszombat was elaborated by the royal physician of the queen, the Dutchman Gerard van Swieten, based on the Medical Faculty in Vienna reformed by him as well. Organisation started with the decree of Maria Theresa dated on 7 November 1769. Before this, the whole university had received a royal rank with a royal charter on 17 July that year. To host the new faculty, a separate building was constructed according to the plans of Franz Anton Hillebrandt, which was completed in May 1772. Education was able to start in 1770, first with five faculties: Physiology and Pharmacology (PRANDT Ádám Ignác), Anatomy (TRNKA Vencel), Surgery (PLENCK József Jakab), Botany and Chemistry (WINTERL Jakab József) and General Pathology (SHORETITS Mihály), i.e. the actual clinics. Due to the lack of an own clinics, the education of general pathology faced severe difficulties, and the lack of the corpses and the botanical garden was also a great problem. By moving the university to Buda in 1777, these problems seemed to be solved. The Ratio Educationis I issued simultaneously with the transfer to Buda modified the management of the University. The consistory considered as the representative of the state, which had been heading the university since 1767, was replaced by the university council (senate), however, practically with the same members. The magistratus academicus re-elected every year, which administered mostly the ritual issues, remained on. To lead the whole institution, a president and a director general and to lead the faculties, faculty directors (faculty presidents) were elected. A bit later (in 1786), Joseph II deleted this position (except the Medical Faculty) and their scope of authority was taken away by the previously marginalised deans. This time, the method of appointment of the tutors was also regulated. Based on the opinion of the faculty, the senate submitted a proposal to the king who decided on the appointment through the Royal Council of Governors.

It was on 25 March 1780 when Maria Theresa issued the Diploma Inaugurale, called as the “Magna Charta” of the university, in which she set among other general regulations the legal status of the university and the financial basis of the maintenance thereof. The successor of the
Queen, Joseph II was also dealing with the fate of the University. During his personal visits he decided on the translocation of the institution to Pest, which took place in 1784. The Medical Faculty found a home in a former Jesuits’ monastery at the corner of Hatvani (now Kossuth Lajos) and Újvilág (now Semmelweis) streets. The frequent relocations held back educational activity, since the majority of resources was directed to the establishment of the conditions. The rapidly developing Pest provided a larger and more diverse patient population than before and the number of clinical beds also increased up to 16. The reconstructed building of the monastery proved to be small for the growing number of departments (Theoretical Medicine, Natural History in 1784; Veterinary in 1787; Public Medicine and Special Medical Studies in 1793; Theoretical Surgery in 1808; Obstetrics in 1812 and Ophthalmology in 1817) and the increasing number of students. Practical Training was strongly held back by that contrary to the international practice, the clinics were located not in the city hospital, but in the building of the faculty, therefore, there was no possibility to regularly change the patient population necessary for education. Although there were many attempts by the faculty to involve the Saint Roch Hospital to expand the institutions of the faculty, they were systematically rejected due to the resistance of the city magistrate. Contrary to this, from the 20’s, the clinical trend emphasising practical education was established, the main representative of which was BENE Ferenc, the introducer of vaccinations against pox.

Initially, based on the idea of van Swieden, the duration of the medical training was not regulated. First, a decree in 1774 determined the training period of physicians to be 5 years and according to the study regulation in 1786, it became 4 years. After tightening the examinations, the mutual recognition of medical diplomas had been valid since the reign of Joseph II (the principle of the so-called conformetur), at least as regards Vienna-Prague-Cracow-Pest. In 1804, Vienna left this agreement and obtained a privilege against the others. The surgeon master and civil surgeon training were 2 years long, while the pharmacist training was of 1 year. Midwives were trained in short courses started each semester. In 1787, the Veterinary course joined as well.

The end of the century, showing a vivid university life was replaced by the retrograde mentality of the era of Francis I. This is reflected by the Ratio Educationis II in 1806, created in the spirit of centralisation and the deprivation of the freedom of education, which was dealing with the Medical Faculty in a much deeper level than the previous one. It stipulated in details the teaching material and the obligations of the professors, it updated the order of the education and comprehensive exam and increased the length of education to 5 years. The president (praeses universitatis) executing the intent of the government and his deputy and the vice president (vice-praeses) who was at the same time the chancellor of the university played a key role in the management of the university. The university magistrate consisting of rectors, deans and seniors had only limited power. At the end of the 1810’s, even the faculty director position was reset, however, the professional supervision of the Medical Faculty was exercised by the national chief medical officer.

As in terms of the French revolutionary ideas feared by the government, medical training was a neutral area, at the beginning of the 19th Century, this was the only faculty able to perform considerable scientific activity and more significant developments. Contrary to the efforts, the substantial conditions of education became worse and worse due to overcrowding and the increasing demands. The devastation of the icy flood in 1838 increased on the problems in an extent that even the parliament was dealing with the situation of the Medical Faculty.

Under these narrow circumstances, the tutors of the faculty tried to keep up with the pace of international medical science which started to develop and specialise that time. In the light of the above should one consider that overtaking Vienna, Pest was one of the first cities to found an individual faculty of veterinary in 1793, which included the contracted forensic medicine and public health as well. Vaccination against pox has been applied in Hungary since 1799 and in 1824, headed by GEBHARDT Ferenc, a Central Vaccination Institute was established within the Medical Faculty. One of the most significant scientist of his era, KITAIBEL Pál was also among the tutors of this faculty. The Institute of Pathology founded in 1844 by ARÁNYI Lajos was one of the oldest similar institution in the world. At the beginning of 1847, only few months after the first experiment in the Massachussets Hospital, Balassa tried anaesthesia with ether. The first anaesthetic surgery was performed few days later by SCHOEPF-MEREI Ágost. The faculty was continuously playing key role in the fight against the great Hungarian epidemics (typhus, yellow fever, pox and the cholera leading to riots in 1831 and 1848-49).
The medical and surgical training courses were taught in Latin from the beginning. Education in Hungarian was first dealt with at the end of the 18th Century. RÁCZ Sámuel, who was the fifth professor of the medical faculty in 1793/94 to hold the position of rector, issued the first Hungarian physiology book in 1789 with the title “A physiologia rövid sommája” (Short summary of physiology), which was considered as the first Hungarian university textbook as well. In 1830, law allowed the use of Hungarian language and 3 years later, the first doctorate was written in Hungarian by FLÓR Ferenc and in 1844, Hungarian became the official language. Contrary to the national partiality of the tutors, the education in Hungarian was accepted by the Medical Faculty with reservations, since many of the students – and even some of the tutors – did not speak Hungarian and the Hungarian medical language was practically missing. Finally, the Hungarian as the language of education was introduced in 1848. The lower degree courses (surgeon master, midwife, veterinarian) had been held in the national languages since the beginnings, i.e. in Hungarian, German and Slovakian.

In the legal code of April 1848, a separate article (Art. XIX, 1848) was dealing with the university and promulgated the independence of the university and the principle of liberal freedom of education. The majority of the tutors and students actively took part in the freedom fight. Therefore, the reprisal procedures were performed, the tutors might hold their position depending on their loyalty and authority harassments were permanent. Tutors loyal to the emperor, but often of secondary level were employed by the faculty. At the time of the absolutism, the language of education and administration became the German instead of the Hungarian. Instead of the educational order of 1848, in the spirit of the “conformetur” principle, the Vienna order of 1833 was introduced. At the same time, there were modernisations as well. In this way, the secondary school maturity became obligatory and the faculty director position was deleted. Although experts were trained still in 9 faculties, the surgeon master course slowly faded and based on the pattern in Lemberg, Olmütz and Salzburg, this training was suspended also in Pest. In 1872, the guilds were also dissolved. As regards the language issue, a shift occurred only after the large foreign policy defeat of the royal court. In 1859, a delegation of students went to Vienna to restore the Hungarian language. In 1860, the right of autonomous rector and dean election was extended also to the university of Pest. As a result of the October Diploma, the main subjects were taught in Hungarian and the others in German, Slovakian or Latin depending on the demands. Finally, it was the Article XLIV of 1868 after the Austro-Hungarian Compromise to reinstate the Hungarian language. This time, many tutors not speaking Hungarian left the university, e.g. the outstanding physiologist, Jan Nepomuk Czermák resigned as well contrary to the efforts of his Hungarian colleagues to make him stay.

The harmonised medical training was introduced in 1872, thus, since 1878, only one medical diploma has been existed with the name “doctor of the universal medical sciences”. The new university decree in 1875 determined the order of the new and universal medical doctor comprehensive exam in addition to the provision of the freedom of education and the autonomy. In 1881, the duration of the academic year also changed. Earlier it had been between November and August and since that time, it has been between September and June. Due to the poor facilities, the main problem of the medical faculty was the lack of space. Although in 1848, the clinics were transferred from the Újvilág utca building, it proved to be only temporary, since after the suppression of the freedom fight, they returned there. The Saint Roch Hospital refused on to host the clinics and the capital failed to provide a site for the constructions for a long time. The acquisition of the Kunewalder house (located that time in the Országút, today in the Múzeum körút) in 1858 was a temporary relief that time, which was originally bought for the Institute of Veterinary. The surgery (Balassa), the zoology, the physiology and the obstetrics headed by Semmelweis that time were able to move here. The administration of the faculty and the library got temporary home in buildings nearby. A real solution was brought only by the large-scale constructions started in 1873 with a cost of 25 million krones, which were finished only in 1911. This time, the Úllői út considered that time as a rather outer belt area became the axis of the Medical Faculty, where the clinics, the institutions and the administration were located in two sites. Simultaneously, new, often parallel departments sufficiently equipped in the level of the era were established one after the other. The number of such departments almost
quadrupled until the 1880’s. In these still unique developments, EÖTVÖS József and TREFORT Ágoston ministers of the Ministry of Religion and Public Education, BERZEVICZY Albert state secretary, MARKUSOVSZKY Lajos councillor and on behalf of the Medical Faculty BALASSA János, KORÁNYI Frigyes and the later secretary of state, TÓTH Lajos played key role.

With the rapid development of the clinics, the catch-up of the lagging behind was successful. Parallelly to the constructions, the “medical school of Budapest” became clear around Balassa having launched a medical weekly “Orvosi Hetilap” and Markusovszky. As an effect of Semmelweis, this was the place where the deliberate prevention of surgical infections was started. Public health was among the first to get a department in Budapest, headed by the outstanding bacteriologist, FODOR József. By continuing the work of Schoepf-Merei and Sauer, KORÁNYI Frigyes was the one to begin the establishment of a Hungarian internal medicine school on a state-of-the-art foundation. His work was carried on by his son, Sándor. JENDRASSIK Ernő, named also as the Hungarian Charcot was one of the founders of neurology, DOLLINGER Gyula was that of orthopaedics and TAUFFER Vilmos was that of the surgical obstetrics and gynaecology. LUMNICZER Sándor, the founder of modern surgery was the first to use the Lister’s system of antisepsis. Owing to the work of SCHULEK Vilmos, GRÓSZ Emil and IMRE József, Hungarian ophthalmology became this time famous throughout Europe. As regards paediatrics, the Bókays and KOPITS Jenő, the international expert of hip dislocation deserve mention. The first director of the Hungarian Pasteur Institution, HŐGYES Endre set the foundations of the later Nobel prize winner invention of BÁRÁNY Róbert. With the research of the fine structure of the nervous system, the anatomist LENHOSSÉK Mihály achieved the recognition of his Nobel prize winner colleague, Santiago Ramón y Cajal who considered him as his fellow during the creation of neuron studies. In stomatology, the work of ÁRKÖVI József, while in pharmacology, that of BALOGH Kálmán were outstanding. In 1907, the Radiology got a separate institute headed by the founder of radiology in Hungary, ALEXANDER Béla. Physiology became a modern science in the Medical Faculty owing to the outstanding Czermak of Czech origin. He was followed by JENDRASSIK Jenő whose aim was the foundation of the modern Hungarian physiology school.

The number of students drastically increased. In the 1860’s, their number was between 400-500, while in the 1880’s, it exceeded 1000. In the 1860’s, the first student associations were established. In 1862, aid society and 5 years later, a self-education association was founded. The end of the century was the first time when the issue of the admission of women arose. The medical faculty had generally a rejecting opinion thereabout. The first Hungarian female physician, countess HUGONNAY Vilma succeeded to achieve the recognition of her diploma obtained in 1879 only after 17 years of administrative struggling. In 1895, a decree made it possible for women to participate in trainings and practices in humanities, medical studies and pharmacology. The first female physician graduated in Budapest, STEINBERGER Sarolta was inaugurated on 3 November 1900. A real change in the training of female physicians was brought only by the world war. During the World War I, the majority of the students and the tutors joined the army and the half of the beds the number of which increased to 2000 were maintained for the injured. The change to war industry and the economic exhaustion of the Monarchy drastically decreased the financial supply of education and also of the university. The war almost eliminated the students, however, after their disarmament, there was a dumping. Compared to the last year in peace, more than twice as many (6526) medical students wanted to continue their interrupted studies.

The revolution and the dictatorship of the proletariat triggered further chaos in 1918-19. The university was made subject to stringent central administration and there were significant transformations. There were changes in the personnel and the tutors considered as right wing were deprived of their positions. During the short existence of the Council Government, its measures could not be long-lasting. By rising to power of the counterrevolution, the faculty council qualified the events after 31 October 1919 as “ex lex” and further changes in personnel and certification procedures were started. Tutors were removed from the faculty, among others HEVESY György, one of the founders of nuclear medicine who later won the Nobel prize abroad or the outstanding ophthalmologist, GRÓSZ Emil, but his removal was only temporary.

From the annexed areas, a smaller migration started to the remaining “Mutilated Hungary” and especially to Budapest. Mostly the state-employed intellectuals (public officers, physicians, teachers etc.) were forced to migrate, partly as their
job was linked to the language and partly as they could have been hardly employed by a newly settling foreign state. The largest overcapacity was experienced in the field of physicians, mostly in Budapest, therefore, the fight for making a living was quite harsh. In addition to the too large number of students and the experience from the revolutions, this was also a reason of the issue of the Act XXV of 1920 also known as “numerus clausus”, the initiation of which just started from the Medical Faculty of Budapest. The point of this act was to tighten the conditions of the admission to university, with which on the one hand, they tried to decrease the number of students in further education and on the other they tried to exclude anyone who had taken part in the revolution and to limit the number of Jewish students. This latter affected especially the Medical Faculty, since as it was a course of open access, many Jewish youngsters have selected the medical profession since the beginning. On the other hand, this act was beneficial for the spread of protectionism. At the same time, the faculty tried to block the admission of women as well. On 14 April 1921, the university in Budapest took the name of its founder, PÁZMÁNY Péter and had this name until 1950.

The economic crisis aggravated on by the mutilation of the country led to a financial crisis for the university it had never experienced before. The situation had just begun to normalise when the crisis in 1929 resulted again the decrease in the financial resources spent on education and health care. Unemployment appeared among the physicians as well, the workforce reduction in the university exceeded 10%, the investments stopped and the quarter of the beds had to be left empty due to financial reasons. The number of students sharply decreased as well (in 1925-26 there were 1729, in 1930-31 only 1234 students), contrary to the international trends.

The reform of the medical training which had been on agenda for a long time was introduced in 1922. As a main principle, the researcher and practising physician trainings were in focus. The duration of the education increased to 6 years instead of 5, the comprehensive exams were separated in four cycles and the number of the courses announced was also increased. Later, the system of comprehensive exams was modified on, but it was entered into force only in 1943. In 1936, the classification of the diplomas changed. This was the time when the qualifications used even today, i.e. the rite, the cum laude and the summa cum laude were introduced. After a long time, also the pharmacist education was renewed by increasing the duration of the education from 2 years to 4 and by decreasing the practice from two years to one. Thereafter, the start of the pharmaceutical studies was not linked to a prior practice in a pharmacy, but after the maturity exam, one could immediately enrol.

Between the two world wars, internationally acknowledged schools were operating in the Medical Faculty, such as the school of KORÁNYI Sándor who developed on the school founded by his father. Among his results, the elaboration of the functional examination methods of kidney and the reduction of tuberculosis are outstanding. Many of his students became academicians and heads of department, such as RUSZNYÁK István, HETÉNYI Géza and HAYNAL Imre. The research on cancer made by KROMPECHER Ödön who described the basocellular cancer, that on nucleins, complementaries and enzymes by LIEBERMANN Leó or that on morphology by SCHAffER Károly were significant. As regards pathoanatomy, BUDAY Kálmán clarified the pathogenesis of necrotic stomatitis and mellitis. In microbiology PREISZ Hugó, in biochemistry HÁRI Pál, in physiology FARKAS Géza and in biology HUZELLA Tivadar can be mentioned. In the fields of clinical medicine, the paediatrician HEIM Pál, BÓKAY János and BÁLINT Rezső, the surgeon VEREBÉLY Tibor and the ophthalmologists GRÓSZ Emil and BLASKOVICS László were the outstanding experts of their fields.

Apart from the military duty affecting the tutors as well and the care of the injured, the World War II had not trigger any special disturbance in the life of the Medical Faculty until 1944. With the approach of the front, the majority of the tutors were deployed. The rise to power of the Arrow Cross Party on 15 October 1944 posed new threats on the university and thus, the Medical Faculty as well. Contrary to the categorical order of the government, the university denied to move to Germany. Afterwards, there were plans to transfer the clinics and laboratories to Buda, however, they were mostly thwarted partly due to the repeat resistance of the faculty and partly due to the difficulties in transportation. Before the closure of the shell of fortress lines, the engineering, medicine, pharmacy and veterinary senior students were carried to Germany with a military call-up, i.e. the representatives of every programme considered as important regarding the continuation of the war. In this way, about 600 medical and
pharmacist students from the Medical Faculty Budapest were settled partly to Halle and partly to Austria with some of the education staff. They succeeded to return only after the war among huge difficulties and with the mediation of the university, with American passport.

Together with the city, the faculty was also heavily hit by the siege of Budapest. The damage in the buildings were enormous (four clinics were severely hit) and the majority of the equipment was also destroyed. The total damage was around 13 million golden pengő (at 1938). The largest devastation affected the Internal Medicine II, the Gynaecology I, the Dermatology, the Surgery II and the Paediatric Clinics, but several other buildings were damaged as well. This was aggravated by the freezing of the drainage system and the plundering affecting the whole city. Contrary to all these, the clinics were operating even in case of the siege, often under impossible circumstances. Even the Institute of Physiology and the Pathoanatomy department started to perform the care of the injured.

After the war, the tutors were significantly changed according to the taste of the new political forces having the power. The main tool of this was the certification procedure. It describes the ratios well that against 15 out of the 27 regular tutors of the medical faculty, procedures were launched or they were dismissed with various sanctions. In addition to this, in January 1945, IMRE József professor died which led the Ophthalmology Clinic to get empty. In addition to them, 6 honorary extraordinary tutors, 17 private professors and 11 physicians were dismissed. Out of the physicians above, 44 were still in Germany with the students carried there.

From June 1945 until his emigration, the Nobel Prize winner professor SZENT-GYÖRGYI Albert was among the tutors of the faculty, who was that time the head of the Department of Physiology and Medical Chemistry. From 1945, there was a sharp increase in the number of the students, which exceeded multiple times the capacity of the faculty, therefore, from 1947/48 onwards, they were forced to introduce admission examination. After the rising of the Communist Party to power, one of the most important factors became the origin of the candidate, therefore, the social composition of the students significantly changed. Soon, almost 25% was the ratio of the students from worker or pawn origin. The National Association of Peoples’ Colleges was founded and from the academic year 1951/52, the Scientific Students’ Association movement was introduced based on Soviet pattern. In 1948, education was reformed again. The examinations were tightened, education turned more pragmatic and the medical chemistry and physics were included into the curriculum, in addition to the biology in 1950. Due to political reasons, the Marxism and Leninism, the Russian language and the national defence knowledge were also added.

In this period, multiple hospitals were attached to universities by forming clinics. Therefore, the number of beds increased to 3167 in 1955 from the 1178 in 1946. In parallel, specialisation was going on within the disciplines, which led to further separations in the clinics as well. Areas with larger and larger costs entered into research, therefore, fallback behind the rich countries was evident. This was worsened on by the isolation policy in the 1950’s when there was Soviet influence also in science.

II. History of the separate Medical University: BOTE, SOTE (1951-2000)

After 1949, the Hungarian higher education underwent consecutive reforms. Due to the fight against churches, the name of the university was modified, therefore, instead of its founder, PÁZMÁNY Péter, the university got the name of one of its most prominent scientist tutors, EÖTVÓS Loránd on 1 September 1950. At the end of 1950, the Council of Ministers discontinued the former practice and traditions and decided the creation of specialist universities subject to the sectoral ministries. They wanted to reach it partly by founding new institutions and partly by the division of the currently existing ones. During the reorganisation, the Soviet higher education system of the 1930’s was taken as example, disregarding that since that time, this had been significantly modified also in the Soviet Union by resetting the unified management of higher education. The deadline of the completion of the action was planned to be on 1 February 1951. Within the framework of
this, the medical faculties of the universities were separated and transformed into separate specialist universities. In a parallel way, the new medical universities were subordinated not to the Ministry of Religion and Public Education, but the newly formed Ministry of Health. Therefore, from 1 February 1951, the Faculty of Medicine of the Eötvös Loránd University continued its operation as a separate Medical University of Budapest.

In 1955, the organisational transformations went on. Within the University, 3 faculties were formed (with their former names: Faculty of General Medicine, Faculty of Dentistry and Faculty of Pharmacy). On 1 September 1955, the rectorate was established. The pharmacist training was transferred permanently to the medical university from the Eötvös Loránd University back in 1951 and in 1952, the dentist training of new system was started. Finally, on 7 November 1969, for the 200th Anniversary of the Faculty of Medicine, the university took the name of SEMMELWEIS Ignác.

Separation had, however, some disadvantages as well. From certain aspects, the distance from the humanities and the Faculty of Sciences led to drawbacks for the medical profession. The everyday life of the new university was made more difficult by that it had only the narrowest professional institutes and the conditions for the cultural and sports life or the rooms suitable for hosting large events were missing. They were able to be terminated only by the large investments of the 1970’s.

After the separation of the university, the separation from the BEAC university sports club also took place to form the Orvosegyetem Sport Club (OSC, Medical University Sports Club). The fencers and waterpolo players of the OSC have been the regular and successful participants of the Olympic Games and world championships.

The prints of the war had not even disappeared when as a protest against the communist power, the revolution broke out on 23 October 1956. In the student movements, the students of the medical university also took place and after the breaking out of the armed fight, the role of our university aimed mostly at the care of the injured, since our institutions were in the centre of the war in Budapest. The staff of the affected clinics and institutions exhibited superhuman and heroic withstand multiple times. Further buildings were damaged and the most severely hit building was the Dermatology clinic. The reprisal after the communist restoration did not avoid our university either. The victim of this reprisal was the innocently slandered and executed TÓTH Ilona senior physician student who is considered today as the martyr of our university.

After consolidation, the emerging external relations from the 1960’s facilitated us to keep up with the scientific international profession. In the following decades, serious developments were performed as well. The most important of them were the reconstruction of the Dermatology clinics demolished in 1956, the huge theoretical building finished in 1978, the Ophthalmology clinic I and the delivery of the Transplantation and Surgery Clinics in the beginning of the 1990’s. In the clinics, healing and education took place this time with more than 3100 beds.

The increase of the ratio of the international students has started to grow since the 1970’s. This time, they arrived mostly from the developing countries and mostly from the so-called democratic countries. Education in German language started in 1983 and after an experiment in 1987, the regular education in English language started in 1989.

The Act LXXX of 1993 on Higher Education made it the task of the universities to prepare for scientific degree and to award the PhD degree, based on which the Semmelweis University got its Doctoral School accredited in the same year and until 2018, it started 47 programmes.
III. The history of Semmelweis University (2000–2021)

At the end of the 1990’s, the transformation of the Hungarian higher education network was put on agenda with the aim of institutional integration. The final stage of this process was determined by the Act LII of 1999 on the Transformation of the Higher Education Institutional Network. Accordingly, even in July that year, three universities (the Semmelweis University of Medicine, the Haynal Imre University of Health Sciences and the University of Physical Education) elaborated the plan of the organisational, operational and financial policy of the university to be created, together with the call for application for the rector and the director general. After the preparatory work, on 1 January 2000, Semmelweis University was established by the merger of the Semmelweis University of Medicine, the Haynal Imre University of Health Sciences and the University of Physical Education, which consisted of the following faculties: Faculty of General Medicine, Faculty of Health Sciences, College Faculty of Health, Faculty of Dentistry, Faculty of Pharmacy and Faculty of Physical Education and Sport Sciences. From this group, the Faculty of Health Sciences of the Haynal Imre University of Health Sciences was removed and based on a governmental decree, it ceased to exist. (The successor of the Haynal Imre University of Health Sciences was the new organisation, the National Medical Centre formed from it, which was known as Szabolcs utca Hospital until its closure in 2007.) The College Faculty of Health of the Haynal Imre University of Health Sciences remained on the part of the university, which continued its operation from the end of 2001 with 5 faculties: Faculty of General Medicine, College Faculty of Health (from 2007 with the name of Faculty of Health Sciences), Faculty of Dentistry, Faculty of Pharmacy and Faculty of Physical Education and Sport Sciences. In its decision no 62/2008 on 29 May 2008, the Senate of Semmelweis University decided to found its sixth faculty, the Faculty of Health and Public Services with the participation of three institutions working in the border of natural sciences and social sciences, i.e. the Health Services Management Training Centre, the Institute of Mental Health and the Institute of Health Informatics, Development and Further Training. The faculty started its activity in January 2010 and the inaugural meeting of the Faculty Council was held on 21 April 2010. The new faculty has mostly social science orientation, however, it integrated interdisciplinary trainings at the border of sciences. With its programmes, it covers the whole educational spectrum including the basic training, the master training, the doctoral training and the postgraduate specialist training courses in the field of healthcare management, mental and community health and health informatics.

In addition to the structural reorganisation, the new millennium brought significant developments as well. In 2003, the College Faculty of Health succeeded to move to a new site instead of its earlier fragmentation (Óbuda, Újpest, Józsefváros), to the Vas utca close to the centre of the university, into the fastidiously renovated building of the former Pajor sanatorium and later Balassa János Hospital. The Educational Centre of the Faculty of Dentistry was built between 2006-2007 in the site of the Pátria printing house, in the Szentkirályi utca. Almost all of the clinics and departments of the faculty moved to this state-of-the-art building. In September 2010, the plan of a long-standing desire of a second theoretical building, back from the 1960’s came true in the form of the Theoretical Medical Centre in the Tűzoltó utca, which won several architectural professional prizes. In the gross 27,000 m² of the building, there are research laboratories, study rooms, student laboratories, lecture rooms, a modern animal house and seven seminar rooms. The two latter investment was performed in the so-called PPP construction. Among the renovations of buildings, the multistage project of the Central Management Building (Üllői út 26) started in 2008 has to be mentioned, the first stage of which, the renovation, was finished in 2009 and the project was completed by the formation of the loft in 2012. The Ophthalmology Clinic in the Mária utca and the 1st Department of Pathology and Experimental Cancer Research were renovated in 2013. In the summer of 2012, the large-scale development of the Outer Clinical Site, the Korányi project was started, which is one of the most significant investment of the previous century of the university.

Between 2008 and 2010, Semmelweis University started three off-site trainings abroad. The first was the Asklepios Campus Hamburg, within the framework of which the stu-
Students studying in German language continue their studies in the Hamburg campus according to the Hungarian curriculum, after the theoretical training in Budapest and they get the medical (M.D.) diploma of the Semmelweis University at the end of the training. In cooperation with the L.U.de.S University, Lugano, Switzerland, the Italian and English language physiotherapy basic training (BSc) started in 2009, with the same curriculum as the Faculty of Health. In 2010, the Faculty of Health and Public Services established an off-site training in Bratislava. The postgraduate health management training programme organised jointly with the Health Management Academy, Bratislava was held in Slovakian language with two groups, one in 2010 and in 2012.

In 2010, Semmelweis University won the title of Prestigious Research University related to which it performed a large-scale tender with the title “Modern Medical Science Technologies in the Semmelweis University”. Within the framework of a tender of almost 3 billion Hungarian Forints, outstanding results were achieved in five distinguished fields of research: personalised medicine, imaging procedures and bioimaging, bio-engineering and nanomedicine, molecular medicine and in the integrative educational module. The university won the Research University qualification for the period 2013-16 as well, which is still possessed.

In Hungary in 2011, Semmelweis University was the first among the medical universities to develop e-learning learning materials within the framework of a two-year Social Renewal Operational Programme (TÁMOP) and the possibility became open to hold on-line examinations. Even in that year, the E-learning and Digital Content Development Centre was founded, which performs the coordination tasks of the development of the university learning materials.

In 2013, the Central Institute of Stomatology was terminated, the role of which was taken away by the Department of Community Dentistry within the university. This Department renovated in 2019 is the largest institute of the Faculty of Dentistry in terms of staff and floor area and in addition to the continuous patient care, it takes part in the education, specialist physician training and further education tasks as well. In 2014, the Thoracic Surgery Department was established, which is operating on the basis of the National Institute of Oncology. In December 2015, the first successful lung transplantation in Hungary was performed here.

On 1 September 2014, the Faculty of Physical Education and Sport Sciences spun off Semmelweis University and it continued its operation separately again, with the name of University of Physical Education.

In the end of 2014, similarly to many Hungarian institutes of higher education, with the introduction of the chancellor position, the management system of Semmelweis University was changed. Education, research and patient care are managed by the rector, while the tasks regarding the operation and the management of the university were transferred to the chancellor. From 2015, the management of the Clinical Centre of the university was taken by the vice-rector for clinical affairs from the rector. In 2016, as a separate patient care institution of the university, the Centre of Oncology was formed after its spin-off from the Department of Radiology and Oncotherapy. On 1 August 2017, the Pető András College and its part, the Institute of Conductive Education joined the University, which has been operating as the Pető András Faculty. In this way, the number of faculties increased to six again.

In 2018, the university celebrated the 200th anniversary of the birth of Semmelweis Ignác after whom the university got its name and with the solemn opening ceremony of the academic year 2019/2020, the jubilee year of the university starts, with which we pay tribute to the 250th anniversary of the foundation of the university.

Compiled by

Dr. MOLNÁR László – SÁGI Zenina – DOBOZI Pálma
BENE Ferenc,
tutor of internal medicine
1775-1858

BÓKAI János,
tutor of paediatrics
1822-1884

BALASSA János,
tutor of surgery, the director of the
Medical Faculty in 1848/49
1814-1868

ARÁNYI Lajos,
the first tutor of pathology
1812-1887

SEMMELEweis Ignác,
painted by THAN Mór
1818-1865

WAGNER János,
tutor of internal medicine
1811-1889
JENDRASSIK Jenő, tutor of physiology 1824-1891

LENHOSSEK József from 1864, tutor of anatomy 1818-1888

GENERSICH Antal, tutor of pathology 1842-1918

LUMNICZER Sándor, tutor of surgery 1821-1892

MIHALKOVICS Géza, tutor of anatomy 1844-1899

HÖGYES Endre, tutor of general medicine 1847-1906
FODOR József,
the first tutor of the independent public health
1843-1901

TAUFFER Vilmos,
tutor of obstetrics and gynaecology
1851-1934

KORÁNYI Sándor,
tutor of internal medicine
1866-1944

NÉKÁM Lajos,
tutor of dermatology
1868-1957

KROMPECHER Ödön,
tutor of pathology
1870-1926

HUZELLA Tivadar,
the director of the Institute of Histology and Embryology
1886-1950
BALOGH Károly,
the first dean of the Faculty of Dentistry
1895-1973

HAYNAL Imre,
the director of the Department of Internal Medicine II
1892-1979

MOZSONYI Sándor,
the first dean of the Faculty of Pharmacy
1889-1976

SZENT-GYÖRGYI Albert,
Nobel Prize winner,
tutor of biochemistry
1893-1986

BALÓ József,
tutor of pathology
1895-1979

SZENTÁGOTHAI János, neuroscientist,
tutor of anatomy
1912-1994
Changing the operating model (2021—)

On its decision 1/2021 (I. 28.) the Senate of Semmelweis University - including its six faculties, public education and vocational institutions, as well as its clinical centre forming an organic unit with its medical and health sciences training - supported the change of the operating model of Semmelweis University. The state transfers its maintenance rights to a public interest foundation to be established by the state for the maintenance of Semmelweis University, thus contributing to the achievement of the university’s strategic goals and the development of Hungarian medical and health science education and patient care.

Semmelweis University is already an elite university of international reputation, known and respected, which has reached the limits of its development due to current environmental constraints. A change of model could create the opportunity to achieve the goal of becoming one of the world’s top 100 universities.

The vision of Semmelweis University is to be recognised as one of the world’s leading universities, and as such, ensuring the unity of theoretical education, basic and translational research and clinical care, while respecting tradition. The university’s further goal is to implement the training of excellent professionals in medical and health sciences along with closely related pedagogical fields by widely applying the results of modern technology. The university employs methods of the highest level of healing, focusing on the areas of health preservation, disease prevention, personalized medicine, and societal expectations, and serving the rise of the nation.

The operational model (public law framework) of the University has not changed significantly in the last three decades. Since its establishment, it has operated as a central budgetary body, as part of public finances, regarding its management, financing, employment and motivation. The socio-economic environment of the University, as well as the sectoral governance of higher education, poses challenges to the current operating model which the institution can hardly meet within its current operational framework.

A change in operation model is necessary to enable the university to meet its own quality expectations and those of the market and knowledge industry.

The new model that will emerge as a result of the transformation will make it possible to achieve strategic goals:

1. By 2030, Semmelweis University will become one of Europe’s five most successful universities in the medical sciences and one of the top 100 out of 28,000 universities in the world.
2. Ensuring the sovereignty of Hungarian-language healthcare in Hungary and the nation, the entire system of medical and health professional training will be renewed as part of the curriculum reform launched in the year of the 250th anniversary of Semmelweis University.
3. Semmelweis University will train some of Europe’s top doctors, dentists, pharmacists, conductors, health and health related management as well as social science professionals.
4. A key export product of Semmelweis University is its foreign-language medical training, which generates significant revenues at national level, and which can be expanded by various means in the coming years.
5. Graduates of Semmelweis University are doctors and health professionals who know the Christian cultural roots that are so important in the field of medicine, and who not only understand the value of health, but live it.
6. Semmelweis University’s clinical patient care activities will be renewed by developing a complete public care portfolio, thus enhancing the health security of the Hungarian population and increasing trust in healthcare.
7. Health and pharmaceutical developments that ensure national sovereignty are implemented on the research and innovation base of the University.
8. The research output of Semmelweis University can be significantly increased in a practical, translational direction as a result of patient-centred health industry cooperation with national and international partners in line with governmental goals. In this process domestic health industry players will be given a prominent role.
9. Leadership in data-driven support for health and healthcare industry paradigm shift.
The aim of Semmelweis University is to contribute to the creation of a world-class medical and health sciences university in Hungary, to become a national educational and scientific base for disease management, and to support the re-launch of the economy through its developments.

In accordance with the provisions of Act XX of 2021 on “public trusts funds performing public function” and Act XX of 2021 on the “National Foundation for Health and Medical Training, the transfer of assets to the Foundation for National Health Care and Medical Education and Semmelweis University”, the Semmelweis University will continue to operate as a public interest university in the form of a foundation from 1 August 2021. The executive body of the foundation is the board of trustees, which exercises all the powers that do not fall within the competence of the founder or other foundation organization or body, in particular the maintenance rights of the university specified in the act on higher education. The Board of Trustees consists of five (5) natural persons. The members of the Board of Trustees are the Chairman and the members of the Board of Trustees.

Written by:

dr. László Molnár
Sági Zenina
Pálma Dobozi
Beatrix Valyon
HONORARY DOCTORS OF THE MEDICAL FACULTY OF BUDAPEST DURING THE UNIVERSITY’S SCIENCE ERA

<table>
<thead>
<tr>
<th>Year</th>
<th>Name and Details</th>
</tr>
</thead>
</table>
| 1895/96 | Tivadar Károly, royal prince from Bavaria
John Shaw Billings, professor from Philadelphia
Rudolf Virchow, professor from Berlin
Joseph Lister, professor from London
Adolf Anders Retzius, professor from Stockholm
Guido Bacelli, professor from Rome
Pierre-Paul-Émile Roux, professor from Paris
Károly Than, professor of Budapest |
| 1899/1900 | Tivadar Duka, chief doctor Col. Emeritus of the royal Bengal army of England, on the occasion of his 50th anniversary of operation |
| 1909/10 | Albert Apponyi, Minister of Culture, on the occasion of the XVI. International Medical Congress held in Budapest |
| 1911/12 | Heinrich Wilhelm Waldeyer, professor from Berlin, on occasion of his 50th jubilee as a doctor |
| 1914/15 | Otto Karl Schjerning, professor of Berlin |
| 1928/29 | Friedrich Schmidt-Ott, Minister of State of Prussia |
| 1930/31 | Harvey Williams Cushing, professor of Harvard University in Cambridge |
| 1934/35 | Jenő Sipőcz, Lord Mayor of Budapest |
| 1935/36 | Ferdinand-Jean Darier, Chairman of the French Society of Dermatology
Anton Freiherr von Eiselsberg, professor from Vienna
Karl Albert Ludwig Aschoff, professor from Freiburg
August Krogh, professor from Copenhagen
Granville Harrison Ross, professor at Yale University |
| 1942/43 | Károly Szendy, Mayor of Budapest |

LIST OF PERSONS AWARDED WITH THE „DOCTOR HONORIS CAUSA” TITLE AT THE BUDAPEST/SEMMELWEIS UNIVERSITY OF MEDICAL SCIENCES

<table>
<thead>
<tr>
<th>Year</th>
<th>Name and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967</td>
<td>Boris Vasilyevich Petrovsky (Soviet Union)</td>
</tr>
</tbody>
</table>
| 1969 | Pyotr Kuzmich Anohin (Soviet Union)
Assen Hadyolov (Bulgaria)
György Békéssy (USA)
Vasily Vasilyevich Parin (Soviet Union)
Daniel Bovet (Italy) |
| 1972 | Marcelino G. Candau (Switzerland)
1976 | Britton Chance (USA)
1978 | Leonid Semyonovich Persyanilov (Soviet Union)
1980 | Tadeusz Krwawicz (Poland)
1982 | Vasyl Vasilyevich Zakusov (Soviet Union) |
| 1978 | Uktam Aripov (Soviet Union) |
| 1980 | Nikolai Nikolaevich Blohin (Soviet Union) |
| 1982 | George Weder (USA) |
| 1983 | Philip Gerald Mechanick (USA)
Viking Olov Björk (Sweden) |
<table>
<thead>
<tr>
<th>Year</th>
<th>Laureates</th>
</tr>
</thead>
</table>
| 1984 | Walter Birkmayer (Austria)
Arje Scheinen (Finland) |
| 1985 | Jens J. Pintborg (Denmark)
Armand Hammer (USA)
Klaus Thurau (Germany) |
| 1986 | Hans Altmann (Austria)
Mitropan Studenikin (Soviet Union) |
| 1987 | John Gergely (USA)
Halfdan I. Mahler (Denmark)
Shogo Sasaki (Japan)
Ludwig Mecklinger (Germany)
F. Gotthard Schettler (Germany) |
| 1988 | László Ernster (Sweden)
Jan Solich (Czechoslovakia)
Dieter Schleger (Germany)
Emeric Szilágyi (USA)
Thomas P. Singer (USA)
George B. Udvarhelyi (USA) |
| 1989 | Douve D. Breimer (Netherlands)
Yoshinori Nozawa (Japan)
Walter Künzel (Germany)
Herbert Oelshcläger (Germany)
Jerzy Maj (Poland)
Martin Reivich (USA) |
| 1990 | Friedrich Wilhelm Ahnfeld (Germany)
László Róbert (France)
Endre A. Balázs (USA)
Benno Runnebaum (Germany)
Herbert Braunsteiner (Austria)
Heitaroh Iwata (Japan) |
| 1991 | Merton Sandler (England)
Hans Weidinger (Germany) |
| 1992 | György Ács (USA)
László Iffy (USA) |
| 1993 | Ursula Lachnit-Fixon (Germany)
Milan Chalabala (Slovakia)
Felix Unger (Austria)
Ulrich Joos (Germany)
Isaac van der Wald (Netherlands)
Sergio Ferri (Italy) |
| 1994 | Takao Yamauro (Japan)
H. W. Wouters (Netherlands) |
| 1995 | Károly Balogh (USA)
Thomas Rabe (Germany)
Horst Cotta (Germany)
Eberhard Ritz (Germany)
Viktor E. Frankl (Austria)
Heikki Ruskoaho (Finland)
John A. Hobkirk (England)
Thomas Schiff (USA)
Dieter Ernst Lange (Germany)
Volkmar Schneider (Germany) |
| 1996 | Theodor Hellbrügge (Germany)
Hans-Günter Sonntag (Germany)
Thomas Kenner (Austria)
Moussa B. H. Youdim (Israel)
Edward R. Perl (USA) |
| 1997 | Bernd Brinkmann (Germany)
Frank A. Chervenak (USA)
Asim Kurjak (Croatia)
Ferenc Robicsek (USA)
Werner Schmidt (Germany)
André Haynal (Switzerland) |
| 1998 | Luis Gabriel Navar (USA)
Nikolaus Freudenberg (Germany)
Stefan Pollak (Germany)
Tamás Hacki (Germany)
Norbert Schwenzer (Germany)
Thomas D. Kerényi (USA)
Georg Stingl (Austria)
Thomas Michael Krieg (Germany)
Michael Wahl (Germany)
Juhani Leppäläluoto (Finland) |
<p>| 1999 | Klaus Wolff (Austria) |</p>
<table>
<thead>
<tr>
<th>Year</th>
<th>Persons</th>
</tr>
</thead>
</table>
| 2000 | Allen Cowley (USA)
Péter Illés (Germany)
Iván Kiss (Germany)
Ryszard Jerzy Gryglewski (Poland)
Emmanuel van Praagh (France)
Claes B. Wollheim (Switzerland)
Gottfried O. H. Naumann (Germany)
Gabriel P. Haas (USA)
Gerd Schmitz (Germany)
Elemér Zsigmond (USA) |
| 2001 | Pekka Juhani Saukko (Finland)
Leo M. Sreebny (USA)
N. Joan Abbott (England)
Christopher Squier (USA)
Ádám Tegzess (Netherlands)
Gottfried Heinisch (Austria)
Herbert Rübben (Germany)
Han C. G. Kemper (Netherlands) |
| 2002 | Jacques Rogge (Belgium, Switzerland)
Sataro Goto (Japan)
Matthias Brandis (Germany)
John Holloszy (USA)
János Alpár (USA)
Denys Wheatley (England)
Angelo Benedetti (Italy)
Ferenc Jolesz (USA)
Tatsuo Nagai (Japan) |
| 2003 | Thomas E. Andreoli (USA)
Michael Georgieff (Germany)
László Víg (Hungary)
György Gosztonyi (Germany)
Martin Black (England)
Helmut Hahn (Germany)
Thomas Detre (USA)
Carl Hermann Lücking (Germany)
David B. Ferguson (England)
Marteen J. H. Slooff (Netherlands) |
| 2004 | Stephen Katz (USA)
Sebastian G. B. Amyes (England)
Sir George Radda (England)
Michael Marberger (Austria)
István Seri (USA)
Peter Gängler (Germany)
Osmo Hänninen (Finland)
Albert William Taylor (USA)
Barry D. Kahan (USA) |
| 2005 | Vilmos Vécsei (Ausztria)
Louis Ignarro (USA)
Gyöngyi Szabó (USA)
Heinrich Schmidt-Gayk (Germany)
Jos Hendrik Willem Hoogmartens (Belgium)
Cynthia K. Larive (USA)
Tibor Hortobágyi (USA)
Vladimir Brusic (Australia) |
| 2006 | Uwe Wilhelm Joseph Heemann (Germany)
Philippe Morel (Switzerland)
Rolf Christian Gaillard (Switzerland)
Mátyás Sándor (USA)
Hideki Ohno (Japan) |
| 2007 | John Raymond Garrett (England)
Michael Landthaler (Germany)
Kamal K. Midha (Canada)
Gertrud Prüster (Denmark)
Roberto Romero (USA)
Heinz Schilcher (Germany)
Jörg Schubert (Germany)
Clemens Sorg (Austria) |
| 2008 | Olaf Bodamer (Austria)
Péter Pál Bucsky (Germany)
Kelvin Davies (USA)
Gabor Kaley (USA)
Anton Sculean (Netherlands) |
2009 Maynard R. Case (England)
Christopher R. Chapple (England)
László Endrényi (Canada)
Zsuzsanna Fábry (Hungary – USA)
Bruno Grandi (Italy)
Jerzy Kosiewicz (Poland)
Karl-Heinz Kuck (Germany)
Peter Malfétheiner (Germany)
Franco Mantero (Italy)
Éva Mezey (Hungary – USA)
Georg Petroianu (Germany – USA)
Tamás Péter Sótonyi (Hungary)

2010 Roger Y. Tsien (USA)
Masaki Kitajima (Japan)
Hartmut P. H. Neumann (Germany)
István Boldogh (USA)
Constantin Copotoiu (Marosvásárhely, Romania)

2011 Péter Ferenczi (Austria)
Dirk Pickuth (Germany)
Andrzej Wieccek (Poland)
Renato V. Iozzo (USA)
Örs Nagy (Romania)
István Bocskai (Romania)
James S. Skinner (USA)

2012 Pierre Corvol (France)
Tibor Juhász (USA)
George Berci (USA)
Axel Ullrich (Germany)
Jozef Corveleyn (Belgium)
Joseph Kutzin (Switzerland)
Daan Braveman (USA)
Imre G. Csizmadia (Canada)
Árpád Gyéresi (Marosvásárhely, Romania)
Vinod P. Shah (JSS University of Mysore, India)
Jürgen Michael Steinacker (Germany)

2013 Peter Gabor Medveczky (USA)
Arthur J. Moss (USA)
Gerhard M. Kostner (Austria)
Marie T. O’Toole (USA)
Peep Veski (Estonia)
Kai-Ming Chan (China)
Paul G. M. Luiten (Netherlands)

2014 Richard M. Satava (USA)
René Sylvain Kahn (Netherlands)
Péter Gloviczki (USA)
Herbert Ehringer (Austria)

2015 Shigeru Saito (Japan)
Pál Pacher (USA)
Jacques Marescaux (France)
Leena Kaarina Bruckner-Tudermann (Germany)
Stephan Züchner (Germany)
Fausto J. Pinto (Portugal)
György Kálmán Béla Sándor (Finland)
Panos Macheras (Greece)
Attila A. Hincal (Turkey)

2016 László Bögre (England)
Walter Klepetko (Austria)
Lajos Okolicsányi (Italy)
György Kúnos (USA)
Josep Figueras (Spain)
Henning H. Blume (Germany)
Gábor Tigyi (USA)

2017 Gerhard Hindricks (Germany)
Christine Baylis (USA)
Rainer Schulz (Germany)
Mikael Björnstedt (Sweden)
Keiichi Maruyama (Japan)
Josef Smolen (Austria)
Clive G. Wilson (England)
Stefan Offermanns (Germany)
PRIVATE TUTORS OF SEMMELWEIS UNIVERSITY

<table>
<thead>
<tr>
<th>Year</th>
<th>Tutors</th>
</tr>
</thead>
</table>
| 1995 | Dr. Árpád Mayer head physician, Uzsoki Hospital, Oncology Centre
Dr. László Takácsi Nagy deputy head physician, Uzsoki street Hospital, Oncology Centre |
| 1996 | Dr. Elemér Nemesánszky head physician, Buda Hospital of the Hospitaller Order of Saint John of God
Dr. István Hartyánszky, chief physician, National Institute Of Cardiology
Dr. János Strausz medical director, Törökúlt Institute of Pulmonology
Dr. Szabolcs Ottó deputy director-general chief physician, National Oncological Institute
Dr. András Szabó associate professor, Head of Department, Saint Stephen University
Dr. Endre Ludwig head physician, Péterfy Sándor street Hospital |
| 1997 | Dr. Béla Goldschmidt head physician, Saint Roch Hospital
Dr. János Hamar head physician, National Institute of Traumatology
Dr. György Jermendy head physician, Bajcsy-Zsilinszky Metropolitan Hospital
Dr. György Karmos senior research fellow, Hungarian Academy of Sciences, Institute of Psychology
Dr. Elek Kisida head physician, Buda Hospital of the Hospitaller Order of Saint John of God
Dr. Tibor Raposa head physician, Saint Stephen Metropolitan Hospital
Dr. Géza Tasnádi head physician, Pál Heim Metropolitan Municipality Children's Hospital
Dr. István Péter Temesvári head physician, National Institute of Rheumatology and Physiotherapy
Dr. József Tóth head physician, National Oncological Institute
Dr. Károly Sándor Tóth head physician, Saint Margaret Hospital
Dr. Valéria Váradi head physician, Saint Margaret Hospital
Dr. Gábor Pethő director of quality assurance, Pharmavit Ltd. |
1998
Dr. Hedvig Bodánszky consultant, National Medical Centre
Dr. István Láng chief physician, National Oncology Institute
Dr. Béla Lombay head physician, B-A-Z County Hospital, Radiology Institute, Department of Paediatric Radiology
Dr. János Radó physician, Virányos Clinic
Dr. Károly Simon head physician, Saint Emeric Hospital-Clinic

1999
Dr. György Bodoky chief physician, Saint Ladislaus Hospital
Dr. Kristóf Nékdám head physician, Buda Hospital of the Hospitaller Order of Saint John of God
Dr. Gyula Poór director-general chief physician, National Institute of Rheumatology and Physiotherapy
Dr. László Simon head physician, Tolna County Municipal Hospital, Szekszárd
Dr. Attila Tankó medical specialist, District II. Municipality Clinic
Dr. Gábor Veres director-general chief physician, Balatonfüred State Hospital
Dr. István Veres chief physician, Medical Spectrum, Twente (Netherlands)
Dr. Bosco Camelo associate professor, University of Rome
Dr. Péter Göblyös head physician, National Institute of Hematology and Immunology

2000
Dr. Miklós Bély head physician, Buda Hospital of the Hospitaller Order of Saint John of God
Dr. György Berencsi head physician, Béla Johan National Epidemiology Centre
Dr. Tamás Szabó Head of the scientific group, Central School of Sport

2001
Dr. Sándor Frenyó head physician, National Traumatology Institute
Dr. Ferenc Horkay head physicia,n National Cardiology Institute
Dr. Krisztina Kádár chief physician, National Cardiology Institute
Dr. Lajos Kotsis chief physician, National Korányi Institute of TBC and Pulmonology
Dr. Ilona Kovács senior research fellow, No. I. Institute of Pathology and Experimental Cancer Research
Dr. Aladár Rónaszéki head physician, Elizabeth Hospital of Péterfy Sándor street Hospital
Dr. Ágnes Széchenyi head physician Emeritus, Ministry of Home Affairs Central Hospital
Dr. András Végh head physician, Pál Heim Metropolitan Municipality Children’s Hospital
Dr. Gábor Winkler head physician, Saint John Hospital

2002
Dr. Mátýás J. Baló (Banga) head physician, Central Hospital of the Hungarian Homeland Defence Forces, Department of Internal Medicine
Dr. Béla Büki chief physician, Kremsi Hospital, Department of Otolaryngology
Dr. Sándor Czirják chief physician, Deputy Director-General, National Scientific Institute of Neurosurgery
Dr. Gyula Domján head physician, Saint Roch Hospital, No. I. Department of Internal Medicine
Dr. Sándor Dubecz chief physician, National Oncology Institute, Department of General Surgery and Thoracic Surgery
Dr. Lajos Kullmann director-general chief physician, National Medical Rehabilitative Institute
Dr. Ádám László head physician, Bajcsy-Zsilinszky Hospital, Department of Obstetrics and Gynecology
Dr. Károly Nagy deputy scientific director, National Institute of Dermatology and Venereology
Dr. Erzsébet Temesvári senior research fellow, National Institute of Dermatology and Venereology
2003 Dr. Áron Altorjay head physician, Fejér County Saint George Hospital
 Dr. István Bodrogi head physician, National Oncology Institute
 Dr. Károly Cseh head physician, Sándor Korányi Hospital and Clinic
 Dr. Gábor Faludi head physician, Kütvölgyi Clinical Array
 Dr. Irén Herjavecz head physician, National Korányi Institute of TBC and Pulmonology
 Dr. Kálmán Róna scientific consultant, Department of Forensic Medicine
 Dr. György Szeifert chief physician, National Scientific Institute of Neurosurgery
 Dr. Imre Klebovics head of science department, EGIS Pharmaceuticals PLC

2004 Dr. Jenő Julow head physician, National Scientific Institute of Neurosurgery
 Dr. László Bognár head physician, National Scientific Institute of Neurosurgery

2005 Dr. György Bagdy head of laboratory, scientific director, National Institute of Psychiatry and Neurology
 Dr. Katalin Borbély head physician, National Scientific Institute of Neurosurgery

2006 Dr. Ildikó Horváth head physician, National Korányi Institute of TBC and Pulmonology, doctor of the Hungarian Academy of Sciences
 Dr. László Dézsi research supervisor, Gedeon Richter PLC Research Department of Pharmacology and Drug Safety
 Dr. Tamás Szamosi consultant, No. II. Clinic of Paediatrics

2007 Dr. Róbert Veres head physician, National Scientific Institute of Neurosurgery

2008 Dr. Attila Csekeő head physician, National Korányi Institute of TBC and Pulmonology

2009 Dr. Péter Andréka head physician, György Gottsegen National Cardiology Institute, Department of Cardiology
 Dr. István Szikora deputy director-general chief physician, National Neuroscience Institute

2010 Dr. Tamás Görcs lecturer, Department of Anatomy, Histology and Embryology
 Dr. György Keleti head physician comm. Joint Saint Emeric and Saint Ladislaus Hospital, Surgery Department
 Dr. Ödön Gaál graduate chemist emeritus, National Institute of Nutritional Science (1972-2005)

2011 Dr. Béla Schumann director, Laborexpert Kft.
 Dr. Miklós Lów chemist emeritus, Gedeon Richter PLC
 Dr. András Bálint project manager chief physician, Saint Emeric Municipal Hospital, General Surgery Section
 Dr. Miklós Merksz head physician, Pál Heim Metropolitan Municipality Children’s Hospital, Department of Urologic Surgery
 Dr. András Telekes head physician, Bajcsy-Zsilinszky Metropolitan Hospital-Clinic, Department of Oncology

2013 Dr. Attila Vörös chief physician, State Medical Centre - Central Hospital of the Hungarian Homeland Defence Forces
 Dr. Zoltán Takács-Nagy head physician, National Oncology Institute, Department of Radiotherapy
2014 Dr. György Ostoharics-Horváth chief physician, Aladár Petz County Hospital, Department of Psychiatry, Mental Hygiene and Addictology

2015 Dr. Sándor Bende chief physician, titular associate professor, B-A-Z County Hospital and University Teaching Hospital
Dr. Tamás Sándor chief physician, (retired volunteer assistant), 2nd Department of Surgery

2016 Dr. Ferenc Ender chief physician, Joint Saint Emeric and Saint Ladislaus Metropolitan Hospital, Surgery Department

2017 Virág Katalin Bognár self-employed sociology instructor
Dr. Bertalan Meskó, Webicina Kft., manager
Dr. Gamal Eldin Mohamed Elmowag head physician, Budaörs Healthcare Centre
Dr. Miklós Szokoly director-general consultant, Péterfy Sándor street Hospital, Clinic and Casualty Centre
Dr. Tamás Iváncsy associate professor, Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics, Department of Electric Power Engineering
Dr. Judit Moldvay chief physician, National Korányi Pulmonology Institute, Tumor Biology Department
Dr. Géza Nagy college professor, Semmelweis Hospital, head physician, University of Miskolc, Faculty of Healthcare

2021 Prof. Dr. Ádány Róza egyetemi tanár, Népegészségtani Intézet
Prof. Dr. Fülöp Tamás egyetemi tanár, Népegészségtani Intézet
FOUNDATION FOR NATIONAL HEALTH CARE AND MEDICAL EDUCATION

Act IX of 2021 on „public trusts funds performing public function” and Act XX of 2021 on the “Foundation for National Health Care and Medical Education, the transfer of assets to the Foundation for National Health Care and Medical Education and Semmelweis University”

The executive body of the foundation is the Board of Trustees, which exercises all the powers that do not fall within the competence of the founder or other foundation organization or body, in particular the maintenance rights of the university specified in the act on higher education. The Board of Trustees consists of five (5) natural persons. The members of the Board of Trustees are the Chairman and the members of the Board of Trustees.

Members of the Board of Trustees

CHAIRMAN
Dr. Gábor Orbán
(Chief Executive Officer of Gedeon Richter Plc.)

MEMBERS
Dr. Jonathán Róbert Bedros
(Director General of Szent Imre University Training Hospital)
Dr. Péter Gloviczki
(Professor of Vascular Surgery at Mayo Clinic)
Dr. Béla Péter Merkely
(Rector of Semmelweis University, Director of the Heart and Vascular Centre)
Dr. Miklós Szócska
(Director of the Health Services Management Training Centre and the Institute of Digital Health Sciences, Dean of the Faculty of Health and Public Administration)

Supervisory Board

CHAIRWOMAN
Dr. Róza Nagy
(Chief Adviser to the President of Magyar Nemzeti Bank i.e. Hungarian National Bank)

MEMBERS
Dr. Zoltán Hankó
(President of the Hungarian Chamber of Pharmacists)
István Havas
(Executive Director)
Senate

The Senate is the supreme autonomous leading body endowed with rights of decisional authority, initiative, review and control. The chairman of the Senate is the rector of Semmelweis University.

The makeup of the Senate

The member of the Senate may be such a person – excluding representatives of the Student’s Union and other representative organisations – who is employed by Semmelweis University in an employment relationship or as a full-time working public servant, i.e. lecturer, researcher, teacher, or other scope of activity. The Senate consists of 45 members. This number is determined according to the seats available based on position, election and delegation as a result of election, defined in Section 13, part (4)-(5) of the Organisational and Operational Rules. The Rector and Chancellor are ex officio members of the Senate.

Members of the Senate

RECTOR	1. Dr. Béla Merkely
CHANCELLOR	2. Dr. Lívia Pavlik
FACULTY OF MEDICINE	3. Dr. Miklós Kellermayer
	4. Dr. Edit Buzás
	5. Dr. Péter Ferdinandy
	6. Dr. Alán Alpár
FACULTY OF HEALTH SCIENCES	7. Dr. Zoltán Zsolt Nagy
	8. Dr. Gabriella Bednárikné Dörnyei
	9. Dr. István Vingender
	10. Dr. Tímea Tóth
FACULTY OF DENTISTRY	11. Dr. Gábor Gerber
	12. Dr. Károly Bartha
	13. Dr. Csaba Dobó Nagy
FACULTY OF PHARMACEUTICAL SCIENCES	14. Dr. Romána Zelkó
	15. Dr. István Antal
	16. Dr. Szabolcs Béni
FACULTY OF HEALTH AND PUBLIC SERVICES	17. Dr. Miklós Szócska
	18. Dr. Eszter Zimányiné Sinkó
	19. Dr. Beáta Judit Pethesné Dávid
PETHŐ ANDRÁS FACULTY	20. Dr. Andrea Tenk Miklósné Zsebe
	21. Dr. Éva Szabó Dr. Feketené
	22. Dr. Ibolya Túri
KÁROLY RÁCZ SCHOOL OF PHD STUDIES	23. Dr. Zoltán Benyó
CLINICAL CENTRE	24. Dr. Attila Szabó
	25. Dr. Ferenc Bánhidy
STUDENT’S UNION

26. Dr. Péter Hermann
27. Dr. Balázs Hankó
28. Dr. Péter Nyirády
29. Dr. Attila Szijártó
30. Tamás Hegedűs
31. Bence Gusztáv Stubnya
32. Bálint Mátyás Borsik
33. Bálint Tripolszky
34. Edina Vajda
35. Frida Méth
36. Hermann Daniel
37. Szilárd Szigeti
38. Cintia Szabó
39. Viktória Kiss
40. Bence Áron Benedikti
41. Dr. Szilárd Szanyi
42. Krisztina Tódorné Bognár
43. Kornélia Dr. Tóthné Kónya
44. Dr. Zoltán Berki
45. Dr. Katalin Antmann

DOCTORANDUS STUDENT UNION
PUBLIC SERVICE COUNCIL

SEMMELWEIS LABOUR ORGANISATION
(according to Section 13. Parts (2) and (3)
of the Organisational and Operational Rules)

INVITEES

Dr. Ágoston Szél
Irén Baumgartnerné Holló
Dr. Zsolt Kovács
Dr. Levente Török
Dr. Andrea Kormos
Dr. Marcel Pop
Dr. Attila Mócsai
András Boros
Istvánné Riesz
Dr. Péter Reichert
Dr. Miklós Szathmári
András Balogh
Eszter Kovács
Emőke Márton
representatives of the supervising ministries
GOVERNMENT SEMMELWEIS UNIVERSITY

RECTOR: Prof. Dr. Béla Merkely M.D., Ph.D., D.Sc.

CHANCELLOR: Dr. Lívia Pavlik
VICE RECTORS:

Prof. Dr. Ferenc Bánhidy M.D., Ph.D., D.Sc.
General Affairs

Prof. Dr. Péter Hermann D.M.D., M.Sc., Ph.D.
Educational Affairs

Prof. Dr. Péter Ferdinandy M.D., Ph.D., D.Sc., MBA
Scientific Affairs

Prof. Dr. Attila Szabó M.D., Ph.D., D.Sc.
Clinical Affairs

Dr. Éva Feketéné Szabó
Strategical and Developmental Affairs

Prof. Dr. Alán Alpár M.D., Ph.D., D.Sc.
International Studies

DEANS:

Prof. Dr. Miklós Kellermayer M.D., Ph.D., D.Sc.
Faculty of Medicine

Dr. Gábor Gerber D.M.D., Ph.D.
Faculty of Dentistry

Prof. Dr. István Antal dr. pharm., Ph.D.
Faculty of Pharmaceutical Sciences

College Prof. Dr. Gabriella Dörrnyei Ph.D.
Faculty of Health Sciences

Dr. Miklós Szócska, Ph.D.
Faculty of Health and Public Administration
Dr. Andrea Zsebe-Tenk, Ph. D.
András Pető Faculty

PRESIDENT OF THE DOCTORAL COUNCIL:

Prof. Dr. Zoltán Benyó M.D., Ph.D., D.Sc.

HEAD OF THE CENTER FOR EDUCATION OF INTERNATIONAL STUDIES

Prof. Dr. Alán Alpár M.D., Ph.D., D.Sc.

DIRECTOR of the DIRECTORATE OF INTERNATIONAL STUDIES
and ACADEMIC PROGRAM DIRECTOR FOR MEDICINE,
DENTISTRY AND PHARMACEUTICAL SCIENCES IN ENGLISH:

Prof. Dr. Miklós Csala M.D., Ph.D., D.Sc.

Division of English Language Programs
Office: Basic Medical Science Center
1094 Budapest IX., Tűzoltó u. 37-47, first floor 1604
Phone: (36-1) 266-0452
e-mail: english.secretariat@semmelweis-univ.hu
Website http://semmelweis.hu/english/education/english-language-program/

Head of Division: Ms. Olga Ványi B. A. (459-1500/ ext 60078; english.secretariat@semmelweis-univ.hu)
Deputy Head of
Division:

Ms. Andrea Kevi (459-1500 ext 60081; kevi.andrea@semmelweis-univ.hu)

Directorate Office
Manager:

Ms. Zsuzsanna Busa (459-1500 ext 60069; busa.zsuzsanna@semmelweis-univ.hu)

Staff:

Ms. Viktória Bálint (459-1500/ ext 60071; on leave fekete.viktoria@semmelweis-univ.hu)
Ms. Renáta Bódaí (459-1500/ ext 60073; bodai.renata@semmelweis-univ.hu)
Ms. Alexandra Gonda (459-1500/ ext 60481; gonda.alexandra@semmelweis-univ.hu)
Ms. Barbara Gyóri (459-1500/ ext 60076; gyori.barbara@semmelweis-univ.hu)
Ms. Borbála Hanák (459-1500/ ext 60487; hanak.borbala@semmelweis-univ.hu)
Mr. Balázs Horváth (459-1500 ext 60079; horvath.balazs1@semmelweis-univ.hu)
Ms. Tímea Jurászik (459-1500 ext 60080; juraszik.timea@semmelweis-univ.hu)
Ms. Ildikó Juhász (459-1500 ext 60071; juhasz.ildiko2@semmelweis-univ.hu)
Ms. Sarolta Kokavecz (459-1500 ext 60074; kokavecz.sarolta@semmelweis-univ.hu)
Ms. Dorottya Kóros (459-1500 ext 60077; on leave koros.dorottya@semmelweis-univ.hu)
Ms. Zenina Korponai (459-1500 ext 60479; korponai.zenina@semmelweis-univ.hu)
Ms. Tímea Kotálík (459-1500 ext 60075; kotalik.timea@semmelweis-univ.hu)
Ms. Márta Ágnes Mészáros (459-1500/ ext 60077; meszaros.marta@semmelweis-univ.hu)
Ms. Lili Muraközi (459-1500/ ext 60488; murakozzi.lili@semmelweis-univ.hu)
Ms. Nikolett Süveges
Ms. Petronella Szabó (06-20-670-1167; szabo.petra@semmelweis-univ.hu)
Ms. Alexandra Noémi Szujó (459-1500 ext 60072; szujo.alexandra@semmelweis-univ.hu)

Office hours:

Monday: 1 p.m. – 3 p.m. Tuesday: 1 p.m. – 3.30 p.m.
Wednesday: CLOSED Thursday: 9.30 a.m. – 12 p.m.
Friday: 10 a.m. – 12 p.m.
SCHEDULE FOR THE 2021/2022 ACADEMIC YEAR
(Faculty of Medicine, Faculty of Dentistry, Faculty of Pharmaceutical Sciences)

The dates are subject to change!

<table>
<thead>
<tr>
<th>Event</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening Ceremony</td>
<td>September 1, 2021</td>
</tr>
<tr>
<td>First Semester</td>
<td></td>
</tr>
<tr>
<td>Date of registration</td>
<td></td>
</tr>
<tr>
<td>– 1st year</td>
<td>August 31, 2021</td>
</tr>
<tr>
<td>– the other years</td>
<td>August 30, September 1, 2, 3, 2021</td>
</tr>
<tr>
<td>First day of the semester</td>
<td></td>
</tr>
<tr>
<td>Faculty of Medicine (1st– 5th years)</td>
<td>September 6, 2021</td>
</tr>
<tr>
<td>Faculty of Dentistry</td>
<td>September 6, 2021</td>
</tr>
<tr>
<td>Faculty of Pharmaceutical Sciences (1st– 4th years)</td>
<td>September 6, 2021</td>
</tr>
<tr>
<td>Last day of the semester</td>
<td></td>
</tr>
<tr>
<td>Faculty of Medicine (1st– 5th years)</td>
<td>December 10, 2021</td>
</tr>
<tr>
<td>Faculty of Dentistry</td>
<td>December 10, 2021</td>
</tr>
<tr>
<td>Faculty of Pharmaceutical Sciences (1st– 4th years)</td>
<td>December 10, 2021</td>
</tr>
<tr>
<td>5th year Pharmaceutical Sciences: Practical training</td>
<td>July 19 – September 17, 2021</td>
</tr>
<tr>
<td>The semester lasts for</td>
<td>5th year Pharm. Sc. (12 weeks) September 20 – December 10, 2021</td>
</tr>
<tr>
<td>Examinations period</td>
<td></td>
</tr>
<tr>
<td>Faculty of Medicine (1st– 5th years)</td>
<td>December 13, 2021 – January 28, 2022</td>
</tr>
<tr>
<td>Faculty of Dentistry (1st– 5th years)</td>
<td>December 13, 2021 – January 28, 2022</td>
</tr>
<tr>
<td>Faculty of Pharmaceutical Sciences (1st –5th years)</td>
<td>December 13, 2021 – January 28, 2022</td>
</tr>
<tr>
<td>Second Semester</td>
<td></td>
</tr>
<tr>
<td>Date of registration</td>
<td>(1st– 5th/6th years) January 24 – 28, 2022</td>
</tr>
<tr>
<td>First day of the semester</td>
<td>for 1st– 5th years January 31, 2022</td>
</tr>
<tr>
<td>Medicine and Dentistry</td>
<td></td>
</tr>
<tr>
<td>Last day of the semester</td>
<td>for 1st– 5th years May 13, 2022</td>
</tr>
<tr>
<td>Medicine and 1st– 4th years Dentistry</td>
<td>April 29, 2022</td>
</tr>
<tr>
<td>Last day of the semester</td>
<td>for 5th year Dentistry</td>
</tr>
<tr>
<td>Faculty of Pharmaceutical Sciences</td>
<td></td>
</tr>
<tr>
<td>First day of the semester</td>
<td>(1st– 4th years) January 31, 2022</td>
</tr>
<tr>
<td>Last day of the semester</td>
<td>(1st– 4th years) May 13, 2022</td>
</tr>
<tr>
<td>First day of the semester (practice)</td>
<td>for 5th year January 27, 2022</td>
</tr>
<tr>
<td>Last day of the semester (practice)</td>
<td>for 5th year May 27, 2022</td>
</tr>
</tbody>
</table>
Examination period for Faculty of Medicine, Faculty of Dentistry
1st – 5th year Medicine May 16 – July 1, 2022
1st – 4th year Dentistry May 16 – July 1, 2022
5th year Dentistry May 2 – June 17, 2022

Faculty of Pharmaceutical Sciences
1st – 4th year May 16 – July 1, 2022

Exam held outside the academic year – EOAY
August 23 – 31, 2022 (presumably)
EOAY for Pharm. Sc. 4th year July 5–13, 2022 (presumably)

2021/2022 Schedule for 6th year Medicine
2022/2023 Schedule for 6th year Medicine
July 12, 2021 – April 27, 2022
July 11, 2022 – April 26, 2023

General Board Examination Period
Faculty of Medicine
November 17-24, 2021
May 25 – June 10, 2022
August 24 – September 1, 2022

Faculty of Dentistry
June 20 – 24, 2022
August 22, 2022
December 5, 2022 (repeat written exam)

Faculty of Pharmaceutical Sciences
June 1 - 23, 2022

Graduation Ceremony for Dentistry
July 9, 2022 planned (Saturday)
Graduation Ceremony for Pharm. Sciences
July 2, 2022 planned (Saturday)

Holidays:
November 1, 2021 (Monday)
March 15, 2022 (Tuesday)
April 14 – 19, 2022
Spring holidays include:
April 15, 2021 (Good Friday)
April 18, 2021 (Easter Monday)

Research Students’ Conference:
February 9 – 10 – 11, 2022

No lectures or seminars for years 2–5/6:
on February 9 – 10 at the Faculty of Medicine and at the Faculty of Pharm. Sc. (Wednesday – Thursday),
on February 9 (Wednesday) at the Faculty of Dentistry, on February 10-11 solely for dental students whose participation at the conference is certified.
THE WORDS OF THE VOW AT REGISTRATION

I, student of Semmelweis University promise under oath that I will respect the Hungarian laws and the Fundamental Law of Hungary. I promise that I shall abide by the regulations of Semmelweis University. I promise solemnly that I will respect the professors and teachers of the University, and that my conduct will be in keeping with the honor of my profession. I will keep the secrets of the patients that I learn about in the course of my studies. I will pursue my studies with full sense of responsibility to prepare myself to the best of my abilities for all my duties and obligations in my profession so as to be able to serve with my knowledge the progress of mankind. So help me God!

THE WORDS OF OATH AT GRADUATION

Faculties of Medicine and Dentistry

“... swear that I will devote myself to the medical profession at all times. I will use the knowledge acquired in the field of medicine to prevent and cure diseases, and to benefit the physical and mental well-being of my patients. I will not betray the confidence of those who turn to me, nor will I take advantage of their defenselessness, nor will I disclose their secrets. I will treat every person with equal care and attention. I will maintain the high quality of my knowledge and skills by continuous education, but will also acknowledge the limits of my knowledge and abilities. I will submit myself to the ethical requirements of my medical practice. I will strive to enhance the reputation of the medical profession and SEMMELWEIS University.”

Faculty of Pharmaceutical Sciences

I, swear that in virtue of my acquired knowledge of pharmaceutical sciences, I shall do my professional duty with the utmost diligence, and I shall always behave worthy of my profession. I shall place before all things the care for and the healing of my patients. I shall not reveal any data concerning the health status or the medication of my patients. I shall maintain my theoretical and practical knowledge at a high level. I shall never use my knowledge for activities that are contrary to the ethical code of pharmacists. As a participant in the activity of healing, I shall use my knowledge only for the defense and restitution of health to my fellow humans. I shall do my best to promote the science of pharmacy and keep the good name of the Semmelweis University.
Study and Examination Regulations

Faculties of Medicine, Dentistry and Pharmaceutical Sciences

1. Scope of the Regulations

Article 1 [Scope of the Regulations]
(1) The scope of this part of the Organizational and Operational Regulations (hereinafter referred to as “Regulations”) applies to the study and examination issues of Semmelweis University undergraduate, masters, postgraduate specialist training, higher education training students and also of visiting students. It applies especially to the student academic policy and the order of acquisition and examination of the knowledge, skills and abilities. The application of the Regulations is regardless of the location of the training, the language, work schedule, form of expenditure and nationality of the student.
(2) A special part of the Regulations regulates the study and examination issues of the students participating in the doctoral program.
(3) The knowledge of and the compliance with the Regulations is binding on all instructors, researchers, administrative staff and students involved in education, directly or indirectly.

2. Interpretative Provisions

Article 2 [Interpretative Provisions]
(1) In the Application of These Regulations
1. Pre-degree certificate (absolutorium): A document certifying without qualification and evaluation that the student has completed their traineeship required and has met the study and examination requirements of the curriculum without having done the closing examination (terminal board exam), the Thesis and the language examination, specified in the graduation requirements. The pre-degree certificate does not qualify as a certificate of qualification or as vocational qualification.
2. Active semester: the semester in which the student's status is not suspended.
3. Transfer: the process in which a student with a student status at a higher education institution continues his or her studies at another institution; unless otherwise stipulated in these regulations, the student may apply for admission from another higher education institution – except from those institutions included in the 87/2015 Government Regulation (IV.9) – that provides a degree of the same level as that offered by Semmelweis University. This process is only possible if the termination of the student status is not in process. Transfer within Semmelweis University can be requested between specialties and faculties, and in line with legal restrictions, between training levels.
4. Registration: the student’s statement in the NEPTUN Higher Education Administration System (hereafter: NEPTUN) that he/she will continue his/her studies in the semester; Recorded continuation of the student’s studies is based on the student’s registration in the NEPTUN, and on the course registration in the student information system according to prior information given by the faculties. Students taking part in a partial training abroad in the given semester are also subject to the obligation of registering for the continuation of their studies.
5. Enrollment: the establishment of a student status between the eligible student and Semmelweis University through the authentication of the enrollment form. Those who have been admitted or transferred to Semmelweis University may establish a student status with the university. Student status is created through enrollment. Enrollment is accomplished by signing an enrollment form printed from the Student Information System (hereafter: NEPTUN) and by registering in the NEPTUN on the basis of a notice sent to the student in advance. Upon enrollment, the student is required to complete the course registration on the basis of the information given by the faculty.
6. CV course (i.e. Exam Only Course): An opportunity for course completion that does not qualify as a course registration, during which a course to be concluded by a term grade or an exam, which course has been registered by the student in a previous semester and in which the student has obtained a signature but has not completed yet, can be completed in the given semester without the obligation to attend the contact lessons or to fulfill other term-time requirements by using any unused exam opportunities remaining from the semester of the last registration of the original course.
7. Diploma work: an independent piece of work which substitutes the Thesis. It is required for the completion of the student’s studies. Its preparation can verify that the student has met certain output requirements of the training:
8. **Individual study schedule**: the total of subjects and courses taken by a student in a given semester, during which the student can choose individually from the offered study opportunities within the frames of the curriculum and regulations, i.e. under the conditions defined in the regulations and curricula so that they can deviate from what is suggested in the model curriculum;

9. **Concurrent prerequisite**: a course unit or a module of up to 15 credits, whose at least concurrent registration with a given subject is required by the curriculum;

10. Prerequisite schedule: the set of pre-requisites for the subjects included in the curriculum of the degree program;

11. **Prerequisite**: a course unit or a module of up to 15 credits that the curriculum requires to be completed beforehand for the registration to the given subject;

12. **Term grade**: a mark determined during the term-time based on the results of partial performance evaluations;

13. **FM course** (i.e. “exempt from” course): An opportunity for course completion that qualifies as a course re-registration, during which a course to be concluded by a term grade or an exam, which course has been registered by the student in a previous semester and in which the student has obtained a signature but has not completed yet, can be completed in the given semester without the obligation to attend the contact lessons or to fulfill other term-time requirements by using the exam opportunities of the given semester according to the general rules of assessment of study requirements.

14. Exceptional study schedule: completion of subjects included in the student’s individual study schedule, in a way different from the general rules of order (including, in particular, the exemption from lessons or the possibility to make up for non-attendance at lessons, meeting study requirements in a different way or at a scheduled time);

15. **End-term examination**: assessment of study requirements concluding a single subject in the form of an exam. The material of the end-term exam of a multi-semester subject may include the material any course involved, which is not finished with a cumulative assessment of study requirements;

16. **Thesis advisor**: an expert supporting the student in the preparation of the thesis and guiding his/her work;

17. **Obligatory elective subject**: a subject defined in the curriculum, in which the student decides for himself/herself to register at the credit value defined in the model curriculum (for example: subjects of specialization or subjects of differentiated professional knowledge);

18. **Compulsory subject**: a subject which all students are required to complete;

19. **Credit recognition**: the acceptance of a subject of another faculty or institution, determining its credit value and determining whether the subject is substitutable with or different from other subject(s);

20. **Committee competent in credit recognition**: a committee defined in another part of the Regulations, which acts on students’ credit recognition issues at first instance;

21. **Criterion requirement**: a mandatory requirement without credits that is specified in the training and output requirements (e.g. apprenticeship, language requirements);

22. **Course**: the completion of a subject in a given semester, a set of study sessions and performance assessment procedures with place(s), date(s), and instructor(s) specified;

23. **Justified exceptional case**: a circumstance beyond a student’s control, including childbirth or various unexpected conditions, such as accident, serious illness, which prevents the student from fulfilling his/her obligations arising from his/her student relationship.

24. **Course record book**: a public document printed from NEPTUN in a format certified by the Educational Authority, indelibly stapled and certified by the Dean of the faculty. The printed course record book must be created upon the termination of the student status. The numbered pages of the printed course record book should be stitched together with a national-colored cord and this part affixed with a circular label must be sealed, made indelible and should be authenticated by the signature described above. The printed course record book contains all the data and records that are by law required to be included, in particular, but not exclusively, all the student’s studies at the very level of education. The faculty maintains a record book if it does not meet the legal requirements for not needing to conduct record books.

25. **Model curriculum**: A subject registration order recommended on the basis of the prerequisite schedule, which includes the compulsory subjects prescribed in the curriculum; part of the credit value which is to be obtained from elective subjects, and description of these subjects assigned to the given semester;

26. **Module**: a unit including several subjects from the curriculum of one program (e.g.: foundation module, professional core material module) or an equivalent, substitute unit (specialization module);

27. **Vice Dean for educational affairs**: a Vice Dean who assists the Dean’s work in the educational and academic tasks of the graduate courses, or, in the absence thereof, a Vice Dean appointed by the Dean;

28. **Parallel training**: simultaneous participation in or eligibility for two or more training courses;
29. Passive semester: the semester
 a) for which the student has not registered,
 b) for which the student has stated that he/she does not wish to fulfill his/her student obligations,
 c) for which the student has withdrawn his/her registration before the deadline,
 d) in respect with which the student has been prohibited from continuing to study as a disciplinary measure; and
 e) which is declared to be a passive semester after the deadline of de-registration, i.e. late de-registration, therefore, the student’s status is suspended;
30. Partial training: self-financed training for the acquisition of partial expertise without a special admission procedure, which is designed primarily to meet the requirements of new specializations, to prepare for the master’s degree, and to acquire the knowledge (credits) required by law for practicing a profession;
31. Independent specialization: the specializations of the medical diagnostic analysis higher education training, the conductive undergraduate education, the health care manager training and the medical diagnostic analysis bachelor training;
32. Thesis: a paper written as a completion of higher education studies, demanded by the training and output requirements. It verifies that the student has met certain output requirements of the training. It also helps the student through his/her own scientific work on any issue of a given scientific discipline to develop the ability to grasp the essence of a matter, to master the methods of library use and also of literature research. It enables the student to be able to formulate his/her opinion briefly and concisely. The term “thesis” also refers to “diploma work” unless otherwise stated;
33. Specialty supervisor: a lecturer appointed by the Senate, on the recommendation of the Dean, after the opinion of the Faculty Board; or failing this, the Dean, an authorized person who is responsible for the content and training processes of the specialty training leading to independent professional qualification within the degree course.
34. Degree course supervisor: a lecturer appointed by the Senate, on the recommendation of the Dean, after the opinion of the Faculty Board; or failing this, the Dean, who is responsible for the content and entire training process of the course. The term “degree course supervisor” also refers to “specialty supervisor” unless otherwise stated.
35. Final examination: an exam concluding a multi-semester subject or a combination of several courses. In the latter case, the final exam may be passed at the earliest after obtaining the credits of the subjects covered by the final examination;
36. Academic calendar: a document containing the schedule for a given academic year and the deadlines concerning the student and the organizational unit;
37. Subject registration: registration for a specific course in an announced subject. The registration is only possible if the prerequisites of the subject are met;
38. Subject requirements: a document containing the student’s duties and the completion deadlines;
39. Establishment of a subject: the approval of the subject’s syllabus for the first time;
40. Announcement of a subject: the announcement of courses enabling the completion of a subject. The course(s) required for the completion of the compulsory or obligatory elective subject must be announced within the semester of the model curriculum, by the educational unit which is responsible for the subject;
41. Course syllabus (course program): defines the knowledge and skills to be acquired in each subject;
42. Curriculum: defines the detailed educational and study requirements of a particular course and its detailed rules;
43. Registrar's Department: the organizational unit, regardless of its name, designated in the Organizational and Operational Regulations for the administration of students’ general study affairs and for the management of study records;
44. Committee competent in educational and examinational affairs: a committee, regardless of its name, established by the Senate in each faculty, which acts at first instance in the study and examination affairs of students at the faculty;
45. Multi-semester subject: a set of courses, which are combined to form a thematic unit, and have names differing only in their serial number or in an extension to a common name. Furthermore, its subjects may differ in the requirements for their summative benchmarking;
46. Block education: a course scheduling method, applied for the compulsory subjects of year 4 and year 5 studies in the Model curriculum of the Faculty of Medicine. The student attends the theoretical and practical lessons of only one compulsory subject in each section of the semester (i.e. block), which are held in the timescale specified by the course supervisor. The student can take the examination of each subject at the end of its block;
47. Late de-registration from a semester, or a semester declared passive after the deadline of de-registration: the semester in which, upon the student’s request submitted after the deadline of de-registration and until the last day of the term-time, suspension of the student’s status is authorized by the competent body;
48. Visiting student status: the student may register to the subjects of his/her studies at another training program of the higher education institution with which he/she has an active student status or at another higher education institution as a visiting student. Recognition of the subject and the knowledge obtained shall be subject to the credit recognition procedure of the faculty responsible for the course. It shall be counted accordingly into the fulfillment of the student’s study obligations;
49. Examination: a form of assessment of the acquisition of the specific knowledge, skill and experience assigned to a given subject or to certain subjects, which is combined with a summative assessment of performance;
50. Examination course: CV course or FM course. The exam course is a non-scheduled course with no contact lessons;
51. Closing examination (terminal board examination): the examination and assessment of the knowledge (and practical skills) required to obtain a higher education qualification, in which the candidate must demonstrate to the Examination Board of the Faculty that he/she acquired the knowledge required for the qualification and that he/she understands it and is capable of applying it, too. Gaining the pre-degree certificate (absolutorium) is a prerequisite for taking the closing exam.

(2) When applying these regulations and if not stated otherwise
a) “student” refers also to “visiting student”;
b) “specialization” refers also to specializations leading to separate qualifications;
c) “self-funded student” refers also to students funding their own studies; “(partly) state-funded student” refers also to students whose studies are funded by the state.

3. Bodies Responsible for Educational Affairs

Article 3 [Persons and Bodies Competent in Teaching and Educational Matters]

(1) The Senate
a) approves the training program of the university,
b) approves the syllabus in the case of an inter-faculty training.
(2) The Rector
a) approves the academic calendar by 31 May each year, after seeking the opinion of the faculties and the Student Council,
b) may allow three days’ study break per academic year, after consultation with the Deans.
(3) The Faculty Board shall
a) determine the curriculum of the specialization,
b) determine the order of specialization choice if it is not within the frame of the admission procedure,
c) decide on the establishment, suspension and cancellation of subjects, and approve the subject syllabus and decide on the modification of the syllabus,
d) propose the content of the syllabus to the Senate in the case of inter-faculty trainings,
e) approve – at intervals of no less than three years – the list of persons who may be nominated as chairpersons and members of the Closing Examination Boards.
(4) The Dean
a) may declare the requirement of a minimum number of students for the announcement of the subjects in a specialization module,
b) in agreement with the Rector, may allow three days’ study break per academic year,
c) if the conditions laid down in these Regulations are fulfilled, may oblige the educational unit to announce a course,
d) makes recommendations to the Faculty Board regarding the Specialty Supervisor and the Degree Course Supervisor,
e) permits taking examinations outside the campus,
f) permits the participation of other teachers, researchers, lecturers, clinical chief physicians as examiners at final examinations,
g) is responsible for the organization of the closing examination, appointing the chair and the members of the Closing Examination Board among the persons selected by the Faculty Board,
h) specifies the exact date of each part of the closing examination within the closing examination period.
(5) The Specialty Supervisor
a) may, in the case of a declaration of admission, permit the student to complete a traineeship at another domestic university, at their clinics or a foreign health institution,
b) allow the participation of an external consultant in the preparation of the thesis,
c) approve, in the courses of András Pető Faculty, the completion of professional traineeships at domestic professional services, travel conductor and health care institutions, or conductive education institutions in Hungary and conductive education institutions abroad, or at conductive education institutions that are adapted to the foreign system.
(6) The Occupational Health Service
a) organizes, with the cooperation of the Registrar’s Department, the obligatory pre-traineeship occupational medical examinations required by the Faculty. These examinations are the occupational, professional, personal hygiene and health examinations that are required by law (In the Regulations all of these or any of these will be referred to as an aptitude test.),
b) keeps an up-to-date record of the need for, and the participation at an aptitude test and of the presentation of the documents proving the aptitude (including Hepatitis vaccines), including registration of the validity of the compulsory aptitude test and Hepatitis vaccines in the NEPTUN,
c) ensures that the details of the aptitude test are published on the website of the relevant faculty in accordance with the law, for each training program until the beginning of the last examination period before each academic year.

(7) The committee competent in educational and examinational affairs shall be responsible for
a) approval of exceptional study schedules,
b) late de-registration of a student from a semester (i.e., declaration of a student’s semester to be passive after the deadline of de-registra-
tion),
c) approval of visiting student status,
d) approval of examinations and approval of examinations after the examination period in justified exceptional cases,
e) consideration of requests for special permissions,
f) approval of transfer among degree programs, faculties or institutions,
g) proceedings in other academic issues,
h) performing other tasks specified in other legal acts, university regulations, faculty regulations,
i) proposing the choice of specialization or study track,
j) conducting the choice of specialization or study track, and the classification of the students if they have not been classified during the admission procedure.

(8) The committee competent in credit recognition is responsible for
a) decision-making on individual credit recognition issues,
b) performing preparatory tasks in matters of consultation, organization and regulation.

(9) The student:
 a) is responsible for: enrolling/registering for training, monitoring and adhering to applicable deadlines,
b) must make his/her payments on time if he/she is obliged to pay fees,
c) is responsible for the registration to the subjects announced for the training, within the time limit laid down in the calendar of the academic year, taking into account the prerequisite schedule,
d) should notify the Registrar’s Department of changes to data by recording them to the NEPTUN,
e) must substantiate his/her request regarding educational and examinational issues (depending on the nature of the application) and has to duly justify and certify the content of such request.

(10) If the student has an active training during the period of studies, he/she is entitled:
 a) according to his/her progress, to register to the subjects specified in the curriculum and to take the examination of the subjects,
b) to visit the university facilities (library, cultural and sports facilities) accessible to students,
c) to use services for protection of students’ interest,
d) to be a member of TDK (i.e. Scientific Students’ Association),
e) to use a student card proving the active student status,
f) to apply for a university grant if he/she participates in a (partly) state-funded program.

4. Basic Concepts of the Credit System

Article 4 [Basic Concepts of the Credit System]

(1) One credit equals the completion of 30 student study hours. Student hours include classroom (contact hours) and individual student study hours.

(2) Credit may be given only to subjects which award a grade on a five-point or three-point scale. Only positive integer credits can be assigned to a subject.

(3) Completion of a subject is achieved by at least a “satisfactory/pass” (2) grade in the rating scale of five grades or at least a “fair” (3) grade in the rating scale of three grades at the assessment within the subject requirements.

(4) The student must complete the compulsory subjects prescribed in the curriculum in order to obtain a pre-degree certificate. In addition to the elective subjects, on the basis of the breakdown prescribed by the curriculum and by the training and output require-
ments, the students must complete the required number of credits. A student of a specialization or independent specialization is also required to complete the subjects specified as compulsory for the students of the independent specialization, as well as to collect the credit number(s) of the optional subjects specified in the curriculum regarding independent specializations.

(5) The student may obtain the credits required for the pre-degree certificate in a shorter or longer period.

Article 5 [The Curriculum and the Model Curriculum]

(1) The syllabus consists of compulsory, obligatory elective and elective subjects. Credits beyond the total number of credits required by the training and output requirements of the course cannot be required in the curriculum. This includes the minimum credit for the elective subjects specified in the training and output requirements.

(2) The faculty ensures that the student may take elective subjects of at least 5% of the total number of credits required for the degree or may engage in voluntary activities in lieu of such subjects. The student can also choose from subjects with a credit value of at least twenty percent excess of all credits. In the case of an optional subject, the university does not restrict the student’s choice of subjects announced by the higher education institutions. Any student may take on any elective subjects that were announced by any faculty of the university during the general subject admission procedure, this is subject to the prerequisite schedule.

(3) Without paying any extra cost or fee, the student can complete subjects
 a) for 10% credit value above the total required credits in the study schedule,
 b) languages different from that of the training for up to 10% credit value above the total required credits in the study schedule.

(4) The model curriculum within the curriculum includes, divided into educational periods,
 a) all compulsory and elective subjects along with their credit value,
 b) the number of subjects with their assigned credit values for a semester,
 c) the types of assessments (signature, term grade or exam at the end of the semester),
 d) the semester of announcing the subject,
 e) the criteria of the subject and the deadline for their fulfillment,
 f) the rules and requirements for the selection and completion of the specialization if it was not within the frames of the admission procedure,
 g) the prerequisite schedule,
 h) the requirements for the selection of the topic of the thesis and its completion if they are not included in these Regulations and the relevant course syllabus,
 i) the detailed conditions for eligibility for the closing examination,
 j) the potential subjects of the closing examination and the rules for their selection.

(5) The Student Council has the right to comment on the curriculum before it is submitted.

(6) Prerequisites can be determined if the knowledge obtainable in another subject, group of subjects, or in a subject module is required for the understanding of the given subject.

(7) A subject can only be registered by those students who have fulfilled its prerequisite(s) before the semester and have fulfilled earlier or registered currently to its concurrent prerequisite(s).

(8) The model curriculum includes the maximum of forty lessons per week (apart from the Language and Physical Education classes).

(9) The length of lessons is 45 minutes. In the case of a combined lesson, a break of 15 minutes should be provided beyond 90 minutes.

(10) In the case of inter-faculty training, the Senate defines the curriculum on the proposal of the Faculty Boards of the faculties participating in the training.

(11) It is the right of the student of the degree program concerned to apply for specializations announced simultaneously in the given degree program if it is not done through the admission procedure. The number of students entering a specialization may be limited; the Dean may require a minimum number of students to apply for the specialization in advance. If the number of registered students is limited, the registration to the specialization is according to the order in which the specialization was selected by the students.

(12) The curriculum includes, as a criterion requirement, a vow at the beginning of the studies, the content of which is defined depending on the nature of the training, and an oath as part of graduation at the end of the studies (hereinafter together: fundamentals of professional ethics). The oath at the end of the studies is followed by the graduation ceremony. The Rector decides on the order of the fundamentals of professional ethics and the text applied by each Faculty after its submission by the Faculty. If necessary for organizational reasons, the fulfillment of the fundamentals of professional ethics can take place before the start of studies, as well as after their completion; nevertheless, participation is obligatory. In this case, the condition of enrollment is to make the vow, while the condition of receiving a diploma is to take the oath. Making the vow is also mandatory for students admitted by transfer. The organization of fundamentals of professional ethics, including the possibility of making up, is the responsibility of the Faculty.
Article 6 [Course Syllabus (Course Program)]

(1) The course syllabus is prepared by the subject supervisor based on the Student Evaluation of Teaching (“OMHV”) survey by taking the opinion of the Student Council into account. The course syllabus should be published in a study information brochure, accessible to all students in the faculty, and electronically at the beginning of the academic year. The educational unit in question should publish the information of the brochure on their website or otherwise in the usual way or in the NEPTUN at the basic information of the subject. The contents of the brochure cannot be changed or deviated from during the given academic period.

(2) The Faculty Board is responsible for modifying the course syllabus at the initiation of the head of the given educational unit and with the support of the Dean.

(3) The course syllabus includes:
 a) the code of the subject, its full and any abbreviated name, its name in English and in German,
 b) the number of lessons per week (per semester) (lecture + seminar + lab practice + clinical practice),
 c) the frequency with which the subject is announced,
 d) a list of courses in which the subject is compulsory or obligatory elective, the number of semesters for the subject, recommended by the curriculum,
 e) the type of assessments (signature, term grade or examination mark),
 f) the credit value of the subject,
 g) the name of the educational unit responsible for the subject and the instructor, as well as the prerequisites for admission to the subject,
 h) the purpose and the task of acquiring the professional content of the subject in order to achieve the aim of the training,
 i) the description of the content of the subject and its syllabus in such a way as it enables decision-making on credit recognition at another institution, including the knowledge, the (partial) skills and (partial) competences to be acquired,
 j) the grading method, the conditions for getting the signature, the number, topic(s) and date(s) of the mid-term tests (reports, oral, written tests), and the possibility of their retake,
 k) if applicable, the type of examination and its requirements (list of topics, test pool),
 l) the requirements regarding the participation at the lessons and the possibility of compensating for absences, the accepted means of certification in the event of absence,
 m) written material, recommended literature, relevant technological and other material, study aids,
 n) the number and type(s) of the student’s assignments to be completed by individual work, the deadline of their submission,
 o) a list of the essential notes, textbooks, manuals and literature that may be used to acquire the educational material.

Article 7 [Optional Application of a Requirement Introduced in a Phasing-in System]

(1) The new or modified curriculum, other study and examination requirements should also apply to students who have commenced their studies prior to the introduction of the requirement but who, at their will, request the application of the new or modified study and examination requirements.

(2) A declaration of choosing to apply the new requirement should be submitted to the Registrar’s Department of the faculty in writing or, if the faculty allows, electronically, within a time limit specified by the Registrar’s Department of the faculty. The deadline for such declaration cannot be earlier than 15 days after the date of announcement of the change in the requirement, set out in paragraph (1), and the declaration cannot be withdrawn. The faculty notifies the students concerned of the change in the requirement and about the deadline for the declaration set out in this paragraph.

(3) In the case of a curriculum change, the correspondence of the old and the new curricula may also be recorded in an equivalence table.

Article 8 [Periods of Training]

(1) The training period comprises a term-time (term) and an examination period.

(2) During the term, the student participates in the lessons of the subjects he/she has registered to and performs related tasks and may also complete the professional traineeship prescribed in the curriculum during the term. The term consists of at least fourteen teaching-weeks. The term-time of each semester is preceded by a registration period, which may overlap the examination period of the previous semester.

(3) At the Faculty of General Medicine, the subjects within the model curriculum for the 4th and 5th year, including lectures and exercises, are taught in the form of training blocks, with no separate term-time and examination period for these subjects.

(4) During the ninth semester of the Pharmaceutical Sciences training course, the term-time is twelve (12) weeks long, and it is supplemented with eight (8) weeks of compulsory professional practice before the closing examination.
(5) During the tenth semester of the Dentistry training course, the term-time is twelve (12) weeks long.
(6) Students can take their examinations in the exam period, which is seven (7) weeks long both in the fall semester and in the spring semester. At the Faculty of General Medicine, the exams of the subjects included in the 4th and 5th years of the model curriculum may be taken at the end of each block.
(7) In the case of part-time trainings at the Faculty of Health and Public Services, the Faculty Board shall make a proposal to the Rector on the length of the term-time, the times of the lessons and on the duration of the examination period on the basis of the opinion of the head of the given educational unit. The Rector may deviate from the provisions of this paragraph in the academic calendar, but the examination period may not be shorter than four weeks, or in the case of master trainings, shorter than five weeks.
(8) The Rector and the Dean may grant a three-day study break in each academic year, in agreement with the Student Council. The date of the study break should be determined before the beginning of the term, whenever it is possible. The Dean and the Rector shall consult before the study break is granted.
(9) Missing from any lessons on official bank holidays or breaks/holidays ordered by the Rector or Dean may not be considered as absences. Extra opportunities for making up any missed lectures or practices may be organized in these days, in which participation may not be considered as obligatory.

Article 9 [Academic Calendar]
(1) The first and last dates of the registration period, term-time, exam period, and closing exam period of the academic year are determined by the academic calendar.
(2) The academic calendar includes deadlines for study, allowance and other student matters in accordance with the applicable regulations. Unless otherwise specified in the relevant regulations, the deadline in the calendar shall be deemed to be applicable.
(3) The academic calendar may determine which weekday’s schedule should apply to the lectures and practices to be held on Saturdays, which are rendered to be working days during the academic year.
(4) The academic calendar is published on the website of the faculty.

Article 10 [General Rules Concerning Traineeship]
(1) The hours to be worked, credits and exam type regarding the traineeship are determined by the curriculum.
(2) Regarding the traineeship, the thematic collection, organization, the control of the external traineeship locations, in addition to the certificate of completion, and the methods of evaluation are determined by the relating course syllabus of which preparation is carried out by the responsible professional.
(3) The institute of the traineeship is responsible for certifying the completion of the traineeships by filling out the course registration and evaluation form of the faculty.
(4) Completion and the grade of the traineeship are recorded by the traineeship supervisor or the degree course supervisor the Registrar’s Department in the NEPTUN.
(5) The traineeship shall be assessed by a 5-grade qualification indicated on the form by the specialty supervisor of the traineeship or the degree course supervisor referred to in paragraph (3). In case the traineeship is evaluated as “fail”, the supervisor determines whether and when the traineeships can be repeated during the training period.
(6) Traineeships are completed in accordance with the work schedule of the institute of the traineeship.
(7) Students are required to undergo an aptitude test of occupational health every year prior to their traineeship. Registration for the aptitude test in September of each academic year is compulsory.
(8) In accordance with the current legislation, details and requirements of eligibility are published regarding to the certain program or specialization on the website of the faculty until the examination period of the semester prior to each academic year.
(9) In the absence of registration, the student may not start the traineeship. The attendances on the compulsory aptitude tests must be checked by the educational unit responsible for the given traineeship or, in the absence thereof, by the Registrar’s Department. In order to fulfill this obligation, the educational unit (e.g., department or institute) may access the NEPTUN database. The traineeship may be assigned to the student only after the aptitude test and the registration of the Hepatitis vaccine have been verified by the educational unit responsible for the organization of the given traineeship.
(10) Registration under paragraph (7) is the student’s responsibility and duty. If the student participates in the traineeship without registration, the traineeship is invalid and the student is liable for any damage caused.
(11) The student completes the traineeship required by the curriculum in the educational units of the university or in other places of training, which have been accredited by the relevant faculty or by a faculty providing equivalent training in another domestic university.
(12) The supervision of the traineeship is organized and managed by the head of the educational unit responsible for the subject. The head
of the educational unit shall send a written report to the Dean of the Faculty by the 1st of October each year, about the experiences of the traineeships completed by the 1st of September.

Article 11 [Special Regulation Concerning the Traineeship at the Faculty of Medicine, Faculty of Dentistry and Faculty of Pharmaceutical Sciences]

(1) The duration of the traineeship at the Faculty of Medicine: the summer practice and the 6th year students’ practice are of forty hours per week, during which the student can be assigned once bi-weekly to an on-call period of up to 12 hours, which should be undertaken on weekends or at nights depending on the student’s choice.

(2) The duration of the traineeship at the Faculty of Pharmaceutical Sciences is thirty-five hours per week for summer practice and forty hours per week before the closing examination.

(3) At the Faculty of Pharmaceutical Sciences, summer internships can be conducted at an optional location (an accredited public pharmacy, an in-house pharmacy, a Galenian laboratory, a research institute, a university institute, a pharmaceutical technology plant). The 2-month period of compulsory traineeship prior to the closing examination must be completed in an accredited public pharmacy. One month of the 4-month-long compulsory traineeship before closing examination must be completed in a hospital or institutional pharmacy and the remaining 3 months in an accredited public pharmacy.

(4) Signing of the evaluation of traineeship shall be denied if the absence has reached 25% of the duration of the traineeship.

(5) In case of “fail” (1) qualification, the student may not continue his/her studies until the completion of the traineeship.

(6) At the Faculty of Medicine, a final examination after the 6th year traineeship may be prescribed in the model curriculum. Once a final exam is requested, the traineeship does not have to be evaluated by an individual grade; in case the examination is failed, the practice does not have to be repeated.

Article 12 [Special Regulations Concerning the Traineeship at the Faculty of Health and Public Services]

(1) The student is required to complete the traineeship required by the curriculum at any educational establishments or institutes, which are on the list approved by the degree course supervisor or have been individually approved.

(2) Students are required to undergo an aptitude test every year prior to their traineeship. By contrast, the aptitude test is not obligatory if the student already has a valid occupational suitability certificate for the activity or for the performance of the job duties, or it is not required by the law for the tasks to be performed. In this case, the student is required to submit an aptitude statement or a form called “Student’s Statement on Health Condition” at the Registrar’s Department.

(3) Students of the Faculty of Health and Public Services prepare a written report on their traineeship, the acceptance of which is a prerequisite for completing the course.

(4) In the NEPTUN the completion of the traineeship is recorded by the head of the educational unit responsible for the training or by the instructor concerned.

Article 13 [Special Regulations Concerning the Traineeship at the Faculty of Health Sciences]

(1) The faculty may organize traineeships in the form of summer practices for the students.

(2) The summer practice corresponds to the practice to be completed in autumn in the model curriculum, the completion belongs to the fall semester, and the related assessment is included in the study indexes of the fall semester.

(3) Even in case of completing the autumn traineeships in the form of summer practices, the subjects for which the traineeship is a prerequisite, cannot be registered for sooner than in the spring semester.

(4) The student may re-register to the traineeship in term-time after a not completed summer practice, but this shall be considered as a re-registration to the subject (i.e. second or further course registration).

Article 14 [Special Regulations Concerning the Traineeships and Practical Training at the András Pető Faculty]

(1) Practice is the form of education in which the gained theoretical knowledge is applied and implemented in practice, in an organized method, following the principles of conductive education. In some subjects, lectures and practice can complement each other.

(2) The complex final session is a practical report required to complete a Bachelor of Science degree in Conducting. Complex final session is considered as a closing examination and hence must be taken before a committee/board. The committee is chaired by a conductor educator. The minimum number of members of the committee shall be 2. Minutes should be taken of the complex final session. In the case of a complex final work, a course syllabus should be prepared and published before the semester begins. The complex final session fails if any of the minutes in the protocol are insufficient. An unsuccessful final session can be repeated once. In the case of a successful complex final session, the student has no opportunity to request an improvement exam.
5. Provisions Concerning Student Status

Article 15 [Student Status, Enrollment Obligations, Course Registration]

(1) Those who have been enrolled or transferred to Semmelweis University may establish a student status at the university no later than the semester following the decision. Student status is created through enrollment. Only one legal relationship may be established with one student at one training, considering the nature of the training, its way of funding and its language.

(2) Prior to starting their studies, students take a solemn oath according to the nature of the training.

(3) By enrolling, the student declares that he/she is familiar with and adheres to the university’s rules applicable to him/her.

(4) Enrollment, as well as the submission of declarations or applications regarding the continuation or suspension of studies shall be accomplished within the periods specified in the academic calendar.

(5) The student may withdraw his/her registration within one month after the beginning of the training period but not later than 14 October or 14 March. If the student does not request to discontinue his/her studies by this date, the semester is considered to be an active semester even if the student does not attend the lectures and practices, and does not fulfill his/her study duties. If the student requests such discontinuation of his/her studies by the above deadlines, the given semester shall be considered as a passive semester.

(6) In justified exceptional cases, on the basis of the student’s application and supporting documents submitted at the latest by the last day of the term-time, the committee competent in educational and examinational affairs may, on one occasion during the whole training, authorize the ongoing active semester to be declared passive after the deadline specified in paragraph (5). A justification of the reason(s) shall be attached to the application. The issuing of the approval, which changes the status of an active semester to passive, is followed immediately by the cancelling of the study results of that semester, and the rules governing the suspension of student
status apply to that semester. If an active semester is declared passive (late declaration of a passive semester), 75% of the tuition fee can be refunded upon a duly substantiated request by a student participating in fee-paying training.

(7) For student obliged to pay for their training (self-funded training), the fulfillment of this obligation is a condition of registration. Students who have not fulfilled their payment obligations by the due date(s) may not be enrolled.

(8) The student is required to report any changes in their data recorded in NEPTUN immediately. There is no legal redress for any disadvantage resulting from failing to do so. The student may be requested to pay a special procedure fee for failure to report changes in data.

(9) Assessment of student performance is entered into the NEPTUN by an authorized instructor.

(10) Registration to at least one subject by the student in the NEPTUN for a given semester qualifies as announcement of continuation of studies.

Article 16 [Suspension and Termination of Student Status]

(1) Student status is suspended
 a) if the student declares that he/she does not wish to fulfill his/her student obligation in the next training period, or if the student does not register for the following training period,
 b) if the student has withdrawn his/her relevant registration until the deadline,
 c) if the semester is declared passive after the deadline upon the student’s request,
 d) if the student is prohibited from continuing to study as a disciplinary punishment,
 e) for the duration of the actual military service of the volunteer reserve, during which the student is exempt from the obligations laid down in these Regulations.

(2) In the case referred to in point a) of paragraph (1), the continuous interruption of student status shall not exceed two semesters, except on the basis of the authorization specified in paragraph (3). The student may suspend his/her student status more than once according to these regulations.

(3) The committee competent in educational and examinational affairs may, at the request of the student, authorize the suspension of the student relationship:
 a) for a continuous period longer than that specified in paragraph (2),
 b) prior to completion of the first semester, or
 c) until the end of the training period which has already began, for that training period (late declaration of a passive semester) provided that the student is not able to fulfill his/her obligations arising from the student status due to childbirth, accident, illness or any other unexpected condition beyond his/her control.

(4) When the student status is suspended,
 a) the student may not receive any normative allowance,
 b) the student card cannot be validated,
 c) NEPTUN can be used by the student.

(5) The student status terminates:
 a) if the student is admitted and enrolled by another higher education institution, on the day of admission,
 b) if the student announces the termination of his/her student status, on the day of application/announcement,
 c) if the student is not able to continue his/her studies at the Hungarian (partly) state-funded training program and does not want to continue his/her studies at the self-funded (fee-paying) training,
 d) on the last day of the semester in which the student obtained the pre-degree certificate (absolutorium),
 e) if the student’s status is terminated by the Rector due to payment arrears after unsuccessful demand note and due consideration of the student’s social situation, on the day of the decision becoming final,
 f) on the day when the students’ expulsion as a disciplinary punishment becomes final,
 g) on the day when the decision that terminates the student’s status becomes final, if the condition that is specified in the Act on National Higher Education as a prerequisite for establishing the student status does no longer apply,
 h) if the student who participated in a Hungarian (partly) state-founded training withdraws the declaration that is required under the relevant provision of the Act on National Higher Education and does not undertake to participate in a self-funded (fee-paying) training.

(6) Unilateral declaration of dismissal terminates the student status:
 a) if the student fails to fulfill his/her obligations described in the regulation regarding the progress of studies,
 b) if the student fails to register for the next semester third time in a row,
 c) if the student does not commence studies after the suspension of the student status,
 d) if the student could not complete a subject at its third registration, provided that the student has been notified in writing in advance to fulfill his obligation within the time limit specified and has been informed of the legal consequences of the omission.
(7) The university terminates, by a unilateral statement, the student status of a student whose total number of unsuccessful retake and repeated retake examinations in the same subject unit reaches five. This provision applies only to those who have commenced their studies in the relevant program in the fall semester of 2012/2013 or thereafter.

(8) Those students whose student status has been terminated shall be removed from the list of students.

Article 17 [Transfer]

(1) Deadline of the application is June 15th of each year, for whom the conditions for dismissal are not met.

(2) The student applying for admission is required to send it by July 15th
 a) a certified copy of a sealed course book or an equivalent certificate,
 b) certificate of student status
 c) detailed curriculum of the training and the certified subject program of the completed subjects. Completion of documents upon request is possible.

(3) At the András Pető Faculty, the application shall be accompanied by the decision on the successful aptitude test.

(4) Decision about the transfer is made by the committee competent in educational and examinational affairs in the light of the student’s academic achievement and other circumstances, taking into account the available capacity.

(5) Students who have participated in (partly) state-funded training at the transferring institution may also be admitted to a (partly) state-funded training.

(6) In the event of a transfer, the university will require information from the Information System for Higher Education (FIR):
 a) whether the student has attended a (partly) state-funded or self-financed training,
 b) in case of (partly) state-funded studies, how many (partly) state-funded active semesters have been used by the student during the studies,
 c) if the student’s student status is terminated or terminated due to transfer. If the required information cannot be gained from the FIR system, a statement is requested in this regard from the donor institution.

(7) If admission is refused, the student may commence studies at the institution only after successful admission.

(8) In case of the student applying for the admission of the subjects completed in another specialty, faculty or institute, the committee competent in credit recognition shall make a preliminary credit transfer decision taking into account the opinion of the course supervisor. When making a takeover decision. During the pre-credit transfer procedure, the committee competent in credit recognition decides on the credit requirements (subject to fulfillment conditions) expected to be fulfilled by the end of the semester in which the application is submitted. In the case of student admission, credits recognized in a prior credit recognition decision shall be deemed to be recognized at the time of the actual commencement of studies without further application.

(9) Transfer to Semmelweis University training can only be requested between courses of the same level, except for transfer
 a) from undivided training to bachelor training,
 b) from bachelor training or undivided training to higher vocational training.

(9a) In the cases of basic and undivided master training programs, transfer may be requested only between trainings resulting in the same level of graduation provided that the student has acquired at least 30 credits in the former (transferring) institution.

(10) The transfer decision must stipulate
 a) the academic year,
 b) the faculty, specialty, work schedule, financial form,
 c) and, on the basis of the prerequisite schedule, the year (grade), in which the transferred student can begin or continue his/her studies.

(11) In the case of transfer to the András Pető Faculty, the applicant can gain admission to the first year of the self-financed training. The prerequisite for admission to the specialization is the fulfillment of the conditions specified for the specialization. Transfer from full-time to part-time training may be subject to the conditions set out in the admission bulletin, in addition to the above.

(12) If the transfer student does not have a continuous legal relationship until enrollment, then the decision on the transfer will be withdrawn by the committee competent in educational and examinational affairs in accordance with Article 57 (6) of the Act on National Higher Education.

Article 18 [Simultaneous Training]

(1) The student participating in parallel training programs will be awarded a separate diploma upon successful completion of each training.

(2) Students can gain eligibility to pursue parallel training by means of admission or transfer.

(3) Once a student of the university gains eligibility to a parallel training at the university, he/she may not establish a separate student relationship, so he/she does not enroll again, and the date of the beginning of the new training is the date of the decision under paragraph (2).
The student may not obtain multiple rights for studying in the same program if he or she has been allowed to study in parallel training even if the student is studying in different places of study, different languages of instruction, different work schedules, or by different financing modes. If the student has applied for admission to a degree program (or if the student has applied for admission for an advanced training) that the student is already studying at the university, then the student’s request shall be treated as a request for conversion or reclassification that is based on place, language or work schedule. If a student enrolled in a particular program and is re-admitted to the same program for Bachelor, Master, or in the case of vocational training in higher education, then the Dean will ask the student to select the appropriate training location, training language, work schedule and mode of finance at the same time when the Dean announces his or her decision on the admittance of the student then the student’s right (to continue his or her studies on a different training from the one that he or she has already selected) shall be removed from the register. This provision does not preclude the student from pursuing parallel studies in several specialties leading to a separate qualification.

If a student participates in parallel training within the university then he or she may suspend his or her studies in one of his or her training programs, in which case the student shall fulfill the obligations that arise from the studies that he or she has not suspended.

If a student of the Faculty of Health Sciences establishes a student status at a different institution, then the enabling of the exceptional study order of the student may come into existence after the student has been admitted to another institution.

If a student studies at the András Pető Faculty, he or she may not request for an exceptional study order even if the student wants to study in simultaneous trainings. The student of András Pető Faculty may undertake a parallel training at another higher education institution if the student has fulfilled his or her prior notice requirement at the relevant faculty. The documentary evidence, which proves that the student has enrolled in another institution must be presented to the Registrar’s Department in order to keep the records.

Article 19 [Partial Training]

1. If the student wishes to study in the framework of partial training, the student may establish a student status for a semester and re-initiate to establish a student status without restriction of times but may only complete courses up to a total of sixty credits. The student participating in the part-time training shall pay a fee corresponding to the cost of the given training. The Registrar’s Department issues a course completion sheet and a certificate of the student status and issues a certificate of the subjects that the student registered for within the given student status.

2. If a student wishes to establish student status in order to study in part-time training, the student must submit a request to the Registrar’s Department and the student must specify the subjects he or she wishes to complete in this request.

3. The student must attach the following documents to his or her request:
 a) the following information necessary for the establishment of a student status: the applicant’s name, gender, name of birth, mother’s name, place and date of birth, nationality, permanent address and telephone number of the student’s apartment or other place of stay. If the student is not a Hungarian citizen, he or she must attach the document, which proves that he or she has the right to stay in Hungary. If the student is a citizen of a country that falls under special requirements, then the student must present the official title and the number of the permit of residence that guarantees the free movement and the right of residence in Hungary
 b) a certificate of student status,
 c) a certified copy of the student’s mark book or the certified copy of the master sheet.

4. The application may be submitted no later than 30 days before the beginning of the study period.

5. The committee competent in educational and examinational affairs makes a decision on the submitted request within fifteen days. The Registrar’s Department shall notify the student who submitted a request on the decision no later than fifteen days before the beginning of the semester.

6. If the student wishes to take part in part time training, he or she will have a student status. By this student status, the student is not eligible to pursue further professional qualifications or to apply for a transfer or to establish additional guest student status. The student is not entitled to suspend his student status (except for a specific reason defined in Article 16(3)), the student is not eligible for studying in a training that is partially or fully sponsored by the Hungarian state, the student is not eligible to apply for support time.

7. If the student has obtained a student status in order to study in a part time training then the student status must be accounted into the duration of the student’s statutory benefits, or any services that the student may be entitled to.

8. After the student completed a part time training the Registrar’s Department issues a certificate of the completed subjects and of their credit value. The subjects that were acquired by the student can be included in the student’s tertiary education.
Article 20 [Guest Student Status]

(1) The university shall contribute to the student pursuing a degree as a guest student at another higher education institution, either in Hungary or abroad if the host institution allows the student to do so. If the student studies in a training of a Hungarian higher education institution that is partially or fully sponsored by the Hungarian state then the student may establish a guest student status in accordance with the regulations applicable to students who study in a training that is partially or fully sponsored by the Hungarian state and if the student takes part in a self-financed training program, then the student may establish a student status in accordance with the regulations applicable to students who study in a self-financed training program.

(2) The procedure for applications for partial trainings, which are organized by the university are ruled by the regulation regarding the university partial trainings.

(3) A student may participate in partial training courses at a foreign university if he or she signs a study contract both with the university and the host institution abroad. This study contract must be submitted by the student to the department of the university responsible for the applications within 15 working days after the end of the enrollment period in the host institution.

(4) If a student of the university organizes it individually to attend partial training, then it has to be allowed by a decision of the committee competent in educational and examinational affairs, and this committee takes the preliminary credit transfer decision of the committee competent in credit recognition into consideration (if such a preliminary decision is available). The student is obliged to submit the permit of admittance issued by the host institution to the Registrar’s Department within 8 days of receiving and the Registrar’s Department submits the permit to the committee competent in educational and examinational affairs.

(5) The university may recognize the student’s credits that the student has obtained in another higher education institution (while he or she had a guest student status) under the credit recognition rules. The student must show a credit certificate or an equivalent certificate (e.g. transcript) issued by the host institution to prove that he or she has obtained the credits.

(6) If the student (who has concluded a cooperation agreement with the foreign higher education institution in order to study in that institution according to the Learning Agreement) concluded a study contract, which includes the credits that the student wants to obtain with the university before departure requires the university to accept his or her credits then the university will carry out a prior credit transfer procedure. In such a case, the credit recognition procedure shall be done before the beginning of the student’s studying in a part time training abroad and it is not revocable.

(7) If a university student has obtained a guest student status and thus obtained exams, then these examinations are treated by the university as if they had been taken by the student at the university. The university then has to do a prior or regular credit recognition process in order to make sure that the student meets the curriculum requirement. When a student has passed an examination in another institution, this subject is recorded by the Registrar’s Department of the university in NEPTUN as an accredited subject. The student has to submit the certificate of the subjects that he or she has obtained in the part time training courses to the Registrar’s Department by the 14th of March (if he or she completed the subjects in the fall semester) or by the 14th of September (if he or she completed the subjects in the spring semester). If the student fails to meet the deadline given above, then he or she can have the results of the subjects – that he or she completed in the framework of the student status – accepted by the university in the following spring semester (if the student completed the subjects in the fall semester), or in the next fall semester (if the student completed the subjects in the spring semester).

(8) If the student wants to establish a guest student status then he or she must submit an application. The application must be submitted at the same time as the student enrolls for the semester either in NEPTUN or on paper at the faculty of the university of which courses the applicant wishes to take. This period may be extended up to the end of the third week of the semester for international students.

(9) The acceptance of the application is decided by the committee competent in educational and examinational affairs within eight days of receiving the application. The decision shall include information about the following: the form of financing of the studies of the guest student, the amount of any cost to be paid by the student and the method and deadline of the payment.

(10) The Registrar’s Department registers the guest student for those courses in NEPTUN, based on which courses are enabled by the permission of the guest student based on his or her student status.

(11) The Registrar’s Department issues a certificate of the student’s academic achievement of the given semester in the framework of the guest student status, accompanied by a credit certificate per completed course.

(12) The issued certificate shall include the following:
 a) the student identification data (name, name of birth, place and date of birth, student ID number),
 b) the title, description, work schedule, identifying number, credit value and earned grade of the completed course,
 c) the school year and the semester of the course,
 d) the duration of studies (first and last days of the student status) and the time for which the student received support,
 e) the number and the date of the certificate;
 f) the signature, the stamp of the certifying body.
6. Course Registration

Article 21 [Announcement of Subjects and Courses]

(1) A The announcement of the subject means the announcement of the courses of the subjects, the announcement process is super-
vised and directed by the Vice Dean for Education of the faculty.

(2) In case of obligatory elective and elective subjects, the faculty responsible for the training ensures that an appropriate selection of
these subjects of at least 1.20-fold credit value is announced.

(3) The educational unit responsible for teaching the subject decides on the announcement of the subject and it must announce a com-
 pulsory subject in accordance with the curriculum. The Dean of the educational unit may require the announcement of a subject on
the proposal of the committee competent in educational and examinational affairs of the faculty.

(4) The subjects and the courses related to the subjects must be announced in a way that each student can complete the requirements
of the model curriculum in each semester.

(5) Compulsory subjects that end with an exam must be announced with a sufficient number of courses for a sufficient number of stu-
dents – in every semester, which contains the subject course in the model curriculum (“current semesters”), and in cross semesters,
these courses must be announced at least in the form of CV and FM courses. CV and FM courses need to be announced only upon
students’ request if these courses do not seem to be required on the basis of the number of eligible students, or in cases of part-time
trainings and trainings for few students, i.e. maximum 60 students per year.

(6) Low and high limits for the registered students may be defined by the educational unit responsible for the course. This fact and the
parameters should be published in NEPTUN.

(7) The number of students per teacher in clinical practice and laboratory practice courses corresponds with the number of students per
group that has been established by the given faculty.

(8) Compulsory subjects have to be announced by the educational unit in every semester, which contains the subject course in the
model curriculum (“current semesters”) with a capacity at least 5% higher than the number of students eligible for registration, so
that all eligible students can register these courses. This condition must be met according to the expected number of students at the
time of the announcement of the course. The high limit of registered students for the subject or the course may be increased later,
particularly for this purpose.

(9) The number of students to register to a course may be limited on the basis of the work capacity of the instructors, the availability of
teaching tools, the capacity of the seminar rooms and teaching laboratories, and – with the agreement of the Student Council – for
other objective reasons.

(10) The head of the educational unit responsible for announcing the subject ensures that the subjects and courses (including exami-
nation courses) are recorded in NEPTUN until the last day of the preceding term-time. The courses are recorded by entering the data
described in paragraph (15) into NEPTUN.

(11) The faculty responsible for teaching the program (or the training) ensures that the courses are scheduled in the timetable and the
scheduling is recorded in NEPTUN before the end of the third week of the exam period of the previous semester. In the case of
courses having only one teaching session per semester, the scheduling is indicated in the comment box.

(12) The educational unit assigns the instructor of the subject/course before the beginning of the course registration period of the current
semester if the instructor is already known. Subject/course instructor assignment may be modified under appropriate circumstances.

(13) A classroom must be assigned to each scheduled course (with the exception of criterion requirements). The registrar responsible for
course scheduling at the faculty assigns the classroom by taking the recommendation of the educational unit into consideration.

(14) The courses in compulsory and obligatory elective subjects, which are announced for the same semester according to the model
curriculum, and have no parallel courses on different weekdays, must be scheduled to different times.

(15) The subject is announced through NEPTUN by the deadlines specified in this section, with the following information:

a) the course code,
b) the type of course,
c) the nature of the course,
d) the instructors of the course and their participation in the education of the course,
e) the course registration requirement,
f) the subject program,
g) the minimum number of students and the maximum number of students who may be registered to the course,
h) the size of an optional waiting list,
i) in the event of over-application to the course, the ranking criteria where this is not the order of application to the course,
j) the language of instruction of the course,
k) the classroom assigned to the course,
l) the timetable details of the course.
(16) The person who is responsible for the curriculum of the faculty determines the timetable data of the courses by taking the recommendation of the educational unit responsible for the teaching of the subject into consideration.

(17) The educational units responsible for teaching the subjects may also publish the course announcement in addition to the central announcement.

(18) If the Registrar’s Department finds an error in the range of subjects or of the courses, then it will report it to the Vice Dean of education (and also to the leader of the educational unit responsible for the training in the Faculty of Public Health) or it can directly initiate the rectification of deficiencies while it is delegated to do so by the vice Dean for education.

(19) The faculty Vice Dean of education will take the recommendation of changes of the designated lesson administrators (or department administrators) into consideration (at the Faculty of Public Health, the Vice Dean of the faculty also takes the opinion of the head of the educational unit responsible for training into consideration) and makes sure that the preliminary subject and course offers are published in NEPTUN (except for the assigned classroom of the course, the timetable and the course instructor) until the end of the last week of the term-time in the preceding semester.

(20) The head of the educational unit responsible for the announcement of the courses may request the faculty coordinator to modify, add or delete courses until the end of the last working day before the subject registration period. The person (department administrator) who is designated to manage the timetable may modify the offer of courses and he or she can coordinate with the Vice Dean of education when he or she makes his or her decision (at the Faculty of Public Health, he/she may coordinate with the head of the educational unit responsible for the training) with respect to a decrease in the number of students and to a decrease in the number of courses but he/she may not cancel any examination course.

(21) The final offer of courses and subjects cannot be modified (with the exceptions defined in paragraph (20)).

Article 22 [Rules and Limitations of Subject Registration]

(1) Subject registration consists of
 a) an optional preferential subject registration period and
 b) the regular subject registration period including
 ba) the period of registration to compulsory subjects, and
 bb) the period of registration to obligatory elective and elective subjects.

(2) Subject and course registration periods should be organized in several stages over time while the load bearing capacity of NEPTUN should be taken into account.

(3) The students may register to compulsory, obligatory elective and elective courses until midnight of the last working day before the beginning of the term-time in respect to the prerequisite system of the subjects.

(4) The preferential subject registration period begins not sooner than 12 hours before the beginning of the regular subject registration period to compulsory subjects.

(5) The timing, the circle of eligible students and appropriate reasons for a preferential subject registration period are determined by the Vice Rector for educational affairs. The Vice Rector notifies the Registrar’s Department at least eight days before the beginning of the period, and the Registrar’s Department enforces the terms in NEPTUN. A preferential subject registration period cannot be installed in the lack of such notification.

(6) Students register to the subject assuming that their registration to the courses required to complete the given subject will be accepted. Registration to all types of courses required to complete a subject occurs simultaneously. The students’ registration is accepted if the student has fulfilled his/her prerequisite obligations and the course has not reached its registration limit. The student may withdraw his/her registration for a course and may register for another course by the end of the subject registration period.

(7) The student receives an automatic notification of the fact that he/she has registered to a subject in NEPTUN. The Registrar’s Department closes the registration for addition or modification in NEPTUN on the first weekday after the subject registration period and thus the timetable for the student’s current semester becomes final. The student receives a notification via NEPTUN within one workday after the closing of the subject registration urging them to check their subject registrations.

(8) Students may object to their subject registrations within five days after the end of the subject registration period. The application may be submitted in person at the Registrar’s Department or by email. The Registrar’s Department modifies the student’s registration to a subject in case of a well-founded and properly substantiated complaint. The head of the Registrar’s Department processes the objection request in a way that if the request is accepted, the registrar’s Department may make the change within 8 days after the end of the subject registration period. The student may have his/her course registrations without any consequences by the third week of the time-term.

(9) In case of sequential multi-semester subjects, if the student has obtained the signature of the subject in the previous semester but was unable to meet the examination requirements, his/her registration to the subject in the following semester may be permitted by the committee competent in educational and examinational affairs by the end of the subject registration period, on the basis of the
approval of the educational unit that is responsible for the course. However, the student may only obtain the grade of the examination of the subject in the current semester after obtaining the credits of the given subject for the previous semester.

(10) If the student was unable to register to a course due to a reason that is attributable to the university, the educational unit or to the instructor, the student shall be allowed to register to the course according to his/her original decision or to a course that can be fit to his/her timetable.

(11) The students have the right to choose between parallel lessons, or between parallel groups of the same year up to the announced registration limits, provided that the curriculum requirements and the restrictions defined in this section are met.

(12) Those students who are foreseeably undertaking a part of their studies abroad and for whom only certain turns are suitable, may receive preference in the subject registration period if they attach the appropriate certificates (learning agreement, letter of intent from the host institution, certificate from the organization having an agreement of cooperation with the university).

(13) The condition for the students’ registration to the subject(s) related to their activities in Scientific Students’ Association (TDK) is the students’ inclusion in the TDK Register, and this information must be indicated in the appropriate field in NEPTUN. Registrations of those students who are not recorded in the TDK Register must be deleted. Registrations of those TDK students whose performance meets the requirements defined in the TDK Code of Conduct are modified to a subject of higher credit value by the Registrar’s Department.

Article 23 [Subject Re-registration]

(1) The missing credits of an unaccomplished compulsory course can be obtained no later than in the semester when the subject is re-announced at the second time, except if the student’s status has been suspended.

(2) If the student was unable to obtain credits for a registered subject at first registration, he/she may re-register to the subject in two of the subsequent semesters provided that restrictions of the prerequisite schedule and the regulations in paragraph (1) are met.

(3) If the student was unable to obtain the credits of a subject in the way described in paragraph (2), a special permission can be requested only once in the whole training, and regarding only one subject to re-register to the subject one more time. If the student has already obtained the signature, he/ she only needs to take the exam for the subject in the next semester. The student may also request another opportunity to obtain the signature.

(4) Re-announcement of a subject, in this section, means the soonest announcement of the course in a spring semester if the subject was first registered to by the student in a spring semester; and it means the soonest announcement of the course in a fall semester if the subject was first registered to by the student in a fall semester.

Article 24 [Repeating a Subject, Examination Course]

(1) The examination course may be:
 a) a CV course,
 b) or an FM course.

(2) Compulsory courses must be announced in every semester at least in the form of an examination course.

7. Assessment of Meeting the Study Requirements

Article 25 [Assessment of Study Requirements and of Student Performance]

(1) Completion of a subject, and acquiring the credits for a subject:
 a) Via fulfillment of the course, the study activities and other requirements assigned to the subject and obtaining the learning achievements (“completion”), or
 b) Via recognition of the student’s previously acquired knowledge, which has been learnt in either formal, informal or non-formal ways, in accordance with the provisions of Article 43 (“credit recognition”).

(2) Student performance may be assessed by:
 a) a rating scale of five grades, such as: excellent (5), good (4), average/fair (3), satisfactory/pass (2), unsatisfactory/fail (1)
 b) or a rating scale of three grades, such as: excellent (5), fair (3), fail (1).

(3) The funding of education (e.g. self-financing, state-funding, scholarships) must not influence the evaluation of the students’ performance.

(4) The student’s knowledge can be assessed in the following ways:
 a) through oral or written test(s) during term-time in the lessons or at separate occasions (classroom test), or through evaluation of the student’s assignment completed as an extracurricular work, or
b) through an examination, which can be:
 ba) a practical examination (practical mark), which may be prescribed if the training goals allow and necessitate the practical application of the subject and the evaluation of the students’ skills for such practical application;
 bb) end-term examination (examination),
 bc) final examination,
 bd) closing examination (terminal board examination).

(5) A grade can be given to the student at the end of the semester:
 a) as a term grade, in either theoretical or practical subjects based on assessments during the term,
 b) as an examination grade.

(6) The grade that the student receives at the examination can based only on the student’s performance at the exam, and the results of mid-term assessments cannot be taken into consideration.

Article 26 [Offering a Grade]

(1) In cases of subjects concluded by end-term examinations and of those consisting of seminars and practical sessions only, the head of the educational unit (the lecturer of the subject) can offer the student an excellent or a good grade based on the student’s performance during the study period. The terms of offering practical grades must be announced at the beginning of the semester.

(2) The relevant students must be informed about their offered grades on the last session of the subject at the latest through the appropriate platform of NEPTUN. The student is not obliged to accept the offered grade, he/she may apply for taking an examination instead. If the student does not register for any examination of the subject, then the offered grade that has been recorded in NEPTUN shall be deemed accepted.

(3) Maximum 5% of the students registered to the course may be offered a grade in the case of compulsory subjects.

Article 27 [Methods of Assessment and Measurement of Student Performance]

(1) The aim of assessment and measurement of student performance may be:
 a) confirmation of the possession of prior competences, which are required in order to accomplish a study activity, may be carried out by diagnostic assessments (such as a placement test),
 b) recording the students’ mid-term progress with continuous feedback, which requires a supportive (formal) partial performance assessment, or
 c) evaluation of the competences acquired during a given study period by using a summative assessment.

(2) The types of the assessments under paragraph (1) may be applied in combination within the same subject in a manner that is appropriate to the nature and purpose of the subject.

(3) Any type of measurement and evaluation may be used for examining the existence of competences, such as knowledge or ability.

(4) The existence of competencies, such as attitude, independence or responsibility should be measured primarily by partial performance assessment, and secondarily by summative assessment.

(5) Partial performance assessment may take place in the following ways:
 a) Continuous assessment, which means that the teacher may evaluate the student’s performance and activity in the sessions of the course. This can include: (active participation, raising ideas, participating in organized group work or debate, reports (made by the students) in the previous lesson, etc.),
 b) One-off action(s) (the students make an oral report, a laboratory measurement, or they prepare reports of laboratory measurements or they make regular, self-help tasks, which help the students to learn the study material, etc.),
 c) Students create work(s) supported by the instructor on a continuous basis, with guidance or consultation. It can be homework, home written essay, project assignment, presentation, plan, artwork and documentation), or
 d) the students undertake a practical task (or tasks).

(6) Results of the obligatory partial performance assessment, with the exception of criterion requirements, must be taken into consideration at granting the signature and forming the grade with a weight determined in the course syllabus.

(7) The student completes the summative assessment through one-off action(s) as defined in the course syllabus, i.e. written test, written, practical or oral end-term exam or final exam, etc.

Article 28 [Performance Assessment System]

(1) The system of evaluating the performance of the students should be done in such a way that it should facilitate and encourage continuous learning and it should not lead to the undue overload of the students. The method of evaluation of the subjects of the subsequent academic year, i.e. practical grade or examination, shall be recorded in the model curriculum.
(2) The number of term-time performance assessments, which belong to a subject and which are necessary for the student to complete the subject should be determined in the following way:
 a) although the number of evaluations that aim to assess prior competences of the students is not limited, such assessments may only be applied in subjects including practical course(s) or laboratory practice course(s),
 b) the number of activities for the summative assessment of competences acquired during the semester (e.g., mid-term test)
 ba) cannot be more than three, in the case of a course concluded by a term grade or more than two, in the case of a course concluded by an examination.
 bb) In the case of a course concluded by a term grade: the duration of the evaluation activity can be 60 minutes per credit value;
 in the case of a course concluded by an examination the evaluation activity of the course can be 45 minutes per credit value.
(3) Diploma work writing course and certain courses, which are not concluded by an examination, such as professional practice, planning exercise or project task, should be evaluated by partial performance assessment.
(4) Performance assessments described in points b) and c) of Article 27(1) of these regulations can be qualified as optional in the course syllabus. Benefits can be assigned to successful completion of such non-compulsory performance assessments and the result of such non-compulsory assessments can be taken into consideration when granting the signature or forming the term grade or examination grade.
(5) Performance assessment activities should be scheduled dominantly in the term-time; their retake or improvement can take place until the end of the first week of the examination period.
(6) Compulsory performance assessment activities in the term-time can take place on workdays between 8 a.m. and 8 p.m. in the time of the course sessions or in different time(s) set in the performance assessment plan in advance. Any other scheduling requires the agreement of the Student Council.
(7) Performance assessment activities, such as written or oral mid-term tests must not be scheduled to overlap with a session of another subject course of the same semester in the model curriculum.
(8) The performance assessment plan should be made in the following way: The weekly number of summative performance assessment activities, such as written or oral mid-term tests of the subject courses of the same semester in the model curriculum cannot exceed two in general and four in the last two weeks of the term, and the assessments of the same week must be held on different workdays.
(9) The performance assessment plan described in paragraph (8) has to be made for each training program regarding the compulsory and obligatory elective courses in the model curriculum.
(10) The performance assessment plan, which includes the performance assessment activities and the possibilities for their retake and improvement, has to be published at the homepage of the faculty until the end of the first week of the term-time.
(11) Deviation from the performance assessment plan requires the approval of the committee competent in educational and examinational affairs. In such a case, the students involved must be informed by the subject tutor via NEPTUN one week before the time of the affected performance assessment activity.
(12) If the student fails to be present on some of the practical sessions, but if these events do not exceed 25% of sessions, the teacher does not have the right to withhold his or her signature to the student. If the student exceeds his or her absence over 25% of all of the practical sessions, then the head of the educational unit defines the conditions of how the teacher gives his or her signature and the possibility of the order of the student’s substitution of his or her absence.
(13) The performance assessment should be evaluated by the summation of the students’ accomplishments, and the grade should be formed according to the principles below:
 a) the performance level (score) required for a satisfactory/pass (2) grade cannot be higher than 50% of the level (score) that can be gained by the complete and excellent performance of all of the compulsory performance assessment activities,
 b) the student’s performance can be marked as: “unfulfilled” if the student did not participate in any of the performance assessment activities or the student’s absence exceeded the amount that is determined in the course syllabus.
(14) If at least 50% of the assessed students were unable to complete the compulsory subject announced in the appropriate semester according to the model curriculum in the given examination period then an investigation may be requested by the Student Council, and conducted by the Vice Rector for educational affairs, and in case the complaint is justified, the Vice Rector initiates an investigation on the possible remedy to the failures. The outcome of the investigation has implications in the following academic year. If the investigation gives rise to a reasonable suspicion of an ethical misconduct, the Vice Rector initiates the proceedings of the committee competent in disciplinary affairs and informs the educational unit concerned.
(15) The Vice Rector for educational affairs may request a statistical analysis from the educational units concerning the indicator(s) of the teachers’ educational and examinational activities.
Article 29 [Signature]

(1) The condition for allowing the student to take the examination of a subject concluded with an examination is that the “signature” acknowledging the completion of the term is recorded by the end of the time-term but no later than by the end of the first week of the examination period.

(2) The prerequisite for obtaining the signature is that:
 a) the student attends at least 75% of the practical sessions and seminars of the course, and
 b) the student attends all the performance assessment activities or their retake opportunities, maximum twice during the term according to the general rules of such assessments.

(3) Notwithstanding the general rules defined in point a) of paragraph (2), in the case of subjects that are taught in a block system in the 4th and 5th years at the Faculty of General Medicine, the student’s absences from lectures and practical sessions are summed up within each block. In these cases the student is obliged to make up for all of those sessions that he/she was absent from, and to this end, the clinic is obliged to give sufficient opportunity for making up even in on-call times overnight or on weekends.

(4) Attendance requirements lower than those defined in point a) of paragraph (2), and, in the case of divided training programs, the attendance at up to 75% of the lectures may be prescribed in the course syllabus.

(5) Obligatory attendance cannot be prescribed if the maximum number of registered students set for a course exceeds the capacity of the classroom assigned to the course.

(6) The students who did not fulfill the requirements to obtain the signature according to the regulations in paragraph (2) are reported to the Dean of the faculty by the head of the educational unit or by the lecturer of the subject in the first week of the exam period. It is the duty of the teacher of the course or the educational administrator of the educational unit to record the refusal of giving the signature to the student in NEPTUN until the second day of the second week of the exam period.

(7) The student is not allowed to take an examination of a subject, in which he/she has not obtained the signature.

(8) The signature in the subjects taught in a block system in the 4th and 5th years at the Faculty of General Medicine must be recorded until the first workday following the end of the completed block.

Article 30 [Rules of Examinations and Final Examinations]

(1) An examination may consist of the following parts:
 a) oral assessment of performance,
 b) written assessment of performance,
 c) accomplishment of practical tasks,
 d) consideration of all or some of the student’s contributions in performance assessment activities during the term-time,
 e) or various combinations of points a) to d).

(2) The examination can be a simple exam or a combined exam. A simple exam consists of one part defined in paragraph (1), whereas a combined exam consists of at least two parts defined in paragraph (1).

(3) It is the course syllabus that determines which parts defined in paragraph (1) are included by the combined exam; however, the exam shall not be composed of more than three parts.

(4) It shall be defined in the course syllabus:
 a) what is the accomplishment level at each part of the exam required for passing the exam,
 b) which mid-term performance assessments and how can be taken into account at the evaluation in a combined exam,
 c) whether the individual parts of a combined exam can be retaken or improved by the student.

(5) All of the parts of a combined exam have to be accomplished by the student in the same semester and the parts of the exam have to be taken in the same day, except when the educational unit allows the students not to retake a successful part of a failed exam, in accordance with point c) of paragraph (4).

(6) Failing an examination, including the failure at a part of an examination except at the one described in point d) of paragraph (1), reduces the number of exam opportunities for the student by one.

(7) In case of partial inclusion of mid-term results, the result(s) of the the part(s) of the exam that are taken in the exam period should be taken into account as at least 50% of the exam when figuring the grade. The mid-term results included in the exam shall be taken into account for each semester in which the signature entry is valid, unless otherwise stated in the subject program.

(8) In case of full consideration of the mid-term results, the examination grade is established solely on the basis of mid-term performance. In this case, an opportunity to modify the grade thus obtained must be offered to the student during the exam period, and the way to modify the grade must be described in the subject program.

(9) An examination sheet must be recorded at the exam, including the partial exams of a complex examination, and it should include:
 a) indication of the semester of the given academic year,
 b) the name and code of the subject, or of the curriculum unit,
Article 31 [Organization of Examinations and Final Examinations]

(1) Examinations are primarily held during the examination period, except in a block system.
(2) Examination after the exam period and in the first week of the subsequent semester can be authorized by the committee competent in educational and examinational affairs. The examination thus completed shall be considered to have been taken during the examination period.
(3) The examinations (final examinations) shall be organized in such a way that every student eligible to take the examination (final examination) shall be able to register to and take the examination (final examination). The students shall be enabled to retake the failed examinations in the same training period.
(4) Examinations must be held on working days. The (partial) examination shall not begin earlier than 8:00 a.m. and shall end by 8:00 p.m. The duration of the (partial) exam must be held in accordance with the value recorded and published in NEPTUN. It is the responsibility of the relevant educational unit to ensure that the examination is held within the time interval that has been specified in NEPTUN and that the duration of the examination should stay within reasonable limits (up to 5 hours). The organizers of the examination may only deviate from this regulation with the permission of the committee competent in educational and examinational affairs.
(5) Educational units must provide at least two exam days per week for the oral exam and one exam day per week for the written exam in each course and in each year in every exam period. The exam, final exam can be retaken no sooner than on the first calendar day after the failed exam. A maximum number of students can be set for each examination. The sum of the maximum numbers of students per exam – or per a partial examination in the case of a complex exam – may not be less than twice the number of students who have registered to the course. The overall maximum number of students of all examinations shall be divided so that at least 10% of the places are offered in every week of the examination period.
(6) The committee competent in educational and examinational affairs may also allow the announcement of a smaller overall number of places for the examinations than defined in paragraph (5) until the deadline of the announcement of the examinations, if the educational unit so requests. The Vice Dean for Education can approve a smaller number of examinations than defined in paragraph (5) but not less than 4 examination days throughout the entire exam period on the basis of the students’ demand in the case of devised training, and simultaneously informing the Student Council. In both cases, care must be taken to avoid conflicts between the exam days of the compulsory subjects included in the model curriculum of the same semester, and to allow every eligible student to register...
for and take the examination, as well as to ensure that failed exams can be retaken during the same exam period as many times as is allowed by these regulations.

(7) The rules and schedule of the examinations must be published two weeks before the beginning of the exam registration period. The announcement must include the dates of the examinations, the names of the contributors, the date(s) of revealing the examination results, and information about the opportunity to retake the exam. The dates of the examinations must be determined in advance for the entire exam period. The head of the educational unit and the Dean of the faculty are mutually responsible for announcing the examinations and perform the announced examinations.

(8) After announcement, the dates of the examinations may be modified only with the prior consent of the committee competent in educational and examinational affairs.

(9) Extra examinations may be announced by the educational unit, and the Dean may also demand it, if necessary.

(10) The student may not attend and is not allowed to register for the seventh examination (the sixth retake examination) of the given subject after having failed the exam six times during his/her student status.

Article 32 [Rules Applicable at Examinations and Final Examinations]

(1) An examination (or a partial examination) may be considered to have begun when the examination task (such as a question or a topic) has been given to the student. The examination or a partial examination that has begun can only be ended by an evaluation.

(2) The student must be given a preparation time (before answering or starting the practical task) adjusted to the nature of the exam in the course of the oral or practical examination. This can only be waived at the request of the student.

(3) Examinations, final examinations can be held primarily in the university’s buildings and sites of the practical trainings, and elsewhere once authorized by the Dean of the faculty that is responsible for education.

(4) It is the responsibility of the examiner or the chair of the examination committee to ensure that the (partial) examinations are conducted properly in an undisturbed and relaxed atmosphere.

(5) If the examination is taken before an examination committee, any member of the committee may pose a question to the student however, the student’s performance is evaluated by the chair of the committee while taking the opinion of the committee members into account.

(6) The announced (partial) examination, final examination must be held if it has been registered for by any eligible student.

(7) The time of the (partial) examination within the announced oral (partial) examination can be determined by the educational unit or the examiner either for individual students or for groups of students. The examinees must be informed about the time assigned to their examinations in NEPTUN at least 8 hours before the beginning of the examination. In the lack of published appointments, the examination begins at the original time of the examination for all examinees.

(8) In case of the absence of the appointed examiner, the head of the educational unit must assign a competent substitute examiner or organize a replacement examination without causing any detrimental consequences to the students.

(9) It is the responsibility of the head of the educational unit to hold those (partial) examinations that have been announced and to provide replacement examination in case the exam is cancelled due to the absence of the examiner. The students may file a complaint regarding any cancelled (final) examination to the committee competent in educational and examinational affairs.

(10) Certain (partial) examinations may be reserved only for retake exams by the organizing educational unit. These examinations cannot be taken into consideration when calculating the maximum number of examinations and the maximum number of students in accordance with Article 31(6).

Article 33 [Participation in Examinations and Final Examinations]

(1) A student may only participate in an examination of a subject that he/she has obtained a signature for.

(2) A student may only take a final examination if he/she has fulfilled the prerequisites and obtained the credits of the subjects linked to the final examination as determined in the model curriculum.

(3) Students may register to an examination until 6.00 a.m. and they may cancel their registration for an examination until 0:00 a.m. on the day of the given examination via NEPTUN.

(4) A unique registration period, which must not be closed sooner than 72 hours before the exam, can be set by the educational unit for the oral part of the final examination in NEPTUN system.

(5) Students willing to retake a failed (partial) exam or to improve the result of a successful (partial) exam of the same examination period should be privileged at the registration to (partial) examinations, which have been formerly announced as retake exams.

(6) Students are obliged to attend the (partial) examination which they have registered to via NEPTUN. If the student fails to do so, his/her performance cannot be evaluated, and – unless the absence is excused – a “did not appear” note has to be recorded to the given (partial) exam in NEPTUN. Unexcused absences have to be counted in the maximum number of exam opportunities of the semester,
Article 34 [Examination Outside the Academic Year]

(1) Students of the undivided medical trainings or master’s degree trainings in health sciences, who are unable to fulfill the examination requirements arising from their student status during the spring semester’s examination period of the academic year may take an examination organized outside the academic year (hereinafter referred to as EOAY). The result of an EOAY shall be considered as that of an examination taken during the spring semester of the academic year. If the institution of higher education has a vacant Hungarian state-funded position, the reclassification decision made by 31 July at the latest shall be reviewed and, if necessary, adjusted in the light of the results of the EOAY. EOAY can be completed during the spring semester of the given academic year in the period specified in paragraph (6).

(2) In cases of the undivided medical trainings and master’s degree trainings in health sciences, the students may take the EOAY described in paragraph (1) in any subject registered for but not completed in the given spring semester, according to the available exam dates, if he/she notifies the Registrar’s Department, listing the subjects to be finished with EOAY, until the end of the working day following the last day of the exam period; this, provided that the student has not been dismissed by the end of the spring semester’ exam period, including the scenario that the student is exempt from dismissal under the special permission decision of the committee competent in educational and examinational affairs. If the student’s dismissal is pending, and the student is eligible for and signed up for EOAY it in due time, the committee competent in educational and examinational affairs shall suspend the proceedings until the results of the EOAY are announced, and then, the light of the results of the EOAY, decides either to cancel the proceedings or to proceed with the dismissal in.

(3) Taking the examination referred to in paragraph (2) shall not be considered as a course registration.

(4) In the case of EOAY, during the period specified in paragraph (6), the student may take examinations in any subject as many times as many exam opportunities he/she has left in the given semester.

(5) If the student passes the exam by EOAY, failure to complete the unit or units affected by the EOAY in the semester shall not be considered as a subject omission.

(6) The exam date of the EOAY shall be determined in such a way that during the seven working days from the Tuesday of the week preceding the registration week to the Wednesday of the registration week, the student is able to pass the examinations according to Article 33(9), with regard to the general rules on organizing examinations stated in Article 31(6). The exams must be organized in such a way that all the students concerned can register to and take the exam.

(7) In the case of EOAY, it is not necessary to fulfill the conditions of the subject announcement. If the student does not complete the subject within the EOAY, he/she may take the opportunity of the CV course offered during the semester, provided he/she has remaining exam opportunities, taking into account the difference of all exam opportunities according to Article 33(9) and the failed exams in the framework of EOAY.

(8) The student may retake the exam failed in the EOAY in the semester of the next announcement of the subject, taking into account the difference between the number of failed examinations in the given subject and the unsuccessful examinations within the EOAY and
the number of examinations specified in Article 33(9). The number of retake examinations for the same unit of study shall not exceed the maximum number of failed exams specified in the Act on National Higher Education.

(9) If a student takes an active semester, taking into account the cases specified in points a) and b) of Article 24(1) (FM and CV courses), he/she may register to elective and obligatory elective subjects of up to 15 credits per semester in the given semester and the following semester.

Article 35 [General Rules for Exam Retake and Replacement Exam]

(1) The university shall ensure that each student is able to report on his/her knowledge and to retake the successful or unsuccessful academic performance assessment in such a way as to ensure the impartial conduct and assessment of the repeated performance assessment.

(2) The student may not make use of the possibility of retake or replacement if he/she has not fulfilled the attendance requirements stipulated in this regulation or the course syllabus.

(3) Unless otherwise provided in this regulation, the use of the first occasion announced by the educational unit for retake and replacement of the assessment of academic performance shall be free of charge for the student.

(4) In the case of a retake performance evaluation, the results achieved there shall be taken into account unless otherwise specified in the course syllabus or in this regulation.

(5) The opportunities for retake and replacement of the mid-term performance assessments shall be organized in such a way that the student, while exercising and successfully fulfilling the possibilities specified in Article 36(1)-(2) can

a) improve the term grade to a mark different from unsatisfactory (fail), or

b) obtain a “signature” entry from the subject to be concluded by an exam.

Article 36 [Retake and Replacement of Mid-term Performance Assessments]

(1) At least two retake and replacement opportunities must be offered for the mid-term performance assessments in case the term grade is determined on the basis of mid-term tests, or the completion of another mid-term assessment (oral test, presentation, practical performance evaluated with a grade) is a prerequisite for obtaining the practical course mark or for exam eligibility. If the student was unable to meet the course requirements during the retake and replacement opportunities, the student cannot be given a signature for the term.

(2) If at least “satisfactory/pass” performance at the last assessment or at least “satisfactory/pass” grade at each assessments is prescribed in the requirements of the subject as a condition for getting the signature, then at least two retake / replacement opportunities shall be provided for each performance assessment individually or in combination.

(3) If the subject concludes with a practical course mark according to the model curriculum, at least one retake opportunity shall be offered if it is feasible by the end of the term-time.

(4) The knowledge and other competencies required for a retake examination are the same as those marked in the course syllabus for the exam to be retaken. The retake exam shall be evaluated on the same scale as the exam subject to retake.

(5) If, according to the provision of the course syllabus, a group of performance assessments cannot be retaken or replaced, the (partial) result of this group of academic assessments shall be determined on the basis of the most favorable two-thirds – rounded off.

Article 37 [Retake and Replacement of Examinations and Final Examinations]

(1) The student may modify the result of a previously passed examination by having a retake examination.

(2) The student can sit the retake examination before a different examiner or examination committee if so authorized by the head of the educational unit on the basis of the student’s duly reasoned written or electronic request addressed and submitted to the head of the educational unit no later than three working days before the commencement of the examination. If the head of the educational unit is involved in the examination, the appointment of a different examiner can be requested from the Dean of the faculty responsible for teaching the subject.

(3) During a given examination period, a second retake examination (i.e. the retake after a retake) shall be taken before an examination committee of at least three members, upon the student’s written or electronic request submitted no later than three working days before the commencement of the examination. No more than one member of the examination committee may be an examiner who has graded a former examination of the student as unsatisfactory/fail during a given exam period.

(4) A written (partial) examination is considered to be taken before an examination committee if the test is evaluated by at least two different examiners independently from each other. The result of the (partial) examination is determined by the examination committee.
8. Recording of Study Assessment and Grades

Article 38 [Recording of Study Assessments and Grades]

(1) The course teacher, the tutor or the study administrator of the educational unit shall record the term grade in NEPTUN no later than the end of the first week of the examination period of the specific semester. The date of recording the term grade is the date of acquisition.

(2) In a given semester, the student may only have one grade recorded for a subject assessed with a term grade at the end of the specific semester, and any grade obtained by retake or replacement assessments overrides the previous mark.

(3) The signatures for subjects concluded with examinations must be record in NEPTUN no later than the end of the first week of the exam period by the course teacher, the tutor or the study administrator of the educational unit. The date of the signature entry is the date of acquisition.

(4) A student may only have one signature entry in a given semester for each subject ending with examination. Any signature entry obtained or modified following a make up, retake or correction will override the previous entry.

(5) After establishing the result of an examination (end-term exam or final exam), but no later than the end of the next working day, the examiner shall record the mark in NEPTUN at the given examination, based on the examination sheet or final examination report. In the case of a combined examination (final exam), the entry shall be made for the examination session at which the grade was established.

(6) No grade for examination can be recorded in NEPTUN if the student has not taken any examination of the subject in the given semester.

(7) Any grade, score or result obtained at a midterm or at any examination, including the results of any assessment other than a “diagnostic study assessment/test”, offered grades, partial examination grades, as well as the evaluation of any partial written examination or examination session yielding no specific grade on their own, can be communicated to the student confidentially in person or in any other way, so that it cannot be learnt by a third party.

Article 39 [Study Assessment Records]

(1) Any documents produced by the students during their study as well as any assessments of students’ work shall be managed by the educational unit responsible for teaching the given subject. However, the Dean may decide to have these records managed at the faculty level.

(2) Paper-based documents (classroom tests, homework, written reports, etc.) of the study assessments carried out during the term-time and make up periods can be returned to the student after the assessment or shall be archived by the course leader.

(3) Documents (grading sheets, study result summaries and records) of study assessments carried out during the term-time and make up periods shall be kept in accordance with the requirements of the Document Management Policy.

(4) After evaluation, any documents produced during the examination period (e.g. term papers/coursework) and related to the examinations (including final examinations) shall be kept by the course leader.

(5) Documents related to the evaluation of examinations (e.g. grading sheets, examination reports and final examination reports) and produced during the examination period shall be kept in accordance with the requirements of the Document Management Policy.

(6) Any documents specified in paragraphs (2) and (4) not returned to the student after the assessment shall be destroyed within one month from the commencement of the next term-time, unless there is a procedure under way regarding the given examination, which may affect the outcome of the examination. In the latter case, the documents specified in paragraphs (2) and (4) shall be destroyed within one month after the final decision regarding the specific case has been issued. The expiry date specified herein does not apply to examination sheets. In any event, the process of records keeping and destroying shall be carried out in a way that prevents the identification of the author of the sorted out document.

Article 40 [Publicity of Assessments]

(1) Written and practical study assessments (classroom tests, exams, final exams, etc.) are not public, they are attended only by the students and the teaching staff involved.

(2) Oral study assessments are public within the frame imposed by the venue of the study assessment for the citizens of the university, as defined in paragraph (4). However, at the explicit and justified request of the student, the teacher conducting the study assessment, or, in the case of final examinations or closing exams, the chair of the Examination Board may restrict public access.

(3) In the case of oral assessments, there must be a third party present in addition to the student and the teacher performing the assessment. This third party may be any of the citizens of the university as defined in paragraph (4).
(4) In the case of oral study assessments, any of the following persons are allowed to be present during the examination in addition to the student and the teacher performing the assessment:
 a) university students, PhD course attendants, PhD candidates,
 b) university teaching staff, retired teaching staff,
 c) other persons involved in university education (e.g. non-teaching doctors), or
 d) university citizens not listed above, who attend the examination at the request of the examinee.
(5) The persons referred to in points a) to c) of paragraph (4), may attend only those examinations at which they, as students, also are assessed or they, as other university citizens, are in charge of any specific exam-related task, provided that their presence does not interfere with the appropriate and professional conduct of the examination, the decision of which is the privilege of the examiner who takes into account all aspects and circumstances of the case.
(6) University citizens referred to in point d) of paragraph (4) may attend the examination of the student who has requested that, provided that this participation does not interfere with the appropriate and professional conduct of the examination, which is decided by the examiner by taking into account all aspects and circumstances of the case.

Article 41 [Publicity of Study Assessment Results]

(1) During the term-time,
 a) if possible, proficiency test results shall be communicated prior to the study activity for which the assessment was made;
 b) the results of partial study assessments carried out pursuant to points a) or d) of Article 27(5) shall be communicated immediately after the activity was assessed; if the assessment was carried out in accordance with points b) or c) of Article 27(5), the result of the partial study assessment shall be communicated within seven days after the rated activity was performed or the student work to be evaluated was submitted;
 c) summary assessment results shall be communicated within eight days after completion (submission). Study assessment results shall be directly communicated to the assessed student or recorded and published in NEPTUN in a way as to avoid access by third parties.
(2) The results of written (partial) examinations and written parts of final examinations shall be communicated directly to the assessed student or recorded in NEPTUN until the end of the second working day following the examination, in a way as to avoid access by any third party.
(3) Results of oral or practical (partial) examinations, and the results of oral or practical parts of final examinations taken in the exam period shall be communicated to the student immediately after assessment. Oral or practical partial examination results may also be recorded in NEPTUN after the immediate notification.
(4) There must be at least 48 hours between the publication of study assessment results and the commencement of any associated retake or replacement.
(5) Revised, checked and evaluated written study assessments shall be kept accessible until the end of the examination period. Students may submit their complaints/objections to the teacher, examiner, course leader or, in exceptional cases, to the head of the educational unit until the last day of the examination period. In the event of a miscalculation or misevaluation, the teacher shall correct the objected mark of the study assessment.
(6) The teacher or examiner shall provide the access stipulated under paragraph (5) at occasions announced in advance. The date of access shall be determined so as to have at least 24 hours before the beginning of the retake or replacement of the relevant study assessment.
(7) If the teacher missed to act in accordance with paragraphs (4) and (6) of this Article, the Dean may oblige him/her to announce another opportunity for retake or replacement.
(8) During the access provided under paragraph (5):
 a) the student shall be allowed, without any specific request, to view the correction and evaluation guide for the given study assessment, compare it with the contents of his/her written work and the evaluation given by the teacher, and make notes about his/her coursework/term paper.
 b) the teacher shall provide detailed answers to the questions asked by the student on professional, correctional, and evaluational issues related to his/her study assessment.
(9) In order to enforce the provisions of Paragraph (8), the student may request the intervention of the head of the educational unit or Vice Dean in charge of education, or, in the case of the Faculty of Health and Public Services, that of the head of the educational unit responsible for education.
(10) After the study assessment was finished, the educational unit may publish the Correction and Evaluation Guide on its website.
(11) Study assessment results, including the term grades, end-term examination and final examination grades, as well as the signature entries are confidential personal data. Such data shall only be transmitted in special cases and to specific persons specified in these Regulations and in cases and to persons defined in the relevant laws. For any reasons or to any persons not covered by these Regulations or by law, these data must not be transmitted or disclosed.

Article 42 [Recording and Indicators of Study Assessment Results]

(1) The student’s study results shall be recorded in NEPTUN. Once the examinations have been completed, the results of both the oral and non-oral examinations will appear in the electronic record system on the “Performance Sheet”, and NEPTUN will automatically send notifications about these results.

(2) The teacher shall record the grade in the NEPTUN using the pre-printed grading sheet and make a copy of this sheet for the student who requested to have his/her own copy and authenticate these documents with a signature. If the student has his/her own copy of the grading sheet printed by him/her and signed by the teacher, he/she can verify whether the grade recorded in NEPTUN is the same as the grade specified on the pre-printed grading sheet. If the student does not have the Performance Sheet, in case of discrepancy he/she may verify the grade by comparing the grading sheet (pre-printed, completed and signed by the examiner) with the automatic notification received from NEPTUN.

(3) Any subsequent verification of the written examination results can be done based on the term paper/coursework, which shall contain the evaluation and the signature of the examiner.

(4) If the result of the examination was incorrectly recorded in NEPTUN, the student concerned may ask the course teacher or the head of the educational unit to make the necessary corrections by the end of the examination period. The teacher shall verify the student’s complaint within 5 working days and make any necessary corrections. Any such requests received after the examination period shall be submitted by the teacher, with his/her correction proposals, to the Dean’s Department Manager via the electronic mail system. The student may object in writing, against his/her assessment results recorded in NEPTUN within 14 days after the end of the study period. The objection must be submitted to the Registrar’s Department. The objection shall be investigated by the Registrar’s Department under the supervision of the Vice Dean in charge of education or, in the case of the Faculty of Health and Public Services by the Dean who shall decide on any possible correction within 5 working days of objection receipt. The student shall be notified on the result of the investigation within the same time limit via the student information system. The student may appeal the examination results within 15 days after notification, by submitting his/her complaint/objection to the Evaluation Review Board with the intermediation of the Registrar’s Department.

(5) Results of the previous semester shall be finalized and closed in NEPTUN by the end of the second week of each term-time.

(6) One free of charge transcript (i.e. an exact copy of the student’s complete, permanent academic record printed from NEPTUN) can be requested by the student in each semester.

9. Credit Recognition

Article 43 [Credit Recognition]

(1) During credit recognition, for any passed subject if the correspondence (match) is at least 75%, the substitution shall be accepted. If the same indicator is less than 75%, the committee competent in credit recognition may approve the substitution after considering the circumstances, in particular the role of the subject played in the achieving of training objectives, and may also request the opinion of the course leader. In accordance with the nature of credit recognition, the educational unit shall recommend the same decision for students being in the same situation.

(2) If the match is less than 75%, instead of credit recognition it is possible to recognize as achieved and waive certain requirements of the subject. In such a case the student will be required to take a special examination (i.e. a difference examination that does not include the above-mentioned requirements) before the examination period (during the final three weeks of the study period) or during the examination period. Such subjects shall be registered to by the Registrar’s Department for the specific student, but the latter is also required to report to the teacher responsible for the subject of the difference examination within 10 working days of decision receipt.

(3) A subject identical to an already completed subject cannot be registered to again (except for credit recognition). A subject is different from another subject if the thematic and the knowledge to be acquired are more than 25% different.

(4) As for the passing of the teaching plan-related requirements, it is allowed to consider only the subjects that are different from all the subjects already taken into consideration for passing.

(5) Prior to registration/enrollment for a given semester, the student may request credit recognition for the subjects already completed and passed at another faculty or higher education institution in accordance with the credit recognition procedure of the given faculty.
The credit recognition decision shall be taken by the committee competent in credit recognition in accordance with Paragraphs (1) to (4), also taking into account the proposals of the Program Leader (coordinator) or course leader. During the credit recognition process, it is required to consider that the student must complete at least one third of the credit value of the course at the university, including the credits for subjects completed in other courses and accepted during credit recognition, in order to obtain a university degree.

(6) Any credit recognition based on the specified output requirements of the subject (module) is done solely by comparing the knowledge on which the credit is based. The credit must be recognized if the comparative knowledge gives a match of at least 75%.

(7) A student who has lost his/her student status and has been re-admitted in a new admission procedure may have his/her credits accepted for the subjects successfully passed in the past by the decision of the committee competent in credit recognition.

(8) The committee competent in credit recognition will decide on the applications received within the specified deadline so that the student applying for recognition may draw up an individual curriculum for the following semester based on the decision.

(9) The rules, options and typical modalities of credit recognition, as well as the list of documents required for the procedure, are set out in the credit recognition procedure of the specific faculty. Only applications duly completed and submitted by the deadline set out in this document will be accepted.

(10) If the substitute subject requested by the student was not completed within the frame of a credit-based education, the credit shall be given for the number of hours indicated in the previous registration course book, taking into account the current ratio of contact and individual lessons in the current course. If neither the credit value nor the number of lessons of the substitute subject are known, the application for credit recognition cannot be effectively judged.

(11) The faculties of Semmelweis University mutually allow the registration of publicly announced specific subjects with the credit value granted by the announcing faculty, and any subject announced at the Semmelweis University may be registered to and recognized as an elective subject based on the provisions of paragraph (4).

(12) If a substituting subject can be assigned a credit value appropriate to the faculty curriculum, then the grade associated with the substituting subject must be accepted. If it has multiple grades, its rounded average should be considered and validated.

(13) The maximum number of credits that can be counted based on work experience is 30.

(14) The rules governing the credit recognition procedure are set out in the rules of procedure of the committee competent in credit recognition.

(15) The rules of the credit recognition procedure shall apply mutatis mutandis where the student requests the recognition of achievements from non-formal or informal learning or work experiences.

(16) The faculty may maintain an equivalence record for credit recognition regarding the particular course(s) it provides, in which the higher education institution, subject name, date of publication, or other relevant information may provide students with prior information on subjects already recognized in previous procedures and subject eligibility. For subjects registered to on the basis of a previous decision, if the subject programs concerned remain unchanged, the committee competent in credit recognition may proceed with a simplified procedure, which may or may not require the opinion of the course director, but shall not be required to do so. These previous decisions do not bind the committee.

(17) A simplified procedure may also be used where credit recognition is between the old and the new curricula of the same course and an equivalence table is created with or after the curriculum change.

10. Pre-degree Certificate, Diploma work, Closing Examination

Article 44 [Pre-degree Certificate (Absolutorium)]

(1) Until gaining the pre-degree certificate – in case of (partly) state-funded training – in bachelor or master training, in addition to the training period, a state-funded student may have a maximum of 2 active semesters, or a further 4 active semesters in a case of undivided training. Until gaining the pre-degree certificate – in case of (partly) state-funded training – the possible number of passive semesters are 2-2 in bachelor and master training, and 4 semesters in undivided master training. In justified cases, alongside the previous consent of the head of faculty, for a student undergoing further training may allow to suspend their student status for a different time period applying for the 2011 CCIV, acting in accordance with the provisions of Article 45(1)-(2) of Act I of 1992.

(2) In order to obtain a pre-degree certificate, the student is required to complete at least one-third of credit value of the degree – even in a case of acceptance of the completed credits and previous studies from other higher education institutions, in addition to earlier acquired knowledge recognized as credits – in the given institute, including the acquired and accepted credit value of subjects from other training of the university.

(3) The Registrar’s Department issues the pre-degree certificate if the relevant conditions are met, with recording the acquisition in the NEPTUN, and with drawing up that it is signed by the Dean of the faculty according to the student’s request.
Article 45 [Thesis]

(1) In order to obtain their diploma, students are required to write a thesis in bachelor and master training. The aim of the thesis is to promote via independent scientific processing of any problem in a certain disciplinary area, the student's ability of highlighting the essence, to learn using the library and the methods of literature research and to be able to summarize their opinion briefly and clearly, in addition, it may aim to systematically process the possible solutions of the practical problems regarding the specificities of the training, to demonstrate innovative concepts and results.

(2) The topic supervisor, or in certain cases the consultant leads the writing of the thesis. The topic supervisor is a professor or a researcher of the faculty; or with the Dean’s permission, an external professional can be the topic supervisor. An external supervisor may only be functioned with an insider consultant. If the topic supervisor is an external professional, the subject is signed and evaluated by the faculty lecturer and research supervisor at the end of the semester.

(3) The educational unit of the relevant faculty creates a list of topics related to the thesis, including the names of the consultants. The list of topics has to be announced electronically and on the news table of the educational unit and – in a case of bachelor, master or undivided training, at least four semesters prior to the last year of studies, but in a case of a minimum seven-semester-long training at least 2 semesters prior to the last semester of the training, and in a case of a maximum four-semester-long training one semester before the final semester – until the last day of the examination period in the fall semester in every academic year. The student may choose from any announced topic depending on a certain topic supervisor’s capacity. The chosen topic can be different from the announced topics with the consent of the head of the educational unit responsible for the topic. The student has to choose a topic and notify the head of the certain educational unit at least a year prior of the completion of their studies – in a case of minimum four-semester-long studies one semester prior to the final semester. If the head of the educational unit authorizes the topic, he is responsible of recording it and providing a consultant.

(4) Preparation for writing the thesis is aided by – in the semesters specified in the recommended curriculum, with defined individual and contact lessons – an obligatory elective course ending with an exam grade.

(5) While writing the thesis, the student must consult with his or her topic consultant in each semester, as many contact hours as is defined in the model curriculum.

(6) The content of the thesis may be at least 50,000 characters, the maximum content is 100,000 characters without spaces. The font to be used is Times New Roman in font size 12. The content includes the tables as well as the references; however, it does not include the figures, footnotes and bibliography. The thesis should be bound in file or book format in 2 copies; and submitted alongside an electronic copy to the educational unit responsible for the training. A certificate of submission is given to the student. The cover of the thesis should include the title of the thesis; the name, the year and the group of the student; in addition to the year of submission and the name and workplace of the consultant. In accordance with the permission of the head of educational unit, the student can write the thesis in any of the languages in which the university provides a program.

(7) The submission deadline of the thesis may differ for each faculty, and it must be announced on the webpage of the faculty.

(8) The thesis has to be submitted for review. The reviewer is invited by the head of the educational unit which announced the topic. The reviewer should be a lecturer with a degree in higher education, researcher or external professional. In bachelor training, the topic supervisor may be asked for review, in duly justified cases. The number of the reviewers is one or two in bachelor training, and at least two in a case of master training. If the topic was not announced by an educational unit of the faculty, the faculty or the faculty’s specialist in charge must appoint a professional reviewer, who may be an external specialist or a member of the faculty. The topic supervisor creates an individual review as well. Reviews should be sent to the student/candidate at least 5 days prior to the thesis defence. A grade recommendation for the thesis is given by the reviewer as well as the topic supervisor.

(9) Evaluation of the thesis is given on a 5-point scale. When rating/grading the thesis, the rate of independent research/work has to be taken into consideration. Defense of the thesis is conducted in front of a 3-member committee of the educational unit, or – if the thesis defence is part of the closing exam – the Closing Examination Board, the chair of which is the head of the educational unit or a university or college professor, or associate professor appointed by the head of the educational unit. The members of the committee are the consultant and a lecturer of the department. The committee may appoint a third member, who may be an external lecturer, chosen from the private lecturers of the university.

(10) The review should be written on a special form – form of thesis registration and evaluation – in two copies. The evaluation includes the review as well as the recommended grade. The student should be informed about the evaluation by sending the second copy of the form of the thesis registration and evaluation form prior to the closing examination, at least 10 workdays before the thesis defense.

(11) The reviewer poses 2-5 questions on the form of thesis registration and evaluation pertaining to the content of the thesis; The oral description of the thesis of a length prescribed by the committee, the answering of the previously posed and possible further questions denote the defence of the thesis.

(12) A thesis which is not authorised for defence is marked as “fail”. Evaluation of theses which are authorised for defence are assessed by the committee regarding the reviewers’ recommendation and the student’s performance during the defence according to paragraph (9).
(13) In a case of one reviewer, the head of the educational unit either authorizes the “fail” evaluation, or appoints a new reviewer. In the case of two reviewers, if only one reviewer gives a “fail” evaluation, the head of the educational unit appoints a new reviewer.

(14) In a case of a “fail” evaluation, the head of the educational unit notifies the student and informs him/her about the conditions of revision/supplementation. The thesis evaluated as “fail” may only be revised/supplemented once.

(15) The closing exam after the revision/supplementation of the thesis can be taken only in the subsequent closing exam period by the student
 a) who did not submit his/her thesis until the deadline;
 b) whose thesis was evaluated by the reviewer as “fail” with the approval of the head of the educational unit;
 c) whose thesis was evaluated as “fail” by the newly appointed reviewer according to paragraph (12).

(16) The conditions for the revision/supplementation of the failed thesis are determined by the head of the relevant educational unit, and it may include a request for further consultations if necessary.

(17) After the defence, the head of the educational unit gives one copy of the thesis to the student, the other copy and a copy of the report of the defence certifying the evaluations remains at the educational unit. The thesis has to be kept by the educational unit in accordance with the prevailing Document Management Policy.

(18) An award winning work for the “Rectorial Competition” may be accepted by the Dean as a thesis evaluated with an “excellente” grade according to the recommendation of the head of the educational unit in case the student requests so in an application previously submitted to the Registrar’s Department.

(19) For students participating in undivided master training, a praised work for the “Rectorial Competition” may be accepted by the Dean as a thesis evaluated with an “excellent” grade according to the recommendation of the head of the educational unit in case the student requests so in an application previously submitted to the Registrar’s Department.

(20) A scientific paper, which has been produced by the student in relation with his/her studies, and has been published as the student’s first-authored article in a peer-reviewed journal, may be accepted by the Dean as a thesis in which case, review and evaluation shall be provided according to the general rules.

(21) Requests regarding the thesis defined in paragraphs (18)-(20) must be submitted to the Registrar’s Department by the student until the end of the academic year before the completion of the studies. Exemption from writing the thesis does not mean the exemption from the defence of the thesis.

Article 45/A [Special provisions regarding the thesis at András Pető Faculty]

(1) During the preparation of the thesis, the supervisor should provide 3-5 consultation opportunities. The student is required to attend at least 3 consultations by the end of the term of the 7th semester.

(2) Participation in the consultation can be confirmed on the form of thesis topic announcement, which must be completed and attached when submitting the thesis.

(3) If the student does not fulfill this obligation, his/her thesis cannot be assessed and he/she receives a “fail” evaluation.

Article 46 [Closing Examination (Terminal Board Examination)]

(1) If the thesis is not accepted, the student/candidate is not eligible for taking the closing exam. The conditions and the earliest deadline of the supplementation are determined by the head of the educational unit in accordance with the opinion of the department.

(2) The student who has failed to meet his/her payment obligation to the higher educational institution is not eligible for taking the closing exam.

(3) The student is obliged to register for the closing exam 40 days prior to the first day of the closing exam period determined in the academic calendar, according to the procedure determined for each faculty, in NEPTUN, and in case of the Faculty of Health Sciences and the Faculty of Health and Public Services, at the Registrar’s Department. The faculty can prescribe a shorter deadline.

(4) The closing exam can have several parts according to the curriculum, particularly oral, written and practical parts. The thesis defense is part of the closing exam – if the curriculum so determines; however, it is evaluated separately from other parts of the closing exam.

(5) Differing from paragraph (4), in the Faculty of Health Sciences, the closing exam has
 a) in case of bachelor training,
 aa) practical,
 ab) written (theoretical),
 ac) oral (theoretical) parts,
 b) in the case of Nutrition Science master training,
 ba) professional oral exam from the core subjects,
 bb) professional oral exam from the differentiated professional subjects,
 bc) degree thesis defense,
c) in the case of the Nursing master training,
 ca) written theoretical part,
 cb) written practical part,
 cc) oral theoretical part,
 cd) thesis defense.

(6) At least two closing exam periods per academic year are appointed according to the academic calendar at the Faculty of Medicine and the Faculty of Pharmaceutical Sciences regarding the specifics defined by the National Closing Examination Committees for Medicine and for Pharmaceutical Sciences. Closing exams may only be taken in the appointed closing exam periods.

(7) Organizing the closing exam is the responsibility of the Dean of the faculty. The number of closing examination boards is determined according to the number of registered students in such way that no more than 10 students may be sorted for one occasion at one Closing Examination Board. This number is 12 at the Faculty of Pharmaceutical Sciences.

(8) Sorting of the students is based on their registration for the closing exam dates or it is done by the Registrar’s Department, in the latter case, when it is justified, a possibility for modifying the date should be provided. In case of multiple Closing Examination Boards on the same closing exam day, the sorting of students to individual boards is done according to previously stated professional criteria, or failing that, by a lot drawing. The sorting for the committees should be published at latest on the day of the exam in a way customary at the faculty. Students should be electronically informed about the location of the examination on the preceding day.

(9) The closing exam should be taken before the Closing Examination Board consisting of a chair and at least two other members. The chair and the members of the committee are appointed by the Dean from the candidates determined by the Faculty Board for up to one academic year. The Closing Examination Board should have at least one member who is a university or college professor, or associate professor, and one member who is not the employee of the university, or who is the lecturer of a different faculty or training program of the university. The mandate of a Closing Examination Board member – not including the chair of the board – may be valid for the assessment of only a single part of the closing exam.

(10) Students who miss to take their closing exam, and certify that it was through no fault of their own can be provided a date for a replacement closing exam by the faculty within the specific closing exam period.

(11) An examination report shall be kept on the practical and theoretical closing examinations. The grade of the written part of the exam shall be recorded in the report of the theoretical exam.

(12) The members of the committee evaluate the performance of the student with a grade, then in a closed session – in case of a debate, with voting – they determine the grade of the oral closing exam. In case of a tied vote, the vote of the chair is definitive. In addition, the committee confirms the grade of the practical part of the closing exam and the grade of the thesis.

(13) The closing exam is successful if the grade of each part of the closing exam defined in paragraph (4) and the grade of the thesis are at least “satisfactory/pass” (2). A successful closing exam cannot be re-taken.

(14) The final grade of the closing exam is the arithmetic mean of the grades of all parts of the closing exam. The final grade of the closing exam is announced by the chair of the Closing Examination Board.

(15) The grades/evaluation of the closing exam:
 2.00 – 2.90: satisfactory,
 2.91 – 3.50: average,
 3.51 – 4.50: good,
 4.51 – 4.99: excellent,
 if the grade of each part is excellent: distinguished.

(16) If the evaluation of any part is “fail”, the student has to retake the part of the exam which was unsuccessful. At the Faculty of Medicine, if the written or the oral part of the closing exam is evaluated as “fail”, the student has to retake both parts of the closing exam. This closing exam may be retaken twice only. Retaken closing exams may only be retaken in the following closing exam period. Credit value cannot be attributed to the closing exam. If the student/candidate has used the possibilities to retake any part of the closing exam as defined in this paragraph, and the partial exam remains unsuccessful, the whole closing exam has to be retaken.

(17) In case of unsuccessful written closing exam, the student cannot take the oral part, although, he/she may take the practical part of the closing exam; if the practical part is successful, this part of the final exam does not have to be retaken. If it is unsuccessful, the student cannot take the oral theoretical closing exam.

(18) If the student has not taken a successful closing exam until the termination of his/her legal relation (student status), he/she may attempt to retake the closing exam in any closing exam period after the termination of his/her legal relation. If the closing exam is taken later, the student cannot be obliged to take any complementary tests; however, the closing exam has to be taken according to the rules regarding the closing examination prescribed in the training and output requirements applicable at the time of the exam. Students who started their studies after September 1st 2012 may not take the closing exam after the end of the fifth year from the termination of their student status.
11. The Diploma/Degree

Article 47 [General Regulations Regarding the Diploma/Degree]

(1) The degree/diploma is an authentic/legal document with the crest of Hungary which contains the name and the identification number of the issuing higher educational institute, the number of the diploma, the name, maiden name, in addition to the place and date of birth of the diploma’s owner, the level of education, the given grade and faculty, the name of the qualification, the grade of the degree, the place, month and day of the issue, the classification of the professional qualification according to the Hungarian Qualification Framework, European Qualification Framework, in addition to the period of the training regarding the requirements of training and graduation. Additionally, it has to contain the original signature of the head of the institution – the head of the institution is determined in accordance with the Organizational and Operational Regulation – and the imprint of the seal of the higher education institute.

(2) The prerequisite of issuing the diploma, which certifies the end of the higher educational studies is a successful closing exam, in addition to the successful language exam in accordance with the requirements of training and graduation. In order to issue the diploma, the student is obliged to present legal documentation which certifies, that
 a) a successful general language exam was taken at at least intermediate “C” level, or complex high intermediate “B2” level in bachelor training,
 b) a successful state-approved or equal language exam was taken in accordance with the requirements of training and graduation.

(3) At the Faculty of Pharmaceutical Sciences, a further condition of issuing the diploma is a successful terminological final language exam in English or German language.

(4) The diploma must be issued and handed out within 30 days after the legal document of language exam certification defined in paragraph (2) was presented. If the student already presented the certification defined in paragraph (2) at the time of the closing exam, the diploma must be issued within 30 days after the successful closing exam was taken.

(5) If the diploma is not issued because the language certificate wasn’t presented, the higher educational institute provides a certificate. This document does not certify qualification or possession of professional knowledge and only certifies a successful closing exam. The Registrar’s Department is responsible for issuing and registering this certificate.

(6) The diploma must be issued in Hungarian and English, or in Hungarian and Latin, in Hungarian and Nationality language in case of a Nationality language course, Hungarian and the language of the training if the training is not in Hungarian.

(7) The diploma supplement must be issued, as defined by the European Commission and the European Council, in Hungarian and in English, and in the case of nationality training at the request of the student, in the language of the nationality concerned in bachelor-, master and higher vocational training. The diploma supplement is a legal document. Issuing the supplements and master sheet is the responsibility of the Registrar’s Department.

(8) A diploma issued in bachelor, master, undivided and vocational training entitles the owner to hold a job or pursue an activity as defined by law.

(9) In a higher-level vocational training, the condition of issuing the diploma is a language exam certification if made compulsory by the requirements of training and graduation.

(10) The degree levels certified by the university diplomas in English and Latin:
 a) bachelor level “Bachelor” or “baccalaureus” (abbreviated: BA, BSc),
 b) master level “Master” or “magister” (abbreviated: MA, MSc).

(11) Students holding the “master” title use the phrase of “licensed” before the qualification certified by the diploma.

(12) Persons who completed their studies at the Faculties of Medicine, Dentistry or Pharmaceutical Sciences are entitled to use the title of doctor. Their abbreviations: dr. med., dr. med. dent., dr. pharm.

(13) At the student’s request, after payment of expenses, the university shall issue an ornate diploma, which shall be signed by the Rector of the university, the Dean of the relevant faculty and the chair of the Closing Examination Board.

(14) The certificate is signed by the Rector or the Dean and the chair of the Closing Examination Board.

(15) If the student does not possess the language certificate at the time of the closing exam, and thus the diploma is issued after the closing exam period, and the chair of the Closing Examination Board is not employed by the university at the time of issuing, then, instead of the chair of the Closing Examination Board, the diploma may be signed
 a) by the Vice Dean at the Faculty of Medicine, the Faculty of Health and Public Services, the Faculty of Dentistry, the Faculty of Pharmaceutical Sciences and the Faculty of Health Sciences,
 b) by another member of the Closing Examination Board at the András Pető Faculty.

(16) In case of successful closing exam, the diploma is handed out during a solemn graduation ceremony. The time of the graduation ceremony is determined by the Dean.
Article 48 [Special Regulations Regarding the Diploma and the Qualifications of the Diploma at the Faculty of Medicine, the Faculty of Dentistry and the Faculty of Pharmaceutical Sciences]

(1) The qualification of the degree (diploma) should be based on the value calculated as described in paragraph (3) and rounded to the nearest hundredth.
 a) The evaluation of the diploma at all trainings except the undivided master trainings:
 aa) 4.51 – 5.00: excellent,
 ab) 3.51 – 4.50: good,
 ac) 2.51 – 3.50: average,
 ad) 2.00 – 2.50: satisfactory;
 b) at the undivided master trainings:
 ba) 4.51 – 5.00: summa cum laude,
 bb) 3.51 – 4.00: cum laude,
 bc) 2.00 – 3.50: rite.

(2) The subjects taken into consideration while evaluating the diploma, but which do not end with a final exam are determined by the curriculum.

(3) Formula for calculating the evaluation of the diploma:

\[XD = \frac{\sum_n (X_i) + T + W + O + P}{n + 4} \]

- \(XD \): the number which is the basis of the evaluation of the diploma;
- \(\sum_n (X_i) \): the sum of the required final exams and the subjects defined in paragraph (2);
- \(n \): the number of the required subjects defined in paragraph (2);
- \(T \): the grade (5-point-scale) of the thesis;
- \(W \): the grade of the written part of the closing exam;
- \(O \): the grade of the oral part of the closing exam;
- \(P \): the grade of the practical part of the closing exam.

(4) The evaluation of the diploma is calculated by the Registrar’s Department.

Article 49 [Special Regulations Regarding the Diploma, and Evaluations of the Diploma at the Faculty of Health Sciences]

(1) The evaluation of the diploma is based on the arithmetic mean of the following:
 a) the grades of the individual parts of the closing exam,
 b) the grade of the thesis,
 c) the simple arithmetical mean of the grades of the possible final exams,
 d) the credit weighted average for the whole period of study.

(2) The 5-point-scale qualification of the diploma is based on the arithmetic mean value rounded to the nearest hundredth. The qualifications:
 a) 4.51 – 5.00: excellent,
 b) 3.51 – 4.50: good,
 c) 2.51 – 3.50: average,
 d) 2.00 – 2.50: satisfactory.

(3) A degree with honors is awarded to a student if he/she has achieved “excellent” grades in all parts of the closing examination, has an “excellent” grade for his/her thesis and all of the final exams, has a credit weighted average of at least 4.00 for the entire study period and has not got any grade below “average”.

Article 50 [Special Regulations Regarding the Diploma, and the Evaluation of the Diploma at the Faculty of Health Sciences and Public Services]

(1) The evaluation of the diploma is calculated by the teaching administrator of the educational unit and it is verified by the Dean’s Office.

(2) The method of calculating the evaluation of the diploma is the following:
 a) At the program of Science in Health Services Management (BSc), the evaluation is the rounded arithmetic mean of the grades of the synthesizing exams, of the thesis defense and of the two parts of the closing exam.
\[XD = \frac{\sum_n (X_i) + T + B + H}{n + 3} \]

aa) \(XD \): the number which is the basis of the evaluation of the diploma,
ab) \(\Sigma_n (X_i) \): the sum of the grades of the subjects in the model curriculum, which lead to the complex, synthesizing, problem-oriented assessment of the knowledge of several subjects (Introduction to Information Technology III: Computer-networks, Medicine (4)-Clinical Basics, Health Science (7) – Health Management, Digital Healthcare (7) - Integrated Health Systems)
ac) \(n \): the number of complex exams indicated in the point above,
ad) \(T \): the grade (5-point-scale) of the thesis,
ae) \(B \): the grade of the oral exam of the basic subject (part of the closing exam),
af) \(H \): the grade of the oral exam of Health Informatics (part of the closing exam).

Five-point scale qualification:
4.51 – 5.00: excellent,
3.51 – 4.50: good,
2.51 – 3.50: average,
2.00 – 2.50: satisfactory.

b) At the Executive Health Services Management Postgraduate Specialization Program, the evaluation of the diploma is based on the weighted mean of these two values: the arithmetic mean of all grades obtained during the entire course of studies (at 60% weight), and the grade of the closing exam (at 40% weight).
Three-point scale qualification:
4.51 – 5.00: excellent,
3.51 – 4.50: good,
2.00 – 3.50: satisfactory.

c) At the Quality and Patient Safety Management Postgraduate Specialization Program, the grade of the diploma is the rounded arithmetic mean of the grades of the thesis defense and of the closing exam.
Evaluation:
4.51 – 5.00: excellent,
3.51 – 4.50: good,
2.51 – 3.50: average,
2.00 – 2.50: satisfactory.

d) At the Master Course in Mental Health-Oriented Family Studies, the simple arithmetic mean of the grade of the closing exam (mean of the grade given by the opponent of the thesis, of the grade of the defense, and of the oral exam) and of the credit-weighted mean of all the grades.
Evaluation:
4.51 – 5.00: excellent,
3.51 – 4.50: good,
2.51 – 3.50: average,
2.00 – 2.50: satisfactory.

e) At the Master of Arts in Social Works (MA), the simple arithmetic mean of the grade of the closing exam (mean of the grade given by the opponent of the thesis, of the grade of the defense, and of the oral exam) and of the credit-weighted mean of all the grades.
Evaluation:
4.51 – 5.00: excellent,
3.51 – 4.50: good,
2.51 – 3.50: average,
2.00 – 2.50: satisfactory.

f) At the Specialist Training Course in Integrated Parent-Infant Consultation, the simple arithmetic mean of the grade of the closing exam (mean of the grade given by the opponent of the thesis and of the grade of the defense) and of the credit-weighted mean of all the grades.
Evaluation:
4.51 – 5.00: excellent,
3.51 – 4.50: good,
2.51 – 3.50: average,
2.00 – 2.50: satisfactory.
g) **At the Specialist Training Course in School Social Work**, the simple arithmetic mean of the grade of the closing exam (mean of the grade given by the opponent of the thesis and of the grade of the defense) and of the credit-weighted mean of all the grades.
 Evaluation:
 - 4.51 – 5.00: excellent,
 - 3.51 – 4.50: good,
 - 2.51 – 3.50: average,
 - 2.00 – 2.50: satisfactory.

h) **At the Specialist Training Course in Communal and Family Meditation (Balassagyarmat)**, the simple arithmetic mean of the grade of the closing exam (mean of the grades of the examinations, of the grade given by the opponent of the thesis and of the grade of the defense) and of the credit-weighted mean of all the grades.
 Evaluation:
 - 4.51 – 5.00: excellent,
 - 3.51 – 4.50: good,
 - 2.51 – 3.50: average,
 - 2.00 – 2.50: satisfactory.

i) **At the Specialized Training Program for Preparation for the Lactation Consultant**, the simple arithmetic mean of the grade of the closing exam (the grade of the defense) and of the mean of all the grades.
 Evaluation:
 - 4.51 – 5.00: excellent,
 - 3.51 – 4.50: good,
 - 2.51 – 3.50: average,
 - 2.00 – 2.50: satisfactory.

j) **At the Special Qualification Program in Mental Health**, the simple arithmetic mean of the grade of the closing exam (mean of the grade given by the opponent of the thesis and of the grade of the defense) and of the simple arithmetic mean of the grades of subjects concluded with an exam.
 Qualification:
 - 4.51 – 5.00: summa cum laude,
 - 3.51 – 4.50: cum laude,
 - 2.00 – 3.50: rite.

k) **At the Special Qualification Program in Mental and Spiritual Counseling**, the simple arithmetic mean of the grade of the closing exam (mean of the grade given by the opponent of the thesis and of the grade of the defense) and of the credit-weighted mean of all the grades.
 Evaluation:
 - 4.51 – 5.00: excellent,
 - 3.51 – 4.50: good,
 - 2.51 – 3.50: average,
 - 2.00 – 2.50: satisfactory.

(3) The methods for calculation of the evaluation of the diploma are also described in the previous curricula, and in case of discontinued programs, they must be published on the website of the educational unit responsible for teaching.

Article 51 [Special Regulations Regarding the Diploma, and the Evaluation of the Diploma at the András Pető Faculty]

(1) The evaluation of the diploma is given by the grades of the closing exam, of the final exams and the credit weighted average of complex closing work and the school teaching practice/kindergarten methodological practice (OPGY 303, 304, 305, 306, 307, 308 TPGY 3031, 3041, 3050, 3061, 307, 308).

(2) According to the mean value calculated as shown above, the evaluations of the diploma are the following: honored: 5.00; excellent: 4.51 – 4.99; good 3.51 – 4.50; average: 2.51 – 3.50; satisfactory 2.00 – 2.50.

(3) Diploma with honors is awarded to the student who has “excellent” grades for the closing exam, the result of the complex closing work, the final essay and the school teaching practice and the grades for all final exams are “excellent”, and the grades of the other exams are at least average.

(4) Graduate students may get a diploma with honours if the student has a high school closing exam, a complex closing work and final exam of “excellent” grade, and a mean of grades of at least 4.51 without any grade below “average”, as shown in their teacher training book.
12. Deviation from the Provisions of the Regulation

Article 52 [Excercies of Special Permission]

(1) During the course of training, the committee competent in educational and examinational affairs may grant a derogation from a provision of these Regulations which does not impose an academic or financial obligation. Special permission can be exercised in relation to the order of study, without affecting the content of the study requirement.

(2) The special permission defined in paragraph (1) may be provided
 a) once for subjects in the model curriculum of the 1-4 semesters and once for subjects in the model curriculum of semester 5 and beyond, in the case of undivided training;
 b) once in the whole training in the cases of basic and divided master courses.

(3) The special permission not used in the theoretical training, described in point a) of paragraph (1) shall not be transferable to the second half of the training. Special permission not used in the bachelor training is not transferable to the master training.

(4) The decision on a special permission shall stipulate the terms of the approval and shall state that no further benefits may be granted as special permission during that period.

Article 53 [Vis Maior]

(1) In cases involving a wide range of students, where special permission could be provided if it was applied for, and also upon ex officio proceedings in cases of vis major, specific derogations from the rules of these Regulations are possible.

(2) The ex officio proceedings described under paragraph (1) are initiated by the Vice Rector for educational affairs with the consent of the Student Council.

(3) Where the authority competent for the derogation cannot be determined, the Vice Rector for educational affairs shall act with the consent of the Student Council.

13. Provisions for Students with Disabilities

Article 54 [Provisions Applicable to Students with Disabilities]

(1) One person may pursue studies in higher education in Hungarian (partly) state-funded training, for a period totaling twelve semesters in undivided, bachelor and master training. Support is limited to a maximum of fourteen semesters if the student is enrolled in full-time training and the training requirements exceed ten semesters.

(2) The support period as defined in paragraph (1) may be extended for a student with a disability by up to four semesters by the higher education institution. This preference may be exploited for the achievement of more than one degrees but the period of allowance on this basis may not exceed four semesters.

(3) Further provisions for students with disabilities are included in the university’s Equal Opportunities Regulations.

14. Remedies in Educational Matters and the Obligations of the Institution to Provide Information

Article 55 [Right for Remedy in Educational Affairs]

(1) The provisions relating to the appeals procedure are set out in Chapter III of the Organizational and Operational Rules of Semmelweis University. Part 7 (Remedies Regulations).

(2) According to the Act on National Higher Education, all proceedings in the educational affairs of the students, in particular those which fall within the competence of the committee competent in educational and examinational affairs under these Regulations, are considered as first order decisions. In case of doubt, the committee competent in educational and examinational affairs may act if it is necessary to make a decision in a matter of a procedural nature related to the continuation of the student’s studies, the progress of his or her studies and the acquisition of knowledge/qualifications, if there are no legal provisions or other bodies responsible for the matter.
Article 56 [The Obligations of the Institution to Provide Information and Consultation]

(1) The Dean of the faculty ensures that the students starting their studies at the university are given access to the rules of study and examinations as well as the training information before enrollment. The provisions on the content and publication of the study guide are set out in the Act CCIV/2011 on National Higher Education, on the implementation of certain provisions of Act No. (IV.9.) (Hereinafter: NHE Act provisions) and can be found in the homepage of the faculty.

(2) The rules of study and examination shall be published in English and German as well.

(3) The university publishes a single study leaflet per academic year in Hungarian, English and German, containing relevant information for the academic year. The faculty may also publish certain information related to the institutional brochure on its own website in addition to the textbook.

15. Final Provisions

Article 57 [Final and Transitional Provisions]

(1) For matters not covered by these Regulations, the provisions of the Act on National Higher Education and 87/2015. (IV. 09.) Government Decree (NHE Act provisions) and the provisions of other legal acts shall prevail.

(2) These Regulations shall enter into force on the date of their adoption by the Senate, and shall at the same time be subject to Part III of the Organizational and Operational Rules of the Semmelweis University. Part III/I, III/II, III/III and III/IV. Chapters 1 to 2 are repealed. The Code shall apply for the first time for the fall semester of the 2019/2020 academic year, including the time between the adoption of the Code and, if later, the date of agreement by the Student Council. At the discretion of the Rector or the Vice Rector for educational affairs, or if it is more favorable to the student, the provisions of the Code may be applied to pending matters.

(3) For the academic year 2019/2020, the specific provisions of these Regulations concerning the organization of exams in the field of blended education shall not apply to the subjects included in the standard curriculum of general medical practitioners for the fifth year.

(4) Article 18(4) applies to existing multiple entitlements, the invitation must be made within a reasonable time after the entry into force of the bylaws, and may be announced by the university in the form of a notice.

(5) Where the content of the study obligations are defined in these Regulations, students who commenced their studies prior to the date of entry into force of the Regulations shall continue to be subject to the obligation set out in the Regulations in force at the time of commencement, but the faculty may apply the new study requirements.

(6) The deadlines passed or nearly passed at the time of entry into force of these regulations, can be replaced individually by new reasonable deadlines by the Rector or the Dean.

(7) The new obligation sets forth in these regulations for a university body or student shall be fulfilled to the extent expected in the fall semester of the 2019/2020 academic year, with a view to its full implementation.

(8) When examining the existence of the conditions necessary for granting a special permission, previous special permission should be disregarded if, under these Regulations, the decision could have been taken without exercising a special permission – a case which may fall within the scope of Article 51 only if the Vice Rector for educational affairs or the committee competent in educational and examinational affairs decides individually.

(9) Curricula and subject programs shall be subject to review, by 30 June 2020, to ensure that they comply with the provisions of these Regulations. Provisions of previously adopted subject programs, subject requirements systems that are contrary to the provisions of these Regulations shall not be applied or shall be applied to such an extent and in such a manner as to comply with these Regulations.
PLAGIARISM DECLARATION

at the Faculty of Medicine
(Declaration on compliance with regulations on preparing thesis work)

I, the undersigned, name: ..

(Neptun code: ..) hereby declare by signing this declaration that this thesis work, entitled:

...

is my own work, and I adhered to the provisions of Act LXXVI of 1999 on Copyright in the preparation of the thesis work and respected the rules laid down by the University.

I acknowledge by signing this declaration that Semmelweis University refuses accepting the thesis provided it can be proved that this thesis work was not carried out by me or violation of copyright law arises with regard to the thesis.

I am also aware, that the authorization holders may take action against me because of violation of copyright law, which may result in legal consequences, including consequences of civil law, infringements act and criminal law.

Budapest, .., 20...............

..

student’s signature
Rectorial Circular

on the independent work of students and on certain questions concerning lecture and practice policies

In order to meet the requirement for independent student work and to ensure the smooth functioning of lectures and practices, I hereby draw the attention of the students of Semmelweis University to the following:

I. In the course of testing one’s knowledge and practical skills, it is prohibited, under disciplinary liability, to use any unauthorised material, or to secure any illicit advantage. For the purpose of this provision, advantages ensured to disabled students in accordance with legal provisions or university regulations and allowances based upon individual decisions made in accordance with Chapter III Part III of The Rules of Operation and Organisation of Semmelweis University qualify as allowed advantages.

II. The independent creation of original work, as well as the true and accurate citation, and the precise and complete indication of the sources used are not only scientific requirements, but also obligations arising from legal regulation.

Intellectual property is protected by the laws of Hungary. The content of this protection is defined particularly by the Copyright Act, the acts on inventions and patents, and on trademarks and the Civil Code of Hungary. The intellectual property of another person is only allowed to be used in accordance with these regulations.

All creations of literature, science and art shall fall under copyright protection as defined by Act No LXXVI of 1999 on copyright. According to this act, from a work disclosed to the public any part may be cited by indication of the source and naming the author indicated therein. Such citation shall be true to the original and its scope shall be justified by the nature and purpose of the borrowing work. The free use is permitted only so far as it does not conflict with a normal exploitation of the work and does not unreasonably prejudice the legitimate interests of the author, and it is in compliance with the requirements of fairness and is not designed for a purpose incompatible with the intention of free use.

The consequences of the abuse of rights relating to intellectual property are provided by law, thus the abuse of these rights may also fall under disciplinary liability.

III. In the absence of previous authorization, it is prohibited, under disciplinary liability, to take photos or make video or sound recordings at lectures and practices. In addition, any misuse of the likeness or recorded voice of another person shall be deemed as a violation of inherent rights and may result in other consequences. The disclosure of likeness or recorded voice of another person shall be authorized by that person.

I request all students to take notice of the above.
Attention to Students of Foreign Language Programs at Semmelweis University

In recent years, Semmelweis University has built a valuable student community by maintaining high academic standards and placing much emphasis on the ethical integrity of our education. The overwhelming majority of our students appreciate our efforts. Unfortunately, a small minority does not want to accept our ethical guidelines, and tries to take undue advantage at exams by using unacceptable techniques.

We therefore do implement the following sanctions:

Against students who are found at exams possessing forbidden items, including electrical devices, such as mobile phones, ipods, etc. a disciplinary action will be initiated that can end with immediate discharge with disgrace from Semmelweis University. By implementing this rule, we wish to preserve the academic and material value of the Semmelweis Diploma.

NEPTUN.NET Unified Education System

Summary for Students

At Semmelweis University, the education system NEPTUN.Net is used for performing administrative tasks related to education. The users of the system – registry clerks, faculty secretaries, instructors and students – have different authorities to access the information stored in the system.

For the students of the institution, the system provides the following functions:
- To check their personal data and information related to their studies,
- To register for subjects,
- To register for exams,
- To check grades entered into the system,
- To monitor the grants transferred,
- To get information on their payment obligations,
- To manage their finances,
- To receive messages within the system from registry clerks, secretaries of institutions and instructors.

You get your user ID and password to the NEPTUN.Net system from the Dean's Office or the Registry of the Faculty where you have been admitted. Users with students’ rights may only manage their own data. In order to prevent unauthorized access, it is very important that you change your password from time to time. It is recommended that you change the password immediately upon entering the system for the first time. The password should be minimum 6 characters long, consisting of letters, numbers or a mixture of both.

Students can access the NEPTUN.Net system on any computer located in students’ terminal rooms (in the Student Centre /NET/ and in the Central Library) or any other computer with Internet access using a browser (Internet Explorer 7 or Mozilla Firefox version 2) from the official university Neptun Portal (http://net.neptun.sote.hu).

(For a detailed description of the Students’ WEB please check the Neptun Portal – Support / Neptun usage / Aids by role / Aids for students).

Entering the system

On the Neptun Portal, click on the Student icon to enter. Then choose the server you wish to use. Enter the Neptun code (ID) and the password on the window which appears.

Once you enter you can choose from the following data groups at the top of the page:
Personal data, Studies, Subjects, Exams, Finances, Information, Administration

Upon entering the Neptun.Net system, students have to perform the following operations during a term:
- Registration
- Subject registration
- Exam registration
Registration

You can access the registration function in the Administration menu. Here you can register for the next term by clicking on the link “Registration”. On the page “Registration requests”, when clicking on “New” in the status column of the current semester, a window is displayed where you have to declare whether you choose to register with an “Active” or a “Passive” status. After you have chosen the appropriate option, click on the button “I declare”. (Such registration is only available if Registration period is displayed under “Periods” in the “Information” menu! If you have not chosen any course for the semester yet, but you intend to register with an “Active” status, the programme will ask you to make sure whether you really want to continue the registration process. If you choose the option “no” at this stage, this means that registration will not be completed, and before you do so, you can take up your courses. If you choose “OK”, you can continue registration. Naturally, you are free to take up courses afterwards.)

Subject registration (choosing subjects, choosing courses)

Choose the link “Subject registration” in the “Subjects” menu.

1. **Displaying the list of subjects:** Select the appropriate semester (e.g. 2021/22/1) and the curriculum, then select “Subject list of the chosen curriculum” under „Subject type“ to display obligatory and elective subjects. The option “Other elective subjects” may be used if the institution concerned manages its elective subjects separated from the curricula. If you do not find any subject in this list, this only means that at your institution these elective subjects are also integrated into the curricula. In this case, you should choose the option “Subject list of the chosen curriculum” at this question. By ticking “Show only those subjects that will be launched” you can make sure that only those subjects appear in the displayed subject list which will be launched in the semester selected. You can display the subject list filtered according to the conditions set by clicking on the “List subjects” button.

2. **Display, search and ordering options in the subject list:** On the top of the list you can set the number of subjects to be displayed on one page. If the list is longer than one page, you can use the two-way arrows on the top of the list or the drop-down menu to turn pages. By clicking on the printer icon, you can print the page displayed. When you find the subject required, click on any detail and all details of the selected subject will be displayed in a pop-up window.

3. **Subject details / Current courses tab:** Here you can see the courses launched in the given semester for the selected subject. You can now choose the subject and its course or courses. You can choose the courses by marking the checkbox on the right of the course list, then confirm your choice by clicking on “Save” at the bottom of the page. You have to choose more than one course for the same subject if more than one course type (e.g. theoretical and practical) are announced. In this case, you need to choose one course for each course type. This is not true for exam courses which must be chosen independently in all cases, which means that you cannot choose an exam course and another course type for the same subject at the same time. Course registration will only be successful if:
 - you have fulfilled the requirements for subject and course registration,
 - none of the courses selected is booked out (in the students/limit column the number of students is under the limit),
 - you have selected one course for each course type (e.g. theoretical, practical),
 - it is preliminary or final subject and course registration period,
 - you have not completed the subject so far.

 For more information on a given course, click on any detail of the given course in the list to display the course information in a new pop-up window.

4. **Deregistering subjects:** If for any reason you would like to drop a chosen subject, you can do so under “Registered subjects” in the “Subjects” menu. On this page you can see the subjects you have chosen in the current registration period; you can change courses or deregister subjects here. If in any subject line you click on “Deregister subject”, the system will first ask whether you really want to drop the given subject and if you answer yes, the subject will be dropped and deleted from the list of registered subjects. Naturally, this means that your registration for the courses of the deregistered subjects is also deleted and you will be informed of this. (Subject deregistration is possible during the preliminary or final subject or course registration period.)

5. **Changing courses:** If you want to change the course(s) you have chosen in a given subject, you can do this by clicking on any detail of the given subject to display the pop-up window “Subject details”. Here on the “Current courses” tab in the last column of the list you have to select the course(s) required and unmark the course(s) to be dropped, then confirm the change by clicking on the „Save“ button. The system will report on the change or the reasons for potential errors.
Exam registration

You can find “Exam registration” in the “Exams” menu. On this page you can register for exams or cancel your registration. In the exam list, exams which you have already registered for will appear in blue. To cancel an exam registration, go to the “Selected exams” menu.

1. List exams: On entering the page for the first time all future exam dates announced in the current semester will appear, but you can filter the list. If you only want to see the exam dates of a given subject, select the subject from the “Subjects” roll-down menu, then click on the button “List exams”.

2. Exam registration: To register for an exam, click on “Register” in the line of the given date. The programme will report on the success or failure of exam registration.

3. Canceling exam registration: If you register for an exam by mistake or you simply change your mind and want to cancel your registration, click on „Cancel“ next to the given exam. (Normally this can be done prior to the exam within the cancellation deadline.)

4. Payment of retake exam fee: By clicking on “Payment” under “Finances”, you will be taken to the page where the list of settled and payable items is displayed. Here you can also fulfill your financial obligations. On the “Payment” tab, click on the “Transcribe item” button and on the appearing “Transcribe item” window, enter the payment title (retake exam), then select the subject for which you would like to transcribe the exam fee from the roll-down list. Finally, click on the „Create item“ button. You can take over the invoice of the item created in the Dean’s Office. To list current items, select the current semester using the “Semester” roll-down menu under “Filters” on the 1.) “List items” tab. (Items you have displayed are marked as “Own item” in the “Status” column.) To view the details of a given item, click on “Details” in the line of the item concerned.

Message management

During term time, students may receive messages on various topics. This menu can be found on the left-hand side of the page. Here you can see the messages sent to the student by the Dean’s Office clerk in charge of his/her year or the instructor of a chosen course. You can view the text of the message on a new window by clicking on the required topic in the list of messages.

The NEPTUN system assists students and university employees in the accurate and effective performance of administrative tasks related to their studies. In order to ensure faultless operation, it is indispensable that authority rules are complied with and that accurate data is provided. Therefore, please note that data changes or wrong data must be corrected within 8 days using „Modify data“.
THE DEPARTMENTS OF SEMMELWEIS UNIVERSITY

Semmelweis University, Faculty of Medicine

Department of Anatomy, Histology and Embryology
1094 Budapest IX., Tűzoltó u. 58.
Phone: 215-6920 ext 53601 Dr. Székely, Dr. Katz
53652 Dr. Csáki (Pharm.)
Head of the Department: Prof. Dr. Alán Alpár

Institute of Biophysics and Radiation Biology
1094 Budapest IX., Tűzoltó u. 37-47.
Phone: 267-6261 ext 60211 Dr. Voszka, 60220 Dr. Módos (Pharm.)
Head of the Department: Prof. Dr. Miklós Kellermayer

Department of Genetics, Cell- and Immunobiology
1089 Budapest VIII., Nagyvárad tér 4.
Phone: 210-2940 ext 56234 Dr. Holub, 56251 Dr. Láng,
56502 Dr. Semsei
Head of the Department: Prof. Dr. Edit Buzás

Department of Pharmacology and Pharmacotherapy
1089 Budapest VIII., Nagyvárad tér 4.
Phone: 210-2930 ext 56267 Dr. Riba, 56337 Dr. Kató
Head of the Department: Prof. Dr. Péter Ferdinandy

Department of Forensic Medicine
1091 Budapest IX., Üllői út 93.
Phone: 215-7300 ext 53467 Dr. Almádi
Head of the Department: Dr. Klára Törő

Department of Biochemistry
1094 Budapest IX., Tűzoltó u. 37-47.
Phone:+36-1-4591500 ext 60024, 60022, 60023
Dr. Chinopoulos; 60066 Dr. Tóth
Head of the Department: Prof. Dr. László Csanády

Department of Molecular Biology
1094 Budapest IX., Tűzoltó u. 37-47.
Phone: 266-2615 ext 60132 Dr. Keszler
Head of the Department: Prof. Dr. Miklós Csala

Department of Physiology
1094 Budapest IX., Tűzoltó u. 37-47.
Phone: 266-9180 ext 60439 Dr. Vármai, 60450 Dr. Balla
Head of the Department: Prof. Dr. László Hunyady

Department of Translational Medicine
1094 Budapest IX., Tűzoltó u. 37-47.
Phone: 210-0306, 459-1500/60300
Head of the Department: Prof. Dr. Zoltán Benyó

Institute of Public Health
1089 Budapest VIII., Nagyvárad tér 4.
Phone: 210-2930 ext 56184 Dr. Horváth
Head of the Institute: Prof. Dr. Zoltán István Ungvári

Institute of Behavioral Sciences
1089 Budapest VIII., Nagyvárad tér 4.
Phone: 210-2959 ext 56320 Dr. Ghidán, 56287 Dr. Dobay
Head of the Institute: Prof. Dr. Dóra Szabó

I. Department of Pathology and Experimental Cancer Research
1085 Budapest VIII., Üllői út 26.
Phone: 266-1638 ext 54465 Dr. Nagy, ext 54425 Dr. Rácz
Head of the Department: Prof. Dr. András Matolcsy

II. Department of Pathology
1091 Budapest IX., Üllői út 93.
Phone: 215-7300 ext 53460 Dr. Kenessey
Head of the Department: Prof. Dr. András Kiss

Department of Anesthesiology and Intensive Therapy
1082 Budapest VIII., Üllői út 78/B.
B-part of the building, 4th floor
Phone: 355-6565, 325-1100; ext 62062 Dr. Vass, Dr. Kállai, Dr. Gyöngyösi
Head of the Department: Prof. Dr. János Gál

Department of Internal Medicine and Oncology (BOK)
1083 Budapest VIII., Korányi Sándor u. 2/A
Phone: 459-1500 ext 51526 Dr. Studinger
Head of the Department: Prof. Dr. István Takács

Department of Internal Medicine and Hematology (BHK)
1088 Budapest VIII., Szentkirályi u. 46.
Phone: 375-4364; Dr. Kellai
Head of the Department: Prof. Dr. Tamás Masszi
Department of Dermatology, Dermatooncology and Venerology
1085 Budapest VIII., Mária u. 41.
Phone: 266-0465 Dr. Kende (Med.), ext 55776
Dr. Hidvégi (Dent.)
Head of the Department: Prof. Dr. Miklós Sárdy

Department of Family Medicine
1085 Budapest VIII., Stáhly Ignác u 9. floor 5.
Phone: 214-0841 Dr. Vörös
Head of the Department: Dr. Péter Torzsa

Department of Oncology – National Institute of Oncology
1122 Budapest XII., Ráth György u. 7-9.
Phone: 224-8600 ext 1143 Dr. Agoston
Head of the Department: Prof. Dr. Csaba Polgár

Department of Otorhinolaryngology, Head and Neck Surgery
1083 Budapest VIII., Szigony u. 36.
Phone: 334-2384 ext 52350 Dr. Bencsik
Head of the Department: Prof. Dr. László Tamás

I. Department of Pediatrics
1083 Budapest VIII., Bókay J. u. 53-54.
Phone: 334-3186 Dr. Balogh, ext 52631 Dr. Krikovszky
Head of Department: Prof. Dr. Attila Szabó

II. Department of Pediatrics
1094 Budapest IX., Tűzoltó. u. 7-9.
Phone: 215-1380, ext 52120 Dr. Ónody, ext 52120 Dr. Regáli
Head of the Department: Prof. Dr. Attila Szijártó

Heart and Vascular Centre
Városmajor Street Building
1122 Budapest XII., Városmajor. u. 68.
Phone: 458-6847; 458-6810 Dr. Bárczi
Head of the Department: Prof. Dr. Béla Merkely

Department of Neurology
1088 Budapest VIII., Balassa u. 6.
Phone: 210-0330 ext 5123 Dr. Debreceni, Dr. Scheidl
Head of the Department: Prof. Dr. Dániel Bereczki

Department of Neurosurgery
1145 Budapest XIV., Amerikai út 57.
Phone: 467-9325; 251-2999 ext 325 Prof. Nyáry
Head of the Department: Prof. Dr. Péter Banczerowski

Department of Orthopedics
1113 Budapest XI., Karolina út 27.
Phone: 466-6611, Dr. Holnay
Head of the Department: Prof. Dr. György Szőke

Department of Psychiatry and Psychotherapy
1083 Budapest VIII., Balassa u. 6.
Phone: 210-0330 extension 51100
Head of the Department: Prof. Dr. János Réthelyi
Tutors: Dr. Hidasi 51217, Dr. Seres, 51230 Dr. Szily,
51229 Dr. Unoka
Education officer: Hajnal Kiss, Tünde Szécsi 51322 (Basement room 003.)

Department of Pulmonology
1125 Budapest XII., Diósárok u. 1/C
Phone: 355-8682 ext 57055 Dr. Horváth
Head of the Department: Prof. Dr. Veronika Müller

Medical Imaging Centre
1082 Budapest VIII., Úllői út 78/A
Phone: 459-1500 ext. 61628 Dr. Kozák
Head of the Department: Dr. Pál Maurovich-Horvat

Department of Radiology
1082 Budapest VIII., Úllői út 78/A
Phone: 459-1500 ext. 61628 Dr. Tárnoki
Head of the Department: Prof. Dr. Viktor Bérczi

I. Department of Surgery and Interventional Gastroenterology
1082 Budapest VIII., Úllői út 78.
Phone: 313-5216 ext 52120 Dr. Ónody, ext 52120 Dr. Regáli
Head of the Department: Prof. Dr. Attila Szijártó

II. Department of Surgery
1125 Budapest XII., Kútvölgyi út 4.
Phone: 325-1100 ext 57201 Dr. Ledniczky
Head of the Department: Dr. Gábor István

Department of Transplantation and Surgery
1082 Budapest VIII., Baross u. 23-25.
Phone: 267-6000; 459-1500 ext 60857 Dr. Telkes
Head of the Department: Prof. Dr. László Köbőri

Department of Surgical Research and Techniques
1089 Budapest VIII., Nagyvárad tér 4.
Phone: 459-1500 ext 56569 Dr. Szabó
Head of the Department: Dr. Andrea Ferencz

Department of Vascular and Endovascular Surgery
1122 Budapest XII., Városmajor u. 68.
Phone: 458-6700, Dr. Járányi
Head (assigned) of the Department: Prof. Dr. Péter Sótonyi

Department of Ophthalmology
1085 Budapest VIII., Mária u. 39.
Phone: 266-0513 ext 51612 Dr. Resch
Head of the Department: Prof. Dr. Zoltán Zsolt Nagy
Semmelweis University, Faculty of Dentistry

Department of Prosthodontics
Dental Centre
1088 Budapest VIII., Szentkirályi u. 47.
Phone: 318-0011 ext 59417 Dr. Palaszkó, Dr. Bercze,
ext 59342 Dr. König
Head of the Department: Prof. Dr. Péter Hermann

Independent Section of Radiology
Dental Centre
1088 Budapest VIII., Szentkirályi u. 47.
Phone: 459-1500 ext 59322 Prof. Márton
Head of the Department: Prof. Dr. Csaba Dobó Nagy

Department of Pedodontics and Orthodontics
Dental Centre
1088 Budapest VIII., Szentkirályi u. 47.
Phone: 318-0011 ext 59322 Prof. Márton
Head (assigned) of the Department: Dr. Noémi Katinka Rózsa

Department of Conservative Dentistry
Dental Centre
1088 Budapest VIII., Szentkirályi u. 47.
Phone: 318-0011 ext 59322 Prof. Márton,
ext 59378 Dr. Lohinai
Head of the Department: Dr. János Vág

Department of Oral Biology
1089 Budapest VIII., Nagyvárad tér 4.
Phone: 210-4415 ext 56310 Dr. Kerémi; 56420, Dr. Kádár
Head of the Department: Dr. Ákos Zsemberi

Department of Oral Diagnostics
Dental Centre
1088 Budapest VIII., Szentkirályi u. 47.
Phone: 318-0011 ext 59322 Prof. Márton
Head of the Department: Prof. Dr. Csaba Dobó Nagy

Department of Oro-Maxillofacial Surgery and Stomatology
1085 Budapest VIII., Mária u. 52.
Phone: 266-0457 ext 55866, 55867 Dr. Szűcs
Head of the Department: Dr. Zsolt Németh

Department of Periodontology
Dental Centre
1085 Budapest VIII., Szentkirályi u. 47.
Phone: 318-0011 59190 Dr. Nagy
Head of the Department: Prof. Dr. Péter Windisch

Department of General Dental Preclinical Practice
Dental Centre
1088 Budapest VIII., Szentkirályi u. 47.
Phone: 459-1472; 459-1500 ext 59112; 59322
Head and tutor of the Department: Prof. Dr. Krisztina Márton

Department in Community Dentistry
1085 Budapest VIII., Mikszáth Kálmán tér 5.
Phone: 317-6600, 317-2222
Head of the Department: Dr. Orsolya Németh

Department of Obstetrics and Gynecology
1088 Budapest VIII. Baross u. 27.
Phone: 266-0473 Dr. Nagy
1082 Budapest VIII., Üllői út 78/A
Phone: 313-7856
Head of the Department: Prof. Dr. Nándor Ács

Department of Transfusion Medicine
1089 Budapest VIII., Nagyvárad tér 4., 16th floor
Phone: 459-1500/56157
Appointed Head of the Department: Prof. Dr. Attila Tordai

Department of Traumatology
1081 Budapest, VIII. Fiumei út 17.
1145 Budapest, XIV., Uzsoki u. 29.
Phone: 467-3851 Dr. Berta
Head of the Department: Prof. Dr. László Hangody

Department of Urology
1082 Budapest VIII., Üllői út 78/B
Phone: 210-0280 ext 51135, 51147 Dr. Horváth
Head of the Department: Prof. Dr. Péter Nyirády

Department of Laboratory Medicine
1089 Budapest VIII., Nagyvárad tér 4., floor XIV.
Phone: 210-0278 ext 56318 Prof. Szabó
Head of the Department: Prof. Dr. Barna Vásárhelyi

Institute of Digital Health Sciences
1089 Budapest VIII., Ferenc tér 15. floor II.
Phone:488-7620; 210-0328 Mr. Marosi
Director: Dr. Miklós Szócska

Center of Physical Education and Sport Sciences
1107 Budapest X., Zágrábi út 14.
Phone: 215-9337, 262-5529, 264-1408, 262-5529
Director: Kornélia Várszegi
Semmelweis University, Faculty of Pharmaceutical Sciences

<table>
<thead>
<tr>
<th>Department of Pharmaceutical Administration</th>
<th>University Pharmacy, Department of Pharmacy Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1092 Budapest IX., Hőgyses Endre u. 9.</td>
<td>1092 Budapest IX., Hőgyses Endre u. 9.</td>
</tr>
<tr>
<td>Phone: 476-3600 ext 53010 Dr. Mesko, 3049 Dr. Mészáros</td>
<td>Phone: 476-3600; 217-0891 Prof. Takács–Novák, ext 53023</td>
</tr>
<tr>
<td>Head of the Institute: Prof. Dr. Romána Zelkó</td>
<td>Dr. Völgyi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institute of Pharmacognosy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1085 Budapest VIII., Úllói út 26.</td>
</tr>
<tr>
<td>Phone: 317-2979 ext 55372 Dr. Sólyomváry</td>
</tr>
<tr>
<td>Head of the Institute: Dr. Szabolcs Béni</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Pharmacodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1089 Budapest VIII., Nagyvárad tér 4.</td>
</tr>
<tr>
<td>Phone: 210-4411, 210-2927 ext 56108 Prof. Tekes, 56324 Prof. Szökő</td>
</tr>
<tr>
<td>Head of the Department: Dr. Tamás Tábi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Pharmaceutical Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1092 Budapest IX., Hőgyses Endre u. 7-9.</td>
</tr>
<tr>
<td>Phone: 476-3600 ext 53023</td>
</tr>
<tr>
<td>Head of the Institute: Dr. Péter Horváth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Pharmaceutics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1092 Budapest IX., Hőgyses Endre u. 7.</td>
</tr>
<tr>
<td>Phone: 476-3600 Dr. Hajdú, Dr. Antal, Prof. Marton</td>
</tr>
<tr>
<td>Head of the Department: Prof. Dr. István Antal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Pharmacodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1089 Budapest VIII., Nagyvárad tér 4.</td>
</tr>
<tr>
<td>Phone: 210-4411, 210-2927 ext 56108 Prof. Tekes, 56324 Prof. Szökő</td>
</tr>
<tr>
<td>Head of the Department: Dr. Tamás Tábi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Organic Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1092 Budapest IX., Hőgyses Endre u. 7.</td>
</tr>
<tr>
<td>Phone: 476-3600 ext 53025 Dr. Tétényi</td>
</tr>
<tr>
<td>Head of the Institute: Dr. István Mándity</td>
</tr>
</tbody>
</table>

Semmelweis University, Faculty of Health Sciences

<table>
<thead>
<tr>
<th>Department of Nursing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1088 Budapest, Vas u. 17., room 150</td>
</tr>
<tr>
<td>Phone: +(36-1)486-5936</td>
</tr>
<tr>
<td>Head of the Department: Zoltán Balogh RN, PT, M.Sc., Ph.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Physiotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1088 Budapest, Vas u. 17., room 305</td>
</tr>
<tr>
<td>Phone: +(36-1)486-5980</td>
</tr>
<tr>
<td>Head of the Department: Dr. Mónika Horváth Ph.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section of Physical Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>1088 Budapest, Vas u. 17., room 421</td>
</tr>
<tr>
<td>Phone: +(36-)486-5850</td>
</tr>
<tr>
<td>Head of the section: Gábor Soós</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Dietetics and Nutrition Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1088 Budapest, Vas u. 17., room 38</td>
</tr>
<tr>
<td>Phone: +(36-1)486-5820</td>
</tr>
<tr>
<td>Head of the Department: Dr. Márta Veresné Bálint Ph.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Oxylogy and Emergency Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>1088 Budapest, Vas u. 17., room 145</td>
</tr>
<tr>
<td>Phone: +(36-1)486-5840</td>
</tr>
<tr>
<td>Head of the Department: Péter Kanizsai MD, PhD, DEAA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Clinical Studies in Obstetrics and Gynaecology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1088 Budapest, Vas u. 17., room 144</td>
</tr>
<tr>
<td>Phone: +(36-1)486-4890</td>
</tr>
<tr>
<td>Head of the Department: János Rigó M.D., Ph.D., D.Sc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Family Care Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1088 Budapest, Vas u. 17., room 245</td>
</tr>
<tr>
<td>Phone: +(36-1)486-4840</td>
</tr>
<tr>
<td>Head of the Department: Dr. Zsolt Kálmán Somogyvári M.D., MSc., Ph.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Epidemiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1088 Budapest, Vas u. 17., room 126</td>
</tr>
<tr>
<td>Phone: +(36-1)486-4870</td>
</tr>
<tr>
<td>Head of the Department: Dr. István Barcs CSc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Clinical Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1088 Budapest, Vas u. 17., room F/9</td>
</tr>
<tr>
<td>Phone: +(36-1)486-5970</td>
</tr>
<tr>
<td>Head of the Department: Dr. Klára Gadó Ph.D., M.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Clinical Ophthamology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1088 Budapest, Vas u. 17., room 20</td>
</tr>
<tr>
<td>Phone: +(36-1)486-5855</td>
</tr>
<tr>
<td>Head of the Department: Dr. Illés Kovács M.D., Ph.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Imaging and Medical Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1088 Budapest, Vas u. 17., room 348</td>
</tr>
<tr>
<td>Phone: +(36-1)486-5960</td>
</tr>
<tr>
<td>Head of the Department: Attila Doros M.D., Ph.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Applied Psychology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1088 Budapest, Vas u. 17., room 343/A</td>
</tr>
<tr>
<td>Phone: +(36-1)486-4919</td>
</tr>
<tr>
<td>Acting Head of the Department: István Vingender Ph.D.</td>
</tr>
</tbody>
</table>
Department of Addictology
1088 Budapest, Vas u. 17., room 312
Phone: +(36-1)486-4919
Head of the Department: József Rácz MD, Ph.D., DSc.

Department of Social Sciences
1088 Budapest, Vas u. 17., room 312
Phone: +(36-1)486-4910
Head of the Department: Helga Feith Ph.D.

Department of Morphology and Physiology
1088 Budapest, Vas u. 17., room 345
Phone: +(36-1)486-4940
Head of the Department: Gabriella Dörnyei Ph.D.

Department of Health Sciences
H-1088 Budapest, Vas u. 17., room 130
Phone: +(36-1)486-4960 Alexandra Bakó
Head of the Division: Ms. Katalin Zöldi Kovács Ph.D.

Departments of Loránd Eötvös University of Natural Sciences

Department of Analytical Chemistry
1117 Budapest XI., Pázmány Péter sétány 1/A
Phone: 372-2548; 372-2500 ext 1241, 6426 Dr. Kurin-Csörgei,
Dr. Béni 439-1500/53062 ext
Fax: 372-2592
Head of the Department: Dr. István Szalai

Department of Biology, Plant Anatomy
1117 Budapest XI., Pázmány Péter sétány 1/A
Phone: 381-2179 Dr. Kovács
Head of the Department: Dr. Gábor M. Kovács

Department of Physical Chemistry
1117 Budapest XI., Pázmány Péter sétány 1/A
Phone: 372-2548 ext 1209 Dr. Turányi, 1201 Dr. Turi
Fax: 372-2592
Head of the Department: Dr. Gáspár Győző Láng

National Ambulance Service
1134 Budapest XIII., Róbert Károly krt. 77.
Phone: 350-3737, Dr. Groove, Dr. Hornyák, Dr. Schönborn;
350-6931,
Dr. Engelbrecht; 311-9850/ ext 113
Director-General: Dr. Gábor Göbl M. D.

Division of Foreign Languages and Communication – Faculty of Health Sciences
1088 Budapest, Vas u. 17.
Phone: +(36-1) 486-4960
Head of the Division: Katalin Zöldi Kovács Ph.D.

Language Communication Center
1094 Budapest, Ferenc tér 15.
Phone/Fax: +(36-1) 215-9338; ext 53814
Director: Dr. Éva Kovács Ph.D.

EMBASSIES
To find the contact information of your Embassy in Hungary, please visit:
http://www.embassypages.com/hungary
Academic Staff

Faculty of Medicine

Department of Anatomy, Histology and Embryology

1094 Budapest, Tűzoltó utca 58.
☎: 215-6920 Fax.: 215-3064

Head of Department: Prof. Dr. Alán Alpár M.D., Ph.D., D.Sc.
Full Professor

Full Professor
Prof. Dr. Mihály Kálmán, Prof. Dr. Miklós Réthelyi, Prof. Dr. Ágoston Szél
Dr. Anna L. Kiss (Deputy Head, Teaching)

Professor Emeritus
Prof. Dr. Imre Oláh, Prof. Dr. Miklós Palkovits, Prof. Dr. András Csillag

Associate Professor
Dr. Károly Altdorfer, Dr. Ágnes Csáki
Dr. Gábor Gerber (Dean of the Dental Faculty, General Deputy Head of Department), Dr. Andrea D. Székely (Course Director of the English Programme)

Adjunct Professor
Dr. Krisztina Herberth-Minkó, Dr. Katalin Kocsis, Dr. Márk Kozsurek,
Dr. Dávid Lendvai, Dr. Ákos Lukáts, Dr. Viktória Verezckő

Assistant Professor
Dr. Ildikó Bódi, Dr. Dávid Dóra, Dr. János Hanics, Dr. Sándor Katz (tutor), Nóra Pecsénye-Fejszák, Dr. András Szuák

Advisor (retired)
Dr. Katalin Gallatz, Dr. Árpád Kiss, Prof. Dr. Katalin Köves, Dr. Judith Molnár,
Dr. Ágnes Nemeskéri, Dr. György Somogyi, Dr. Géza Tótpál, Prof. Dr. Tibor Wenger

Senior Scientist
Dr. Árpád Dobolyi, Dr. Zita Puskár, Dr. Zsuzsanna Tóth

Senior Research Fellow
Dr. Ágota Ádám, Dr. János Barna, Dr. Szilvia Mezey, Dr. Anna Németh

Departmental fellow
Mr. Tamás Balázs, Ms. Vanda Dr. Halász, Dr. Mónika Vincze

Teaching fellow
Dr. András Horváth

PhD scholarship
Dr. Csilla Barad, Mr. Bulcsú Dékány, Ms. Viktória Zsiros

Institute of Biophysics and Radiation Biology

1094 Budapest IX., Tűzoltó u. 37-47.
☎: 267-6261

Head of the Department: Prof. Dr. Miklós Kellermayer M.D., Ph.D., D.Sc.
Professor Emerita: Prof. Dr. Judit Fidy
Associate professor: Dr. Andrea Fekete, Dr. Katalin Blaskó, Dr. Gabriella Csík, Dr. Levente Herényi,
Dr. Károly Módos (tutor), Dr. István Voszka (tutor), Dr. Erika Balog

Assistant professor: Dr. Irén Nagy, Dr. Szabolcs Osváth
Department of Genetics, Cell- and Immunobiology

1089 Budapest, VIII. Nagyvárad tér 4.
☎: 210-2940, 210-2929

Head of the Department: Prof. Dr. Edit Buzás M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. András Falus, Prof. Dr. Csaba Szalai
Professor Emeritus: Prof. Dr. György Csaba
Associate professor: Dr. Zsuzsanna Darvas, Dr. András K.Fülöp, Dr. László Kőhidai, Dr. György Nagy, Dr. Erna Pap, Dr. Éva Pállinger, Dr. Sára Tóth
Assistant professor: Dr. Marianna Holub (tutor of Immunology), Dr. Orsolya Láng (tutor of Biology and Medical Biology- Cell Biology), Dr. Zoltán Pós, Dr. Viola Tamási, Dr. Zoltán Wiener
Assistant lecturer: Dr. F. Ágnes Semsei (tutor of Genetics and genomics), Dr. Katalin Szabó-Taylor
Research fellow: Dr. Eszter Lajkó, Dr. Barbara Molnár-Érsek, V. Krisztina Vukman
Research assistant: András Gézsi, Nikolett Lupsa, Xabier Osteikoetxea

Department of Pharmacology and Pharmacotherapy

1089 Budapest, VIII. Nagyvárad tér 4.
☎: 210-2930, 210-4416

Head of the Department: Prof. Dr. Péter Ferdinandy M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. Sándor Kerpel-Fronius
Professor Emerita: Prof. Dr. Zsuzsanna Fürst, Prof. Dr. Valéria Kecskeméti, Prof. Dr. Klára Gyires
Associate professor: Dr. Júlia Tímár, Dr. László Köles, Dr. Pál Riba (tutor)
Assistant professor: Dr. Zsuzsanna Gyarmati, Dr. András Rónai, Dr. Erzsébet Kató (tutor)
Assistant lecturer: Dr. Andrea Szebeni

Department of Forensic Medicine

1091 Budapest, IX. Üllői út 93.
☎: 218-0437, 215-7300

Head of the Department: Dr. Klára Törő Ph.D.
Full professor: Prof. Dr. Éva Keller
Assistant lecturer: Dr. János Bokor
Forensic Medical Specialist: Dr. Zsófia Almádi (tutor)
Department of Biochemistry
1094 Budapest, IX. Tűzoltó u. 37-47.
☎ +36-1-2662773 +36-1-459-1500/60010 +36-1-4591500#60010
http://semmelweis.hu/biokemia/en/

Head of the department: Prof. Dr. László Csanády M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. László Tretter M.D., Ph.D., D.Sc.
Prof. Dr. Kraszimir Kolev M.D., Ph.D., D.Sc.
Professor Emerita: Prof. Dr. Veronika Ádám M.D., Ph.D., D.Sc.
Member of the Hungarian Academy of Sciences
Associate professor: Dr. Christos Chinopoulos (tutor), Dr. Attila Ambrus
Consultant: Dr. Pál Bauer, Prof. Raymund Machovich M.D., Ph.D., D.Sc., Dr. György Szabados
Senior lecturer: Dr. Judit Bak, Dr. Erzsébet Komorowicz, Dr. Bea Törőcsik
Assistant lecturer: Dr. Katalin Bartha
Research fellow: Dr. Judit Dóczi
Assistant research fellow: Dr. Em Ben Sorum
Pharmacist: Dr. Erzsébet Tóth (course coordinator of the first year dentistry students and of pharmacy students)

Department of Molecular Biology
1094 Budapest IX., Tűzoltó u. 37-47.
☎: 266-2615

Appointed Head of the Department: Prof. Dr. Miklós Csała M.D., Ph.D., D.S.
Full professor: Prof. Dr. József Mandl, Prof. Dr. Anna Faragó, Prof. Dr. Miklós Tóth,
Prof. Dr. László Buday
Associate professor: Dr. Mária Sasvári, Dr. András Hrabák, Dr. Ágota Vér,
Dr. Nándor Müllner, Dr. Csaba Sőti, Dr. Tamás Mészáros
Dr. Geregely Keszler (tutor)
Department of Physiology

1094 Budapest IX., Tűzoltó u. 37-47.
☎: 266-9180

Head of the Department: Prof. Dr. László Hunyady M.D, Ph.D., D.Sc.
Full professor:
Prof. Dr. Péter Enyedi, Prof. Dr. Péter Várnai (course director),
Prof. Dr. Attila Mócsai, Prof. Dr. Miklós Geiszt

Professor Emerita: Prof. Dr. Erzsébet Ligeti
Professor Emeritus: Prof. Dr. András Spät, Prof. Dr. Attila Fonyó, Prof. Dr. Márk Kollai
Associate professor: Dr. Gábor Czirják, Dr. András Eke, Dr. György Nádasy, Dr. András Balla (tutor),
Dr. Zoltán Jakus
Assistant professor: Dr. Eszter Horváth, Dr. Dávid Győri, Dr. Csaba Tímár, Dr. Krisztina Futosi,
Dr. Rita Benkő, Dr. Roland Csépányi-Kömi, Dr. Levente Kiss
Assistant lecturer: Dr. Dániel Csete, Dr. Hajnal Kovács, Dr. Gergő Szanda, Dr. Péter Mukli,
Dr. Domonkos Cseh

Department of Translational Medicine

1094 Budapest, IX. Tűzoltó u. 37-47.
☎: 210-0306, 459-1500/60300

Head of the Department: Prof. Dr. Zoltán Benyó M.D, Ph.D., D.Sc.
Full professor:
Prof. Dr. Péter Sándor,

Professor Emeritus: Prof. Dr. Márk Kollai
Associate professor: Dr. András Eke, Dr. György Nádasy, Dr. Tamás Ivanics, Dr. Zsuzsanna Miklós (tutor)
Assistant professor: Dr. Kornélia Ikrényi
Assistant lecturer: Dr. Levente Kiss, Dr. Eszter Mária Horváth,
Dr. Tamás Horváth

Net division:

Full professor: Dr. Péter Hamar
Professor Emeritus: Prof. Dr. Lajos Szollár, Prof. Dr. László Rosivall, Prof. Dr. Ákos Koller
Associate professor: Dr. Miklós Molnár (tutor), Dr. Miklós Mózes
Assistant professor: Dr. László Tornóci
Assistant lecturer: Dr. Tünde Kriston
Institute of Public Health
1089 Budapest, VIII. Nagyvárad tér 4.
☎: 210-2930
Homepage: www.kozegeszsegtesg.sote.hu

Head of the Department: Prof. Dr. Zoltán István Ungvári M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. Tamás Simon, Prof. Dr. Anna Tompa
Professor Emeritus: Prof. Dr. Károly Cseh
Associate professor: Dr. Judit Forrai, Dr. Péter Jakabfi, Dr. József Ongrády, Dr. György Purebl
Assistant professor: Dr. Eleonóra Leffelholcz, Dr. Miklós Lelkes
Assistant lecturer: Dr. Katalin Antmann, Dr. András Terebessy, Dr. Bence Komáromi T., Dr. Ferenc Horváth (tutor)

Institute of Behavioral Sciences
1089 Budapest, VIII. Nagyvárad tér 4.
☎: 210-2930; 210-2953 Fax: 210-2955

Head of the Department: Dr. György Purebl M.D., Ph.D.
Full professor: Prof. Dr. Ferenc Túry, Deputy Director, Prof. Dr. József Kovács
Associate professor: Dr. Adrienne Stauder, Dr. Zsuzsa Szántó (tutor), Dr. Imre Szebik, Dr. János Kollár
Assistant professor: Dr. Bernadett Babusa, Dr. Jenő Lőrincz, Dr. Gyöngyvér Salavecz, Dr. Orsolya Péter, Dr. Péter Ujma
Assistant lecturer: Ágnes Mezei, Dr. László Lajtai, Tamás Szalai, Dr Mónika Tóth
Head of Secretariat: Jozefa Barreto (tutor)

Institute of Medical Microbiology
1089 Budapest, VIII. Nagyvárad tér 4.
☎: 210-2959, 210-2930, 210-2940

Head of the Department: Prof. Dr. Dóra Szabó M.D., Ph.D.
Full professor: Prof. Dr. Károly Nagy, Prof. Dr. Ferenc Rozgonyi
Professor Emerita: Prof. Dr. Piroska Anderlik, Prof. Dr. Éva Ádám
Associate professor: Dr. Miklós Füzi, Dr. Csaba Jeney
Clinical chief doctor: Dr. Zsuzsanna Berek
Scientific advisor: Dr. Zsuzsanna Csukás, Dr. Zsuzsanna Bános
Assistant professor: Dr. Orsolya Dobay (tutor for Pharmacy)
Assistant lecturer: Dr. Csaba Maródi, Dr. Irén Budai, Dr. Katalin Kristóf
Tutor: Dr. Ágoston Ghidán (tutor for Medicine and Dentistry)
I. Department of Pathology and Experimental Cancer Research

1085 Budapest, VIII. Úllői út 26.
Tel: 459-1500, 266-1638

Head of the Department:

Prof. Dr. András Matolcsy M.D., Ph.D., D.Sc.
Prof. Dr. Ilona Koválszky, Prof. Dr. Péter Nagy, Prof. Dr. Zoltán Sápi
Prof. Dr. Károly Lapis, Prof. Dr. Béla Szende, Prof. Dr. András Jeney,
Prof. Dr. László Kopper

Full professor:

Dr. Attila Zalatnai, Dr. Judit Pápay, Dr. Lilla Reiniger, Dr. Gergely Rácz (tutor)

Professor Emeritus:

Dr. Ágota Szepesi, Dr. Beáta Hargitai, Dr. Botond Tímár

Professor Emeritus:

Dr. Anita Mohos, Dr. Balázs Csernus, Dr. Eszter Tutányi, Dr. László Fónyad

Assistant professor:

Dr. Beáta Nagy (tutor)

Associate professor:

Prof. Dr. András Kiss M.D., Ph.D., D.Sc.
Prof. Dr. Janina Kulka
Prof. Dr. József Tímár
Prof. Dr. Anna Kádár, Prof. Dr. Zsuzsa Schaff

Assistant professor:

Prof. Dr. Tibor Kerényi, Dr. Margit Kovács

Assistant lecturer:

Dr. György Illyés, Dr. Tibor Glasz

Dr. Balázs Járay, Dr. Eszter Székely, Dr. István Kenessey (tutor), Dr. Lilla Madaras

Assistant lecturer:

Dr. Hajnalka Győrfy, Dr. Magdolna Kardos,

II. Department of Pathology

1091 Budapest, IX. Úllői út 93.
Tel: 215-7300

Head of the Department:

Prof. Dr. András Kiss M.D., Ph.D., D.Sc.
Prof. Dr. Janina Kulka
Prof. Dr. József Tímár
Prof. Dr. Anna Kádár, Prof. Dr. Zsuzsa Schaff

Full professor:

Prof. Dr. Tibor Kerényi, Dr. Margit Kovács

Scientific advisor:

Dr. György Illyés, Dr. Tibor Glasz

Associate professor:

Dr. Balázs Járay, Dr. Eszter Székely, Dr. István Kenessey (tutor), Dr. Lilla Madaras

Assistant professor:

Dr. Hajnalka Győrfy, Dr. Magdolna Kardos,

Assistant lecturer:

Dr. Balázs Hauser, Dr. Csaba Hermann, Dr. Krisztina Madách

Assistant professor:

Dr. Gábor Élő, Dr. András Lorx

Assistant lecturer:

Dr. András Kállai (tutor)

Clinical specialist:

Dr. Melinda Kis-Tamás

Resident:

Dr. Ádám Gyöngyösi (Tutor)

Clinical chief doctor:

Dr. Péter Vass (tutor of Oxyology at the Division of Emergency Medicine
and Oxyology)

Education coordinator: Borbála Kozma
Department of Internal Medicine and Oncology (BOK)

1083 Budapest, VIII. Korányi S. utca 2/A.

Head of the Department: Prof. Dr. István Takács M.D., Ph.D.

Professor Emeritus: Prof. Dr. Ferenc Szalay, Prof. Dr. László Gerő

Full professor:
- Prof. Dr. János Papp, Prof. Dr. Gyula Tamás, Prof. Dr. Péter Kempler,
- Prof. Dr. Judit Demeter, Prof. Dr. Csaba Horváth, Prof. Dr. Miklós Szathmári

Associate professor:
- Dr. Margit Abonyi, Dr. István Barna, Dr. András Tislér, Dr. Péter Lakatos,
- Dr. Ádám Gy. Tabák

Assistant professor:
- Dr. Gabriella Győri, Dr. Erika Márton, Dr. Fatima Varga, Dr. András Váradi

Assistant lecturer:
- Dr. Péter Studinger (tutor), Dr. Zsolt Hermányi, Dr. Péter Fuszek,
- Dr. Katalin Keresztes, Dr. Zsolt Nagy, Dr. Gábor Speer

Department of Internal Medicine and Hematology (BHK)

1088 Budapest, VIII. Szentkirályi u. 46.

Head of the Department: Prof. Dr. Tamás Masszi M.D., M.Sc., Ph.D., D.Sc.

Full professor: Prof. Dr. Miklós Tóth

Professor Emerita, Professor Emeritus:
- Prof. Dr. Edit Gláz, Prof. Dr. Zsolt Tulassay, Prof. Dr. Anikó Somogyi,
- Dr. Pál Géher, Dr. István Karádi, Dr. Pál Pánczél

Associate professor:
- Dr. László Kónya, Dr. Györgyi Műzes, Dr. László Herszényi, Dr. Katalin Keltai (tutor),
- Dr. Gábor Békési, Dr. Gabriella Lengyel

Assistant professor:
- Dr. Márk Juhász, Dr. Pál Miheller

Department of Dermatology, Dermatooncology and Venerology

1085 Budapest, VIII. Mária u 41.

Head of the Department: Prof. Dr. Miklós Sárdy M.D., Ph.D., D.Sc.

Deputy Head of the Department: Dr. Péter Holló M.D., Ph. D.

Full professor:
- Prof. Dr. Attila Horváth, Prof. Dr. Gyöngyvér Soós, Prof. Dr. Márta Marschalkó,
- Prof. Dr. Sarolta Kárpáti

Professor Emerita:
- Prof. Dr. Ferenc Rozgonyi,

Associate professor:
- Dr. Beáta Somlai, Dr. Norbert Wikonkál, Dr. Györgyi Pónyai

Assistant professor:
- Dr. Krisztina Becker, Dr. Nóra Erős Dr. Ágnes Iringó Ottó, Dr. Klaudia Preisz,
- Dr. Bernadett Hídvégí (tutor)

Assistant lecturer:
- Dr. Katinka Pónyai, Dr. József Szakonyi

Clinical chief doctor:
- Dr. Gyula Bottlik, Dr. Judit Hársing, Dr. Klára Szalai,Dr. Ágnes Szigeti

Clinical doctor:
- Dr. Péter Bognár, Dr. Károly Fodor, Dr. Ferenc Harmos, Dr. Zsófia Hatvani,
- Dr. Dorottya Kiss, Dr. Daniella Kuzmanovszki, Dr. Andrea Lukács, Dr. Pálma Silló,
- Dr. Béla Tóth, Dr. Veronika Tóth, Dr. Lőrincz Kende (tutor)
Department of Family Medicine
1085 Budapest, VIII. Stáhly Ignác u. 9. floor 5.
☎: 214-0841

Head of the Department: Dr. Péter Torzsa M.D., Ph.D.
Assistant professor: Dr. Krisztián Vörös (tutor)

Department of Oncology – National Institute of Oncology
1122 Budapest, XII. Ráth György u. 7-9.
☎: 224-8600

Head of the Department: Prof. Dr. Csaba Polgár M.D., Ph.D., M.Sc.
Assistant professor: Dr. Péter Ágoston (tutor)

Department of Otorhinolaryngology, Head and Neck Surgery
1083 Budapest, VIII. Szigony u.36.
☎: 355-8530

Head of the Department: Prof. Dr. László Tamás M.D., Ph.D
Full professor: Prof. Dr. Gábor Répássy
Associate professor: Dr. Marianna Küstel, Dr. Ágnes Szirmai, Dr. Gábor Polony
Assistant professor: Dr. Zoltán Fent, Dr. Beáta Bencsik (tutor), Dr. Magdolna Szőnyi, Dr. Balázs Szabó,
Dr. Helga Kraxner, Dr. Anita Gáborján

I. Department of Pediatrics
1083 Budapest, VIII. Bókay János u. 53–54.
☎: +36-1-313-8212

training coordinator: Dr. Dóra Krikovszky, Dr. Ádám Balogh
Study administration: education.ped1@med.semmelweis-univ.hu, ☎: 52656
Office hours: Monday, Wednesday, 10 am-12 am, Tuesday, Thursday, 1 pm-3 pm,
Friday: closed

Head of the Department: Prof. Dr. Attila Szabó M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. András Arató, Prof. Dr. Reusz György
Professor Emeritus: Prof. Dr. Tamás Machay, Prof. Dr. Tivadar Tulassay,
Prof. Dr. Tibor Verebély
Associate professor: Dr. Anna Körner, Dr. Antal Dezsőfi, Dr. Zita Halász, Dr. Bea Pászthy,
Dr. Miklós Szabó, Dr. Andrea Luczay, Dr. Péter Tóth-Heyn,
Dr. Lídia Balogh, Dr. Andrea Fekete, Dr. Kálmán Tory
Assistant professor: Dr. Zsuzsanna Antal, Dr. János Bókay, Dr. Géza Miklós Bokodi,
Dr. Áron Cseh, Dr. Ágnes Jermendy, Dr. Attila Kálmán, Dr. Péter Sallay,
Dr. Dóra Krikovszky (tutor), Dr. Csaba Lódi, Dr. István Mátyus,
Dr. Lilla Szeifert, Dr. Ádám Balogh (tutor), Dr. Péter Balázs Vörös,
Dr. Petra Zsidegh
II. Department of Pediatrics

1094 Budapest, IX. Tűzoltó u. 7-9.
☎: 218-6844, 215-1380

Head of the Department: Prof. Dr. Gábor Kovács M.D., Ph.D.
Full professor: Prof. Dr. Rozália Kálmánchéy, Prof. Dr. János Sólyom
Professor Emeritus: Prof. Dr. Dezso Schuler, Prof. Dr. György Fekete
Associate professor: Dr. Tamás Szamosi, Dr. Erika Tomsits, Dr. Miklós Garami, Dr. Mónika Csóka,
Dr. Péter Hauser, Dr. Judit Müller (tutor), Dr. Dániel Erdélyi (tutor),
Assistant professor: Dr. Mária Ablonczy, Dr. Zita Halász, Dr. Margit Pataki, Dr. Veronika Kovács
Assistant lecturer: Dr. Noémi Csoszánszki, Dr. Gabriella Filiczki, Dr. Zoltán Jenővári,
Dr. László Jókuti, Dr. Zoltán Karádi, Dr. Andrea Luczay, Dr. Gergely Sárközi,
Dr. Edit Varga, Dr. Andrea Tölgyesi, Dr. Tamás Bense, Dr. András Kelecsényi,
Dr. Boglárka Bánsági (tutor)
Clinical Specialist: Dr. Zsófia Gács (tutor of Dentistry)

Heart and Vascular Centre
Városmajor Street Building

1122 Budapest, XII. Városmajor u. 68.
☎: +36-1-458-6847; +36-1-458-6810 Fax: +36-1-458-6818
E-mail: cvc.oktatas@gmail.com

Head of the Department: Prof. Dr. Béla Merkely M.D., Ph.D., D.Sc.
Professor Emeritus: Károly Lozsádi M.D., Dr. Mátyás Keltai M.D., Ph.D.
Full professor: Ferenc Horkay M.D., Ph.D., D.Sc., István Préda M.D., Ph.D.,
László Gellér M.D., Ph.D.,
Associate professor: Dr. Dávid Becker, Endre Zima M.D., Ph.D., Orsolya Kiss M.D., Ph.D.,
Andrea Szűcs M.D., Ph.D.
Assistant professor: Margit György M.D.
Assistant lecturer: Astrid Apor M.D., György Bárczi M.D. (tutor), Gábor Fülop M.D.,
Zoltán Jambrik M.D., Levente Molnár M.D., Dóra Paprika M.D., György Szabó M.D.
Clinical fellow: Elektra Bartha M.D. (consultant), Krisztina Hosszú M.D.,
Ibolya Marozsán M.D. (consultant), Andrea Nagy M.D., Attila Róka M.D.,
Pál Soós M.D., Ph.D. Boglárka Szabó M.D., Zsolt Szélid M.D.,
Szabolcs Szilágyi M.D., Gábor Szűcs M.D., Hajnalka Vágó M.D., Ph.D.,
Vince Wagner M.D.
Scientific advisor: Miklós Tóth M.D., Ph.D., D.Sc., Péter Vargha
PhD students: Balázs Berta M.D., Pál Maurovich Horvat M.D., Valentina Kutyifa M.D.,
Gabriella Veress M.D.
Department of Neurology
1083 Budapest, VIII. Balassa u. 6.
☎: 210-0330, 210-0337
Head of the Department: Prof. Dr. Dániel Bereczki M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. Anita Kamondi, Prof. Dr. Mária Judit Molnár, Dr. Zsuzsanna Arányi
Professor Emeritus: Prof. Dr. Mátyás Papp
Associate professor: Dr. Tibor Kovács, Dr. Csaba Ertsey
Assistant professor: Dr. Róbert Debreczeni (tutor)
Assistant lecturer: Dr. Sándor Ilniczky, Dr. Magdolna Simó, Dr. Ildikó Vastagh, Dr. Erika Scheidl (tutor)

Department of Neurosurgery
1145 Budapest, XIV. Amerikai út 57.
☎: +36 1 467 9325, +36 1 251 2999/325,
☎: +36 1 220 6471
E-mail: idegsebeszet@med.semmelweis-univ.hu
Web: http://semmelweis-egyetem.hu/idegsebeszet/
http://semmelweis-egyetem.hu/english/the-university/faculties/
faculty-of-medicine/departments/department-of-neurosurgery/
Office secretary: Katalin Jankus
Head of the Department: Prof. Péter Banczerowski, M.D., Ph.D.
Teaching staff leader: Prof. Péter Banczerowski M.D., Ph.D.
Professor Emeritus: Prof. István Nyáry M.D., Ph.D.

Background The Department of Neurosurgery was established in 1977 and is operated by the National Institute of Neurosurgery, which is a stand-alone neurosurgical hospital. It has 156 beds in its wards, which includes the only paediatric neurosurgical department in Hungary. The National Institute is the third largest neurosurgical service-provider in Europe.

Profil The Department of Neurosurgery is involved in virtually the entire spectrum of neurosurgical practice. All other specialities needed for modern neurosurgery (e.g. neuroradiology, neuroophthalmology, neurootology, electrophysiology, neuropathology and neurology) are also present, and are organised in a multidisciplinary structure. The biggest neuro-intensive care department, with separate units for paediatric cases, is maintained and operated by the Department.

Education Lectures are given on neurosurgery to medical undergraduates in Hungarian and English. Postgraduate resident training is also provided, in addition to further training courses.

Health Care Annually, around 3500 major operations are performed in five theatres, including endovascular interventions, stereotactic surgery, endoscopic and laser surgery, neuro-implantation, in addition to the so-called classical micro-neurosurgical operations. The outpatient turnover is 50,000. The Department has the highest case mix index in Hungary, indicating the most complicated cases, which makes a unique background for both undergraduate and postgraduate teaching.

Research Multidisciplinary organisations with a high patient turnover are ideal for basic and clinical research. Cerebral vascular malformations, tumours of the base of the skull, pituitary adenomas, functional neurosurgery and interventions, neurooncology, spine surgery as well as intra- and post-operative patient monitoring are the major fields of interest for the Department’s 98 staff members (of which 23 are neurosurgeons, including residents).
Department of Orthopedics

1082 Budapest, VIII. Korányi Sándor u. 2.
☎: 466-6611

Head of the Department: **Prof. Dr. György Szőke** M.D., Ph.D., D.Sc.
Professor Emeritus: Prof. Dr. György Bender
Full professor: Prof. Dr. Miklós Szendrői
Associate professor: Dr. Anikó Faluhelyi, Dr. József Lakatos, Dr. Ferenc Mády,
Assistant professor: Dr. Imre Antal, Dr. István Böröcz, Dr. László Sólyom, Dr. Sándor Kiss
Assistant lecturer: Dr. Zoltán Bejek, Dr. Tamás Terebessy, Dr. Géza Kordás, Dr. Gergely Holnapy (tutor)

Department of Psychiatry and Psychotherapy

1083 Budapest, VIII. Balassa u. 6.
☎: 210-0330

Head of the Department: **Prof. Dr. János Réthelyi** M.D., Ph.D.
Full professor: Prof. Dr., Gábor Faludi, Prof. Dr. Dóra Perczel-Forintos
Professor Emeritus: Prof. Dr. László Tringer, Prof. Dr. István Bitter
Associate professor: Dr Brigitta Baran, Dr. Pál Czobor, Dr. Lajos Simon, Dr. Judit Tolna, Dr. Zsolt Unoka (tutor for the fourth year), Dr. Zoltán Hidasi (tutor for dentistry students)
Assistant professor: Dr. Gábor Csukly, Dr. Xénia Gonda, Dr. Éva Jekkel, Dr. Beatrix Mersich, Dr. Erika Szily (tutor for the sixth year), Dr. Bálint Szuromi
Assistant lecturer: Dr. Judit Benkovits, Dr. Kinga Farkas, Dr. Máté Fullajtár, Dr. Ádám Menus, Dr. Attila Pulay, Dr. Imola Seres (tutor for the fifth year), Dr. László Tombor
Clinical senior specialist: Dr. Éva Csibri (part time), Dr. Andrea Sárosi
Clinical specialist: Dr. Csilla Bolyós (part time), Dr. Brigitta Blanca, Dr. Péter Dóme, Dr. Luca Egerváry, Dr. Mónika Eleméry, Dr. György Freschl, Dr. Judit Lazáry, Dr. Krisztna Seregi
Clinical doctor: Dr. Lívia Balogh
Residents: Dr. Anna Báthory, Dr. Nóra Brindza, Dr. Bodnár Katalin, Dr. Klára Csizinszky, Dr. Bálint Hajduška-Dér, Dr. Levente Hermán, Dr. Péter Oczella, Dr. Attila Simor, Dr. Szilvia Somogyi, Dr. Ádám Ferenc Szabó, Dr. Andrea Szegő, Dr. Péter Szocsics, Dr. Katalin Szőcs, Dr. Dominika Tóth, Dr. István Vályi-Nagy, Dr. Réka Zsigmond
Psychologist: Gabriella Kamilla Balogh, Gergely Bíró, Tamás Halmai, Eszter Tóth
External teachers with contract in the English program: Dr. Judit Ágnes Balázs, Dr. Gábor Gazdag
Department of Pulmonology

1125 Budapest, XII. Diósárok u. 1/C.
☎: 355-8682

Head of the Department: Prof. Dr. Veronika Müller M.D., Ph.D.
Full professor: Prof. Dr. Ildikó Horváth, Prof. Dr. Lilla Tamási, Prof. Dr. György Losonczy
Professor Emeritus: Prof. Dr. Imre Hutás, Prof. Dr. Endre Vastag
Associate professor: Dr. Ákos Somoskövi, Dr. Gábor Horváth (tutor), Dr. Gabriella Gálffy, Dr. Anikó Bohács
Assistant professor: Dr. Zoltán Bártfai, Dr. Zoltán Süttő, Dr. Klára Szondy, Dr. Erika Vajda, Dr. Katalin Várdi Visy, Dr. András Wollák, Dr. Gabriella Zsámboki
Assistant lecturer: Dr. Judit Füzy, Dr. Ildikó Géczi, Dr. Tamás Komáromi, Dr. Csaba Máthé, Dr. Gabriella Muraközy, Dr. Andrea Nagy, Dr. Zsuzsanna Orosz

Medical Imaging Centre
Department of Radiology

1082 Budapest, VIII. Úllói út 78/A.
☎: 459-1500 ext. 61628

Head of the Department: Prof. Dr. Viktor Bérczi M.D., Ph.D., D.Sc.
Full Professor: Prof. Dr. Kálmán Hüttl
Associate professor: Dr. Zoltán Vígváry, Dr. Zsolt Tarján, Dr. Magdolna Dank, Dr. Kinga Karlinger, Dr. Ádám Mester, Dr. László David Tárnoki (tutor), Dr. Ádám Domonkos Tárnoki
Assistant professor: Dr. Zsuzsa Dömötör, Dr. Katalin Kiss, Dr. Géza Tóth, Dr. Klára Szalai, Dr. László Dufék, Dr. Béla Kári, Dr. László Torgyik
Clinical chief doctor: Dr. Attila Kollár
Clinical doctor: Dr. Balázs Futácsi
Assistant lecturer: Dr. Erika Borbényi, Dr. Szabolcs Farkas, Dr. Péter Magyar, Dr. Tamás Györke, Dr. Gyöngyvér Szentmártoni, Dr. Júlia Szilvási, Dr. Éva Zergényi
Senior resident: Dr. Pál Batta, Dr. Anikó Bőgér, Dr. Gábor Erdei, Dr. Ernő Frank, Dr. Ágnes Stefán, Dr. Andrea Vágó

I. Department of Surgery and Interventional Gastroenterology

1082 Budapest, VIII. Úllói út 78.
☎: 313-5216

Head of the Department: Prof. Dr. Attila Szijártó M.D., Ph.D.
Full professor: Prof. Dr. Tibor Tihanyi, Prof. Dr. László Harsányi
Professor Emerita, Professor Emeritus: Prof. Dr. Katalin Darvas, Prof. Dr. Lajos Flautner, Prof. Dr. Péter Kupcsulik
Associate professor: Dr. Péter Kokas, Dr. István Pulay, Dr. Mária Tarjáni, Dr. Ambrus Magyar, Dr. János Horányi, Dr. Ákos Szűcs, Dr. Krisztina Hagymási
Assistant professor: Dr. Krisztina Pinkola, Dr. Marianna Borsodi, Dr. Zsolt Csapó, Dr. Péter Lukovich
Assistant lecturer: Dr. Bálint Hargitai, Dr. András Nagy, Dr. Edina Nagy, Dr. András Papp, Dr. László Regáli (tutor), Dr. Hedvig Sás, Dr. Péter Onody
II. Department of Surgery

1082 Budapest, VIII. Ullói út 78.
☎: 325-1100

Head of the Department: Dr. Gábor István M.D., Ph.D.
Full professor: Prof. Dr. Pál Ondrejka
Tutor: Dr. György Ledniczky

Department of Transplantation and Surgery

1082 Budapest, VIII. Baross u. 23-25.
☎: 267-6000; 459-1500/54321 Fax: 317-2166

Head of the Department: Prof. Dr. László Kóbori M.D., Ph.D.
Tutor: Dr. Gábor Telkes

I. Department of Surgery Department Section of Surgery

1096 Budapest, IX. Nagyvárad tér 1.
☎: 215-1489; 459-1500/54321 Fax: 317-2166

Head (assigned) of the Department: Prof. Dr. László Harsányi M.D., Ph.D.

Department of Surgical Research and Techniques

1089 Budapest, VIII. Nagyvárad tér 4.
☎: 459-1500/56569 Fax: 459-1500/56574

Head of the Department: Prof. Dr. Andrea Ferencz M.D., Ph.D.
Tutor: Dr. Györgyi Szabó

Department of Vascular and Endovascular Surgery

1122 Budapest, XII. Városmajor u. 68.
☎: 458-6700 Fax: 458-6746
E-mail: titkar@erseb.sote.hu

Head of the Department: Prof. Dr. Péter Sótonyi M.D., Ph.D., D.Sc.
Professor Emeritus: Prof. Dr. László Entz
Tutor: Dr. Zsuzsanna Járányi
Department of Ophthalmology

1085 Budapest, VIII. Mária u. 39.
☎: 266-0513/54500

Head of the Department: Prof. Dr. Zoltán Zsolt Nagy M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. János Németh M.D., Ph.D., D.Sc., Prof. Dr. Gábor Holló
Associate professor: Dr. Zsuzsanna Récsán (Program Director for Dentistry), Dr. András Papp
Assistant professor: Dr. Mária Bausz, Dr. Mónika Ecsedy, Dr. Ágnes Füst, Dr. Krisztina Knézy,
Dr. Illés Kovács (tutor for Dentistry Dr. Olga Lukáts), Dr. Anna Szamosi,
Dr. Zsuzsanna Szepessy, Dr. Jeannette Tóth, Dr. Rita Vámos, Dr. Miklós Resch (tutor)
Assistant lecturer: Dr. György Barcsay, Dr. Béla Csákány, Dr. Judit Dohán, Dr. Zsuzsanna Géhl,
Dr. Péter Köthy, Dr. Ákos Kusnyerik, Dr. Erika Maka, Dr. Otto Maneschg,
Dr. András Schneider, Dr. Irén Szalai, Dr. Antal Szabó

Department of Obstetrics and Gynecology

1088 Budapest, VIII. Baross u. 27.
☎: 266-0473
1082 Budapest, VIII. Üllői út 78/a.
☎: 313-7856

Head of the Department: Prof. Dr. Nándor Ács M.D., Ph.D.
Full professor: Prof. Dr. János Rigó, Prof. Dr. Attila Pajor, Prof. Dr. Ferenc Bánhidy,
Prof. Dr. János Urbancsek, Prof. Dr. Attila Molvarec, Prof. Dr. Szabolcs Várbíró
Professor Emeritus: Prof. Dr. Sándor Csömör, Prof. Dr. Zoltán Papp
Associate professor: Dr. Zsolt Melczer, Dr. Sándor Valent, Dr. Éva Görbe, Dr. Anna Beke,
Dr. Csaba Papp, Dr. István Szabó, Dr. Ernő Tóth-Pál,
Dr. Gyula Richárd Nagy (tutor), Dr. Gábor Sobel, Dr. Artúr Beke,
Dr. Attila Bokor, Dr. Ervin Hruby
Assistant professor: Dr. Péter Somos, Dr. Ágnes Harmath, Dr. Gábor Szabó
Assistant lecturer: Dr. Réka Brubel, Dr. Noémi Csibi, Dr. Ákos Gasparics, Dr. Eszter Kovács,
Dr. Zsófia Benkő

Department of Transfusion Medicine

1089 Budapest VIII., Nagyvárad tér 4., 16th floor
☎: 459-1500/56157

Appointed Head of the Department: Prof. Dr. Attila Tordai M.D., Ph.D., D.Sc.
Department of Medical Imaging

1082 Budapest VIII., Úllői út 78/A
📞: 210-0307

Head of the Department: Dr. Pál Maurovich-Horvat M.D., Ph.D., M.P.H.
Tutor: Dr. Lajos Kozák

Department of Traumatology

1145 Budapest, XIV., Uzsoki u. 29-41. (2nd floor, room 223)
📞: 06 1 467-3851; 06 20 825 - 8680
E-mail: trauma_office@med.semmelweis-univ.hu

Head of the Department: Prof. Dr. László Hangody M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. András Sárváry, Prof. Dr. Tibor Mózes
Professor Emeritus: Prof. Dr. István Berkes
Assistant professor: Dr. Miklós Szebeny, Dr. István Baráth
Lecturer: Dr. Gergely Pánics
Clinical specialist: Dr. Wille Jörg (German coordinator), Dr. Miklós Szebeny
Assistant lecturer: Dr. Tamás Gál (English coordinator), Dr. Ágnes Berta (tutor)
Administrator: Klára Seregi

Department of Urology

1082 Budapest, VIII. Üllői út 78/B.
📞: 210-0330

Head of the Department: Prof. Dr. Péter Nyirády M.D., Ph.D.
Full professor: Prof. Dr. Imre Romics, Prof. Dr. Zsolt Kelemen
Associate professor: Dr. Antal Hamvas, Dr. József Pánovics, Dr. Attila Keszthelyi
Assistant professor: Dr. Sándor Lovász, Dr. Miklós Szűcs, Dr. Krisztina Szabó, Dr. Lajos Joós
Assistant lecturer: Dr. Stelios Mavrogenis, Dr. András Rusz, Dr. Attila Majoros, Dr. Péter Riesz, Dr. Erzsébet Pénzes, Dr. Gergely Bánfi
Clinical doctor: Dr. András Horváth (tutor)

Department of Laboratory Medicine

1089 Budapest, VIII. Nagyvárad tér 4., floor XIV.
📞: 210-0278 / 56318

Head of the Department: Prof. Dr. Barna Vásárhelyi M.D., Ph.D., D.Sc.
Tutor: Prof. Dr. Antal Szabó Ph.D., D.Sc.
Department of Military-, Disaster- and Order Enforcement Medicine

1134 Budapest, XIII. Róbert Károly krt. 44.
☎: 465-1914; Fax: 465-1896
E-mail: katasztrofa@med.semmelweis-univ.hu

Head of the Department: Prof. Dr. János Gál
Deputy head of Department: Dr. György Orgován associate professor
Academic advisor: Prof. Dr. Péter Sótonyi rector emeritus, Dr. László Svéd
Executive of educational affairs: Dr. László Liptay
Clinical specialist: Dr. Attila Faggyas, Dr. Gábor Orosz
International affairs: Balázs Marczin
Head lecturer: Mrs. Klára Szalay Nagy

The department was founded on July 1st, 1970 (EüM 43/1969) – first under the name of Department of Military Medicine (as part of the Institution of Medical Training), then as the Institution of Military Medicine, and later as the Institution of Military and Disaster-Medicine. From 2001 it was named ÁOK (Faculty of Medicine) Department of Military and Disaster Medicine, Semmelweis University. The name has undergone further changes since July 1st, 2004 as university reorganization affected and integrated a number of sub-divisions (the former Department of Oxyology and the Department Group of Emergency Care Training) into this department. Since March 27th, 2014, by legislation of the senate (40/2014), the present name of the institution is the Department of Military-, Disaster- and Order Enforcement Medicine. It is currently located at the Medical Centre, Hungarian Defence Forces complex, where the functionality of the institution is provided by a series of separate contracts of cooperation.

PROFESSIONAL PROFILE
– Coordination, education and science-related questions regarding military and disaster medicine
– Maintaining an established and widely expanding network of local and international cooperation in the fields of military, disaster, and order enforcement medicine
– Continuing the long-running collaboration between the NATO Centre of Excellence for Military Medicine and Semmelweis University
– Contract-governed scientific collaboration between departments of the National University of Public Services and Semmelweis University
– The observing and analysing of disasters either occurring in the present or that are historically documented throughout the World - and application of the findings under Hungarian circumstances
– Establishing training programmes related to the department’s field and organising such courses for the doctors and professionals, both civilian and military-employed.
– Providing the graduate education course “The Medical Fundamentals of Disaster Resolution” in Hungarian, English and German languages
– The education of trainee specialists at both theoretical and technical levels, coordination of these projects
– Preparation of candidates for the Military-, Disaster and Order Enforcement exam
– Hosting Qualification Examinations and organising the related preparation course
Faculty of Dentistry

Department of Prosthodontics
1088 Budapest, VIII. Szentkirályi u. 47.
☎: 318-0011
Head of the Department: Prof. Dr. Péter Hermann D.M.D., M.Sc., Ph.D.
Associate professor:
Dr. Péter Kivovics, Dr. András Kóbor, Dr. Melinda Madléna, Dr. Tibor Károly Fábián, Dr. Zsuzsa Szántó,
Dr. Judit Borbély (tutor 1st year)
Assistant professor:
Dr. János Gerle, Dr. László Kádár, Dr. Endre Somogyi,
Dr. Katalin Károlyházy (tutor 5th year)
Assistant lecturer:
Dr. Péter Faluhelyi, Dr. Marianna Jáhn, Dr. Katalin Kalocsai, Dr. Mercédesz Linninger, Dr. Krisztina Mikulás, Dr. Zsuzsanna Tóth, Dr. Pál Sajgó, Dr. Katalin Nemes, Dr. Dénes Palaszkó (tutor 2nd year, 3rd year 2nd semester), Dr. Ildikó Bercze (tutor),
Dr. Alexandra Czigola
Clinical specialist: Dr. Péter Schmidt, Dr. János König (tutor)

Independent Section of Radiology
1088 Budapest, VIII. Szentkirályi u. 47.
☎: 459-1500 ext 59128
Head of the Department: Prof. Dr. Csaba Dobó Nagy D. M. D.

Department of Pedodontics and Orthodontics
1088 Budapest, VIII. Szentkirályi u. 47.
☎: 318-0011
Head (assigned) of the Department: Dr. Noémi Katinka Rózsa D.M.D., Ph.D., M.Sc.
Professor Emerita: Prof. Dr. Ildikó Tarján
Associate professor: Dr. Katalin Gábris, Dr. Gergely Balaton
Assistant professor:
Dr. Miklós Kaán, Dr. Ibolya Kéri
Assistant lecturer:
Dr. Mária Budai, Dr. Beáta Szádeckzy, Dr. Adrienn Barta, Dr. Attila Soós, Dr. Kinga Deseő
Department of Conservative Dentistry
1088 Budapest, VIII. Szentkirályi u. 47.
☎: 318-0011

Head of the Department:
Dr. János Vág D.M.D., Ph.D.
Professor Emeritus:
Prof. Dr. Árpád Fazekas
Associate professor:
Dr. Zsuzsanna Tóth, Dr. Károly Bartha, Dr. Zsolt Lohinai (tutor),
Dr. med. habil. Melinda Madléna
Assistant professor:
Dr. Júlia Nemes, Dr. János Vág, Dr. Milán Gyurkovics, Dr. Enikő Szabó
Assistant lecturer:
Dr. Anna Herczegh, Dr. Krisztina Árendás, Dr. Réka Fazekas, Dr. Sándor Mikó,
Dr. Andrea Demeter, Dr. Zsolt Nagy, Dr. Sarolta Pozsgay, Dr. Györgyi Szekeres,
Dr. Gergely Pataky, Dr. Edit Tóbiás, Dr. Izabella Nagy, Dr. Eszter Szalay

Department of Oral Biology
1089 Budapest, VIII. Nagyvárad tér 4.
☎: 210-4415

Head of the Department:
Dr. Ákos Zsemberi Ph.D.
Full professor:
Prof. Dr. Gábor Varga, Prof. Dr. György Simon
Professor Emeritus:
Prof. Dr. Tivadar Zelles
Associate professor:
Dr. József Blazsek, Dr. Beáta Kerémi (tutor – 2nd semester)
Assistant professor:
Dr. Kristóf Kádár (tutor – 1st semester)

Department of Oral Diagnostics
1088 Budapest, VIII. Szentkirályi u. 47.
☎: 459-1500/59161, 317-1044, fax: 459-1500/59165
Email: oral@fok.usn.hu

Head of the Department:
Prof. Dr. Csaba Dobó Nagy D.M.D.
Department of Oro-Maxillofacial Surgery and Stomatology

1085 Budapest, VIII. Mária u. 52.
☎: 266-0457, fax: 266-0456
Email: titkarsag.arcallcsont@dent.semmelweis-univ.hu

Head of the Department: Dr. Zsolt Németh D.M.D., Ph.D., med. habil.
Tutor: Dr. Attila Szűcs associate professor, Ph.D.
Full professor: Prof. Dr. Zsuzsanna Suba, Prof. Dr. József Lajos Barabás
Professor Emeritus: Prof. Dr. György Szabó, Prof. Dr. Tamás Divinyi
Associate professor: Dr. Árpád Joób-Fancsaly, Dr. Márta Ujpál
Assistant professor: Dr. Sándor Bogdán, Dr. Tamás Huszár
Associate lecturer: Dr. Ferenc Koppány, Dr. Kinga Körmöczi, Dr. Mihály Vaszkó
Clinical doctors: Dr. József Béla Barabás, Dr. Péter Barabás, Dr. Kinga Bérczy,
Dr. Gergely Csókay, Dr. Katalin Csuray, Dr. Iván Decker,
Dr. Fanni Sára Kálmán, Dr. György Komlós,
Dr. Zsófia Rónaszegi-Somogyi, Dr. Tatjana Skolnyik,
Dr. Ilona Szmirnova, Dr. Szonja Vingeder

Department of Periodontology

1085 Budapest, VIII. Szentkirályi u. 47.
☎: 318-0011

Head of the Department: Prof. Dr. Péter Windisch D.M.D., D.Sc.
Professor Emeritus: Prof. Dr. István Gera
Full professor: Dr. Ferenc Dőri
Associate professor: Dr. Bálint Molnár
Assistant professor: Dr. Attila Horváth
Assistant lecturer: Dr. Pál György Nagy (tutor)

Department of General Dental Preclinical Practice

Budapest 1088, Szentkirályi u. 47.
☎: 459-1472; 459-1500/59112; 59322

Head and tutor of the Department: Prof. Dr. Krisztina Márton D.M.D., Ph.D
Assistant lecturer: Dr. Anna Dézsi
Clinical specialist: Dr. Zoltán Kovács, Dr. Tamás Demeter (tutor)
Resident: Dr. Alexandra Kovács

Department in Community Dentistry

1085 Budapest, VIII. Mikszáth Kálmán tér 5.
☎: 317-6600, 317-2222; 60749

Head of the Department: Dr. Orsolya Németh D.M.D., MDSc., Ph.D.
Faculty of Pharmaceutical Sciences

University Pharmacy, Department of Pharmacy Administration
1092 Budapest, IX. Hőgyes Endre u. 9.
📞: 476-3600
Head of the Department: Prof. Dr. Romána Zelkó dr. pharm., Ph.D., D.Sc.
Full professor: Prof. Dr. Zoltán Vincze Ph.D.
Associate professor: Dr. Lajos Gergó, Dr. Balázs Hankó, Dr. Ágnes Mészáros (tutor)
Assistant professor: Dr. Mária Nikolics, Dr. Andrea Meskó (tutor), Dr. Judit Balogh
Assistant lecturer: Dr. Mónika Hantos

Institute of Pharmacognosy
1085 Budapest, VIII. Ullői út 26.
📞: 266-0120, 317-2979
Head of the Department: Dr. Szabolcs Béni Ph.D.
Full professor: Prof. Dr. Anna Blázovics
Professor Emerita: Prof. Dr. Éva Szőke
Professor honorary: Prof. Dr. Ágnes Kéry
Associate professor: Dr. László Kursinszki
Assistant professor: Dr. Andrea Böszörményi
Assistant lecturer: Dr. Anna Bucsy-Sólyomváry (English coordinator), Dr. András Darcsi
Research fellow: Dr. Eszter Riethmüller

Department of Pharmaceutics
1092 Budapest, IX. Hőgyes Endre u. 7.
📞: Tel/Fax: 217-0914
Head of the Department: Prof. Dr. István Antal Ph.D.
Professor Emeritus: Dr. Imre Klebovich
Associate professor: Dr. Krisztina Ludányi
Assistant professor: Dr. Emese Bertalan-Balogh (tutor of the 3rd, 4th and 5th years),
Dr. Lívia Budai, Dr. Marianna Budai, Dr. Nikolett Kállai-Szabó, Dr. Mária Hajdú
Senior research scientist: Dr. Borbála Dalmadi-Kiss
Assistant lecturer: Dr. Viktor Fülöp, Dr. Miléna Lengyel, Dr. Nóra Mike-Kaszás,
Dr. Noémi Niczinger, Dr. Zsófia Edit Pápay

Department of Pharmaceutical Chemistry
1092 Budapest, IX. Hőgyes Endre u. 7-9.
📞: 217-0891
Head of the Department: Dr. Péter Horváth Ph.D.
Full professor: Prof. Dr. Krisztina Takács-Novák (tutor)
Emeritus Professor: Prof. Dr. Béla Noszál
Associate professor: Dr. Károly Mazák, Dr. Márta Mazák-Kraszni, Dr. László Őrfi,
Dr. Gergely Völgyi (tutor)
Assistant lecturer: Dr. Gergő Tóth
Department of Pharmacodynamics

1089 Budapest, VIII. Nagyvárad tér 4.
☎: 1445 Budapest, Pf. 370.
Secretariat ☎ 459-1500/56217, 210-4411
Email: titkarsag.gyhat@pharma.semmelweis-univ.hu
Website: http://semmelweis.hu/gyogyszerhatastan/en/

Head of Department Dr. Tamás Tábi Ph.D.
Full Professor Dr. Éva Szökő
Dr. György Bagdy
Professor Emeritus Dr. Tamás Török
Professor Emerita Dr. Kornélia Tekes
Associate Professor Dr. László Tóthfalusi
Dr. Gabriella Juhašz
Assistant Professor Dr. Péter Petschner
Assistant Lecturer Szilvia Kalmárné dr. Vas
Junior Research Fellow Nóra Eszlári
Dr. Laufer Rudolf
PhD students Dr. Fruzsina Bagaméry
Dr. Emese Bogáthy
Dr. Andrea Edit Édes
Dr. Orsolya Geda
Dr. Papp Noémi
Dr. István Vincze
Secretary Katalin Faragóné Szombathelyi
Finance officer Reményi Krisztina
Technician Györgyi Divíkiné Gúth
Ágnes Gáborházy
Ágnes Ruzsits

tabi.tamas@pharma.semmelweis-univ.hu
56324 course director
E-mail: szoko.eva@pharma.semmelweis-univ.hu
459-1495, 56331, 56217
professor bagdy.gyorgy@pharma.semmelweis-univ.hu
56325
torok.tamas@pharma.semmelweis-univ.hu
56108 course director, tutor
tekes.kornelia@pharma.semmelweis-univ.hu
56413
tothfalusi.laszlo@pharma.semmelweis-univ.hu
juhasz.gabriella@pharma.semmelweis-univ.hu
56323 tutor
petschner.peter@pharma.semmelweis-univ.hu
56336
vas.szilvia@pharma.semmelweis-univ.hu
56280
eszlari.nora@pharma.semmelweis-univ.hu
56229
lauder.rudolf@pharma.semmelweis-univ.hu
56219
bagamery.fruzsina@pharma.semmelweis-univ.hu
56336
bogathyemese@pharma.semmelweis-univ.hu
56280
edes.andrea@pharma.semmelweis-univ.hu
56219
56336
papp.noemi@pharma.semmelweis-univ.hu
56455
vincze.istvan@pharma.semmelweis-univ.hu
210-4411, 459-1500, 56217
titkarsag.gyhat@pharma.semmelweis-univ.hu
56170
remenyi.krisztina@semmelweis-univ.hu
56109
guth.gyorgyi@pharma.semmelweis-univ.hu
56109
56336
ruzsits.agnes@pharma.semmelweis-univ.hu
56109
The Department of Pharmacodynamics at the Faculty of Pharmaceutical Sciences was founded in 1979. The Department is responsible for the teaching of three obligatory subjects; the Pharmacology and Toxicology, the Basic Medical Pathophysiology, and the Drug Therapy in the undergraduate pharmacy program. We also teach elective subject and take part in the postgraduate education of pharmacists. The Department is located on the 8th floor of the Nagyvárad Tér building (NET) of the University, but some of our offices and laboratories can be found on the groundfloor, on the 3rd floor and on the 11th floor.

Pharmacology and toxicology

This page contains informations for 7th and 8th semester pharmacy students of the English Program about pharmacology and toxicology. The thought in 112 lessons of lectures and 56 lessons of practice over two semesters on the basis of internationally recognized textbooks. The mechanism of action and pharmacokinetic properties of drugs as well as their clinical indications and adverse effects are emphasized. In the toxicology part in addition to the toxic effect of various drugs, environmental toxicology and the most common acute and chronic poisonings are discussed.

Requirements: Weekly 4 lessons of lectures and 2 lessons of practice in both semesters (7th and 8th). Exams: Practical mark (2 credit points) based on 2 midterm written exams in both semesters. Oral semifinal exam (4 credit points) at the end of 7th semester. Oral final exam (4 credit points) at the end of 8th semester. Education materials published on the MOODLE site!

Basic medical pathophysiology

This page contains informations for 7th and 8th semester pharmacy students of the English Program about Basic medical pathophysiology. The taught in 56 lessons of lectures over 2 semesters. The program is based on the special demands of pharmacy students. Pathophysiologic basis of the common disorders is discussed to help the understanding the principals of (pharmaco)therapy.

Teacher and tutor: Prof. Kornélia Tekes

Requirements: Weekly 2 lessons of lectures in both semesters (7th and 8th). Exams: Written semifinal exam (2 credit points) at the end of 7th semester. Oral final exam (2 credit points) at the end of 8th semester.

Drug therapy

This page contains informations for 9th semester pharmacy students of the English Program about Drug therapy. The subject is taught in 24 lessons and 24 lectures of practices. Evidence based pharmacotherapy of the most common disorders and the adverse effects and interactions of the used drugs are discussed. Information about the over-the-counter medications and treatment of chronic disorders are specially emphasized.

Requirements: Weekly 2 lessons of lectures and 2 lessons of practices in the 9th semester. Exam: semifinal exam (4 credit points) at the end of 9th semester.
MTA-SE Neuropsychopharmacology and Neurochemistry Research Group

Duration of the project: 07.01.2013-06.30.2018

Link: http://semmelweis.hu/gyogyszerhatastan/mta-se-research-group/

The MTA-SE Neuropsychopharmacology and Neurochemistry Research Group supported by the Hungarian Academy of Sciences examines the different interactions of genetic and environmental factors involved in the development of depression using genomic and imaging methods.

NAP-2-SE New Antidepressant Target Research Group

Duration of the project: 2017.12.01.-2021.11.30.

Link: http://semmelweis.hu/gyogyszerhatastan/nap-2-research-groups/nap-2-se-new-antidepressant-target-research-group/

Supported by the National Research, Development and Innovation Office and as a part of the Hungarian Brain Research Program 2.0 the research group tries to identify new drug targets for the treatment of depression using genome-wide gene-environment interaction analysis (GEWIs).

The project based on the results of the previous NAP-A-SE New Antidepressant Target Research Group.

SE-NAP 2 Genetic Brain Imaging Migraine Research Group

Link: http://semmelweis.hu/gyogyszerhatastan/nap-2-research-groups/se-nap-2-genetic-brain-imaging-migraine-research-group/

Supported by the National Research, Development and Innovation Office and as a part of the Hungarian Brain Research Program 2.0. the research group is investigating the neural response (brain activity) and genetics of people with migraine, tension headache and in healthy control subjects to identify biomarkers of migraine and new drug targets.

The project based on the results of the previous MTA-SE-NAP B Genetic Brain Imaging Migraine Research Group.
The Department of Organic Chemistry was founded in 1957 and its first head was Prof. Ottó Clauder. The infrastructure of the Department (the students’ and tutors’ laboratories, the equipment for preparative work and the library) was gradually built up and finally a spectroscopic unit was established. In 1977, Prof. László Szabó took over as head of the Department and after it, in 1997 Dr. Ákos Kocsis was appointed as acting director. After that from 1997 Prof. Péter Mátyus was the head of the Department. Since 2016 to June 2017 Dr. Gábor Krajosvzky was the acting director. The present head of the Department is Dr. István Mándity.

In the following post the aim and structure of the teaching and research activities are summarized.

The aim of the education in organic chemistry is to create an organic chemical basis for subsequent subjects in the curriculum of students at the Faculty of Pharmaceutical Sciences. To attain this goal, besides the main lectures (112 hours in the 3rd and 4th semesters) and parallel laboratory practicals (110 hours) in organic chemistry, the Department offers a choice of a special course to its students (Drug Syntheses, and Named Reaction in Organic Chemistry), and meanwhile, continuous enlargement
of number of special courses is planned. The available methods based on Computational Chemistry and Molecular Modeling have been involved in the official education material since 1998. The teaching activities at the Department also include the introduction of selected students into research in organic and medicinal chemistry, the direction of diploma work and participation in the postgraduate (Ph.D.) education. The Department takes part in several international research and educational cooperation programmes (such as ERASMUS).

The Department additionally plays an important role in the postgraduate education of pharmacists, as organizer of the Medicinal Chemistry Programme, and offers a two-year post-graduate programme in Drug Research and Development.

The main research fields at the Department were the synthesis and chemical properties of heterocycles, including some natural products. In the last few years, important results have been achieved in the fields of synthesis strategies, including palladium-catalysed cross-coupling reactions of pyridazines and uracils, and mechanistic studies and the synthetic development of certain thermal rearrangement reactions. Another research field was at the Department involves medicinal chemistry with the design and synthesis of antiarrhythmic compounds, ligands of α-adrenoceptors and inhibitors of semicarbazide-sensitive amine-oxidase.

The Department cooperated in both research and education with several academic (e.g. the Semmelweis University Department of Pharmacodynamics, Department of Pharmacology and Pharmacotherapy, Department of Ophthalmology, and II. Department of Internal Medicine; Peter Pazmany Catholic University Faculty of Information Technology, the University of Debrecen, Pécs, and Szeged; the Hungarian Academy of Sciences Chemical Research Centre; the University of Vienna, Palermo, Cagliari, Universidad de CEU San Pablo (Madrid), National University Singapore); and industrial (Richter Gedeon, EGIS, Pannonpharma) organizations.

The main research profiles in the Department are involving primarily – preserving the departmental traditions at least partially – heterocyclic syntheses, preparation of compounds with chloride ion transporter effect, peptide chemistry, chemistry of bifunctional compounds, introduction of processes of „green chemistry” (such as use of solvents carbon dioxide neutral, elaboration of organic chemical reactions taking place in water, application of continuous-flow chemical technologies). The research work is facilitated by separation, spectroscopic and computational methods.
Institute of Clinical Experimental Research – Teaches at the Faculty of Pharmaceutical Sciences

1094 Budapest IX., Tűzoltó u. 37-47.
☎: 210-0306

Head of the Department: Prof. Dr. Zoltán Benyó M.D., Ph.D., D.Sc.
Prof. Dr. Péter Sándor, Dr. Tamás Ivanics, Dr. Zsuzsanna Miklós (tutor)

Full professor: Prof. Dr. Péter Sándor
Associate professor: Dr. Tamás Ivanics, Dr. Zsuzsanna Miklós (tutor)

Institute of Digital Health Sciences

1094 Budapest, Ferenc tér 15. floor II.

Head of Department: Dr. Miklós Szócska Ph.D.
Professor Emeritus: Dr. habil Elek Dinya Ph.D.
Associate professor: Dr. Zoltán Ádám Tamus Ph.D.
Assistant professor lecturer: Péter Dombai, Dr. Tamás Iváncsy Ph.D., Zoltán Sándor,
Tamás Tóth, Dr. Gergely Zajzon
Tutor: Mr. Gergely Marosi

Centre of Physical Education and Sport Sciences

☎: 215-9337, 262-5529, 264-1408, 262-5529

Director: Kornélia Várszegi

Sport establishments: Sports Ground and Gymnastic Hall

Phone/fax: 262-5529, 264-1408

Fencing Hall

Budapest, V. Semmelweis u. 2.
☎: 267-0377

National Ambulance Service

1134 Budapest, XIII. Róbert Károly krt. 77.
☎: 350-3737, 350-0388; 350-6931

Director-General: Dr. Gábor Gőbl M. D.
Dr. László Gorove (tutor), Dr. Judit Schönbom (tutor),
Dr. István Hornyák (tutor), Dr. Imre Engelbrecht (tutor)
Division of Foreign Languages and Communication – Faculty of Health Sciences

H-1088 Budapest, Vas u. 17., room 130
☎: +(36-1) 486-4960

Head of the Division: Katalin Zöldi Kovács Ph.D.
Tutor: Alexandra Bakó

Language Communication Center

1094 Budapest, Ferenc tér 15.
☎: +(36-1) 215-9338 Fax: +(36-1) 215-9338; ext 53814

Director: Dr. Éva Kovács Ph.D.

Central Library

1085 Budapest, VIII. Mikszáth Kálmán tér 5.
☎: 317-5030

General Director: Péter Szluka
Science secretary: Zsuzsa Margittai

Directorate for Safety Technology - Department for Disaster Management and Civil Protection

1083 Budapest, VIII. Illés u. 15.
☎: 313-7961; ext 60601, 60579, 60594

Director: István Mészáros
Supervisor: Pál Kocsik M.Sc.
Registrar: Girusné Erzsébet Lovász
STUDY PROGRAMME

First year in the 2021/2022 academic year

1st Semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lecture (h/week)</td>
<td>pratice (h/week)</td>
<td>credit</td>
</tr>
<tr>
<td>Medical Chemistry</td>
<td>1.5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Cell Science</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Macroscopic Anatomy and Embriology I.</td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Medical Biophysics I.</td>
<td>1,5</td>
<td>2,5</td>
<td>4</td>
</tr>
<tr>
<td>Medical Sociology – Health Care (for the 1st half of the class)</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Medical Communication</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Medical Terminology (Latin)</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>First Aid</td>
<td>0,5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Medical Hungarian I</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (PE) I.</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mathematical and Physical Basis of Medical Biophysics (obligatory elective subject)</td>
<td>3,5</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
2nd Semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lecture (h/week)</td>
<td>pratice (h/week)</td>
<td>credit</td>
</tr>
<tr>
<td>Medical Biochemistry I.</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Macroscopic Anatomy and Embriology II.</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Microscopic Anatomy and Embryology I.</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Medical Biophysics II.</td>
<td>1,5</td>
<td>2,5</td>
<td>4</td>
</tr>
<tr>
<td>Medical Sociology – Health Care (for the 2nd half of the class)*</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Patient Care</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Medical Hungarian II.</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>PE II.</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Introduction to Medical Informatics (obligatory elective subject)</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Summer Practice - Nursing</td>
<td>1 month</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Simultaneous taking of the courses.
LIST OF TEXTBOOKS (The list may change!)
10 Seminar manuals: published on homepage: semmelweis.hu/biokemia/

Recommended textbooks:
12 Belák E. Medical Terminology for Beginners (earlier title: Medical Latin), Bp. Semmelweis Kiadó
MACROSCOPIC ANATOMY AND EMBRYOLOGY I.

Department of Anatomy, Histology & Embryology

Head of Department: Dr. Alpár Alán

Course Director: Dr. Andrea D. Székely
Dr. Sándor Katz

Credit value: 7
Number of lessons per week: 7 lectures: 1 practical course: 6 seminars: 0

Subject type: compulsory course
Subject code: AOKANT667_1A
Name of the course leader: Dr. Szél Ágoston (full professor)

Objectives of the subject, its place in the medical curriculum:
Demonstration of the macroscopical composition of the human body specifically to provide the future clinicians/medical doctors with a valid body of information with relevance to clinically significant morphological structures. General Embryology describes the intrautrine development of a human embryo/fetus and introduces the development of the locomotor system. Teaching is done in the form of lectures and dissection classes.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Semmelweis University, Department of Anatomy, Histology and Embryology
Budapest 1094, Tűzoltó utca 58.

Successful completion of the subject results in the acquisition of the following competencies:
Understanding the macroscopical composition of the human body together with the position and topographical relation of organs. Clear understanding of structure and function. Ability to perform basic preparatory tasks during dissection. Identification of general directions/landmarks on the cadaver together with the recognition of significant organs/body parts. Acquiring knowledge of surface features and/or sectional anatomy forming basis for clinical diagnostics (palpation, auscultation, etc.) and the use of radiological imaging methods. Clear understanding of the beginning of human development (general embryology) together with the development of the musculoskeletal system.

Course prerequisites:
None (subject is offered in the 1st semester)

Number of students required for the course (minimum, maximum) and method of selecting students:
obligatory for all registered students, on the basis of registration via the NEPTUN system

How to apply for the course:
Via the NEPTUN system.
Detailed curriculum:
List of lectures

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. week</td>
<td>General introduction, terminology</td>
</tr>
<tr>
<td>2. week</td>
<td>Joints and movements of the shoulder and shoulder girdle,</td>
</tr>
<tr>
<td>3. week</td>
<td>Joints and movements of the elbow and the hand</td>
</tr>
<tr>
<td>4. week</td>
<td>Joints and movements of the hip</td>
</tr>
<tr>
<td>5. week</td>
<td>Pelvis. Joints and movements of the knee</td>
</tr>
<tr>
<td>6. week</td>
<td>Joints and movements of the foot</td>
</tr>
<tr>
<td>7. week</td>
<td>Composition of thorax, diaphragm</td>
</tr>
<tr>
<td>8. week</td>
<td>Composition of the abdominal wall. Inguinal and femoral canals</td>
</tr>
<tr>
<td>9. week</td>
<td>Composition and movements of the vertebral column. Muscles of the nape and back.</td>
</tr>
<tr>
<td>10. week</td>
<td>Gametes, fertilization, cleavage</td>
</tr>
<tr>
<td>11. week</td>
<td>Implantation, structure of the placenta, placental circulation. Fetal membranes</td>
</tr>
<tr>
<td>12. week</td>
<td>Gastrulation, formation and derivatives of germinal layers</td>
</tr>
<tr>
<td>14. week</td>
<td>Development of the skull, vertebral column and limbs</td>
</tr>
</tbody>
</table>

Topics for the dissection classes

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6 weeks</td>
<td>Bones, joints and muscles of the limbs. Dissection of the limbs.</td>
</tr>
<tr>
<td>7-9. weeks</td>
<td>Cadaver dissection. Dissection of the superficial layers of the trunk, inspection of the structure of the body wall on prosected specimens (torso).</td>
</tr>
<tr>
<td>8-12. weeks</td>
<td>Inspection of the bony skull together with head and neck prosections</td>
</tr>
<tr>
<td>13-14. weeks</td>
<td>Embryology consultations, revision</td>
</tr>
</tbody>
</table>

Other subjects concerning the border issues of the given subject (both compulsory and optional courses). Possible overlaps of themes: Microscopic Anatomy and Embryology I - II.

Special study work required to successfully complete the course:
All students are required to demonstrate their knowledge and motivated practical work by the completion and demonstration of a dissected specimen or region once during the two semesters of the Academic year.

Requirements for participation in classes and the possibility to make up for absences:
Active participation in practical lessons is obligatory. Students should attend at least 75% of the scheduled hours, absences therefore are limited in 25%. Attendance will be recorded in the dissection room classes.

Methods to assess knowledge acquisition during term time:
During the semester, both practical and theoretical knowledge will regularly be evaluated. Attendance is obligatory at the two mid-term tests (held approximately on weeks 7 and 12). Anatomy mid-terms may be oral or written (computer based) exams. Students absent from the mid-term test should reattend at one of the two further occasions or their semester will not be accepted. The time and topics of midterm tests will be announced in the departmental homepage at the beginning of the semester (http://semmelweis.hu/anatonia).

Requirements for signature:
Active participation in at least 75% of dissection room sessions, including the midterm tests (irrespective of the result) is obligatory for every student.
Type of examination:
Semifinal (written and oral) examination, topics: subject matter of the semester.
Semifinal examinations consist of written (theoretical) and oral (practical) parts. Examiners are delegated by the Course Director with the consent of the Head of Department.

Requirements of the examination:
During the semifinal examination the knowledge of students will be tested. The examination starts with a written pretest (e-learning module “Moodle”) to be followed by an oral test in Macroscopic Anatomy (identification of structures on true anatomical specimens) including relevant theoretical questions from the subject matter of the semester.

Topic list for the semifinal examination:

Macroscopic Anatomy I.

Musculoskeletal Anatomy
- General osteology, classification of bones
- Continuous connections of bones. Classification of joints; components, movements and mechanisms
- General myology
- Structure of the vertebral column, the gross anatomy of the muscles acting upon it
- Movements and muscles of the head&neck (atlantooccipital and atlantoaxial joints)
- Joints of the shoulder girdle, the gross anatomy of the muscles acting upon them
- Shoulder joint, the gross anatomy of the muscles acting upon it
- Axillary fossa, quadrangular and triangular spaces
- Muscle compartments and cross section of the arm
- Elbow joint, the gross anatomy of the muscles acting upon it. Cubital fossa
- Muscles and cross section of the forearm
- Structure and movements of the radiocarpal joint, gross anatomy of the muscles acting upon it
- Osteofibrous spaces and muscle compartments of the hand, tendinous sheaths
- Carpometacarpal, metacarpophalangeal and interphalangeal joints of the thumb and fingers, the gross anatomy of the muscles concerned with the movements
- Osteofibrous structure of the thoracic cage (bones, joints, ligaments, movements)
- Thoracic muscles
- Diaphragm
- Muscles and spaces of the abdominal wall, rectus sheath
- Composition of the pelvis (bones, ligaments and membranes)
- Muscles of the buttock, the posterior abdominal wall and the pelvis (external and internal muscles of the hip)
- Inguinal canal, femoral canal
- Subinguinal hiatus, vascular and muscular compartments; adductor canal, femoral canal
- Hip joint and the gross anatomy of the muscles concerned with the movements
- Osteofibrous compartments, muscles and cross section of the thigh
- Knee joint and the gross anatomy of the muscles concerned with the movements. Popliteal fossa
- Osteofibrous compartments, muscles and the cross section of the leg
- Ankle joint together with the gross anatomy of the muscles acting upon it
- Subtalar and talocalcaneonavicular joints, the muscles acting upon them
- Osteofibrous compartments and structure of the foot, arches of the foot
- Bones, spaces and connections of the skull, external and internal skull bases
- Neurocranium, components and cavities (anterior, middle and posterior cranial fossae)
- Visceroocranium, components and cavities (walls and connections of the nasal cavity, orbit, oral cavity, pterygopalatine and infratemporal fossae)
- Temporomandibular joint and the gross anatomy of the muscles of mastication
- Superficial muscles of the neck, muscle triangles
- Deep muscles of the neck and the laminae of the cervical fascia
- Muscles of facial expression
Further topics with relevance to the musculoskeletal system
- Lymphatic drainage of the thoracic wall including the mamma
- Dorsal branches of the spinal nerves, intercostal nerves
- Cervical plexus, brachial plexus, lumbar plexus, sacral plexus.
- Innervation of limbs
- Innervation of the trunk
- Cutaneous innervation
- Axillary artery and branches. Arteries and veins of the arm, forearm, and hand
- Arteries and veins of the lower limb
- Lymph nodes and lymphatic drainage of the upper and lower limbs

General Embryology and development of the musculoskeletal system
- Spermatogenesis, spermiogenesis
- Oogenesis
- Fertilization, cleavage of the zygote
- Blastocyst formation; the bilaminar embryonic disc
- Implantation
- Formation of body axes, parts of the early embryo (yolk sac, amnion, chorion, body stalk)
- Gastrulation
- Formation of the intraembryonic mesoderm; the notochord
- Neurulation (neural tube and neural crest)
- Derivatives of ectoderm, endoderm and mesoderm
- Folding of the embryo
- The structure and function of the placenta
- Development of the fetal membranes (chorion and amnion), umbilical cord
- Twin formation
- Membranous and cartilaginous neurocranium and viscerocranium
- Development of the limbs and vertebral column
- Development of the muscular system

Method and type of evaluation:
Semifinal examinations are composed of written theoretical and oral practical parts. Students are given separate marks for each part of the examination. Unsuccessful partial examinations result in the failure of the semifinal examination. When failing at the practical part, the written test will not have to be repeated in case the result was a 4 or a 5 only. Upon the termination of the examination the Chairman of the Examination Committee composes the final mark from the partial marks earned in the written and practical parts.

How to register for the examination?
Via the NEPTUN system.

Possibilities for exam retake:
According the Study and Examination Policy
Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
Recommended textbooks

Further study aids:
To be downloaded from the homepage of the Department of Anatomy, Histology and Embryology (http://semmelweis.hu/anatomia) or from Knowledgebase on the Library homepage: (https://lib.semmelweis.hu/knowledge_base).
MACROSCOPIC ANATOMY AND EMBRYOLOGY II.

Credit value: 9
Number of lessons per week: 9 lecture: 3 practical course: 6 seminar: 0
Type of the course: compulsory course
Subject code: AOKANT667_2A
Name of the course leader: Dr. Szél Ágoston

Objectives of the subject, its place in the medical curriculum:
Demonstration of the macroscopical composition of the human body specifically to provide the future clinicians/medical doctors with a valid body of information with relevance to clinically significant morphological structures. Development of internal organs – this part describes the intrauterine differentiation and growth of internal organs with relevance to the general medical curriculum. Teaching is done in the form of lectures and dissection classes.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Semmelweis University, Department of Anatomy, Histology and Embryology
Budapest 1094, Tűzoltó utca 58.

Successful completion of the subject results in the acquisition of the following competencies:
Understanding the macroscopical composition of the human body together with the position and topographical relation of organs. Clear understanding of structure and function. Ability to perform basic preparatory tasks during dissection. Identification of general directions/landmarks on the cadaver together with the recognition of significant organs/body parts. Acquiring knowledge of surface features and/or sectional anatomy forming basis for clinical diagnostics (palpation, auscultation, etc.) and the use of radiological imaging methods. Understanding of human development in order to draw parallels with macroscopical anatomy.

Course prerequisites:
Macroscopic Anatomy and Embryology I.

Number of students required for the course (minimum, maximum) and method of selecting students:
Obligatory for all registered students, on the basis of registration via the NEPTUN system

How to apply for the course:
Via the NEPTUN system.

Detailed curriculum:
List of lectures

1. week:	Nasal cavity, paranasal sinuses
	Oral cavity, tongue, palate, faucial isthmus
	Salivary glands
2. week:	Morphology and development of teeth
	Pharynx, esophagus
	Larynx
3. week:	Development of the face, malformations
	Development of the pharyngeal arches, development of the foregut
	Thoracic cavity, mediastinum. Chambers of the heart, external features. Structure of heart wall, valves, fibrous skeleton. Pericardium
4. week:	Cardiac vessels and nerves, conducting system. Surface projection. Auscultation points.
	Development of the heart
	Development of arteries and veins
	Development of the respiratory system. Postpartum adaptation of the circulatory system
	Stomach and small intestines (duodenum, jejenum, ileum)
6. week: Liver, gall bladder, pancreas, spleen.
Large intestine, rectum

7. week: Peritoneal relations of abdominal organs.
Development of the peritoneum, separation of body cavities
Morphology of the kidney, capsules of the kidney, ureter, urinary bladder.
Morphology and coats of the testicle

8. week: Morphology of the epididymis, spermatic cord, seminal vesicle and prostate
Morphology of penis and male urethra. Male perineum
Ovary, Fallopian tube and uterus

9. week: Vagina, female perineum, external genital organs
Development of the urinary system
Development of genital organs

10. week: Topographical divisions of the central nervous system, developmental units
Meninges, epidural and subarachnoideal spaces, ventricles, choroidal plexus, CSF
Lobes of the cerebral cortex, topographical subdivisions, structure and function of the medial, lateral and basal
cortical fields

11. week: Topography and components of the basal ganglia and the diencephalon (thalamus, hypothalamus), the 3rd ventricle.
Topography and components of the brainstem (midbrain, pons and medulla oblongata), the 4th ventricle.
Arterious, venous and lymphatic circulation of the brain

12. week: The autonomic nervous system. Sympathetic and parasympathetic nervous system.
Cranial nerve nuclei
Trigeminal nerve (CN 5), facial nerve (CN 7)

13. week: Glossopharyngeal nerve (CN 9), vagus nerve (CN 10)
Spinal cord, spinal ganglia, spinal segment. Spinal nerves, nerve plexuses
Lymphatic system. Regional lymphatic drainage of organ, lymph nodes.

14. week: Intracranial topography, orbit
Topographical relations of the thoracic cavity
Topographical relations of the abdominal cavity

Topics of dissection classes

1-2. weeks: Dissection of the head and neck organs.

3-6. weeks: Opening of the thoracic and abdominal cavities, dissection of thoracic and abdominal organs

7-9. weeks: Dissection of the retroperitoneal region and perineum together with organs of the lesser pelvis.

10-12. weeks: Dissection/inspection of the brain and spinal cord. Intracranial topography.

13-14. weeks: Cranial nerve branches. Cross sections of the trunk. Revision

Other subjects concerning the border issues of the given subject (both compulsory and optional courses). Possible overlaps of themes:
Microscopic Anatomy and Embryology I - II..

Special study work required to successfully complete the course:
All students are required to demonstrate their knowledge and motivated practical work by the completion and demonstration of a dissected
specimen or region once during the two semesters of the Academic year.

Requirements for participation in classes and the possibility to make up for absences:
Active participation in practical lessons is obligatory. Students should attend at least 75% of the scheduled hours, absences therefore are
limited in 25%. Attendance will be recorded in the dissection room classes.
Methods to assess knowledge acquisition during term time:
During the semester, both practical and theoretical knowledge will regularly be evaluated. Attendance is obligatory at the two mid-term tests (held approximately on weeks 7 and 12). Anatomy mid-terms may be oral or written (computer based) exams. Students absent from the mid-term test should reattend at one of the two further occasions or their semester will not be accepted. The time and topics of mid-term tests will be announced in the departmental homepage at the beginning of the semester (http://semmelweis.hu/anatomia).

Requirements for signature:
Active participation in at least 75% of dissection room sessions, including the midterm tests (irrespective of the result) is obligatory for every student. Missed practical classes cannot be made up for.

Type of examination:
Final (written and oral) examination, topics: subject matter of the subjects Macroscopic Anatomy and Embryology I-II. Final examinations consist of written (theoretical) and oral (practical) parts
Examiners are delegated by the Course Director with the consent of the Head of Department.

Requirements of the examination:
During the final examination the knowledge of students will be tested. The examination starts with a written pretest (e-learning module “Moodle”) to be followed by an oral test in Macroscopic Anatomy (identification of structures on true anatomical specimens) including relevant theoretical questions from the subject matter of the semester.

Topic list for the semifinal examination:

Macroscopic Anatomy I.
(see there)

Macroscopic Anatomy II.

Internal organs of the head & neck region (morphology and development)
- Oral cavity (divisions, boundaries)
- Floor of mouth, sulcus lateralis linguae
- Macroscopy of the tongue
- Types and morphology of teeth, blood supply and innervation
- Tooth development
- Salivary glands together with topography
- Fauacial isthmus, palate. Tonsils
- Pharynx and parapharyngeal spaces
- Blood supply and innervation of pharynx
- Pharyngeal muscles
- Nose, nasal cavity (boundaries, nasal meatus, vessels)
- Paranasal sinuses (connections, vessels)
- Larynx (shape, position, muscles, vessels, nerves)
- Skeleton and joints of larynx together with the fibroelastic membranes, mucous membrane
- Common and external carotid arteries and their branches. Maxillary artery and its branches
- Venous drainage of face and neck
- Lymph nodes and lymphatic vessels of the head&neck
- Development of the face, including the developement of the oral and nasal cavities
- Development and differentiation of the foregut
- Derivatives of the branchial arches
- Derivatives of the branchial pouches and grooves
- Development of the teeth and tongue
Circulatory system (morphology and development)
- Shape, external features of heart
- Chambers of heart
- Endocardium, ostia, valves of heart
- Skeleton of heart, anuli fibrosi
- Structure of heart wall
- Pulse generating and conducting system of heart
- Pericardium
- Position and surface projections of heart
- Percussion and auscultation (area of cardiac dullness, heart sounds)
- Radiology of heart
- Early circulation (formation of vessels, basis vascular systems of the embryo/fetus)
- Heart development
- Pulmonary circulation
- Ascending aorta, arch of aorta and its branches
- Subclavian artery and its branches
- Thoracic aorta and its branches
- Abdominal aorta and its branches
- Development of arteries (aorta, branchial arterial arches, umbilical arteries)
- Celiac trunk and its branches
- Superior mesenteric artery and its branches
- Inferior mesenteric artery and its branches
- External and internal iliac arteries and their branches
- Internal pudendal artery and its branches
- Superior vena cava and its tributaries
- Inferior vena cava and its tributaries
- Azygos and hemiazygos veins and their tributaries
- Portal vein and its tributaries, portocaval anastomoses
- Development of veins (inferior v. cava, portal v., superior v. cava, azygos and hemiazygos veins)
- Fetal circulations
- Lymphatic drainage of the abdominal and pelvic organs
- Thoracic duct, right lymphatic trunk

Morphology and development of the thoracic, abdominal and pelvic organs
- Trachea and bronchial tree
- Lung (shape, parts, surfaces, hilum)
- Lung (position, topography, vessels, nerves)
- Surface projection of pleura and lung
- Pleura, pleural cavity
- Mediastinum (divisions and content)
- Development of the lower airways including the lung
- Description and topography of the esophagus
- Stomach (shape, position, parts, blood supply and innervation). Peritoneal relations
- Duodenum (shape, position, divisions, vessels)
- Jejunum-ileum (shape, position, vessels)
- Large intestine (shape, position, vessels)
- Rectum, anal canal (shape, position, vessels)
- Liver (shape, position, peritoneal relations, vessels)
- Gall bladder and biliary passages (anatomy)
- Pancreas (shape, position, vessels)
- Peritoneum, greater and lesser omentum, mesentery, omental bursa
- Formation and differentiation of the midgut
- Formation and differentiation of the hindgut
• Development of liver and pancreas
• Development of the peritoneum
• Formation of body cavities, development of the diaphragm
• Kidney (shape, position, hilum, sinus, capsules, vascular architecture)
• Renal pelvis and calyces. Ureter
• Urinary bladder (shape, position, muscles, vessels)
• Female urethra
• Male urethra, bulbourethral gland
• Development of kidneys
• Development of urinary passages
• Testis (shape, position, vessels). Scrotum, coats of testis
• Epididymis, vas (ductus) deferens, spermatic cord
• Seminal vesicle, prostate
• Penis (shape, position, mechanism of erection, vessels, nerves)
• Pelvic floor, male perineum (connective tissue spaces)
• Hernia canals (inguinal and femoral)
• Ovary (shape, position, vessels)
• Uterine tube (shape, position, vessels)
• Uterus (shape, parts, position, supporting structures, vessels) Broad ligament
• Vagina, female perineum (connective tissue spaces)
• External female genital organs (mons pubis, labia, vestibule of vagina, greater vestibular gland, vessels)
• Development of gonads, formation and migration of primordial germ cells
• Development of male genital system
• Development of female genital system
• Development of the external genital organs

Macroscopy of the nervous system
• Intracranial topography Dura mater, dural sinuses
• Arachnoid mater, pia mater, cisterns, CSF circulation
• Description and meninges of the spinal cord
• Brain stem (medulla oblongata, pons, midbrain)
• Cerebellum
• Diencephalon (parts, blood supply). Thalamus, hypothalamus
• Lateral ventricles, III. ventricle, IV. ventricle
• Hemispheres
• Internal carotid artery (course, parts and branches)
• Vertebal artery (course and branches)
• Circle of Willis
• Veins of the brain
• Cranial nerve nuclei, macroscopy of cranial nerves together with the brain, dural and skull exits
• Branches of cranial nerves (CN 3, CN 4, CN 5, CN 6, CN 7, CN 9, CN 10, CN 11, CN 12)
• General composition of the autonomic nervous system
• Sympathetic nervous system (cranial, cervical, thoracic and lumbar parts)
• Sympathetic trunk
• Parasympathetic system (cranial and sacral parts)
• Topography of the orbit. Extraocular muscles. Eye movements.
• Eyelids, conjunctiva, fasciae of the orbit, lacrimal apparatus
Method and type of evaluation:
Final examinations are composed of written theoretical and oral practical parts. The written theoretical examination is done using an e-learning module while the practical examination is conducted in the dissection room on real prospected cadaver specimen. Examiners are delegated by the Course Director with the consent of the Head of Department.
Students are given separate marks for each part of the examination. Unsuccessful partial examinations result in the failure of the final examination. When failing at the practical part, the written test will not have to be repeated in case the result was a 4 or a 5 only. Upon the termination of the examination the Chairman of the Examination Committee composes the final mark from the partial marks earned in the written and practical parts.

How to register for the examination?
Via the NEPTUN system.

Possibilities for exam retake:
According the Study and Examination Policy

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:

Recommended textbooks

Further study aids:
To be downloaded from the homepage of the Department of Anatomy, Histology and Embryology (http://semmelweis.hu/anatomiia) or from Knowledgebase on the Library homepage: (https://lib.semmelweis.hu/knowledge_base).
MICROSCOPIC ANATOMY AND EMBRYOLOGY I.

Department of Anatomy, Histology & Embryology

Head of Department: Dr. Alán Alpár

Course Director: Dr. Andrea D. Székely
Dr. Sándor Katz

Credit value: 5
Number of lessons per week: 5 lectures: 1 practical course: 4 seminars: 0

Type of the course: compulsory course
Subject code: AOKANT674_1A
Name of the course leader: Dr. Szél Ágoston (full professor)

Objectives of the subject, its place in the medical curriculum:
Demonstration of the fine structure of cells and tissues composing the organs of the human body specifically to provide the future clinicians/medical doctors with a valid body of information describing the microscopical elements of clinically significant morphological structures (including cell biology, general histology and the histology of organs).
Teaching is done in the form of lectures and histology laboratory classes

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Semmelweis University, Department of Anatomy, Histology and Embryology
Budapest 1094, Tűzoltó utca 58.

Successful completion of the subject results in the acquisition of the following competencies:
Understanding the microscopical composition of the human body together with the understanding of human development in order to draw parallels with macroscopical anatomy. Clear understanding of histological structure and function. Ability to identify basic structural elements within the tissue specimen. Identification of general directions/landmarks within digitized tissue slides.

Course prerequisites:
Cell science

Number of students required for the course (minimum, maximum) and method of selecting students:
Obligatory for all registered students, on the basis of registration via the NEPTUN system
How to apply for the course:
Via the NEPTUN system.
Detailed curriculum:
List of lectures

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
</tr>
</thead>
</table>
| 1. | Epithelial tissues, cell contacts, intercellular connections
 | Glandular epithelium |
| 2. | Connective tissue cells and fibres. Extracellular matrix |
| 3. | Supporting tissues (cartilage, bone) |
| 4. | Ossification, bone remodelling. Blood, erythropoiesis, leukopoiesis |
| 5. | Muscle tissues |
| 6. | Histology of vessels |
| 7. | Histology of the tongue and teeth. Histology of the esophagus |
| 8. | Histology of the stomach. Microscopical anatomy of the small and large intestines |
| 9. | Histology of the liver and pancreas |
| 10. | Histology of the airways |
| 11. | Mircoscopycal anatomy of urinary organs |
| 12. | Histology of the male genital systems |
| 13. | Histology of the female genital system I. |
| 14. | Histology of the female genital system II. Placenta, mammary gland |

Histology laboratories

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction, epithelial tissues</td>
</tr>
<tr>
<td>2.</td>
<td>Connective tissue cells and fibres</td>
</tr>
<tr>
<td>3.</td>
<td>Blood, Cartilage, bone</td>
</tr>
<tr>
<td>4.</td>
<td>Bone formation. Nerve tissue</td>
</tr>
<tr>
<td>5.</td>
<td>Smooth, skeletal and cardiac muscle types</td>
</tr>
<tr>
<td>6.</td>
<td>Histology of vessels. Tooth bud</td>
</tr>
<tr>
<td>7.</td>
<td>Lip, tongue, lingual papillae</td>
</tr>
<tr>
<td>8.</td>
<td>Esophagus, stomach. Duodenum, jejunum, ileum, colon</td>
</tr>
<tr>
<td>9.</td>
<td>Liver, gall bladder, pancreas</td>
</tr>
<tr>
<td>10.</td>
<td>Larynx, trachea, lung</td>
</tr>
<tr>
<td>11.</td>
<td>Urinary system</td>
</tr>
<tr>
<td>12.</td>
<td>Male genital system</td>
</tr>
<tr>
<td>13.</td>
<td>Female genital system</td>
</tr>
<tr>
<td>14.</td>
<td>Placenta, revision</td>
</tr>
</tbody>
</table>
Other subjects concerning the border issues of the given subject (both compulsory and optional courses). Possible overlaps of themes:
Macroscopic Anatomy and Embriology I - II.
Cell sciences, cell biology
Certain chapters of Biochemistry and/or Physiology

Special study work required to successfully complete the course:
none

Requirements for participation in classes and the possibility to make up for absences:
Active participation in histology laboratory classes is obligatory for every student. Students should attend at least 75% of the scheduled hours to gain a signature proving the validity of the semester. Absences are therefore limited in 25%. Attendance will be recorded in the histology laboratory classes.

Methods to assess knowledge acquisition during term time:
The knowledge of students will be checked in midterm tests (held prospectively in weeks 5 and 11), written (electronic) test. Attendance is obligatory at the two midterm tests. Students absent from the tests should reattend at one of the offered retakes. Histology and Embryology midterms are written (Moodle) examinations organised as e-learning type examination where a valid SeKa account (including user name&password) is required.
The time and topics of midterm tests will be announced in the departmental homepage at the beginning of the semester (http://semmelweis.hu/anatomia).

Requirements for signature:
Active participation in at least 75% of dissection room sessions, including the midterm tests (irrespective of the result) is obligatory for every student.

Type of examination:
Semifinal (written and oral) examination, topics: subject matter of the semester (Microscopic Anatomy and Embryology I.). Semifinal examinations consist of written theoretical and oral practical parts.
1. Written pretest (e-learning module)
2. Microscopic Anatomy - identification of structures on digitized tissue slides - including relevent theoretical questions from the subject matter of the semester

Requirements of the examination:
During the semifinal examination the knowledge of students will be tested. Semifinal examinations are composed of written (theoretical) and oral (practical) parts with the latter being conducted with the use of digitized histological tissue slides.

Topic list for the semifinal examination:

Microscopic Anatomy and Embryology I.

General Histology
- Concept of basic tissues
- Definition and classification of epithelial tissue
- Simple epithelia
- Stratified epithelia
- Membrane specializations of epithelia
- Glandular epithelia
- Pigment epithelium, sensory neuroepithelium
- Cells of connective tissue
- Ground substance and fibres of connective tissue
- Types of connective tissue
- Blood and the corpuscular elements of blood
- Histology of the bone marrow, maturation of erythrocytes and platelets
- Differentiation of granulocytes, lymphocytes and monocytes
- Histology of cartilage
- Histology of the bone tissue
- Intramembranous ossification
- Endochondral ossification
- Growth and remodeling of bone
- Smooth muscle and myoepithelial cells
- Skeletal muscle tissue
- Cardiac muscle tissue
- Nervous tissue

Histology of organs
- Histological structure of arteries and arterioles
- Composition of capillaries and veins
- Wall structure of hollow organs
- Histology of the lip, tongue and teeth
- Structure of the esophagus
- Histology of the airways (epiglottis, larynx, trachea, lung)
- Histology of the stomach
- Structure of the small and large intestines
- Histology of the liver and biliary passages including the gall bladder
- Histology of the pancreas
- Histology of the kidney and the urinary passages (ureter, urinary bladder)
- Histology of the testicles together with the epididymis
- Histology of the prostate, seminal vesicle, spermatic cord
- Histology of the penis
- Histology of the ovary, uterine tube; corpus luteum
- Histology of the uterus
- Histology of the vagina
- Placenta, umbilical cord

Method and type of evaluation:
Semifinal examinations are composed of written theoretical and oral practical parts. The written theoretical examination is done using an e-learning module while the practical examination is conducted with the help of digitized histological tissue slides.

Students are given separate marks for each part of the examination. Unsuccessful partial examinations result in the failure of the semifinal examination. When failing at the practical part, the written test will not have to be repeated in case the result was a 4 or a 5 only. Upon the termination of the examination the Chairman of the Examination Committee composes the final mark from the partial marks earned in the written and practical parts.

How to register for the examination?
Via the NEPTUN system

Possibilities for exam retake:
According the Study and Examination Policy
Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
List of textbooks

Further study aids:

To be downloaded from the homepage of the Department of Anatomy, Histology and Embryology (http://semmelweis.hu/anatomia) or from Knowledgebase on the Library homepage: (https://lib.semmelweis.hu/knowledge_base).
ANATOMIC DISSECTION IN THE PRACTICE – optional course

Department of Anatomy, Histology and Embryology

Credit: 2
1 x 90 min practical course
Course prerequisites: Macroscopic Anatomy I.
Held in both semesters.

Objectives of the subject, its place in the medical curriculum:
The technique of anatomical dissection dates back many centuries. Dissecting of fixed specimens gives students the opportunity to acquire practical knowledge that is essential, especially for those who are planning to choose manual field. Fine dissection of small structures requires extra time and appropriate infrastructural conditions. Our practical course creates this unique opportunity under the guidance of expert instructors. The specimens will get into the high quality demonstration specimen pool to be used in the education.

Successful completion of the subject results in the acquisition of the following competencies:
By completing the course, students will master the technique of fine anatomical dissection. Working with fine quality instrumental tools gives the opportunity to get to know better anatomical layers and structures in more details. This type of work gives a good base of knowledge what can be developed further in manual fields.

Detailed curriculum:
Practices:
2. Dissection of cutaneous nerves and superficial veins I. (demonstration and practice)
3. Dissection of cutaneous nerves and superficial veins II. (demonstration and practice)
4. Dissection of muscles I. (demonstration and practice)
5. Dissection of muscles II. (demonstration and practice)
6. Dissection of arteries and nerves I. (demonstration and practice)
7. Dissection of arteries and nerves II. (demonstration and practice)
8. Dissection of the viscera I. (demonstration and practice)
9. Dissection of the viscera II. (demonstration and practice)
10. Working with bone I. (demonstration and practice)
11. Working with bone II. (demonstration and practice)
12. Dissection of the brain I. (demonstration and practice)
13. Dissection of the brain II. (demonstration and practice)
14. Exam and demonstration of the dissected specimens.

Teachers (depending on the number of the registered students):
Dr. Alán Alpár professor – professional tutor
Dr. Tamás Ruttkay senior lecturer – lecturer, practice leader
Dr. Emese Pálfi senior lecturer – practice leader

Special study work required to successfully complete the course:
Anatomical dissection on the practices.

Requirements for participation in classes and the possibility to make up for absences:
Participation in the practices is verified by signing an attendance sheet. Absence up to 25% of the classes is allowed within a semester. Due to the nature of the course, it is not possible to make up for absences.
Methods to assess knowledge acquisition during term time:
There is no mid-term check. Requirements for signature: Attendance at least 75% of the classes.

Type of examination:
The semester ends with a practical exam, during which the student presents and hands over the specimen dissected by him/her to the practice leader.

Requirements of the examination:
During the last practice of the semester, the student summarizes the topic of the dissected specimen and displays it. The practice leader evaluates the semester preparatory work based on the criteria detailed below.

Method and type of evaluation:
The finished specimen is evaluated according to the following criteria: 1. The degree of preparation of the topic recorded at the beginning of the course. 2. Quality of the prepared anatomical structures. 3. Presentation of the specimen in a practical exam (theoretical, regional anatomical presentation).
The student’s knowledge will be evaluated using a scale of 1 to 5 mark.

Possibilities for exam retake:
It is not possible to replace an unfinished specimen. In case of justified absence from the practical exam, the presentation of the dissected specimen and the formation of the grade will take place at an additional time.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
CELL SCIENCE

Department of Genetics, Cell- and Immunobiology

Address: NET Building, H-1089 Budapest, Nagyvárad tér 4.

Course director: Edit Buzás MD, DSc
Course coordinator: Orsolya Láng MD, PhD

Office hours are given on the Departement website (http://gsi.semmelweis.hu/index.php/en/education/information
Credit: 3

Aim of the course:
Course Cell Science is developed for medical students as a part of the Basic Module. The Curse presents the most important aspects of cell-morphology and cell function. Cell Science Course provides a detailed discussion of compartmentalization in the eukaryotic cell as well as describes the most significant characteristics of the basic cellular functions (migration, endocytosis, cell-cell communication, division, stem cell differentiation, ageing and cell death). The practices introduce the students to the microscopic techniques used for cell morphological studies. The purpose of the course is to demonstrate the complexity of cell structure and function relationships as well as to present basic methods of in vitro cell culturing and their potential medical applications.

Location of the course:
Selye János Lecture Hall and Lab rooms L13-L16 are located on the first floor of the NET building (1089 Budapest, Nagyvárad tér 4.)

Lecturers: Prof Edit Buzás, Dr. András Kristóf Fülöp, Dr László Kőhidai

Lectures (1 hours per week):
1. Cell theory. Model cells in Medicine
2. Cell membrane
3. Structure and function of nucleus
4. Endoplasmic reticulum
5. Golgi complex, vesicular transport and secretion
6. Endocytosis. Autophagy
7. Cell adhesion and cell junctions
8. Cytoskeleton
9. Cellular movement
10. Structure and function of mitochondria and peroxisomes
12. Cell cycle and mitosis
13. Stem cells and differentiation
14. Cellular aging and cell death

Practices (2 hours per week):
1. The light microscope
2. The general cell structure. Light microscopic microtechnique
3. The electron microscope. Cell membrane
4. The interphase nucleus. Cyto(histo)chemistry
5. Immunohistochemistry. Super-resolution microscopy
6. Cell and tissue culture
7. Endoplasmic reticulum
8. Golgi complex and secretion
9. Endocytosis and lysosomes
10. Cell surface differentiation, enzyme-histochemistry
12. Mitosis
13. Meiosis
14. Cell death (necrosis and apoptosis)

The order of topics may vary

Course requirements: Students must participate at least 75% of the classes. More than three absences from the practice or more than three absences from the lecture invalidate the semester, no signature is given. There are no extra practices.
Midterms: During the semester two Moodle exam will be organized at week 6th and 12th. Based on the total performance maximum 3 bonus points can be obtained. These extra scores will be added to the exams scores as bonus scores. No opportunity to improve the bonus scores.

Exam: The course ends with a written exam. It contains multiple choice, essays, drawings, etc. covering both theoretical and practical part of the subject. The written exam score should achieve 50% of the total scores for passing. At 13th week of the semester, a competition will be organized. Those who achieve the good or excellent level get the exam grade. Further details will be announced at the website of the department (http://gsi.semmelweis.hu) and in the Moodle.

Lecture and practice presentations and additional texts are available on the homepage: http://gsi.semmelweis.hu (The user name and password is on course datasheet of the Neptun)
MEDICAL BIOPHYSICS I.

Tutor: Dr. István Voszka

First Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture (1.5 hours per week)</th>
<th>Laboratory (2.5 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Radiations (basic concepts)</td>
<td>Laboratory safety rules</td>
</tr>
<tr>
<td>2</td>
<td>Properties of electromagnetic radiations; wave and corpuscular nature</td>
<td>Resonance</td>
</tr>
<tr>
<td>3</td>
<td>Attenuation of radiation</td>
<td>Emission spectroscopy. Light sources</td>
</tr>
<tr>
<td>4</td>
<td>Luminescence and its applications</td>
<td>Spectrophotometry</td>
</tr>
<tr>
<td>5</td>
<td>Lasers and their medical applications</td>
<td>Optical lenses; light microscope</td>
</tr>
<tr>
<td>6</td>
<td>Thermal radiation, thermography. Biological effects of light</td>
<td>Detection of nuclear radiations</td>
</tr>
<tr>
<td>7</td>
<td>Production and spectrum of X-radiation Cyclotron; Linear accelerator;</td>
<td>Oscilloscope</td>
</tr>
<tr>
<td>8</td>
<td>Attenuation of X-radiation, interactions</td>
<td>Special light microscopes</td>
</tr>
<tr>
<td>9</td>
<td>Atomic structure; Radioactive decay law Gamma-radiation and its detection</td>
<td>X-ray diagnostics</td>
</tr>
<tr>
<td>10</td>
<td>Radiotherapy, radiosurgery; Isotope diagnostics</td>
<td>Optics of the eye</td>
</tr>
<tr>
<td>11</td>
<td>SPECT, PET Beta-radiation, beta-decay</td>
<td>Polarimeter</td>
</tr>
<tr>
<td>12</td>
<td>Alpha-radiation, alpha-decay Interaction with matter</td>
<td>Coulter counter</td>
</tr>
<tr>
<td>13</td>
<td>Dosimetry</td>
<td>Determination of skin-impedance</td>
</tr>
<tr>
<td>14</td>
<td>Radiation protection; estimation of risk</td>
<td>Concentration determination with refractometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repetition</td>
</tr>
</tbody>
</table>
MEDICAL BIOPHYSICS II.

Second Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture (1,5 hours per week)</th>
<th>Laboratory (2,5 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bonds and their significance in macromolecular structure; Boltzmann distribution, examples</td>
<td>The attenuation of gamma-radiation</td>
</tr>
<tr>
<td>2</td>
<td>Liquid crystals, membranes</td>
<td>Dosimetry</td>
</tr>
<tr>
<td>3</td>
<td>Electronic properties of condensed materials (solids, macromolecules)</td>
<td>Amplifier</td>
</tr>
<tr>
<td>4</td>
<td>Ultrasound properties, generation of ultrasound</td>
<td>Gamma energy determination</td>
</tr>
<tr>
<td>5</td>
<td>Ultrasonography, Doppler methods</td>
<td>Pulse generators (e.g. pacemaker, defibrillator)</td>
</tr>
<tr>
<td>6</td>
<td>Methods for structure examination</td>
<td>Sine wave oscillators (high frequency heat therapy, ultrasound)</td>
</tr>
<tr>
<td>7</td>
<td>Basic concepts of Thermodynamics, First law</td>
<td>Audiometry</td>
</tr>
<tr>
<td>8</td>
<td>General description of transport phenomena, Onsager’s equation, examples</td>
<td>Isotope diagnostics</td>
</tr>
<tr>
<td>9</td>
<td>Diffusion; transport across membrane</td>
<td>Densitography (CT)</td>
</tr>
<tr>
<td>10</td>
<td>Resting potential and its local changes</td>
<td>Flow of fluids. Electric model of vascular circulation</td>
</tr>
<tr>
<td>11</td>
<td>Action potential, properties, interpretation</td>
<td>Electrocardiography</td>
</tr>
<tr>
<td>12</td>
<td>General characteristics of sensory function, hearing, vision</td>
<td>Diffusion</td>
</tr>
<tr>
<td>13</td>
<td>Biophysics of muscle function</td>
<td>Sensory function</td>
</tr>
<tr>
<td>14</td>
<td>Motor proteins</td>
<td>Repetition</td>
</tr>
</tbody>
</table>
MATHEMATICAL AND PHYSICAL BASES OF MEDICAL BIOPHYSICS

First Semester

Tutor: Dr. István Voszka

Altogether 14 hours lecture during the first four weeks of the semester

Credit 1

Topics of lectures:
1. Mathematics, necessary for the understanding of biophysical laws
2. Physical quantities and units
3. Kinematics – motions
4. Statics – changes of shape, forces, mechanical stress, pressure
5. Dynamics – work, energy
6. Oscillations, waves
7. Fluid mechanics
8. Thermodynamics
9. Electricity – charges in rest and in motion
10. Magnetism, magnetic induction
MEDICAL CHEMISTRY

Department of Molecular Biology

Lectures and practical lessons
Two lectures are held every week; practical lab lessons (duration: 180 min) and seminars (90 min) are held in alternating weeks. For detailed schedules see the Moodle website of the subject.

Prerequisites for acknowledging the semester
(1) Participation in the laboratory practicals is compulsory; students are obliged to sign the attendance sheets at the end of each lab lesson. Students not attending (i) more than 2 labs or (ii) more than 5 seminars or (iii) more than 1 lab and 3 seminars are not going to be allowed to sit for the semifinal exam. Missed practicals and seminars can only be completed in the same week with another group; certificate of participation issued by the host teacher needs to be presented by the student to his/her own teacher.
(2) It is compulsory to sit for the first midterm examination.

Midterm examinations
Two written midterm examinations will be held in weeks 6 and 13 of the semester, respectively, during ordinary lab lessons. Midterm tests consists of two theoretical questions and four problems (calculations).

The midterm topic list will be published on the Moodle platform. Students achieving a good (4) or excellent (5) mark are exempted from solving a problem (chemical calculation) in the semifinal exam.

The second midterm is optional. It can be taken in the first part of the last chemistry practical lesson. One of the experiments conducted during the semester is to be summarized. Scores (1 – 5) of this test will be doubled and added to the points collected for the lab work during the semester (at most 6). Students getting at least 11 points (from the maximal $6 + 2 \cdot 5 = 16$) get a bonus: they do not have to pick a practical topic in the semifinal exam.

Bonuses can be combined, so in the best-case scenario one picks only two topics on the semifinal exam. Bonuses are also valid for retakes and CV exams but not for FM exams.

Midterm tests will be marked by your own lab teacher.

Failed midterms can not be retaken.

Semifinal examination
Only those students who have fulfilled both acknowledgement criteria, thus obtained an official electronic Neptun signature, are entitled to sit for the semifinal exam.

The semifinal is an oral exam conducted by a two-member examination committee.
Students take one topic from each of the following groups of topics:
I. Problems (calculations)
II. General chemistry
III. Organic chemistry
IV. Labs

Rules pertaining to students having achieved bonus(es) can be found in the previous paragraph.

Exemption from attending the course
Students who learned general, and organic chemistry at university levels prior to the commencement of their studies at Semmelweis University might be exempted from attending the Medical Chemistry course. Students are kindly asked to present their official documents (academical transcripts and a detailed syllabus on the courses they have completed) to the tutor (Gergely Keszler).

Registration and modification of examination dates
Electronic, via the Semmelweis University Neptune System.
All our examination rules comply with the official examination regulations of the Semmelweis University.
Recommended textbooks
1. General chemistry:
2. Ebbing-Gammon: General Chemistry, latest edition
3. Organic chemistry:
5. Sasvári: Bioorganic compounds
6. Lab lessons:
8. Hrabák: Selected Collection of Chemical Calculations and Biochemical Exercises (latest edition)

Description of the curriculum
The principal aim of the course is to prepare students for the understanding of the Biochemistry and Molecular Biology subjects. This requires a firm knowledge of the foundations of general and organic chemistry.
The Medical Chemistry course encompasses the following chapters of Chemistry:

I. General Chemistry

Structure of atoms, ions and molecules. Chemical bonds
- Relation of atomic radius, ionization energy, electron affinity and electronegativity to the periodic table. Ionic bond, ion radius, ions.
- Covalent bonding, s and p bonds, hybrid orbitals, hybridization of carbon. Electron pair repulsion, geometry of molecules, bond angle.
- Molecular orbital theory.

Solutions, laws of aqueous solutions, their biological and medical aspects

Electrolytes

Electrochemistry

Thermodynamics

Chemical kinetics
- Reaction kinetics, rate of reaction, order and molecularity. Half-time of reactions. The van’t Hoff rule. Activated complex, transition state, activation energy. The Arrhenius equation. Catalysis, catalysts. Reversible processes, the law of mass action, equilibrium constant and its relation to free energy change. Consecutive reactions, the importance of rate-limiting steps in metabolic processes.
II. Organic chemistry

General properties of organic compounds

Classification of hydrocarbons based on their carbon backbone

Functional groups. Classification and chemical characterization of compounds containing various functional groups
Classification of organic compounds according to their functional groups.

1. Halogenated hydrocarbons, their physicochemical properties.
2. Organic compounds containing hydroxyl groups. Classification. Alcohols, physical properties, chemical reactions. Enols and phenols, their chemical reactions. Synthesis of ethers, their reactions.
5. Organic compounds containing sulfur: thiols, thiophenols and thioethers, their synthesis and physicochemical properties.
6. Organic compounds containing nitrogen: classification, physicochemical properties of nitro compounds. Amines, classification, synthesis, basicity. Important chemical reactions of amines (e.g. Schiff base formations). Amides of carbonic acids.
MEDICAL BIOCHEMISTRY I.

Department of Medical Biochemistry

Credits: 5
Total number of hours: 70; lectures (hours): 42; practices (hours): 28
Type of the course: obligatory
Academic year: 2021/2022

Code of the course
Name of Head of the Department: Professor László Csanády M.D. Ph.D. D.Sc.
Contact details: H-1094 Budapest, Tűzoltó u. 37-47. tel: +36-1-459-1500#60010 e-mail: csanady.laszlo@med.semmelweis-univ.hu
Position: Temporary Head of Department
Date of Habilitation: 2013 Its number: 341

Objectives of the subject, its place in the medical curriculum:
The aim of this course is to examine biologically important molecules - namely amino acids, carbohydrates, lipids and nucleotides - identify their contributions to metabolic processes emphasized from a medical point of view, examine the structure and function of proteins, and address mechanisms of catalysis performed by enzymes. Furthermore, three basic biochemistry modules are outlined: The enzymology module, encompassing general principles of enzyme kinetics and how enzymes influence efficiency and controllability of chemical processes in biological systems, as well as how they affect structure and regulation of metabolic pathways; the bioenergetics module, addressing the relationships between mass-energy conversions in the human body emphasizing nutrional aspects, also elaborating on thermodynamic aspects of metabolism; and the ‘first’ intermediary metabolism module, presenting the salient features of carbohydrate and lipid metabolism which are essential for understanding physiological and pathological processes of the human body. During practices, students apply the theoretical knowledge acquired at lectures as part of case-oriented discussions in an effort to interpret - from a molecular point of view - medically relevant conditions.

Location of the course (lecture hall, practice room, etc.):
Premises located in the Basic Medical Sciences building (laboratory rooms located on the first floor and lecture halls located on the ground floor).

Successful completion of the subject results in the acquisition of the following competencies:
The knowledge of the structure, interactions and reactions of biological molecules and the interactions between organs of the higher integrated regulatory functions of the human body, is of paramount importance from a medical point of view and is essential for understanding physiological and pathological processes and, as a consequence, for making informed medical decisions.

Prerequisite(s) for admission to the course: Medical Chemistry
Number of students required for the course (minimum, maximum) and method of selecting students: Not applicable for compulsory subjects
How to apply for the course: Application is through the Neptun online system

Detailed curriculum:

Lectures: weekly 2x70 min (3 hours)
Lecturers: Prof. Csanády László (CSL), Prof. Kolev Kraszimir (KK), Dr. Christos Chinopoulos (CC), Dr. Komorowicz Erzsébet (KE), Dr. Kardon Tamás (KT), Dr. Töröcsik Beáta (TB), Prof. Tretter László (TL)
Practices (P): 2 hours every week
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Practices (P): 2 hours every week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The chemical structure of the amino acids that make up proteins. Formation of peptide bonds and their spatial structure. Primary structure of proteins. Hierarchical structure of proteins, secondary and tertiary structure. Process of unfolding of proteins, protein denaturation.</td>
<td>Structural and chemical characteristics of amino acids from the point of view of physiological functions (pH and temperature dependent properties).</td>
</tr>
<tr>
<td>3</td>
<td>A description of the general properties of enzymes. The chemical nature of enzymes. Thermodynamics of catalysis. The role of activation energy. Isoenzymes. The role of coenzymes and vitamins. Mechanism of action of serine proteases.</td>
<td>Interpreting protein structure-related pathological conditions in light of atomic resolution protein structures</td>
</tr>
<tr>
<td></td>
<td>Kinetic models of enzyme function. Michaelis-Menten kinetics. Initial reaction rate criteria. Michaelis constant (Km) and its significance. Inhibition of enzyme reactions, kinetics of inhibition. The importance of inhibition types in drug design.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Allostery and cooperativity. Levels of regulation of enzyme reactions: regulation by compartmentalization, regulation of gene expression, regulation by reversible modification of catalytic activity of enzymes. Regulation by proteolytic activity.</td>
<td>Determination of enzyme kinetic parameters, regulation of enzyme activity</td>
</tr>
<tr>
<td>6</td>
<td>Mechanism of ATP synthesis in mitochondria: oxidative phosphorylation. The so-called terminal oxidation, also known as respiratory chain redox reactions, and the enzyme complexes that catalyse these reactions.</td>
<td>The structure of carbohydrates, Carbohydrate components in the diet. Dietary fibers and additives.</td>
</tr>
<tr>
<td>7</td>
<td>Carbohydrates in food, their digestion, absorption of carbohydrates in the intestinal tract. Membrane transporters in general. Glucose transporters, their tissue localization, regulation.</td>
<td>Experimental determination of P/O ratio (practice)</td>
</tr>
<tr>
<td></td>
<td>The process and regulation of glycolysis.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Metabolism and molecular pathology of fructose, galactose and lactose. Glycogen degradation and synthesis.</td>
<td>Lactic acidosis</td>
</tr>
<tr>
<td>9</td>
<td>Regulation of blood glucose I. Glycogen mobilisation in liver and muscle. Phosphorylation cascade. Enzymes regulated by glucagon. Lactose synthesis (TB)</td>
<td>Structures and bioenergetic functions of the main lipids in the body and in foodstuffs</td>
</tr>
<tr>
<td></td>
<td>Regulation of blood glucose II. Hyperglycaemia. Insulin secretion, its receptor and its effects on the organs (TB)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>The biochemistry of diabetes. Type 1 and type 2 diabetes (TB)</td>
<td>Measurement of blood glucose levels according to the oral glucose tolerance test. Non-enzymatic glycation of haemoglobin.</td>
</tr>
<tr>
<td></td>
<td>Dietary lipids, their digestion, absorption, metabolism of kilomicrons. Essential fatty acids (TL)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Mobilisation of fatty acids in adipose tissue and its regulation. Transport in the circulation. Free fatty acids, VLDL, IDL (TL)</td>
<td>Role of insulin in metabolism and signal transduction</td>
</tr>
<tr>
<td></td>
<td>Oxidation of fatty acids and its regulation. Production and utilisation of ketone bodies (TL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Characterisation and grouping of biotransformation reactions: phase I reactions - microsomal cytochrome P450 isoenzymes, phase II reactions - glucuronidation, conjugation with glutathione. Regulation of biotransformation processes (KT)</td>
<td></td>
</tr>
</tbody>
</table>
Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes: none

Special study work required to successfully complete the course: None.

Requirements for participation in classes and the possibility to make up for absences:
Practices and seminars are mandatory. It is not possible to make up for missed practices/seminars. In case of absences amounting to more than 3 occasions, the semester is not acknowledged. Arriving to a practice/seminar with a delay of more than 10 minutes is considered an absence.

Methods to assess knowledge acquisition during term time:

Practice/seminar participation performance will be evaluated by the tutor: as such, maximum 10 points per semester can be obtained that may count towards the semi-final grade, see under “Grading system”.

Midterms: A midterm will take place in the 6th and another in the 11th week, during the practice/seminar (allocated time per midterm: 20 minutes). Each midterm will consist of multiple choice questions (MCQs) from which max 20 points can be obtained (10 points per midterm).

It is not obligatory to pass a midterm in order to be allowed to sit for the semi-final exam. However, the midterm points will be added as “points” to the result of the semi-final exam, as detailed in “Grading system”.

Lectures: At the end of each lecture, there will be a Kahoot on the topic of the lecture, consisting of 5 questions. Maximum 1 point can be earned per lecture, as outlined by the lecturer. Through the Kahoots, students may obtain points that will be added to the points earned at the semi-final exam, as detailed in “Grading system”.

Competition: The competition is held on the last week and consists of 70 multiple choice questions (MCQs). Only students who amass 14 or more points from the midterms may participate in the competition. Points obtained from midterms, Kahoot quizzes, or practice/seminar performance (see below), do not count in the competition. Winners may be exempted from the semi-final exam.

Requirements for signature: No credit will be given for absences exceeding 6 hours (3 occasions).

Type of examination: Semi-final; Form: written and oral test based on material of the official textbooks, lectures and practices/seminars published at the department’s Moodle e-learning system (https://itc.semmelweis.hu/moodle/). See under “Grading system” for further details.

Requirements of the examination:
The material covered in the exam is the material of the lectures and practices/seminars in the topic, with the corresponding textbook chapters.
Method and type of evaluation:

Grading system: The grade of the semi-final exam is based on the points obtained i) in Kahoot quizzes at the lectures, ii) during the seminars/practices, iii) at the two midterms, iv) at the written MCQ semifinal exam, and v) in an oral exam following the written MCQ exam. The written MCQ exam and the oral exam will take place on the same day of the examination period.

The grading system is as follows:
(i) Kahoot: maximum 1 point per lecture.
(ii) Seminar/practice points: maximum 10 points.
Total points from (i) and (ii) cannot exceed 20 points.
(iii) Two midterms: maximum 20 points.
(iv) Written MCQ exam: This test consists of multiple choice questions (MCQs) from which max 100 points can be obtained (allocated time: 100 minutes).
If the score of the MCQ exam is 49 or below, then the grade of the semi-final exam is ‘fail’.
If students reach 50 points on the MCQ exam, the midterm points, practice/seminar performance points and lecture Kahoot points (total max. 40 points) will be added to the MCQ score.

Grade calculation of the written part of the semi-final exam from the total points (MCQ+semester):
95–140: grade 5 (excellent)
85–94: grade 4 (good)
70–84: grade 3 (satisfactory)
55–69: grade 2 (pass)

Only those students who obtained at least 50 points at the semifinal MCQ test will be invited for an oral exam. During the oral exam, the examiner will pick three questions from those MCQs that were correctly answered by the student. The student will have to elaborate properly on these questions. The final grade will be given based on the written and the oral part of the exam.

How to register for the examination?: The exam dates are announced on the 12th week of the semester. We provide at least one exam date each week. Applications are made in the Neptun system in accordance with the University Study and Exam Rules.

Possibilities for exam retake: an exam can be re-taken only after two calendar days.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
Harper’s Biochemistry (30th edition, or latest)
Online material published in the department’s website (http://semmelweis.hu/biokemia/en/)
MEDICAL SOCIOLOGY – Health Care

Semester: half class in the first semester and half class in the second semester

Institute of Behavioural Sciences

Type of the course: compulsory
code: AOKMAG425_1A
credit: 2
Course leader: Dr. György Purebl
Groups 1-8 in the first semester, groups 9-16 in the second semester

Course objectives:
By the mid to late 20th century, the biomedical model in medicine was replaced by the biopsychosocial model. There are biological, psychological and social factors in the background of illness. This is the approach we take in this course in looking at various aspects of health, illness and medical work. Our aim is to introduce future medical doctors to the social factors they must be familiar with in working with patients. Topics include social stratification and health inequalities, the principles of health care systems, medicalisation and the changing medical profession, illness behaviour, intercultural issues in health care as well as the challenges of digital health.

Course Syllabus:
1. Introduction to medical sociology, basic concepts and principles. (lecture)
2. Health and illness in society, a historical transformation of mortality and morbidity patterns. (lecture)
3. Social stratification, social inequalities and health (lecture)
4. Intercultural healthcare (lecture)
5. The challenges of digital health (lecture)
6. Globalisation and therapy choice (Lecture)
7. Health care systems (Lecture)
8. Preparation for project work and for health care system workshop (practical)
9. Health care systems workshop (practical)
10. Global poverty and inequalities; Inequalities and health- social class (practical)
11. Inequalities and health: age, ethnicity and gender (practical)
12. The doctor-patient relationship in the 21st century (practical)
13. Illness behaviour (practical)
14. The challenges of health care professionals- coping with stress (practical)

Participation and making up for absences:
No less than 75% of all practices must be attended. One practical absence can be made up by undertaking an extra task set by the practical leader or by participating in the practical with another group.

Justification of the absence in the lectures and examinations:
Medical certificate

Checks during the semester (reports, written checks):
Students will be given topic related tasks during the practicals which they will have to complete in groups in order the get the signature. The tasks will involve finding topic related data in class, interpreting it and presenting it to the group, relating the topics discussed in class to the students' own countries and experiences and sharing it with others, reading articles and summarising them and participating in games and activities. More information will be provided separately. The project work is not graded, but it is a requirement for the signature.
Requirements for the signature at the end of the semester:
Participating in 75% of the practices.
Doing the project work

Method of the calculation of marks:
The written semi-final is 100% of the final grade
Grades:
0-50 points – 1
51-60 points -2
61-74 points -3
75-84 points -4
85 points and over 5

Type of the exam:
Written final exam to be held during the examination period consisting of multiple choice questions, true or false questions and an essay type case analysis based on lecture materials and the textbook. This is 100% of the final grade.

Requirements for the exam:
The material needed to study will be made available on Moodle.

Application for the exam: Neptun

Changing the application for the exam:
Neptun

Justification of the absence from the exam:
Medical certificate

Course and recommended text books:
Graham Scrambler (ed) Sociology as Applied to Health and Medicine, Palgrave Macmillan 2018- selected chapters only.
MEDICAL COMMUNICATION

Institute of Behavioural Sciences

Name of the course leader: Prof. Dr. József Kovács

Credit value: 2 credits
Total number of hours: 28 lectures: 14 practices: 14 seminars: 0
Subject type: compulsory course
Subject code: AOKMAG670_1A

Objectives of the subject, its place in the medical curriculum:
Proper communication is an essential element of effective healing. Good communication helps to form a trusting relationship between the physician and the patient, it allows the doctor to gather effectively the information that underpins the diagnosis, and it improves the patient’s cooperation and adherence with treatments. The aim of education is partly to teach communication techniques that can make the daily tasks of doctors more effective: listening to, interviewing, informing and promoting cooperation of the patients. The subjects of education are also elements of the everyday doctor-patient relationship, which have recently come to the fore, such as e.g shared decision making, suggestive effects of medical communication, communication aspects of patient safety.

In addition to describing the general regularities of medical communication, the course also presents the specialities of communication in various areas of the health care. Thus, we deal with the peculiarities of communication with children or the elderly, discussion about sexual topics and the cultural competence of the doctor. In our education, we place great emphasis on the difficult issues of the doctor-patient relationship, so we deal with the communication of bad news and the prevention and management of aggression.

The main goal of the course is to teach special communication knowledge to medical students that can help them create proper doctor-patient relationship and improve their effectiveness in medical practice.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
SU NET and EOK buildings

Successful completion of the subject results in the acquisition of the following competencies:
Upon successful completion of the subject, the students will be able to
- effectively gather information to make a diagnosis by using appropriate questioning techniques;
- use communication techniques that facilitate the understanding and remembering during patient information;
- know and apply specific communication techniques to express their attention and empathy;
- use several communication techniques to improve the patient’s therapeutic cooperation;
- inform the patient about the possible risks of the treatments in accordance with the legal regulation, in an objective, yet non-alarming way;
- can activate the patient in order to become a partner in his own treatment as much as possible, and empower the patient himself to contribute as much as possible to his own recovery or improvement of his condition;
- have effective methods to facilitate lifestyle change;
- be aware of the suggestive effects that doctor’s communication can have; be able to use communication methods that put the positive effects of the doctor’s words at the service of cooperation and healing;
- be able to communicate in a way that suits the individual characteristics of the patient (age, different social and cultural backgrounds, different levels of health understanding, possible mental disorders or disabilities);
- be able to communicate on intimate issues without embarassment;
- know and be able to use communication methods to manage tensions and conflicts;
- breaking bad news in a compassionate way (eg news of incurable disease, news of death, news of congenital malformation);
- can effectively use modern technology for the purposes of medical communication;
- know and be able to use communication tools that increase patient safety.
Course prerequisites:
There are no prerequisites.

Number of students required for the course (minimum, maximum) and method of selecting students:
The completion of the course is compulsory for all students. Course is taught only in the first semester of the academic year, all students can register for the course. The recommended maximum number of students for practice is 15 students per group.

How to apply for the course:
Through the Neptun system.

Detailed curriculum:
(Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks). Please provide the names of the teachers of the lectures and practical lessons and indicate guest lecturers. Do not use attachments! Always attach a CV for guest lecturers!)

LECTURES: Week 1-7

<table>
<thead>
<tr>
<th>Week</th>
<th>Lesson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction. Communication difficulties and possible solutions in the everyday medical practice.</td>
</tr>
<tr>
<td>2</td>
<td>Promoting behavior change. The development of the patient-physician collaboration.</td>
</tr>
<tr>
<td>3</td>
<td>Communication about functional complaints.</td>
</tr>
<tr>
<td>4</td>
<td>The specialties of age in medical communication.</td>
</tr>
<tr>
<td>5</td>
<td>Suggestive communication in medical practice.</td>
</tr>
<tr>
<td>6</td>
<td>Breaking bad news. Disclosing medical errors.</td>
</tr>
<tr>
<td>7</td>
<td>E-health: use of technological tools in health communication.</td>
</tr>
</tbody>
</table>

Practice: Week 8-14 (see times, venues and teachers to be announced)

<table>
<thead>
<tr>
<th>Week</th>
<th>Lesson</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Seminar. Communication in everyday life and in the medical practice.</td>
</tr>
<tr>
<td>9</td>
<td>Seminar. The active listening. Communication aspects in empathy.</td>
</tr>
<tr>
<td>10</td>
<td>Patient information, patient education.</td>
</tr>
<tr>
<td>11</td>
<td>Seminar. Promoting lifestyle change. suggestive communication techniques, motivational interview, shared decision-making.</td>
</tr>
<tr>
<td>13</td>
<td>Seminar. Communication with tense, hostile patients, strategies to prevent violence. Communicating about intimate issues.</td>
</tr>
<tr>
<td>14</td>
<td>Seminar. The cultural competence of the doctor. Communicating about complementary and alternative therapies.</td>
</tr>
</tbody>
</table>

Lecturers: Dr. Stauder Adrienne, Dr. Kollár János, Dr. Tóth Mónika Ditta, who are employees of Semmelweis University

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:
- The Sociology of Healthcare and Medicine (possible overlap: the impact of modern technology on medical communication)
- Medical Psychology, Psychiatry (possible overlap: relationship and communication with people with mental disorders.)
- Bioethics (possible overlap: medical communication deals with the implementation in everyday practice of principles described in bioethics.)

Special study work required to successfully complete the course:
(E.g. field exercises, medical case analysis, test preparation, etc.)
no special study work required
Requirements for participation in classes and the possibility to make up for absences:
The participation at minimum 75% of the practice seminars is the prerequisite of the signature.
It is possible to make up for ONE absence by participating in another seminar group the same week (only once in a semester, upon agreement with both teachers!)

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)
There is no assessment during the term time.

Requirements for signature:
The participation at minimum 75% of the practice seminars is the prerequisite of the signature.

Type of examination: semi-final

Requirements of the examination:
(In case of a theoretical examination, please provide the topic list; in case of a practical exam, specify the topics and the method of the exam)

Exam topics list A:
1. The significance of medical communication. Misconceptions and facts about medical communication.
2. Doctor-patient consultation.
3. Promoting lifestyle change: the 5A and 5R methods; the transtheoretical model of behavior change.
5. Communication options for developing health literacy.
6. Communicating risks of treatments.
7. Shared decision making.
8. Suggestive communication in medical practice.
11. Cultural competence of the physician.

Exam topics list „B”
12. Communication about functional symptoms
13. Communication with patients using complementary and alternative treatments.
15. Communication with tense, hostile people.
17. Communication with patients having anxiety symptoms or addictions.
20. Communication with people living with disabilities.
21. Communication with the victims of abuse.
22. E-health: use of technological tools in health communication.
Method and type of evaluation:

(Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark.)

Final mark is based on an oral exam. Two topics – one from A list and one from B list should be reported on, at least at satisfactory (2) level. The average of the marks given for each topic gives the final mark.

How to register for the examination?:

Through the Neptun system.

Possibilities for exam retake:

Through the Neptun system

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:

The oral exam is based on the course text book and the lecture handouts posted on the website.

Course text book:

Recommended text books:

McCorry, L.K. & Mason, J. (2011): Communication skills for the healthcare professionals. Lippincott Williams & Wilkins, Baltimore
Tamparo, C.D & Lindh, W.Q (2017): Therapeutic communication for health care professionals. Cengage Learning, Boston
INTRODUCTION TO MEDICAL INFORMATICS

Name of the educational organizational unit: SE EKK

Type of the subject: 1 practice / week
code: AOVINF244_1A
credit value: 1
Name of the lecturer of the subject:
Dr. Miklós Szócska

Teachers:
Dr. Tamás Iváncsy (PhD, lecturer)
Dr. Ádám Zoltán Tamus (PhD, associate professor)
Tamás Tóth (assistant lecturer)
Zoltán Sándor (assistant lecturer)

Administrator: Ms Petra Rácz

Term: spring

The exercise of the subject in the in the realization of the aim of the education:
To introduce the students to the medical application of informatics, the characteristics of modern, integrated information systems with respect to quantitative aspects and to decision demands of the modern sciences. The medical informatics leans on methods of mathematics, statistics and computer sciences and it also includes from the different engineering, management and informatics procedures.
Select the desired course in Neptun when registering to the subject! Changing topics/groups is possible only according to the rules of the registration in Neptun! You must attend the course you have selected in Neptun!

OPTIONAL courses:

I. SCIENTIFIC COMMUNICATION COURSE
The course gives an introduction to the paper based and oral publications and presentations. The students have to find a medical problem (a topic) to work out during the course,
2. Structure of a scientific publication. The importance and meaning of the sections of the paper. Structure of an oral presentation.
3. Scientific publication in practice: finding and evaluating information and creating paper and presentation on the selected topic.

II. DATABASES COURSE
The course gives an introduction to structuring and retrieving data using databases. The students perform practical examples of data management and query using a current software solution.
1. Introduction to database theory and data modelling principles (the application, logical and physical models, basic concepts and objects).
2. Data handling in practice: planning a relational database, managing tables and fields
3. Information retrieval from databases: the role and structure of queries, performing basic queries
4. Data management via user interfaces – basic concepts and principles
III. BIOMEDICAL SIGNAL PROCESSING COURSE
The students learn about the basics of biomedical signals, their acquisition, digital storage and processing. They perform practical analysis of selected signal examples.
1. Introduction to biomedical signal processing, objectives of signal analysis, Components of human-instrument system
2. Examples of biomedical signals (electrical and mechanical signals), and transducers.
3. The basics of signal processing, the digitalizing (sampling, Shannon-theory, quantization).

IV. PRESENTATION TOOLS
The course provides an overview of visual representation of medical information for various audience. The students learn the use of several related tools, and work up a selected topic.
1. Introduction to presentation techniques: How to make a good presentation? – technical and non-technical skills, best practices
2. Types of medical information, online information sources
3. Visual representation of information: word cloud, infographic etc.
4. Online tools for creating and sharing presentations

Requirements of participation of the lessons and the possibility of substitution of the absence:
According to rules of the Studies and Exam Code. Attendance on at least 3 of the 4 practices is mandatory.

The mode of the certificate in case of absence from the lessons:
According to rules of the Studies and Exam Code. No certificate accepted.

The requirements of signature at the end of the term (including also the number and the type of the students’ exercises which are solved individual by them)
Attendance on at least 3 of the 4 practices is mandatory
The mode of acquisition of the mark:
Practical exercise

List of lecture notes, course books, study-aids and literature which can be used to acquisition of the syllabus:
The educational materials are available at http://dei-cloud.semmelweis.hu
Username and password is announced at the first practice.
INTRODUCTION TO PATIENT CARE

Institute: Department of Family Medicine
Lecturer: Dr. Péter Torzsa MD PhD
Tutor: Dr. Krisztián Vörös

lectures: 6×2 hours, practices: 6×3 hours/semester
Credit: 2
Examination: semi-final

Second Semester

Thematic:
- An overview of medical profession.
- Formation of the consciousness of profession, personal careers.
- The attitude of the medical doctor. Communication with colleagues and the members of the medical staff.
- An overview of different levels of health care.
- The organization, function activity of the clinical department and general medicine praxis.
- Characteristics of the clinical work.
- Overview of the scientific activity of the clinical department. Raising interest on joining to it.
FIRST AID

Tutor: Dr. István Hornyák

Topics

- BLS (Basic Life Support)
- BLS
- AED (Automated External Defibrillator). PAD (Public Access Defibrillation)
- BLS + AED (management of situations)
- BLS + AED (Management of situations)
- Fractures, dislocation, sprain. Slings.
- Poisoning. Drugs. Drunkenness.
- BLS

Note: Participation at 75% of practices is necessary. Compensation of absences is possible in subsequent practices. Development in learning skills will be controlled all the time during the practices in the semester. Mode of certifying absences: oral – referring to practices.

Requirements: The student should be able to recognize emergencies, and call for help start with BLS + AED provide airway management in unconscious patients provide first aid for patients complaining for chest-pain, shortness of breath, signs for hypoglycaemia and having suffered from fainting, shock condition, convulsion, injuries.

The performance of the above mentioned requirements at the last practice will be evaluated with “accepted” or “not accepted”.
MEDICAL TERMINOLOGY (Latin)

Responsible organisational unit:
Department of Languages for Specific Purposes

Programme director:
Dr. Katalin Fogarasi-Nuber, associate professor, Director

90 minutes/week

Assessment: 3 written tests

Role of subject in fulfilling the aim of training:
Students get familiarized with the Latin and Greek terminology of medicine in order to facilitate the acquisition of other subjects. Special focus is dedicated to anatomy, physiology, pathology and pharmaceutics. Furthermore, the course provides an introduction into general scientific terminology.

Brief description of subject:
The main aim of the subject is:
1. to acquire a knowledge of about 500-600 Latin words and phrases as a minimum vocabulary (basic vocabulary of medical and scientific language),
2. the correct application of
 a) anatomical names,
 b) names of diseases
 c) names of drugs,
3. to understand diagnoses and prescriptions;
4. to learn about abbreviations used in prescriptions.
5. to be able to make a clear distinction between medical terms of English and Latin/Greek.

Course content of practical lessons:
1. Grammar:
 Nouns: the 5 Declensions
 Adjectives - construction of the most important attributive structures with the vocabulary of anatomy, clinical subjects and of pharmaceutics.
 Prepositions (in anatomical, clinical and pharmaceutical phrases)
 Numerals: Usage on prescriptions.
2. Texts containing:
 a) anatomical names;
 b) clinical and patho-anatomical diagnoses;
 c) prescriptions
3. Vocabulary

Latin and bilingual (Greek-Latin) nouns, adjectives, numerals and prepositions used in anatomy, the clinical subjects and pharmaceutics;

Course material, recommended text book(s), professional literature and supplementary reading(s)
Belák E. Medical Terminology for Beginners (earlier title: Medical Latin), Budapest: Semmelweis Kiadó.
Bakó A. Medical Terminology. Course material provided by the Institute in pdf.
MEDICAL HUNGARIAN I.

Responsible organisational unit:
Department of Languages for Specific Purposes

Programme director:
Dr. Katalin Fogarasi-Nuber, associate professor, Director

4 lessons per week, 2 credits,
Assessment: 2 oral tests (on weeks 7 and 14)

The aim of the subject:
The role of this subject is to help students acquire the Hungarian language skills that enable them to take anamnesis, ask the patient about medical history and present complaints and to develop strategies that help understanding Hungarian patients in their clinical practice. Students learn how to communicate with the patient during the examination of the thoracic organs, circulation, abdomen, locomotor and nervous systems. Furthermore, they get familiarised with basic medical documentation (e.g., patient’s chart). They develop the vocabulary necessary in their clinical practice, such as the names of symptoms and conditions.

Course content of practical lessons:

<table>
<thead>
<tr>
<th>weeks</th>
<th>curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduce yourself in Hungarian</td>
</tr>
<tr>
<td>2</td>
<td>What can I do for you? What languages do you speak? Where are you from? (Conjugation of verbs I.)</td>
</tr>
<tr>
<td>3</td>
<td>What do you do in Budapest? (Conjugation of verbs II)</td>
</tr>
<tr>
<td>4</td>
<td>Where do you live? (numbers, conjugation of verbs with „-ik”)</td>
</tr>
<tr>
<td>5</td>
<td>Roleplay exercises I</td>
</tr>
<tr>
<td>6</td>
<td>Roleplay exercises II</td>
</tr>
<tr>
<td>7</td>
<td>Oral interview (first midterm)</td>
</tr>
<tr>
<td>8</td>
<td>The human body, bodyparts</td>
</tr>
<tr>
<td>9</td>
<td>At the pharmacy</td>
</tr>
<tr>
<td>10</td>
<td>What is your complaint?</td>
</tr>
<tr>
<td>11</td>
<td>Talking about pain (location, duration)</td>
</tr>
<tr>
<td>12</td>
<td>At the clinics: patient's data</td>
</tr>
<tr>
<td>13</td>
<td>Basics of history taking in Hungarian</td>
</tr>
<tr>
<td>14</td>
<td>Oral interview</td>
</tr>
</tbody>
</table>

Course material provided by the Department of Languages for Specific Purposes
MEDICAL HUNGARIAN II.

Responsible organisational unit:
Department of Languages for Specific Purposes

Programme director:
Dr. Katalin Fogarasi-Nuber, associate professor, Director

4 lessons per week, 2 credits,
Assessment: 2 oral tests (on weeks 8 and 14)

The aim of the subject:
The role of this subject is to help students acquire the Hungarian language skills that enable them to take anamnesis, ask the patient about medical history and present complaints and to develop strategies that help understanding Hungarian patients in their clinical practice.
Students learn how to communicate with the patient during the examination of the thoracic organs, circulation, abdomen, locomotor and nervous systems. Furthermore, they get familiarised with basic medical documentation (e.g., patient’s chart). They develop the vocabulary necessary in their clinical practice, such as the names of symptoms and conditions.

Course content of practical lessons:

<table>
<thead>
<tr>
<th>weeks</th>
<th>curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hungarian language competences related to the following topics</td>
</tr>
<tr>
<td>1</td>
<td>Revision – At the clinics: patient’s data</td>
</tr>
<tr>
<td>2</td>
<td>Family history; lifestyle, habits</td>
</tr>
<tr>
<td>3</td>
<td>Medical history – previous illnesses and surgeries</td>
</tr>
<tr>
<td>4</td>
<td>Medications, allergies, transfusion</td>
</tr>
<tr>
<td>5</td>
<td>Pain and fever</td>
</tr>
<tr>
<td>6</td>
<td>Present complaints I (heart, lungs)</td>
</tr>
<tr>
<td>7</td>
<td>Present complaints II (gastrointestinal)</td>
</tr>
<tr>
<td>8</td>
<td>Revision, oral interview (first midterm)</td>
</tr>
<tr>
<td>9</td>
<td>Present complaints III (faeces, urine)</td>
</tr>
<tr>
<td>10</td>
<td>Present complaints IV (swollen legs)</td>
</tr>
<tr>
<td>11</td>
<td>Present complaints V (dizziness, headaches)</td>
</tr>
<tr>
<td>12</td>
<td>Present complaints VI (neurological symptoms)</td>
</tr>
<tr>
<td>13</td>
<td>Revision, roleplay exercises</td>
</tr>
<tr>
<td>14</td>
<td>Oral interview</td>
</tr>
</tbody>
</table>

Course material provided by the Department of Languages for Specific Purposes
PHYSICAL EDUCATION I.

Department of Physical Education

Type of Subject: Compulsory
Code of Subject: AOKTS1009_1A
Credit: 0

Name of the Lecturer: Várszegi Kornélia

His/her workplace, phone number: 1107 Budapest, Zágrábi utca 14. +36-1/264-1408
Position: director

Objectives of the subject, its place in the medical curriculum:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice - so that they can represent those in their later practice, through their own health-promoting behavior.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Testnevelési és Sportközpont (Gymnasium) 1107 Budapest Zágrábi utca 14.
Successful completion of the subject results in the acquisition of the following competencies:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

Number of students required for the course (minimum, maximum) and method of selecting students:
According to the Neptun admission system (20 – 60 students)

How to apply for the course:
via Neptun system

Detailed curriculum:

<table>
<thead>
<tr>
<th>Week</th>
<th>Subject</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Week</td>
<td>General information</td>
<td>Health and Safety, Fire and Environmental protection. The mid-year adoption requirements, the construction of the classes and the presentation of the university recreational and sports opportunities for extra – curricular activities. Heart rate measurements, Ruffier test and evaluation of the results.</td>
</tr>
<tr>
<td>2nd Week</td>
<td>Athletic</td>
<td>Exercises to improve stamina. Preferably outdoors, on grass ground running, with the aim of developing good running and breathing techniques.</td>
</tr>
<tr>
<td>3rd Week</td>
<td>Flying disc</td>
<td>Introduction the basic of frisbee rules and practicing the basic technical elements in pairs and game situation.</td>
</tr>
<tr>
<td>4th Week</td>
<td>Tennis</td>
<td>Introducing the basis technical elements of tennis (forehand and backhand shot), improving hand-eye coordination.</td>
</tr>
<tr>
<td>5th Week</td>
<td>Agility ladder</td>
<td>Introducing different running, skipping techniques using agility ladder.</td>
</tr>
<tr>
<td>6th Week</td>
<td>Football</td>
<td>Introducing the basic technical elements of football. Single exercises and exercises in pairs to improve the ball skill development.</td>
</tr>
<tr>
<td>7th Week</td>
<td>Badminton</td>
<td>Introducing the basic technical and tactical elements of badminton. Introducing the basic rules and game.</td>
</tr>
<tr>
<td>Week</td>
<td>Activity</td>
<td>Details</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>8th Week</td>
<td>Circuit training</td>
<td>Bodyweight exercises and exercises with basic equipment to learn the correct functional movement pattern.</td>
</tr>
<tr>
<td>9th Week</td>
<td>Ruffier test and ball skill developing exercises</td>
<td>Compare the results with the previous test to bring the importance of the health of the cardiovascular system to the attention.</td>
</tr>
<tr>
<td>10th Week</td>
<td>Meta</td>
<td>Introducing the game and the basic rules. Aim to improve the ball skill development, improve reaction time, speed and explosiveness.</td>
</tr>
<tr>
<td>11th Week</td>
<td>Obstacle course</td>
<td>To complete a built up obstacle course using different creeping-climbing, hovering, pulling, skipping, throwing techniques for general skill development.</td>
</tr>
<tr>
<td>12th Week</td>
<td>Core training</td>
<td>Postural correction exercises using the own bodyweight especially to strengthen the core muscles to prevent the health of the vertebrae.</td>
</tr>
<tr>
<td>13th Week</td>
<td>Skipping rope</td>
<td>Endurance and coordination developing exercises at different levels using skipping rope.</td>
</tr>
<tr>
<td>14th Week</td>
<td>Dumbbell exercises</td>
<td>Strengthening exercises with dumbbells.</td>
</tr>
</tbody>
</table>

P.E. Teachers:
Doharné Buczkó Anikó, Farkas Dominika, Kalmus Dániel, Lehel Zsolt, Sótonyiné Hrehuss Nóra, Várszegi Kornélia, Weisz Miklós

Requirements for participation in classes and the possibility to make up for absences:
The number of active participations for physical education classes is 10, regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Methods to assess knowledge acquisition during term time:
There is no mandatory control during the term.

Requirements for signature:
Active participation in practice classes 10 times under the conditions described above.
May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate to the TSK or
2. does sports regularly and submits a certificate of association and federation to the Foreign Students Secretariat until the last study day in the 4th week of the semester. On the basis of the submitted application and its annexes, the TVB decides on the exemption of both the Hungarian and foreign students.
PHYSICAL EDUCATION II.

Type of Subject: Compulsory
Code of Subject: AOKTSI009_2A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

His/her workplace, phone number: 1107 Budapest, Zágrábi utca 14. +36-1/264-1408
Position: director

Objectives of the subject, its place in the medical curriculum:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice - so that they can represent those in their later practice, through their own health-promoting behaviour

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Testnevelési és Sportközpont (Gymnasium) 1107 Budapest Zágrábi utca 14.

Successful completion of the subject results in the acquisition of the following competencies:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

Number of students required for the course (minimum, maximum) and method of selecting students:
According to the Neptun admission system (20 – 60 students)

How to apply for the course:
via Neptun system

Detailed curriculum:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Content/Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>General information</td>
<td>Accident, fire and environmental knowledge. Requirement for acceptance of the semester system, the structure of the classes and the presentation of the university recreational sports opportunities for extra-curricular activities.</td>
</tr>
<tr>
<td>2nd</td>
<td>Basketball</td>
<td>Dribbling, passing and shooting drills in order to improve fine motor skills.</td>
</tr>
<tr>
<td>3rd</td>
<td>Bench exercises</td>
<td>Using the dimensions of the sport bench by running, skipping, jumping, lifting etc. exercises.</td>
</tr>
<tr>
<td>4th</td>
<td>Rubber band exercises</td>
<td>Using the dimensions of the sport bench by running, skipping, jumping, lifting etc. exercises.</td>
</tr>
<tr>
<td>5th</td>
<td>Floorball</td>
<td>Introducing the sport to the Students by exposing the major rules, proper technique of stick handling. Passing and shooting drills.</td>
</tr>
<tr>
<td>6th</td>
<td>„Double-trouble”</td>
<td>Strength and stretch training in pairs by applying different starting positions. Functional movements executed in pairs.</td>
</tr>
<tr>
<td>7th</td>
<td>Volleyball</td>
<td>Introducing the fundamental elements of the game (serves, hits, digs etc.) Exposing the major rules and techniques.</td>
</tr>
<tr>
<td>8th</td>
<td>Frisbee</td>
<td>Taking the next step into the game by applying tactical elements in match situations. Passing and catching drills in different moving forms.</td>
</tr>
<tr>
<td>9th</td>
<td>Ruffier test and ball skill developing exercises</td>
<td>Compare the results with the previous test to bring the importance of the health of the cardiovascular system to the attention. Sport games on the side (Dodge-ball, King of the court etc.)</td>
</tr>
<tr>
<td>Week</td>
<td>Activity</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>10th Week</td>
<td>Circuit training</td>
<td>General strengthening drills at each stations. Applying different intensity level, regarding the various conditions of the Students.</td>
</tr>
<tr>
<td>11th Week</td>
<td>Tennis</td>
<td>Involving the new strokes into the learning process: form of serves, the volleys, the smash etc.</td>
</tr>
<tr>
<td>12th Week</td>
<td>Badminton</td>
<td>Introducing the new technical and tactical elements of the game (drop shots, lobs, smash etc.) Exposing the rules of doubles.</td>
</tr>
<tr>
<td>13th Week</td>
<td>Core exercises</td>
<td>Relative (own body) weight exercises applying different equipment (hand weights, rubber band etc.) with the aim of postural correction, by strengthening the core muscles in order to avoid spinal deformations.</td>
</tr>
<tr>
<td>14th Week</td>
<td>Box exercises</td>
<td>Applying the sport box by jumping, lifting, slaloming, carrying (etc) it. By this enhance the level of strength and stamina.</td>
</tr>
</tbody>
</table>

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! (2x90 mins./week sport training (competitive sport, for qualified only): cheerleader, men’s football, handball, basketball, volleyball)

P.E. Teachers:
Doharné Buczkó Anikó, Farkas Dominika, Kalmus Dániel, Lehel Zsolt, Sótonyiné Hrehuss Nóra, Várszegi Kornélia, Weisz Miklós

Requirements for participation in classes and the possibility to make up for absences:
The number of active participations for physical education classes is 10 (for trainings 15 times!), regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Methods to assess knowledge acquisition during term time:
There is no mandatory control during the term.

Requirements for signature:
Active participation in practice classes 10 times under the conditions described above.
May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate to the TSK or
2. does sports regularly and submits a certificate of association and federation to the Foreign Students Secretariat until the last study day in the 4th week of the semester. On the basis of the submitted application and its annexes, the TVB decides on the exemption of both the Hungarian and foreign students.
COMPULSORY SUMMER PRACTICE

SUMMER (NURSING) PRACTICE

Credit point: 1
Total hours: 160 practice
Type of course: compulsory
Course code: AOKNSG676_1M

Aim of the course, its position in the medical curriculum:
Introduction of the structure of the clinic/hospital and the operating of the given ward. Learning the process of patient care and nursing through practical training. Learning basic skills of everyday nursing tasks, which will be used during further medical practice and after completion of the medical training.

Acquired competences after successfully completing the course:
- Ability to assess basic nursing needs of the patient.
- Ability to detect, observe, and document patient’s vital signs (pulse, blood pressure, respiration, temperature).
- Ability to administer subcutaneous and intramuscular injection, collect blood, place venous cannula under supervision, recognise minor complications.
- Knowledge of basic skills of resuscitation.

Student enrolment requirements (minimum, maximum), method of student selection:
Number of attending students as given by the practical site. Valid Occupational Medical Examination certificate, certificate of occupational, fire, and environment protection training.

How to apply for course:
After applying on the NEPTUN site, contact clinical head nurse of the practical site/in case of a hospital contact hospital nursing board, regarding the beginning of the practice.

Detailed syllabus:
1st week: Introduction to the operating of the ward. Observing nursing activities, assessment and documentation of nursing needs, and patient’s environment. Actively taking part in everyday nursing care of patients with the support of nurses. Observing and acquiring communication skills with patients. Observing laboratory and other examination procedures, as well as preparation of patient for surgery/examination. Learning the use of personal protective equipment, as well as hygienic and antiseptic hand washing. Learning basic skills, protocol, and ward devices for resuscitation.

3rd week: Blood collection, administering injection, placement of venous cannula under supervision of nurse. Continuous practice of knowledge acquired during the first two weeks.

4th week: Continuous practice of knowledge acquired during the first three weeks.

Requirements for participation in classes and opportunities to make up for absences:
Two classes may be missed, further absences cannot be made up.
The criteria for end-of-term signatures:
Regular attendance of the practical. According to the Studies and Exams Code, the criteria for obtaining signature is at least 75% participation in the practical.

Type of exam:
practical

Exam requirements:
Student chooses one task from the list of given tasks, and performs the given task in practice. In connection with the task the student assesses the patient’s nursing care needs, and detects, observes, and documents vital signs (pulse, blood pressure, temperature, respiration).

Method and type of class marks:
Criteria for obtaining a signature is regular attendance of the practical, for the performance of the chosen item a mark is given: passed with excellence (5) - passed (3) - not passed (1).

How to apply for the exam:
The practical exam takes place on the last day of the practice.

Opportunity to repeat the exam:
The practical exam can be repeated two times.

The list of printed, electronic and online notes, textbooks, study aids and literature to be used to learn the curriculum (in case of online sources, html address):

Recommended literature:
Bokor, Nándor: Általános ápolástan és gondozástan (Medicina 2013.)

EXAMINATION ITEMS
1. Describe and demonstrate the process of hygienic hand disinfection.
2. Describe the daily routine of the ward, and the content of the nursing documentation.
3. After the patient left, tidy up the bed and its environment.
4. Describe possibilities of positioning patient in bed. Perform positioning taking patient’s comfort and safety needs into consideration.
5. Prepare for and perform tidying up patient’s bed, and bathe patient. Describe patient’s hygiene, comfort and safety needs, and inform patient about the nursing procedure.
6. Prepare for a non-independent patient’s need to defecate, and perform the necessary nursing procedure. Describe aspects of observation regarding the quality and quantity of the exudates.
7. Describe possible nutrition and fluid intake needs of the patient. Describe nursing tasks of enteral nutrition and sufficient hydration of the patient. Demonstrate leading a fluid chart.
8. Describe disinfection methods of the instruments and devices of the ward; explain asepsis and antisepsis.
9. A new patient is admitted to the ward. Assign patient to a hospital room, take nursing history, and fill out patient admission chart.
10. Measure weight, height, temperature, and respiratory rate of newly admitted patient, and indicate these values on patient’s chart and nursing documentation.
11. Prepare for and perform blood pressure measurement. Take the pulse. Indicate these values on patient’s chart and nursing documentation.
13. Prepare subcutaneous injection for administration. Describe procedure and possible complications of administration. Perform administration under supervision of nurse, fill out necessary documentation.

14. Prepare intramuscular injection for administration. Describe procedure and possible complications of administration. Perform administration under supervision of nurse, fill out necessary documentation.

15. Prepare blood pressure measurement and perform procedure under supervision of nurse. Describe possible complications of taking blood pressure.

17. Prepare for placing and intravenous drip administered for patient. Set up the infusion. Perform documentation regarding the infusion therapy.

19. Prepare for and perform bedside blood glucose measurement. Explain what the device indicates in case of high or low blood glucose levels. Indicate these values on patient’s chart and nursing documentation.

24. During medical rounds an elastic bandage was ordered for the patient’s lower limb. Apply elastic bandage and document procedure.

25. Describe nursing tasks regarding medication (distributing and administering medication). Perform identification of patient, administration of medication, and necessary documentation.

26. Describe possibilities and procedures of special medication administration forms (drip, inhalant, rectal, vaginal).

27. Describe personal protective equipment used at ward, and their application. Possible methods for prevention of nosocomial infections.

28. Describe general and specialist diagnostic methods of the ward, and the preparations necessary for the examinations.

29. A patient in shock is admitted to the ward during night shift. Describe symptoms of circulatory and respiratory failure, and their recognition. Prepare for initiation of basic resuscitation, and describe procedure.
BASIC MODULE
STUDY PROGRAMME

Second year in the 2021/2022 academic year

3rd Semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopic Anatomy and Embryology II.</td>
<td>2</td>
<td>4</td>
<td>Medical Anatomy and Embryology I., Embryology II., Cell Science</td>
<td>semi-final</td>
</tr>
<tr>
<td>Medical Physiology I.</td>
<td>5,5</td>
<td>10</td>
<td>Macroscopic Anatomy II., Medical Physiology II., Cell Science</td>
<td>semi-final</td>
</tr>
<tr>
<td>Medical Biochemistry II.</td>
<td>3</td>
<td>5</td>
<td>Medical Biochemistry I.</td>
<td>final</td>
</tr>
<tr>
<td>Molecular Cell Biology I.</td>
<td>2</td>
<td>4</td>
<td>Medical Chemistry I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Hungarian Medical Terminology III.</td>
<td>0</td>
<td>2</td>
<td>Hungarian Medical Terminology II.</td>
<td>pract. mark</td>
</tr>
<tr>
<td>PE III.</td>
<td>0</td>
<td>0</td>
<td>PE II.</td>
<td>signature</td>
</tr>
</tbody>
</table>

4th Semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Microbiology I.</td>
<td>2</td>
<td>4</td>
<td>Medical Biochemistry I., Cell Science</td>
<td>semi-final</td>
</tr>
<tr>
<td>Medical Physiology II.</td>
<td>5,5</td>
<td>10</td>
<td>Medical Physiology I., Microscopic Anatomy and Embryology II.</td>
<td>final</td>
</tr>
<tr>
<td>Molecular Cell Biology II.</td>
<td>3</td>
<td>5</td>
<td>Molecular Cell Biology I.</td>
<td>final</td>
</tr>
<tr>
<td>Immunology</td>
<td>2</td>
<td>3</td>
<td>Molecular Cell Biology I., Medical Biochemistry II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Genetics and Genomics</td>
<td>2</td>
<td>3</td>
<td>Molecular Cell Biology I., Medical Biochemistry II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Medical Psychology</td>
<td>1</td>
<td>4</td>
<td>Medical Sociology – Health Care, Medical Communication</td>
<td>semi-final</td>
</tr>
<tr>
<td>Hungarian Medical Terminology IV.</td>
<td>0</td>
<td>2</td>
<td>Hungarian Medical Terminology III.</td>
<td>pract. mark</td>
</tr>
<tr>
<td>Introduction to Clinical Medicine</td>
<td>0</td>
<td>2</td>
<td>Introduction to Patient Care</td>
<td>pract. mark</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>change expected</td>
<td></td>
</tr>
<tr>
<td>PE IV.</td>
<td>0</td>
<td>0</td>
<td>PE III.</td>
<td>signature</td>
</tr>
</tbody>
</table>
LIST OF TEXTBOOKS (The list may change!)

8. Medical Genetics and Genomics (e-book)

Recommended textbooks:

MICROSCOPIC ANATOMY AND EMBRYOLOGY II.

Department of Anatomy, Histology & Embryology

Credit value: 4
Number of lessons per week: 4 lectures: 2 practical course: 2 seminar: 0

Type of the course: compulsory course
Subject code: AOKANT674_2A
Name of the course leader: Dr. Alán Alpár, Professor, Head of Department
Contact details: Semmelweis University, Department of Anatomy, Histology and Embryology, +36 1 459 1500 / 53609

Objectives of the subject, its place in the medical curriculum:
Demonstration of the fine structure of cells and tissues composing the organs of the human body specifically to provide the future clinicians/medical doctors with a valid body of information describing the microscopical elements of clinically significant morphological structures (including cell biology, general histology and the histology of organs).
The part covering the microscopy of the CNS provides the students with a basic knowledge concerning the major roles of the brain together with the spinal cord with special reference to function and structure. The development of the nervous systems together with the detailed morphological/histological/developmental description of organs of special senses as well as the endocrine system will also be discussed.
Teaching is done in the form of lectures and histology laboratory classes

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Semmelweis University, Department of Anatomy, Histology and Embryology
Budapest 1094, Túzoltó utca 58.

Successful completion of the subject results in the acquisition of the following competencies:
Understanding the microscopical composition of the human body together with the understanding of human development in order to draw parallels with macroscopical anatomy. Clear understanding of histological structure and function. Ability to identify basic structural elements within the tissue specimen. Identification of general directions/landmarks within digitized tissue slides.

Course prerequisites:
Cell science,
Microscopic anatomy and embryology I,
Macroscopic Anatomy and Embryology II.

Number of students required for the course (minimum, maximum) and method of selecting students:
Obligatory for all registered students, on the basis of registration via the NEPTUN system.
How to apply for the course:
Via the NEPTUN system.
Detailed curriculum:

List of lectures

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
</table>
| 1. week | Cellular components of lymphatic tissue. Thymus, tonsils, MALT
Structure and circulation of lymph nodes and spleen |
| 2. week | Nerve tissue
Development of the neural tube, craniocaudal and dorsoventral differentiation. Divisions of the central nervous system |
| 3. week | Formation and derivatives of the neural crest and placode ectoderm
Fine structure of the spinal cord (spinal reflexes, receptors, effectors) |
| 4. week | Brain tracts, neurotransmitters, neuronal circuits, “connectomics”
Central autonomic nervous system. Monoaminergic and cholinergic neurones and pathways.
„Ascending Reticular Activating System” (ARAS) |
| 5. week | Somatosensory system. Spinal and trigeminal sensory pathways. Thalamus, cortical areas.
Viscerosensory system. Role of the reticular formation, thalamus, insula and the prefrontal cortices in visceral sensory activities |
Neuroanatomy of movements/locomotion I. Motor cortical areas, planning and programming of movements. Motor pathways |
| 7. week | Neuroanatomy of movements/locomotion II. The role of cerebellum and basal ganglia in eliciting movements.
Gait control mechanism.
Visceromotor system. Control of micturition. Spinal motor reflexes. |
| 8. week | External ear. Middle ear
Fine structure of the labyrinth, tracts of the vestibular system. Control of balancing and posture together with the movements of the eye and head. Awareness of spatial position. |
| 10. week | Fibrous and vascular coats of the eyeball. Lens, chambers of the eye, vitreous body, accommodation. Lacrimal gland, lacrimal apparatus.
Inner coat of the eyeball, retina. Development of the eye. |
Endocrine system I. Hypothalamus, the hypothalamo-hypophysial system, epiphysis |
| 12. week | Endocrine system II. Thyroid, parathyroid, adrenal glands.
Energy metabolism, neuroanatomy of food intake, taste sensation and olfaction. Structure and functional significance of the reward system. |
| 13. week | Limbic system. Amygdala, hippocampus.
Circadian rythm, sleep/wake cycle; neuroanatomy of resting state and activation. |
Cognitive functions. Neuroanatomy of determination, planning, alertedness together with learning&memory, personality, consciousness and creativity. |
Histology laboratories

1. week: Lymphatic system I.
2. week: Lymphatic system II.
3. week: Histology of the peripheral nervous system
5. week: Histology of the central nervous system
7. week: Microscopy of the CNS – consultation 3.
8. week: Midterm test
9. week: Histology of the organ of hearing
10. week: Histology of the organ of vision I.
11. week: Histology of the organ of vision II.
12. week: Skin. Endocrine system 1.
13. week: Midterm
14. week: Endocrine system 2.

Other subjects concerning the border issues of the given subject (both compulsory and optional courses).
Possible overlaps of themes:
Macroscopic Anatomy I - II.
Cell sciences, cell biology
Certain chapters of Biochemistry. The endocrine and central nervous systems are also discussed in Physiology

Special study work required to successfully complete the course:
none

Requirements for participation in classes and the possibility to make up for absences:
Active participation in histology laboratory classes is obligatory for every student. Students should attend at least 75% of the scheduled hours to gain a signature proving the validity of the semester. Absences are therefore limited in 25%. Attendance will be recorded in the histology laboratory classes

Methods to assess knowledge acquisition during term time:
The knowledge of students will be checked in written (Moodle) midterm tests (held prospectively in weeks 8 and 13). Attendance is obligatory at the two midterm tests. Students absent from the tests should reattend at one of the offered retakes. The time and topics of midterm tests will be announced in the departmental homepage at the beginning of the semester (http://semmelweis.hu/anatomia).

Requirements for signature:
Active participation in at least 75% of dissection room sessions, including the midterm tests (irrespective of the result) is obligatory for every student.

Type of examination:
Final (written and oral) examination, topics: subject matter of the two semesters (Microscopic Anatomy and Embryology I-II.). Examiners are delegated by the Course Director with the consent of the Head of Department.
Final examinations consist of written theoretical and oral practical parts.
Requirements of the examination:
During the final examination the knowledge of students will be tested. Final examinations are composed of written (theoretical) and oral (practical) parts with the latter being conducted with the use of digitized histological tissue slides.
1. Written pretest (e-learning module)
2. Microscopic Anatomy - identification of structures on digitized tissue slides - including relevant theoretical questions from the subject matter of the semester

Topic list for the semifinal examination:

Microscopic Anatomy and Embryology I.
(see there)

Microscopic Anatomy and Embryology II.

Lymphatic organs
- Lymphatic tissues in general, cellular components
- Histological structure of lymph nodes
- Spleen (fine structure and circulation)
- Thymus
- Tonsils, MALT

Development of the nervous system and organs of special senses
- Development and primary differentiation of the neural tube
- Development of brain vesicles
- Development of the peripheral nervous system (neural crest, placodes)
- Development of the organ of vision
- Development of the organ of hearing & equilibrium

Neurohistology
- Histology of the neurons developing from the neural tube
- Glial cells
- Histology of the neurons and supporting cells developing from the neural crest
- Fine structure of peripheral nerves
- Receptors and effectors
- Interneuronal synapses

Microscopy of the central nervous system
- Fine structure (microscopy) of the spinal cord
- Proprioceptive reflexes
- Nociceptive reflexes
- Autonomic reflexes
- Brain tracts, neurotransmitters, neuronal circuits, “connectomics”
- Central autonomic nervous system. Monoaminergic and cholinergic neurones and pathways.
- “Ascending Reticular Activating System” (ARAS)
- Somatosensory system. Spinal and trigeminal sensory pathways. Thalamus, sensory cortical areas.
- Viscerosensory system. Role of the reticular formation, thalamus, insula and the prefrontal cortices in visceral sensory activities.
- Motor cortical areas, planning and programming of movements. Motor pathways.
- The role of cerebellum and basal ganglia in eliciting movements. Gait control mechanism.
Visceromotor system. Control of micturition. Spinal motor reflexes.
Energy metabolism, neuroanatomy of food intake, taste sensation and olfaction. Structure and functional significance of the reward system.
Limbic system. Amygdala, hippocampus.
Circadian rhythm, sleep/wake cycle; neuroanatomy of resting state and activation.
Behaviour and motivation. Neuroanatomy of emotions, empathy, well-being, aggression, fear, anxiety and depression.
Cognitive functions. Neuroanatomy of determination, planning, alertedness together with learning & memory, personality, consciousness and creativity.

Endocrine organs
- Microscopical anatomy and development of the pituitary gland. Portal circulation
- Microscopical anatomy of the pineal gland
- Microscopical anatomy and the development of the thyroid gland
- Microscopical anatomy and the development of the parathyroid gland
- Microscopical anatomy and the development of the suprarenal gland
- Histology of the islands of Langerhans

Organs of special senses
- Microscopical structure of the skin and skin appendages
- Coats of the eyeball
- Chambers of the eye, vitreous body
- Lens, accommodation
- External ear, tympanic membrane. Middle ear, auditory tube, hearing ossicles.
- Fine structure of the labyrinth, tracts of the vestibular system. Control of balancing and posture together with the movements of the eye and head. Awareness of spatial position.
- Organs of taste and olfaction.

Method and type of evaluation:
Final examinations are composed of written theoretical and oral practical parts. The written theoretical examination is done using an e-learning module while the practical examination is conducted with the help of digitized histological tissue slides.
Students are given separate marks for each part of the examination. Unsuccessful partial examinations result in the failure of the semifinal examination. When failing at the practical part, the written test will not have to be repeated in case the result was a 4 or a 5 only. Upon the termination of the examination the Chairman of the Examination Committee composes the final mark from the partial marks earned in the written and practical parts.

How to register for the examination? Via the NEPTUN system

Possibilities for exam retake:
According the Study and Examination Policy
Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:

List of textbooks

Further study aids:
To be downloaded from the homepage of the Department of Anatomy, Histology and Embryology (http://semmelweis.hu/anatomi/ or from Knowledgebase on the Library homepage: (https://lib.semmelweis.hu/knowledge_base).
Introduction to Clinical Medicine

Credit Points: 2 (change expected)
Total number of hours: 30
lectures: – practices: 12x2,5 seminars:

Type of the course (mandatory/elective): mandatory
Academic year: 2021/2022
Code of the course: AOKCSA249_1A
Name of the Department: Dr. Péter Torzsa M.D. Ph.D.
Contact details: H- 1085 Budapest, Stáhly u. 7-9. Phone: +36-1-355-8530
Position: Head of Department
Tutor: Dr. Krisztián Vörös

Aim of the subject and its place in the curriculum:
- Preventive approach, screening procedures
- Presenting patients
- Holistic patient care
- Managing complex bio-psycho-social-health problems
- Care of frequent chronic illnesses
- Differential diagnostics
- Using basic diagnostic means and tools on their own and assessing test results
- Development of professional consciousness.
- Most frequent diseases in the clinical department and the general practitioner’s office. Case reports.
- Referral of patients. The medical consultation.
- Communication with the patient and his/her relatives. The role of the family in the treatment of and care for acute and chronic diseases.
- Effective cooperation with patients. Means to improve compliance.
- The importance of disease prevention.
- Team work in medicine.
- Overview of the research activity at the clinical department. Raising interest in participating.

Location of the course (lecture hall, practice room, etc.):
Family practices, clinics

Prerequisite(s) for admission to the subject:
Only for students in the 2nd year, following completion of the Introduction to Patient Care program

Minimum and maximum number of students registering for the course:

Student selection method in case of oversubscription:
15 students/group

How to register for the course:
Registration for the course in the 'Neptun' system
Detailed thematic of the course:

Detailed topic of the subject:

1st week:	internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynecology, family medicine, orthopaedics, traumatology, cardiology, dermatology, urology, pulmonology, neurology, according to the attendance sheet
2nd week:	internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynecology, family medicine, orthopaedics, traumatology, cardiology, dermatology, urology, pulmonology, neurology, according to the attendance sheet
3rd week:	internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynecology, family medicine, orthopaedics, traumatology, cardiology, dermatology, urology, pulmonology, neurology, according to the attendance sheet
4th week:	internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynecology, family medicine, orthopaedics, traumatology, cardiology, dermatology, urology, pulmonology, neurology, according to the attendance sheet
5th week:	internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynecology, family medicine, orthopaedics, traumatology, cardiology, dermatology, urology, pulmonology, neurology, according to the attendance sheet
6th week:	internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynecology, family medicine, orthopaedics, traumatology, cardiology, dermatology, urology, pulmonology, neurology, according to the attendance sheet
7th week:	internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynecology, family medicine, orthopaedics, traumatology, cardiology, dermatology, urology, pulmonology, neurology, according to the attendance sheet
8th week:	internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynecology, family medicine, orthopaedics, traumatology, cardiology, dermatology, urology, pulmonology, neurology, according to the attendance sheet
9th week:	internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynecology, family medicine, orthopaedics, traumatology, cardiology, dermatology, urology, pulmonology, neurology, according to the attendance sheet
10th week:	internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynecology, family medicine, orthopaedics, traumatology, cardiology, dermatology, urology, pulmonology, neurology, according to the attendance sheet
11th week:	internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynecology, family medicine, orthopaedics, traumatology, cardiology, dermatology, urology, pulmonology, neurology, according to the attendance sheet
12th week:	internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynecology, family medicine, orthopaedics, traumatology, cardiology, dermatology, urology, pulmonology, neurology, according to the attendance sheet
13th week:	Homework: Essay
14th: week:	Exam: Essay

Special training activities required: –
Completed attendance sheet

Policy regarding the attendance and making up absences:
It’s compulsory for the student to attend 75 percent of the training sessions, but if needed the student can join another training group to be able to meet this requirement if they missed some of the training sessions in the original group.

Requirement for acknowledging the semester (signature):
It’s compulsory for the student to attend at least 75 percent of the training sessions.

Type of the examination:
Essay

Exam requirements:
Case study (essay, typed, 1,400 characters as the minimum length, Times New Roman font, font size 12, single spacing) of a specific patient chosen on the basis of the following topics: internal medicine, surgery, paediatrics, psychiatry, dermatology, orthopaedics, family medicine, nephrology, transplantation, neurology.
Deadline for handing in the essay is the 14th week.
Type and method of grading:
Grading is based on the essay according to the following criteria:
Grade 1: failing to hand in the essay on the deadline, the number of characters is under 1,400, the case study is not original, but plagiarism
Grade 2: absence of a case study, but the other requirements are met
Grade 3: there is a case study, but too general drafting, without any personal experience
Grade 4: there is a case study, one not too significant professional/technical mistake
Grade 5: precise and accurate wording in the medical jargon, personal opinion about the patient’s case
MEDICAL PHYSIOLOGY I.

Department of Physiology

Name of subject: Medical Physiology I.
Type of subject: Compulsory subject
Subject code: AOKELT792_1A
Credit Points: 10
Head of the Department: Dr. László Hunyady, Full Professor
Course Director: Dr. Péter Várnai, Full Professor
Tutor: Dr. András Balla

Aim of Medical Physiology course:
The goal of Medical Physiology course is to give the students the understanding of the concepts and principles of medical physiology. The lectures provide the information base while the seminars and practices provide the student with an opportunity to assimilate and integrate the material. Appropriate clinical perspectives are presented throughout the course.

Schedule of the subject:

Lectures:
1. Introduction, body fluids. Functions of cellular membranes, transport across membranes. Transepithelial transports.
3. Ion channels and resting membrane potential. Action potential. Physiology of nerve cells, synaptic transmission in the central nervous system.
5. Physiology of the blood.
6. Physiology of the heart I.: origin and spread of cardiac excitation Cardiac cycle. Regulation of cardiac output.

Practices:
- Blood cell counting, determination of hemoglobin concentration and hematocrit, measurement of erythrocyte sedimentation rate
- Leukocyte differential count on peripheral blood smear
- Typing of Blood Groups, Blood Coagulation Test
- Measurement of transport rate on red blood cells. Hemolysis
- Investigation of cardiac functions in situ
- Blood pressure measurement in humans
- Echocardiography
- Computer simulation: Neuromuscular junction
- Electromyography (EMG), nerve conduction velocity
- Recording and analyzing the human ECG
• Computer simulation: Skeletal and smooth muscle
• Effects of vagal nerve stimulation on cardiac functions
• Respiratory physiology calculations
• Evaluation of acid-base parameters with the Siggaard-Andersen nomogram

Attendance at classes: The lecture hours per week are 5.5; the practice hours per week are 5. The attendance of a minimum of 75% of practices is necessary for the end-term signature.

Absences:
No more than three absences from practices are allowed for any reason; otherwise the semester will not be credited. Missed sessions must be reported to the teacher the week after. There are no extra practices. Absence from the exam must be certified at the Head of the Department or Course Director within 3 working days.

Requirements for signature:
The attendance in minimum 75% of practices (including seminars) is necessary for the end-term signature. Students must write a lab report for each practice using the Practical Book. The Practical Book should be signed by the teacher not later than one week after the practice. Participation in the practices is compulsory. No more than three absences from practices are allowed for any reason; otherwise the semester will not be credited.

Requirements of the examination:
Requirements of the semi-final exam: material of the Medical Physiology I.
The semi-final exam is oral exam. The students need to bring ID card and the laboratory report book to participate in the exam. The oral exam consists of two theoretical questions (I-II). The overall result of the oral exam is based on the two theoretical grades; a failed (1) theoretical question results in an overall failed (1) exam.
Lists of the theoretical questions can be found in the webpage of the Department of Physiology. The following rules will be enforced during the exams: electronic devices must be kept in the baggage; baggage and coats should be placed next to the wall of the exam place; any form of communication is disallowed; students not complying with these rules will be disqualified immediately.

Registration for the exam:
Registration for the exam must be recorded through the NEPTUN system.
Modification in the registration must be recorded through the NEPTUN system.

Absences from the exams:
Failing to certify absence or denying it cause registering “absence” = “nem jelent meg” in the lecture book and/or in the NEPTUN system.

List of textbooks:
MEDICAL PHYSIOLOGY II.

Type of subject: Compulsory subject
Subject code: AOKELT792_2A
Credit Points: 10

Head of the Department: Dr. László Hunyady, Full Professor
Course Director: Dr. Péter Várnai, Full Professor
Tutor: Dr. András Balla

Prerequisite: Medical Physiology I. (subject to change by introducing the new curriculum), Microscopic Anatomy and Embryology II.

Aim of Medical Physiology course:

The goal of Medical Physiology course is to give the students the understanding of the concepts and principles of medical physiology. The lectures provide the information base while the seminars and practices provide the student with an opportunity to assimilate and integrate the material. Appropriate clinical perspectives are presented throughout the course.

Schedule of the subject:

Lectures:
2. Secretory functions of the gastrointestinal tract. Digestion and absorption of food.
3. Endocrine regulations. The hypothalamo-adenohypophyseal system; growth hormone, somatomedins.
5. Hormonal regulation of intermediary metabolism.
7. Function of the reproductive system: male sexual function; female sexual function; endocrinology of pregnancy, parturition, and lactation.
8. Introduction to neurophysiology. Physiology of nerve & glia cells.
9. Sensory functions.
10. Physiology of hearing and equilibrium.
11. Physiology of vision.
12. Motor functions.
13. Integration of autonomic responses.
14. Electroencephalogram (EEG); sleep phenomena. Learning and memory. Regulation of behavioural mechanisms, motivation; emotion.

Practices:
- Studies on circulatory reactions of a virtual rat
- Circulatory and respiratory reflexes in rabbit (Demonstration, Practice)
- Smooth muscle of rabbit small intestine
- Human pulmonary function tests – Spirometry
- Measurement of cardiac output in rat
- Pulse wave in human
- Oral glucose tolerance test (OGTT)
- Human pulmonary function tests – Body plethysmography
- Electrooculography (EOG) and investigation of the vestibular system
- Spiroergometry
- Human visual physiology
- Investigation of reflexes
- Practice for lab exam. Lab exam
Attendance at classes:
The lecture hours per week are 5.5; the practice hours per week are 4.5. The attendance of a minimum of 75% of practices is necessary for the end-term signature.

Absences:
No more than three absences from practices are allowed for any reason; otherwise the semester will not be credited. Missed sessions must be reported to the teacher the week after. There are no extra practices. Absence from the exam must be certified at the Head of the Department or Course Director within 3 working days.

Methods to assess knowledge acquisition during term time:
The knowledge of the students is tested in a written form on a weekly base. The written short tests cover the material of lectures of the previous week.

Requirements for signature:
The attendance in minimum 75% of practices (including seminars) is necessary for the end-term signature. Students must write a lab report for each practice using the Practical Book. The Practical Book should be signed by the teacher not later than one week after the practice. Participation in the practices is compulsory. No more than three absences from practices are allowed for any reason; otherwise the semester will not be credited.

Final exams
In the examination period the students have to give final exam in the second semester. Participation in the final exam requires the completed “Anatomy, Cell, Histology and Embryology III” course with a successful exam.

Requirements of the examination:
Requirements of the final exam: material of the Medical Physiology I. and Medical Physiology II.
The final exam consists of practical, written and oral parts. The students need to bring student identity card and the laboratory report book to participate in the exam. The practical part (lab exam) takes place in the last week of the second semester. Passing the lab exam is not a prerequisite to participate on the other parts of the final exam. A failed or missed lab exam is taken into account in grading the final exam as fail (1) partial grade (a successful lab exam does not result in any grade). The written and oral part of the final exam is held on the same day. The topics of the final exam can be found in the webpage of the Department of Physiology (http://semmelweis.hu/elettan/teaching/second-semester). The following rules will be enforced during the exams: electronic devices must be kept in the baggage; baggage and overcoats should be placed next to the wall of the exam rooms; any form of communication is disallowed; students not complying with these rules will be disqualified immediately

Registration for the exam:
Registration for the exam must be recorded through the NEPTUN system.
Modification in the registration must be recorded through the NEPTUN system.

Absences from the exams:
Failing to certify absence or denying it cause registering “absence” = “nem jelent meg” in the lecture book and/or in the NEPTUN system.

List of textbooks:
MEDICAL MICROBIOLOGY I.

Institute of Medical Microbiology

Program Director: **Prof. Dr. Dóra Szabó**
Tutor: **Dr. Ágoston Ghidán**

Second Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures (2 hours per week)</th>
</tr>
</thead>
</table>
| 1. | Introduction. General information about the tuition.
The place of Medical Microbiology among natural sciences, its significance, sub-fields and short history.
Fundamentals of the morphology, physiology and genetics of bacteria. |
| 2. | Pathogenic nature and virulence of bacteria.
Pathomechanism, molecular pathogenesis, virulence factors. Infection and disease. |
| 3. | Defence mechanisms of the host against infections.
Active and passive immunisation. Vaccines. |
| 4. | Antibacterial drugs:
Modes of action and interactions of antibacterial drugs.
Principles and practice of the antibacterial chemotherapy. Origin, mechanisms, induction, transfer, spreading, elimination and control of resistance of bacteria against antibacterial drugs |
| 5. | Introduction to the classification of medically important bacteria: fundamentals of taxonomic, epidemiological, nosological, as well as pathogenetical classification.
Gram-positive non-spore forming rods: Corynebacterium, Listeria, Erysipelothrix, Lactobacillus
Normal flora of the vagina. |
Normal flora of the skin. |
| 7. | Gram-negative aerobic and microaerophilic cocci and coccobacilli: Neisseriaceae, Pasteurellaceae, Haemophilus genus
Normal flora of the upper respiratory tract. |
| 9. | Gram-negative facultative anaerobic rods
Normal flora of the gastrointestinal tract.
Extrainestinal diseases caused by Gram-negative enteral bacteria.
Pathogens of the gastrointestinal tract I: Vibrio, pathogenic Escherichia coli, Campylobacter, Helicobacter. |
| 10. | Pathogens of the gastrointestinal tract II: Yersinia (yersiniosis), Shigella (shigellosis), Salmonella (salmonellosis).
The enteral fever (Salmonella typhi and paratyphi), as well as Yersinia pestis. |
| 11. | Gram positive aerobic and anaerobic spore-forming bacteria: Bacillus and Clostridium genus
Obligate anaerobic bacteria and associated infections:
Gram-positive: Peptostreptococcus, Propionibacterium, Eubacterium, Bifidobacterium, Arachnia,
Gram-negative: Veillonella. Bacteroides, Fusobacterium |
| 12. | Acid-fast bacteria: Mycobacterium, Nocardia. Actinomycetes |
| 14. | Rickettsiales, Chlamydiales, Mycoplasmatales |
Second Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Bacteriology Practicals (2 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction. Rules and instrumentation of the safe handling of microbes. Safety in the laboratory. Basic microbiological methods I: Microscopic examinations.</td>
</tr>
<tr>
<td>2.</td>
<td>Basic microbiological methods II: Cultivation of bacteria and biochemical activity of bacteria</td>
</tr>
<tr>
<td>3.</td>
<td>Basic microbiological methods III: Sterilisation. Disinfection</td>
</tr>
<tr>
<td>4.</td>
<td>Basic microbiological methods IV: Susceptibility of bacteria to antimicrobial drugs</td>
</tr>
<tr>
<td>5.</td>
<td>Basic microbiological methods V: In vitro immunological reactions</td>
</tr>
<tr>
<td>7.</td>
<td>Systematic bacteriology II: Identification of Gram-positive cocci: Staphylococcus</td>
</tr>
<tr>
<td>8.</td>
<td>Systematic bacteriology III: Identification of Gram-positive cocci: Streptococcus</td>
</tr>
<tr>
<td>9.</td>
<td>Systematic bacteriology IV: Identification of Gram-negative cocci and coccobacilli, and Gram negative aerobic rods</td>
</tr>
<tr>
<td>10.</td>
<td>Systematic bacteriology V: Identification of Gram-negative facultative anaerobic rods</td>
</tr>
<tr>
<td>11.</td>
<td>Systematic bacteriology VI: Identification of the aerobic and anaerobic spore-forming bacteria, as well as the obligate anaerobic and microaerophilic bacteria</td>
</tr>
<tr>
<td>12.</td>
<td>Midterm examination II. and Systematic bacteriology VII: Identification of irregular Gram-positive rods</td>
</tr>
<tr>
<td>13.</td>
<td>Systematic bacteriology VIII: Spirochaetes</td>
</tr>
<tr>
<td>14.</td>
<td>Systematic bacteriology IX: Rickettsiae, Chlamydiales and Mycoplasmatales</td>
</tr>
</tbody>
</table>
MEDICAL BIOCHEMISTRY II.

Department of Medical Biochemistry Molecular Biology

Credits: 5
Number of lessons per week 70; lectures 42; practical course/seminar: 28
Type of the course: obligatory
Academic year: 2021/2022
Code of the course AOKBMT794_2A
Name of Head of the Department: Professor László Csanády M.D. Ph.D. D.Sc.
Contact details: H-1094 Budapest, Tűzoltó u. 37-47. Phone: +36-1-459-1500#60010 e-mail: csanady.laszlo@med.semmelweis-univ.hu
Position: Temporary Head of Department
Date of Habilitation: 2013 Its number: 341

Objectives of the subject, its place in the medical curriculum:
The aim of this course is to provide a comprehensive description of the metabolic processes in the human body, with particular emphasis on the medical aspects of these processes. The main focus of the semester is on intermediate metabolism, i.e. the amino acid and nucleotide metabolism following carbohydrate and lipid metabolism as described in Medical Biochemistry I and the integration of these processes in the individual organs and the human body as a whole. Furthermore, the course aims to develop the skills of medical students to understand the complex physiological processes in the human body at the molecular level. Medical students will learn clinical biochemical methods in case-oriented studies, and in addition, particularly promising and rapidly developing areas ("medicine of tomorrow") will be addressed. The medical biochemistry orientation of the course is the molecular basis of diseases that are of major public health concern (cardiovascular, neurodegenerative, cancer), with particular emphasis on potential molecular targets for therapy.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Premises located in the Basic Medical Sciences building (laboratory rooms located on the first floor and lecture halls located on the ground floor).

Successful completion of the subject results in the acquisition of the following competencies:
The knowledge of the structure, interactions and reactions of biological molecules and the interactions between organs of the higher integrated regulatory functions of the human body, is of paramount importance from a medical point of view and is essential for understanding physiological and pathological processes and, as a consequence, for making informed medical decisions.

Prerequisite (s) for admission to the course: Medical Biochemistry I.

Number of students required for the course (minimum, maximum) and method of selecting students:
Not applicable to compulsory subjects

How to apply for the course: Application is through the Neptun online system.

Detailed curriculum:

Lectures: 2x70 minutes per week (3 hours)
Lecturers: Prof. Csanády László (CSL), Prof. Kolev Kraszimir (KK), Dr. Komorowicz Erzsébet (KE), Dr. Törőcsik Beáta (TB), Prof. Tretter László (TL)
Practices (P): 2 hours each week
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Practices: 2 hours every week</th>
</tr>
</thead>
</table>
| 1 | Nitrogen balance. Protein digestion. Function and regulation of proteases. Amino acid absorption, amino acid transporters. (KK)
Amino acid degradation. Ammonia removal. Reactions and regulation of the ornithine cycle. | Determination of transaminase and creatine kinase activity, medical implications |
| 2 | Amino acid degradation: the fate of the carbon skeleton. The role of vitamins in amino acid metabolism.
Biosynthesis and degradation of heme. Iron homeostasis (KK) | Elimination of ammonia in the human body. |
| 3 | Nucleotide structure/functions. Fate of nucleotides of nutrient origin. Formation and elimination of uric acid, its biological role in the human body. Molecular background of gout (KK).
Synthesis and degradation of purine and pyrimidine nucleotides. Effects of cytostatic drugs on nucleotide metabolism. (KK) | Metabolic role and medical significance of vitamin B12 and tetrahydrofolic acid |
| 5 | Metabolic characteristics of brain and adipose tissue. Metabolism of intestinal epithelial cells and lymphocytes. (TL)
Molecular basis of nerve transmission. Acetylcholine synthesis, receptors, acetylcholinesterase. Properties of synaptic vesicles; key proteins involved in exocytosis of synaptic vesicles (TB) | Metabolic characteristics of rapidly dividing cells and tumours. |
| 7 | Synthesis and metabolism of adrenaline and noradrenaline. Transports in neurons (TB)
| 8 | The synthesis and production of dopamine and serotonin and their metabolism. Molecular properties of transporters and receptors. Biochemical basis of Parkinson’s disease. (TB)
Synthesis, metabolism, transporters and molecular properties of glutamate and GABA. (TB) | The relationship between metabolism and nervous system function I |
| 9 | General characteristics of ion channels. Methods for the study of ion channels. Molecular mechanisms of gating and permeation. Spatial structure of the K+ channel. (CSL)
Ion channel families. Voltage dependent, Ca2+ activated, and ATP-sensitive K+ channels. Voltage-dependent Cl- channels. CFTR Cl-channel. Nicotinergic Ach receptor. (CSL) | The relationship between metabolism and nervous system function II |
| 10 | General overview of blood clot formation and dissolution. Fibrinogen and fibrin. Regulation of thrombin. Activation of prothrombin. Initiation of coagulation and amplification of the initiation signal. (KK)
The coagulation inhibitor system and negative feedback mechanisms. (KK) | Molecular background of congenital thrombophilia. APTI, PTI tests |
| 11 | Fibrinolysis. Activation of plasminogen. The plasin inhibitor system. (KK)
Cellular factors in coagulum formation and dissolution. Platelets and von Willebrand factor. (KK) | Molecular background of acquired thrombophilia. Fibrin stabilization and the study of soluble fibrin monomers |
| 12 | The role of neutrophil leukocytes and endothelial cells in hemostasis. Hemodynamic and biochemical interactions in hemostasis. (KK)
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Practices: 2 hours every week</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Central molecules and drug targets of proliferation, differentiation, survival, angiogenesis, metastasis I (TB) Focal molecules and drug targets of proliferation, differentiation, survival, angiogenesis, metastasis II (TB)</td>
<td>Molecular basis of energy expenditure and its dysregulation in metabolic syndrome</td>
</tr>
</tbody>
</table>

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes: None.

Special study work required to successfully complete the course: None.

Requirements for participation in classes and the possibility to make up for absences:
Practices and seminars are mandatory. It is not possible to make up for missed practices/seminars. In case of absences amounting to more than 3 occasions, the semester is not acknowledged. Arriving to a practice/seminar with a delay of more than 10 minutes is considered an absence.

Methods to assess knowledge acquisition during term time:
Practice/seminar participation performance will be evaluated by the tutor: as such, maximum 10 points per semester can be obtained that may count towards the final grade, see under “Grading system”.

Midterms: A midterm will take place in the 6th and another in the 11th week, during the practice/seminar (allocated time per midterm: 20 minutes). Each midterm will consist of multiple choice questions (MCQs) from which max 20 points can be obtained (10 points per midterm).

It is not obligatory to pass a midterm in order to be allowed to sit for the final exam. However, the midterm points will be added as “points” to the result of the final exam, as detailed in “Grading system”.

Lectures: At the end of each lecture, there will be a Kahoot on the topic of the lecture, consisting of 5 questions. Maximum 1 point can be earned per lecture, as outlined by the lecturer. Through the Kahoots, students may obtain points that will be added to the points earned at the final exam, as detailed in “Grading system”.

Competition: The competition is held on the last week and consists of 70 multiple choice questions (MCQs). Only students who amass 14 or more points from the midterms may participate in the competition. Points obtained from midterms, Kahoot quizzes, or practice/seminar performance (see below), do not count in the competition. Winners will be exempted from the final exam.

Requirements for signature: No credit will be given for absences exceeding 6 hours (3 occasions).

Type of examination: final; Form: written and oral test based on material of the official textbooks, lectures and practices/seminars published at the department’s Moodle e-learning system (https://itc.semmelweis.hu/moodle/). See under “Grading system” for further details.

Requirements of the examination:
The material covered in the exam is the material of the lectures and practices/seminars in the topic, with the corresponding textbook chapters.
Method and type of evaluation:
Grading system: The grade of the final exam is based on the points obtained i) in Kahoot quizzes at the lectures, ii) during the seminars/practices, iii) at the two midterms, iv) at the written MCQ semifinal exam, and v) in an oral exam following the written MCQ exam. The written MCQ exam and the oral exam will take place on the same day of the examination period.

The grading system is as follows:
(i) Kahoot: maximum 1 point per lecture.
(ii) Seminar/practice points: maximum 10 points.

Total points from (i) and (ii) cannot exceed 20 points.
(iii) Two midterms: maximum 20 points.
(iv) Written MCQ exam: This test consists of multiple choice questions (MCQs) from which max 100 points can be obtained (allocated time: 100 minutes).

If the score of the MCQ exam is 49 or below, then the grade of the final exam is ‘fail’.
If students reach 50 points on the MCQ exam, the midterm points, practice/seminar performance points and lecture Kahoot points (total max. 40 points) will be added to the MCQ score.

Grade calculation of the written part of the final exam from the total points (MCQ+semester):
95- 140: grade 5 (excellent)
85- 94: grade 4 (good)
70- 84: grade 3 (satisfactory)
55- 69: grade 2 (pass)

Only those students who obtained at least 50 points at the semifinal MCQ test will be invited for an oral exam. During the oral exam, the examiner will pick three questions from those MCQs that were correctly answered by the student. The student will have to elaborate properly on these questions. The final grade will be given based on the written and oral part of the exam.

How to register for the examination?: The exam dates are announced on the 12th week of the semester. At least one exam date per week will be provided. Applications are made in the Neptun system in accordance with the University Study and Exam Rules.

Possibilities for exam retake: An exam can be retaken after two calendar days.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material: Harper’s Biochemistry (30th edition, or latest)
Online material published at the department’s Moodle e-learning system (https://itc.semmelweis.hu/moodle/).
MOLECULAR CELL BIOLOGY I

Department of Molecular Biology

Mandatory course; Credit: 4

Description of the curriculum
The principal aim of the course is to provide an insight into the storage and expression of genetic information throughout replication, transcription and translation. Our current understanding of the multilevel regulation of gene expression will also be discussed, followed by an up-to-date summary of the principles of proteostasis, autophagy and the molecular biology of DNA and RNA viruses. Students having completed this course will be familiar with the principles of molecular biology, which will help them to understand and apply different fields of molecular medicine which is fundamental in the 21st century.

Prerequisites for admission to the subject:
Successful exams in Medical Chemistry as well as in Medical Biochemistry I.

Key topics

Module II. Methods in molecular biology and gene technology

Requirements for acknowledgement of the semester
Participation in the laboratory lessons is obligatory; students have to sign the attendance sheets at the end of each lesson. In case of more than two missed labs the semester cannot be acknowledged and the student is not going to be allowed to sit for the terminal exam. Missed practicals can be made up only in the same week with another group; certificate of participation issued by the host teacher has to be presented by the student to his/her own teacher. The schedule of practical lessons can be downloaded from the official Moodle website of the subject. Students properly conducting their experiments are entitled to get a lab score on each practical. These scores will help you get exemption from the lab topics on the final exams (see Molecular Cell Biology II).

Midterm tests and exam bonus
A short written test including 10 formulas from the list of compulsory structures can be taken at the beginning of the 2nd laboratory lesson. Students having scored at least 70% on this test are eligible to participate in the optional oral midterm in week 11. The topic list for the oral midterm will be published in due course on Moodle. Students having obtained excellent (5) or good (4) marks will be exempted from taking a topic from the corresponding topic list (I: DNA structure, replication and repair). This test cannot be retaken.
Semifinal exam
The course is finished with an oral exam. Students will be examined by a two-member examination committee. 4 topics taken from the topic list have to be answered. Students are not allowed to leave the examination room between taking exam topics and getting their grades. Importantly, you fail the whole exam if you fail even on just one of your topics.

Recommended textbooks
1. Lodish: Molecular Cell Biology (8th edition)
2. Hrabák: Laboratory Manual - Medical Chemistry and Biochemistry

MOLECULAR CELL BIOLOGY II.

Department of Biology
Head of department: Prof. Miklós Csala Molecular
Teaching secretary: Dr. Gergely Keszler
Mandatory course; credit: 5

Lectures and laboratory lessons
Two lectures are held a week and laboratory lessons are held every second week.

Description of the curriculum
The subject Molecular Cell Biology summarizes the molecular mechanisms of molecular biology and cell biology for medical and dentistry students. It provides the essential knowledge for the understanding of further subjects of molecular medicine including molecular pathology, molecular diagnostics, pharmacology, gene therapy and medical biotechnology.

Students having completed this course will be familiar with the principles of molecular biology which will help them understand and apply different fields of modern molecular medicine.

Prerequisites for admission to the subject:
Successful exam in Molecular Cell Biology I.

Key topics

Requirements for acknowledgement of the semester
Participation in the laboratory lessons is obligatory; students have to sign the attendance sheets at the end of each lesson. In case of more than two missed labs the semester cannot be acknowledged and the student is not going to be allowed to sit for the terminal exam. Missed practicals can be made up only in the same week with another group; certificate of participation issued by the host teacher has to be presented by the student to his/her own teacher. The schedule of practical lessons can be downloaded from the official Moodle website of the subject. Students properly conducting their experiments are entitled to get a lab score on each practical.

Midterm tests and exam bonus
An optional oral midterm is held in week 11. Participants are expected to take and present a single topic from the midterm topic list. Students obtaining a grade of four (good) or five (excellent) will be exempt from taking a topic from group III of the exam topics (Signal transduction and cell cycle) on the final exam.

Participation in the practical midterm is also optional. Students can take this written test during the last practical class of the semester (week 13 or 14, depending on the lab schedule. You are expected to provide short answers (a word or a short sentence) to 20 questions covering the experiments performed in the 1st and 2nd semesters; each correct answer is worth a point. Your scores obtained here will be added to your lab scores (a total of at most 12 collected during the labs of both semesters). Students having obtained 25 or more scores (from a total of 20 + 12 = 32), will be exempt from taking a lab topic on the final exam.

Final examination
Examinees have to take 5 topics on the oral final exam. Please note that failing a single topic will result in failing the entire exam. Students having obtained a grade of 4 (good) or 5 (excellent) on the first (theoretical) midterm will be exempt from the corresponding group of topics (III: Signal transduction and cell cycle). Moreover, those having collected a sum of at least 25 scores on the labs (max. 12 points) AND on the second (practical) midterm (max. 20), will be exempt from taking a lab topics (group V) on the final exam. These exam bonuses are independent from each other and one can attain both or just one of them. Bonuses are valid throughout the exam period, even for retakes of failed or passed exams. They are also valid for CV but not for FM exams.

Recommended textbooks
Lodish: Molecular Cell Biology (8th edition)
Hrabák: Laboratory Manual - Medical Chemistry and Biochemistry
IMMUNOLOGY

Department of Genetics, Cell- and Immunobiology
Course Director: Prof. Edit Buzás

Credit: 3

Aim of the subject and its place in the curriculum:
A pre-clinical course for medical students that introduces the essentials of the immune system, natural and adaptive immune responses. It discusses the structure of the human immune system: organs, cellular and molecular components involved in the immune response; the development of genetic diversity of antigen receptors, and the role of diversity in an efficient immune response. It introduces to the students the processes of immunological regulation in healthy organism, including the immunology of pregnancy. It also discusses the course and alteration of immunological processes in certain pathological conditions, such as infections, tumors, hypersensitivity reactions, autoimmunity, immunodeficiency and transplantation, therefore providing a basis for other subjects. In related practices, students will be introduced to the basic methods required to test the functionality of the immune system, to the immunological assays and immunologically relevant procedures used in current diagnostics and therapy.

Competencies gained upon the successful completion of the subject: Understanding the relationships between immunological processes and the role of the immune system in the prevention, development and course of diseases. Theoretical knowledge of basic immunological diagnostic and therapeutic techniques.

Prerequisite(s) for admission to the subject:
Cell Science, Medical Biochemistry II.

Detailed thematic of the course:

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The role, processes, organs and cells of the immune system</td>
<td>Basic terms</td>
</tr>
<tr>
<td>2. Principles of natural immunity</td>
<td>The role of the immune system in the lab</td>
</tr>
<tr>
<td>3. The complement system; inflammation and acute phase reaction</td>
<td>Methods based on antigen-antibody interactions I. Immunoserology</td>
</tr>
<tr>
<td>4. Antigen, antigen presentation and MHCs</td>
<td>Methods based on antigen-antibody interactions II: immuno-assays</td>
</tr>
<tr>
<td>5. Antigen receptors and their formation</td>
<td>Methods based on antigen-antibody interactions III Flow cytometry</td>
</tr>
<tr>
<td>6. T lymphocytes and cell-mediated immune response</td>
<td>Complement assays</td>
</tr>
<tr>
<td>7. B lymphocytes and humoral immune response</td>
<td>Biological therapies I</td>
</tr>
<tr>
<td>8. Immune response in infections</td>
<td>Biological therapies II</td>
</tr>
<tr>
<td>9. Immunodeficiencies</td>
<td>Immunization and vaccination I</td>
</tr>
<tr>
<td>10. Hypersensitivity reactions</td>
<td>Immunization and vaccination II</td>
</tr>
<tr>
<td>11. Mucosal immunity</td>
<td>Hypersensitivity I.</td>
</tr>
<tr>
<td>12. Immunological tolerance; natural and pathological autoimmunity</td>
<td>Hypersensitivity II-IV.</td>
</tr>
<tr>
<td>13. Immunology of transplantation</td>
<td>Screening methods for autoantibodies</td>
</tr>
<tr>
<td>14. Antitumor - and pregnancy immunity</td>
<td>HLA-typing</td>
</tr>
</tbody>
</table>
Policy regarding the attendance and making up absences:
Attendance of a minimum of 75% of the practices is necessary for the end-term signature. The presence at the seminars (practices) are registered weekly, more than three absences from the seminars invalidate the semester as well. The sessions can be attended in an appropriate mental and health condition.

Means of assessing the students’ progress during the semester: Discussing the topics of the lecture under the guidance of the practice teacher to establish diagnostic and therapeutic methods.

Requirement for acknowledging the semester (signature): Attendance of a minimum of 75% of the practices.

Type of the examination: written test

Exam requirements:
The topics are based on the textbooks, the e-book, the lectures’ and practices’ presentations. At the exam, it is not sufficient to repeat memorized topics from the textbook and presentations, but you have to be able to synthesize and integrate your knowledge from different parts of the subject.

Topic list of lectures:
1. The concept of immunity, Principles of the immune response: antigen specificity, sensitivity, memory, clonal selection based operation.
2. Components (primary, secondary immune organs, cells, molecules) of the immune system.
3. Features of innate and adaptive, cell-mediated and humoral, primary and secondary response.
4. The immune homeostasis.
5. Migration of immune cells and adhesion molecules;
6. Cytokines and cytokine receptors.
7. Chemokines and chemokine receptors.
8. Fc-receptors; PAMP, DAMP, Pattern recognition receptors.
10. Role of neutrophils, eosinophils and basophils/mast cells.
11. Types and role of dendritic cells.
12. Inflammasome/ inflammasomopathies.
13. Innate lymphoid cells.
14. The activation pathways and the regulation of the complement system;
15. Complement receptors;
16. Complement genetics;
17. The biological role of complement activation
18. The inflammation and the acute phase response, the provoking factors and mechanisms, periods;
19. The acute phase plasma proteins.
20. The major histocompatibility complex;
21. The ways of antigen processing and presentation.
22. Types and structures of antigen receptors;
23. The immunoglobulin and TCR genes, the sources of antigen receptor diversity;
24. Expression and production of antigen receptors.
25. Differentiation and activation of T cells
26. Types of the T cells
27. The cell mediated immunity.
28. The activation and differentiation of B cells
29. Types of the B-cells
30. The humoral immunity.
31. Antimicrobial immune response.
32. Mucosal Immunity
33. Hypersensitivity reactions: Type I-II-III-IV reactions
34. Immunological background of transplantation and GVH disease
35. The natural autoimmunity.
36. Idiotype regulation and network.
37. Pathological autoimmunity.
38. Mechanisms of immune tolerance.
39. Primary and acquired immune deficiencies.
40. Tumor antigens.
41. Anti-tumor immunity.
42. Escape strategies of tumor cells.
43. Possibilities of anti-tumor immune-therapy.
44. The immunology of pregnancy

Topic list of practices:
1. The cells and organs of immune system.
2. Communication between the immune cells.
3. Antigen and hapten.
4. Features of diagnostic antibodies.
5. Immunoserological techniques: Detection of antibodies in body fluids, or detection of antigens based on the antibody-antigen reaction.
6. Serum electrophoresis and densitograms,
7. Immune complex and immune precipitates.
8. Turbidimetry and nephelometry.
10. Clinical application of immunoserology methods.
11. Direct, indirect and passive agglutination, methods based by agglutination, fields of use.
12. Features of diagnostic antibodies.
13. The labeling of diagnostic antibodies,
14. ELISA, Western blot. Immunocyto (histo)chemistry, fields of use.
15. Lateral flow test, fields of use.
17. Identification of cell populations by size and granularity, scatter plot.
18. Immune phenotyping, histogram, dot plot.
20. The ways of activation of complement system.
22. Measuring the complement activation (CH50).
23. Diseases of complement system. HAE disease.
24. HLA nomenclature.
25. HLA typing methods: Microcytotoxicity test and mixed lymphocyte culture test.
26. HLA associated diseases.
27. Definition of targeted molecular therapy and immune modulation.
30. Antibody therapy in transplantation.
32. TNF alpha, T- and B cells as therapeutic targets in RA.
33. IVIG
34. Cytokine therapy
35. Dendritic cell-therapy.
36. The aims and practical implementation of immunization.
37. Adjuvants.
38. Immunodominant epitope.
40. The aim of immune stimulation, active immunization.
41. Passive immunization
42. The features of effective vaccines.
43. Types of vaccines, cell-based vaccination
44. Hypersensitivity reactions I.: Penetration of antigens, types of IgE mediated responses.
45. Release of histamine and its effects.
46. Allergy tests.
47. Anaphylaxis vs. anaphylactoid reaction; urticaria vs. angioedema.
48. Food intolerance vs. food allergy.
49. Basics of allergy pharmacotherapy; Desensitization and prevention.
50. Clinical examples for Hypersensitivity reactions II-III-IV.
51. Diagnostic tests used in Hypersensitivity reactions II-III-IV.
52. Types of systemic and organ specific autoantibodies
53. Screening methods of autoantibodies,
54. Detection of autoantibodies.

Literature, i.e. printed, electronic and online notes, textbooks, tutorials (URL for online material):
2. Practice and lecture ppt-s): http://gsi.semmelweis.hu
3. Immunology seminars (e-book): http://gsi.semmelweis.hu
GENETICS AND GENOMICS

Department of Genetics, Cell- and Immunobiology
Course director: Prof. Dr. Edit Buzás
Course coordinator: Dr. F. Ágnes Sensei
Credit: 3
Number of lessons per week: 3.5
 lecture: 2
 practical course: 1.5
Academic year: 2021/2022 II. semester
Subject code: AOKGEN738_1A
Name of the course leader: Prof. Edit Buzás
Department of Genetics, Cell- and Immunobiology, +36-1-210-2929 / 56241
Position: Professor and Chairman

Objectives of the subject, its place in the medical curriculum:
Introductory course in classical and molecular genetics and functional genomics, as well as basic course for the clinical module. It addresses the types, general laws of human inheritance, characteristics, organization and structure of the human genome, and the most important methods and / or their application in theoretical and clinical medicine, according to the needs of medical students, and evaluates the results (in practice). It presents the forms of genetic and epigenetic variability, their mechanisms and their consequences for human health. Through selected examples, the pathway from gene to disease is analyzed using a systems biology approach.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Semmelweis University, Department of Genetics, Cell- and Immunobiology, H-1089 Budapest, Nagyvárad tér 4. Hungary, NET building lecture rooms, L13-L16

Successful completion of the subject results in the acquisition of the following competencies:

Course prerequisites:
Molecular Cell Biology I.,
Medical Biochemistry II.

Number of students required for the course (minimum, maximum) and method of selecting students:
According to Study and Exam Policy

How to apply for the course:
in Neptun system
Detailed curriculum:

Lectures (2 hours per week)*:
1. Introduction to human genetics (E. Buzás)
2. Genetic variations (Cs. Szalai)
3. Chromosomal aberrations (E. Lajkó)
4. Autosomal inheritance I. (C. Szalai)
5. Role of sex in inheritance (M. Holub)
6. Epigenetics (O. Láng)
7. Introduction to genomics (Cs. Szalai)
8. Methods in genomics, systems biology (Cs. Szalai)
9. Genetherapy (Cs. Szalai)
10. Genomic approach of complex inheritance (H. Hegyesi)
11. Pharmaco- and nutrigenomics (Á. F. Semsei)
12. Genetics of biological processes, oncogenetics (Wiener Z.)
13. Populationgenetics; Evolutiongenetics (H. Hegyesi)
14. Genome and environment (O. Láng)

Practices (1.5 hours per week)*:
1. Genetic aspects of cell cycle and cell division disruptions (Atypical mitosis / meiosis)
2. Cytogenetics I.
3. Cytogenetics II.
4. Introduction to pedigree analysis
5. Autosomal dominant inheritance I.
6. Autosomal dominant inheritance II.
7. Autosomal recessive inheritance I.
8. Autosomal recessive inheritance II.
9. Sex-linked inheritance
10. Complex inheritance I.
11. Complex inheritance II.
12. Gametogenesis, prenatal genetic testing
13. Genetherapy
14. From genes to bedside

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:
Understanding of Genetics and Genomics is based on the knowledge of molecular biology and molecular genetic techniques studied at Medical Biochemistry I-II. Elective subjects taught by our institute (Sex Genetics, Epigenetics, Genomics) elaborate on some of the subchapters of “Genetics and Genomics”, with overlaps needed for understanding, focusing on topics not covered in the main subject. Understanding the subject of Clinical Genetics is based on the knowledge of Genetics and Genomics.

Requirements for participation in classes and the possibility to make up for absences:
Completion of prerequisite subject.
Practices can only be attended to in an appropriate mental and health condition. Practical absence can be remedied during the current training week, in parallel courses, after prior consultation with the practice instructors.

* The order of the lectures may vary (depending on holidays and workday transfers). Colleagues with senior teaching status may also act as lecturers, if the lecturer on schedule is prevented.
Methods to assess knowledge acquisition during term time:
Written homework from the topics of taught lectures and practices after prior consultation with the practice instructors. Bonus lecture scores can be collected at lectures. Written midterm from the topics of taught lectures and practices. We provide an opportunity to retake the midterm, only for students who have proven absence.

Requirements for signature:
According to the Study and Exam Policy the students must visit at least 75% of the lectures and practices.

Type of examination: written (lectures and practices)

Requirements of the examination:

1.) Introduction to human genetics and genomics.
MGGe: Chapter 1, pages 9-21; Lecture: Introduction to human genetics
Basic genetic terms, e.g.: genome, genetics, genomics, homologous chromosomes, gene, locus, allele, wild type allele, genotype, phenotype, homozygote, heterozygote, hemizygote, dominant, recessive, cytogenetics; Mendel’s laws, Model organisms in genetics; DNA: structure, function, amount, organization (chromatin, chromosome). Replication, transcription, mRNA maturation (splicing, alternative splicing), types of RNA-s, features of genetic code. Translation and posttranslational modifications. Human genome: nuclear and mitochondrial. Structure of eukaryotic gene. Intergenic DNA; Specific sequences of nuclear genome. Repetitive sequences. Human Genome Project, ENCODE Project

2.) Transmission of genetic information from cell to cell in an organism.
MGGe: Chapter 2, pages 22-41, Practice presentation: Atypical mitosis
Features of mitotic phases. Functional parts of chromosomes (telomere, centromere, kinetochore, sister chromatids. Cytokinesis. Changes of DNA amount and chromosome number during cell cycle. Types, causes and consequences of atypical mitosis.

3.) Transmission of genetic information from generation to generation.
MGGe: Chapter 2, pages 41-51; Practice presentation: Typical and atypical meiosis

4.) Pedigree analysis
Practice: Introduction to pedigree analysis
Mendelian or monogenic inheritance, Construction of pedigree: main symbols that are used in pedigrees. Pedigree analysis (characteristics pedigree patterns of monogenic inheritances: AD, AR, XD, XR, Y-linked, mitochondrial). Disease examples for monogenic inheritances (AD, AR, XD, XR, mitochondrial); Important terms: gene, genome, locus, allele, multiple alleleism, wild type (normal) allele, genotype: homozygote, heterozygote, complex heterozygote, hemizygote, phenotype: dominant, codominant, recessive.

5.) Mendelian Inheritance: autosomal inheritance
MGGe: Chapter 6, pages 102-121; Lecture: Monogenic inheritance (Autosomal inheritance); Practice: Autosomal dominant inheritance
affecting pedigree patterns: reduced penetrance, variable expressivity, pleiotropy, heterogeneity (locus and allele), phenocopy, anticipation, „de novo”, new mutation, Influence of the age, Lethal/sublethal genes, „Modifier genes”, Epistasis; Heterozygote advantage, The influence of the environment,

6.) Role of sex in inheritance
 MGGe: Chapter 7, pages 122-131; Lecture: Role of sex in inheritance

 Properties and disease examples of Sex-linked inheritance: XR (hemophilia A and B; Duchenne and Becker muscular dystrophy), XD (hypophosphatemia, incontinentia pigmenti, Fragile X). Y-linked inheritance; Sex influenced inheritance (e.g. boldness). Sex limited inheritance (e.g. precocious puberty). Genomic imprinting, X-chromosome inactivation. Mitochondrial inheritance (homoplasy, heteroplasmy)

7.) Cytogenetics
 Practice: Cytogenetics I

 Light microscopic slides: 54, 60, 64

8.) Structural chromosome mutations
 MGGe: Chapter 4, pages 69-80; Lecture: Chromosomal aberrations; Practice: Cytogenetics II

9.) Numerical chromosome mutations
 MGGe: Chapter 4, pages 80-90; Lecture: Chromosomal aberrations; Practices: Cytogenetics

10.) Mutations and polymorphisms
 MGGe: Chapter 3, pages 52-68; Lecture: Genetic variations

 Different meanings of mutation and polymorphism. Significance of mutation. Classification of mutations: by cause (spontaneous, induced, different DNA repair mechanisms, consequence of their failure), by site (in the organism: somatic, germline, in the gene), by function (loss-of-function, gain-of-function, dominant negative, lethal, back), by fitness (neutral, beneficial, harmful), by size (genome, chromosome, gene: insertions, deletions, substitutions). Repetitive insertions, triplet repeat; polyglutamine and polyalanine disorders. inDel mutations; frame shift and in frame mutations. Nucleotide substitutions: transition, transversion, sense (synonymous) missense and nonsense (non-synonymous) mutations. Types, size and significance of genetic polymorphism.

11.) Epigenetics
 MGGe: Chapter 5, pages 91-101; Lecture: Epigenetics

12.) Introduction to genomics. Methods in genomics

MGGe: Chapter 9, pages 148-173; Lecture: Introduction to genomics. Methods in genomics; Practice: Molecular genetic methods and applications in human genetics I-II.

Genomics, Human Genome, DNA sequencing, Participants in the Human Genome Project, Some results of the HGP, Variations in the human genome, Some novel data about gene expression and genetic variability, Junk DNA in the human genome, Comparative genomics, ENCODE project, Genetic markers, GWAS, Principle of molecular genetic methods: hybridization, restriction enzymes, DNA isolation, Visualization of genomical DNA, separation of DNA fragments by gelelectrophoresis, capillary gelelectrophoresis, non-specific staining of DNA (EtBr), Allele-Specific Oligonucleotide (ASO) test, RFLP, microarray, PCR, PCR-RFLP, Multiplex PCR, MLPA, Significance of real time-PCR. Significance and detection of VNTR. VNTR and trinucleotid diseases. Significance of polymorphism detection in forensic medicine. DNA fingerprint. Foreign DNA (bacterial, viral) detection. Sequencing in genotyping. NGS, RT(reverse transcriptase)-PCR.

13.) Complex inheritance.

MGGe: Chapters 10, pages 174-177; Lecture: Complex inheritance, Practice: Complex inheritance

Features of complex inheritance. Environmental factors. Heritability of the complex diseases. Disease examples

14.) Pharmacogenomics

MGGe: Chapter 14, pages 266-286; Lecture: Pharmacogenomics and nutrigenomics

Pharmacogenetics and pharmacogenomics. Pharmacokinetics, -dynamics, Drug development Adverse drug response, Genomic background of adverse effects, CYP (cytochrom P-450) gene family, Warfarin, Mercaptopurine, Genes influencing pharmacodynamics, Examples of pharmacogenetic studies, Pharmacogenetics of statins, Clopidogrel, Pharmacotherapy of asthma, MODY, Succinylcholine sensitivity, Thiopurin methyltransferase variations, Role of membrane receptors in drug effects.

15.) Nutrigenomics

MGGe: Chapter 13, pages 255-263; Lecture: Pharmacogenomics and nutrigenomics

Genetic variations and food, food and gene expression.

16.) Gene therapy

Practice: Genetherapy

17.) Population genetics

MGGe: Chapter 12, pages 215-224; Lecture: Population and evolution genetics

18.) Evolution genetics

MGGe: Chapter 12, pages 225-236; Lecture: Population and evolution genetics

Gene environmental interactions and the human genome. Natural selection. Role of infections in formation of the genome. Genetic drift, bottleneck effect. Why are some lethal mutations frequent? Examples for effects forming the genome.

19.) Genome and environment

MGGe: Chapter 13, pages 238-254; Lecture: Population and evolution genetics

Penetrance of the genetic variants; Interactions between highly and low penetrant variations and the environment; smoking-genome interaction, gene-environmental interactions;
20.) Gametogenesis, prenatal genetic testing

Practice: Gametogenesis, prenatal genetic testing

Comparison of spermatogenesis and oogenesis; Genetic aspects of infertility; Genetic aspects of assisted reproduction techniques; CGH; aCGH prenatal genetic testing; Non-invasive prenatal testing

21.) Genetics of biological processes

MGGe: Chapter 8, pages 132-147; Lecture: Genetics of biological processes

Method and type of evaluation:
Final grade will be calculated from the result of the exam scores and bonus scores. Bonus scores are the grade calculated from the scores collected at the midterm, homeworks and lectures. Competition will be organized during the semester.

How to register for the examination?:
In the Neptun system, according to current university and faculty settings.

Possibilities for exam retake: According to the Study and Exam Policy

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
Cs. Szalai (Editor): Medical Genetics and Genomics e-book, 2018
Power Point presentations of the lectures and practices; The e-book and presentations available at the homepage: http://gsi.semmelweis.hu/index.php/en/education/
MEDICAL PSYCHOLOGY

Institute of Behavioral Sciences

Type of the course: compulsory
credit: 4 credits
Presenter of the course: Dr. János Kollár
Course leader: Dr. József Kovács

Course objectives: The course is designed to give a broad overview of the field of medical psychology, including concepts, theory, and research.

Learning objectives:
- Develop an understanding of the complex interplay between one's physical well-being and a variety of biological, psychological, and social factors.
- Learn the nature of the stress response and its impact in the etiology and course of many health problems.
- Understand the approach of bio-psycho-social model and become familiar with some frequent psychosomatic diseases.
- Be able to identify various psychological disorders and key personality traits related to health / disease.

Course Syllabus:

Lectures:

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Introduction to Human Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>Major Schools of Psychology</td>
</tr>
<tr>
<td>Week 3</td>
<td>Stress and illness; behavioral interventions</td>
</tr>
<tr>
<td>Week 4</td>
<td>Conscious states, sleep, dreaming and general anesthesia</td>
</tr>
<tr>
<td>Week 5</td>
<td>Stigmatization and people living with disabilities</td>
</tr>
<tr>
<td>Week 6</td>
<td>Psychological correlates of cardiovascular disorders</td>
</tr>
<tr>
<td>Week 7</td>
<td>Affects, Emotion and Motivation</td>
</tr>
</tbody>
</table>

Seminars:

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Developmental psychology, attachment theories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>Personality theories</td>
</tr>
<tr>
<td>Week 3</td>
<td>Human sexuality and sexual disorders, psychology of reproduction, psychology of birth</td>
</tr>
<tr>
<td>Week 4</td>
<td>Depression and mood disorders.</td>
</tr>
<tr>
<td>Week 5</td>
<td>Anxiety and medical illnesses.</td>
</tr>
<tr>
<td>Week 6</td>
<td>Eating disorders.</td>
</tr>
<tr>
<td>Week 7</td>
<td>Psychosomatic disorders – case studies; somatization and dissociative disorders</td>
</tr>
<tr>
<td>Week 8</td>
<td>Personality disorders.</td>
</tr>
<tr>
<td>Week 9</td>
<td>Sleep disorders</td>
</tr>
<tr>
<td>Week 10</td>
<td>Addiction, substance use</td>
</tr>
<tr>
<td>Week 11</td>
<td>Suicide, cry for help, crisis intervention</td>
</tr>
<tr>
<td>Week 12</td>
<td>Psychology of death, grief, and dying</td>
</tr>
<tr>
<td>Week 13</td>
<td>Behaviour change and psychotherapy. Stress management in medical practice.</td>
</tr>
</tbody>
</table>

200
Participation and making up for absences: Students are expected to attend regularly the course and participation list will be recorded at the end of every lecture and every seminar. To participate on at least 75% of the total number of lessons is a prerequisite for getting the signature needed to absolve the course. The maximum number of absences permitted: one absence from the lectures and three absences from the seminars. Content of the lectures may appear in the exams.

Justification of the absence in the lectures and examinations: Absence should be justified for the seminar leading teacher within three working days.

Checks during the semester (reports, written checks): Every student should prepare presentations on the topics designated by the seminar leader teacher. Active participation is expected.

Requirements for the signature at the end of the semester: Active participation on the practices. The teacher has the right for refusing to give signature to the students who didn’t work on the desired level on the seminars.

Method of the calculation of marks: Grades will be based on student’s performances at the final written exam.

Type of the exam: Written final examination taken in the examination period.

Requirements for the exam: The material of the lectures and seminars.

Application for the exam: Through the Neptun system.

Changing the application for the exam: Through the Neptun system.

Justification of the absence from the exam: Absence should be justified for the course leading teacher within three working days.

Course and recommended text books:

Required textbook:

Recommended text books:

Additional readings:
The powerpoint slides and prezi presentations used for the lectures and seminars and also some related papers will be assigned for reading during the course, and they will be made available on the course website.
DEVELOPMENTAL BIOLOGY: from gene to newborn. I.

“Our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right.”

Hamburger 1900-2001

Regulatory mechanisms and early development of embryology
2 hours/week, 2 credits

Prof. Dr. Imre Oláh

Department of Human Morphology and Developmental Biology

Introduction to developmental biology
Comparative embryology, epigenesis and preformation, evolutionary embryology, medical implications

Regulatory elements of the ontogenesis I.
Hormones, growth factors, transcription factors, instructive and permissive interactions

Regulatory elements of the ontogenesis II.
DNA-methylation, X chromosome inactivation, genomic imprinting

Cell-cell and cell-extracellular matrix interactions
Adhesion molecules, integrins, cytoskeleton and cell movement, cell polarization

Cell lineages
Fate map, stem cells, peripheral blood fibrocytes, cell specification, polarity in biological system

Neurogenesis
Origin of neural cells, switch between neuronal and glial fates, axonal specificity, synaptic plasticity

Neural crests and placods
Origin of neural crest and placods, flexibility and heterogeneity of neural crest cells.

Myogenesis
Embryonic origin of skeletal, smooth and cardiac muscles. Induction of myogenesis, regulatory factors of myogenesis, regeneration of skeletal muscles

Teratogenesis
Morphogens, morphogenetic period, cancer as an altered development, stem cell therapy, teratogens.

Primordial germ cells (PGC)
Origins, migration, mitosis, differences between male and female PGC, maturations

Fertilization
Acrosome reaction, prevention of polyspermy, activation of egg metabolism

Embryonic induction
Spemann organization center, mosaic and regulative zygotes

Early embryonic development
Cleavage, neurulation, X-chromosome inactivation, parental imprinting

Gastrulation
Differentiation of mesoderm, primary tissue formation

Axis formations in birds and mammals
Symmetry breaking, left-right asymmetry formation.
ORGANOGENESIS

2 hours/week, 2 credits

Prof. Dr. Imre Oláh

Department of Human Morphology and Developmental Biology

Axial and paraxial mesoderm Formation of axial skeleton, somitogenesis, clinical correlations
Segmentation and Homeobox genes Retinoic acid, gain of function, loss of function
Intermediate mesoderm I. Development of kidney, clinical correlations
Intermediate mesoderm II. Development of gonads, sex determination, clinical correlations
Lateral plate mesoderm, splanchnopleura I. Vasculogenesis, blood formation, hematopoietic stem cell.
Lateral plate mesoderm, splanchnopleura II. Early development of the heart. Cardiac anlage, cardiac jelly, cardiac skeleton, development of coronary vessels, contribution of neural crest cells, epicardial body, clinical correlations
Lateral plate mesoderm, somatopleura Development of the limb, evolutionary and ontogenetic aspects, clinical correlations
Branchiogenic arches and their derivatives Clinical correlations
Prechordal plate as head organizer, AVE-anterior ventral entoderm Cranial neural crest and head mesoderm, somatic and visceral head and neck, clinical correlations
Development of arteries Branchiogenic, parietal and visceral segmental arteries, clinical correlations
Epithelio-mesenchymal interactions Ecto-entoderm <<—>> mesoderm, tooth and lung development, clinical correlations
Neurogenesis Antero-posterior, and craniosacral regionalization, axon guidance, growth, synapsis formation
Development of eye Retina, lens
Entoderm formation Foregut and its derivatives (thymus, thyroid, parathyroid), development of pancreas
Environmental regulation of development Developmental symbiosis, seasonality and sex, nutritional contribution
BIOINFORMATICS

Department of Bioinformatics

Credit value: 2

Number of lessons per week: lecture: 1 practical course: 1

Subject type: elective course

II. semester

Name of the course leader: Prof. Dr. Balázs Győrffy

Objectives of the subject, its place in the medical curriculum:

Today, we have plenty of data in medicine and the challenge lies not any more in obtaining the data but in interpreting the data. Figuring the result of genomics, transcriptomics and other omics technologies present a serious obstacle in understanding the molecular mechanism behind definite diseases. Luckily, bioinformatics is at hand to assist in solving these problems.

Bioinformatics comprises of the computer-assisted evaluation of clinical and biological data. We will discuss in detail three areas of bioinformatics. The first contain databases dealing with clinical and biological data. These also include biobanks and data repositories for storing and accessing information. The second area contains the data processing, modelling, visualization and interpretation. The third pillar is the interpretation of the data within the clinical context of a selected disease.

We will give lectures on the most important chapters of medical bioinformatics including databases, decision-support tools, genomics, transcriptomics, proteomics, medical informatics and artificial intelligence.

Successful completion of the subject results in the acquisition of the following competencies:

Students will be able to understand the theoretical basics and to utilize the most important bioinformatical tools. They will know the advantages and limitations of each method. The students will have a hand-on experience of these tools enabling successful application in research projects and in clinical diagnostics.

Course prerequisites:

Completed first two semesters.

Number of students required for the course (minimum, maximum) and method of selecting students:

minimum: 20

maximum: 60

Thematics

I. section: Basics of bioinformatics

1. Introduction to bioinformatics (Balázs Győrffy)
2. Utilization of a training and test set (János Tibor Fekete)
3. Statistical errors and dichotomania (János Tibor Fekete)
4. Survival analysis* (Balázs Győrffy)
5. ROC analysis: predicting sensitivity and specificity * (János Tibor Fekete)
II. section: Omics
6. Similar genes and proteins, BLAST* (Balázs Győrffy)
7. Introduction to genomics (Balázs Győrffy)
8. Genomics: quality control* (Ádám Nagy)
9. Genomics: alignment of data to a reference genome * (Ádám Nagy)
10. Genomics: identifying mutations (SNV, indels) (Ádám Nagy)
11. Genomics: determining the consequence of a mutation* (Ádám Nagy)
12. Genomics: what is the clinical relevance of a mutation, ClinVar, dbSNP* (Ádám Nagy)
13. Genomics: mutation signatures (Ádám Nagy)
14. Genomics: copy number variations* (Ádám Nagy)
15. Genomics: identifying processing artefacts and quality issues (Otília Menyhárt)
16. Proteomics: pre-processing (Balázs Győrffy)
17. Transcriptomics: processing RNA-seq data (Balázs Győrffy)
18. Proteomics: tools to analyze immunhistochemistry results (Áron Bartha)
19. Proteomics: processing mass spectrometry (Áron Bartha)
20. Proteomics: understanding molecular functions, Uniprot (Ottilia Menyhárt)
21. Genomics: GeneBank (Attila Marcell Szász)

III. section: Integrative science
22. Application of multi-omic tools (Otília Menyhárt)
23. Clinical studies utilizing multi-omics (Otília Menyhárt)
24. Multiple hypothesis testing* (Balázs Győrffy)
25. Analyzing COVID-19 (Ádám Nagy)
26. Reproducibility issues in medicine (Otília Menyhárt)

IV. section: Artificial intelligence
27. Introduction to artificial intelligence (Balázs Győrffy)
28. Machine learning* (János Tibor Fekete)
29. The Bayes rule (János Tibor Fekete)
30. Clinical application of a decision tree (Áron Bartha)
31. Determining distance* (Balázs Győrffy)
32. Clustering* (Balázs Győrffy)
33. Neuronal networks* (Balázs Győrffy)
34. Principal component analysis (Áron Bartha)
35. Support Vector Machines (János Tibor Fekete)
36. Regression* (Áron Bartha)
37. Diagnostic tools using artificial intelligence (Attila Marcell Szász)

V. section: Medical informatics
38. Using REDcap (Attila Marcell Szász)
39. Electronic health records (Áron Bartha)
40. Time distortion and computer addiction (Otília Menyhárt)
41. Development, learning and work (Otília Menyhárt)
42. Outlook (Balázs Győrffy)

Each lecture comprises of three 15-minute talks. Starred lectures have associated exercises.
The exercises are held by:
Balázs Győrffy, Áron Bartha, János Tibor Fekete, Máté Balajti, Ádám Nagy

It is recommended to bring a private laptop for the exercises.

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes: Biophysics (biostatistics), translational medicine Requirements for participation in classes and the possibility to make up for absences: According to the current regulation of the University. Missed exercises can be repeated at the last exercise.

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)
Completed exercises give 33% of the final result.

Requirements for signature:
Maximal number of missed lectures: 25% of all lectures.

Type of examination:
The semester ends with a colloquium.

Requirements of the examination:
(In case of a theoretical examination, please provide the topic list; in case of a practical exam, specify the topics and the method of the exam)
The final exam will comprise a theoretical part (42 multiple-choice selection test) and an exercise. The exercise will comprise a bioinformatic evaluation of a new data. Any support tool, including utilization of a private laptop is allowed when solving this final exercise.

Method and type of evaluation:
(Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark.)
Completed exercises (33%), multiple-choice test (33%), final exercise (33%)

Possibilities for exam retake:
According to the current Study and Examination Regulations.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
The lectures contain all necessary information, a hard copy of the slides will be provided at each lecture.
HUNGARIAN MEDICAL TERMINOLOGY III.

Responsible organisational unit:
Department of Languages for Specific Purposes

Programme director:
Dr. Katalin Fogarasi-Nuber, associate professor, Director

4 lessons per week, 2 credits
Assessment: midterm (written) and endterm (written and oral) tests

Role of subject in fulfilling the aim of training:
The role of this subject is to help students acquire the basic vocabulary, grammar and language skills they need for the effective communication in the language they use during their field practice both in their everyday life/survival language/ and in their academic studies. Raising students’ awareness of cultural differences is one of our top priorities.

Brief description of subject:
The first three modules are dedicated to learning basic general vocabulary and grammar. In the third module students acquire basic structures and the vocabulary for everyday topics / e.g. travelling in a city, travelling abroad, arranging accommodation etc./, language for „survival.”. The course places special emphasis on phrases essential for everyday communications, e.g. past time activities, telephoning, buying/ordering tickets etc. Grammar is of less importance in this phase of language studies.

<table>
<thead>
<tr>
<th>weeks</th>
<th>curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Revision: present complaint</td>
</tr>
<tr>
<td>2</td>
<td>Inspection, palpation, percussion, auscultation</td>
</tr>
<tr>
<td>3</td>
<td>Taking the temperature</td>
</tr>
<tr>
<td>4</td>
<td>Weight and height</td>
</tr>
<tr>
<td>5</td>
<td>Physical examination of the lungs</td>
</tr>
<tr>
<td>6</td>
<td>Physical examination of the heart</td>
</tr>
<tr>
<td>7</td>
<td>Physical examination of blood pressure and pulse Blood-glucose level</td>
</tr>
<tr>
<td>8</td>
<td>Physical examination of the abdominal organs; hernia</td>
</tr>
<tr>
<td>9</td>
<td>Physical examination of the "acute abdomen"</td>
</tr>
<tr>
<td>10</td>
<td>Examination of the musculoskeletal system</td>
</tr>
<tr>
<td>11</td>
<td>Physical methods of examination of the hematopoietic system</td>
</tr>
<tr>
<td>12</td>
<td>Examination of lymph nodes</td>
</tr>
<tr>
<td>13</td>
<td>Revision</td>
</tr>
<tr>
<td>14</td>
<td>Oral interview</td>
</tr>
</tbody>
</table>

Course material, recommended text book(s), professional literature and supplementary reading(s)
HUNGARIAN MEDICAL TERMINOLOGY IV.

Responsible organisational unit:
Faculty of Health Sciences, Division of Foreign Languages and Communication

Programme director:
Zöldi Kovács Katalin PhD, Head of the Division

4 lessons per week, 2 credits

Assessment: midterm (written) and endterm (written and oral) tests

Role of subject in fulfilling the aim of training:
The role of this subject is to help students acquire the basic vocabulary, grammar and language skills they need for the effective professional communication in the language they use during their field practice. With the help of this course they become able to communicate with the patients in the Hungarian hospitals.

Brief description of subject:
The fourth module is dedicated to learning basic medical vocabulary. Students acquire the skills needed in taking family, social, and medical history in internal medicine. They also learn how to address the patient during an examination and give advice for the treatment.

<table>
<thead>
<tr>
<th>weeks</th>
<th>curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hungarian instructions during examination on the following topics</td>
</tr>
<tr>
<td>1</td>
<td>Revision: Hungarian instructions during examination</td>
</tr>
</tbody>
</table>
| 2 | Gastroenterology I.
Reflex
Ulcerative disease
Colon cancer |
| 3 | Gastroenterology II.
Ileus
Cholelithiasis |
| 4 | Liver diseases
Cirrhosis |
| 5 | Infectious diseases
Cystitis
Renal pelvic inflammation |
| 6 | Endocrine and metabolic diseases
Diabetes
Osteoporosis
Hyperthyroidism |
| 7 | Oral interview |
| 8 | Cardiology I.
Atrial fibrillation
Heart failure |
| 9 | Cardiology II.
Acute coronary heart disease
Hypertension |
<table>
<thead>
<tr>
<th>weeks</th>
<th>curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hungarian instructions during examination on the following topics</td>
</tr>
</tbody>
</table>
| 10 | Hematology
 | Anemia
 | Lymphoma |
| 11 | Immunology
 | RA |
| 12 | Pulmonology I.
 | Pneumonia
 | Pulmonary embolism |
| 13 | Pulmonology II.
 | Asthma, COPD, Lung cancer |
| 14 | Mock exam |

Course material, recommended text book(s), professional literature and supplementary reading(s)

PHYSICAL EDUCATION III.

Department of Physical Education
Subject: Physical Education III.
Type of Subject: Compulsory
Code of Subject: AOKTS1009_3A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

The objectives of Physical Education:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life. The syllabus reduced to bi-weekly scheduled double-classes (90 minutes).

The syllabus (preferably a week and numbered):
Reduced to bi-weekly scheduled double-classes (90min.).

II. St. year 1. semester:

1 – 2 weeks: General information
Accident, fire and environmental knowledge. Requirement for acceptance of the semester system, the structure of the classes and the presentation of the university recreational sports opportunities for extracurricular activities. Theory and practical application of the warm-up as a sports injury risk significantly reducing factor. Common to the bench. Free exercises.

3 – 4 weeks: Stamina Development
Long-term (at least 45 – 60 minutes) running and skipping exercises.

5 – 6 weeks: Balls skill development
Practicing the fundamentals of volleyball (serves, over – and underhand touches, movements, etc.)

7 – 8 week: Strength development
Overall strength development using the circle-training method-setting up different stations working on different muscle groups.

9 – 10 weeks: Coordination enhancing exercises
Jumping rope exercises in place and in motion.

11 – 12 weeks: Posture correction
Stick exercises, in various position and motion.

13 – 14 weeks: Stretching – relaxation exercises
Stretching exercises using large medicine-balls in sitting, standing, kneeling and recumbent positions.

Requirements to participate in the sessions and the potential for absences:
Active participation in sport classes.

The method of proof for the workshops and the exam absence:
The absence can not be proved, should make up for the lost lessons.

Requirements for signature at the end of semester (including the number of tasks to be solved learning outcomes and type):
Active participation in six classes approved by the staff.

How to prove absence regarding the exam:
Absence must be retaken!
PHYSICAL EDUCATION IV.

Type of Subject: Compulsory
Code of Subject: AOKTSI009_4A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

The objectives of Physical Education:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life. The syllabus reduced to bi-weekly scheduled double-classes (90 minutes).

The syllabus (preferably a week and numbered):
Reduced to bi-weekly scheduled double-classes (90min.).

II. St. year II. semester:

1 – 2 weeks: General information
Accident, fire and environmental knowledge. Requirement for acceptance of the semester system, the structure of the classes and the presentation of the university recreational sports opportunities for extra-curricular activities. Theory and practical application of the warm-up as a sports injury risk significantly reducing factor. Common to the bench. Free exercises.

3 – 4 weeks: Cardio – vascular system development
The floorball: Using the basic elements of the game dribbling, passing, shooting, etc. Playing against each other in the interval system on high intensity level.

5 – 6 weeks: Posture corrective exercises
Exercises on floor mats, focusing on the core muscles in various body-positions.

7 – 8 weeks: Coordination enhancing exercises
Special education and practice material for spatial vision, perception of body schema, right-left orientation, muscle development and perception of coordination at the technical skills of playing sports (tennis, badminton).

9 – 10 weeks: Strengthening exercises
Using manual and other exercises equipment (dumbbells, boxes, bench, wall bars, etc.)

11 – 12 weeks: Balls skill development
Exercise of basic technical elements of football. Learning and practicing tactical elements. During locomotion ball control exercises, skill development.

13 – 14 weeks: Stretching – relaxation exercises
Various stretching relaxing exercises after the meditative practices and knowledge (yoga, tai chi, etc.)

Requirements to participate in the sessions and the potential for absences:
Active participation in sport classes.

The method of proof for the workshops and the exam absence:
The absence can not be proved, should make up for the lost lessons.

Requirements for signature at the end of semester (including the number of tasks to be solved learning outcomes and type):
Active participation in six classes approved by the staff.

How to prove absence regarding the exam:
Absence must be retaken!
PRE-CLINICAL MODULE
STUDY PROGRAMME

Third year in the 2021/2022 academic year

5th semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology and Pharmacotherapy I</td>
<td>2,5</td>
<td>5</td>
<td>Medical Microbiology I. Molecular Cell Biology II. Medical Physiology II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Translational Medicine – Pathophysiology I.</td>
<td>1,5</td>
<td>3</td>
<td>Macroscopic Anatomy and Embriology II. Medical Physiology II., Medical Biochemistry II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Medical Microbiology II</td>
<td>1,5</td>
<td>4</td>
<td>Medical Microbiology I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pathology I.</td>
<td>3</td>
<td>7</td>
<td>Microscopic Anatomy and Embriology II. Macroscopic Anatomy and Embriology II. Medical Physiology II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Internal Medicine - Propedeutics</td>
<td>2</td>
<td>7</td>
<td>Medical Physiology II. Medical Biochemistry II. Hungarian Medical Terminology IV.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Medical Aspects of Disaster Preparedness and Response I.</td>
<td>1x2/semester</td>
<td>0</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology V.</td>
<td>0</td>
<td>2</td>
<td>Hungarian Medical Terminology IV.</td>
<td>final</td>
</tr>
<tr>
<td>Medical Statistics, informatics and telemedicine</td>
<td>1</td>
<td>2</td>
<td>Medical Biophysics II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Clinical ECG</td>
<td>1</td>
<td>3</td>
<td>Medical Biophysics II. Medical Physiology II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>PE V.</td>
<td>0</td>
<td>0</td>
<td>PE IV.</td>
<td>signature</td>
</tr>
</tbody>
</table>
Third year

6th Semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology and Pharmacotherapy II.</td>
<td>2.5</td>
<td>5</td>
<td>Pharmacology and Pharmacotherapy I, Medical Microbiology II., Pathology I</td>
<td>final</td>
</tr>
<tr>
<td>Translational Medicine – Pathophysiology II.</td>
<td>3</td>
<td>3</td>
<td>Pathology I. Translational Medicine – Pathophysiology I</td>
<td>final</td>
</tr>
<tr>
<td>Pathology II.</td>
<td>3</td>
<td>7</td>
<td>Pathology I.</td>
<td>final</td>
</tr>
<tr>
<td>Internal Medicine – Propedeutics</td>
<td>1</td>
<td>4</td>
<td>Medical Biochemistry II., Medical Physiology II., Hungarian Medical Terminology IV.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Bioethics- Medical Ethics</td>
<td>2</td>
<td>2</td>
<td>Medical Psychology</td>
<td>final</td>
</tr>
<tr>
<td>Medical Aspects of Disaster Preparedness and Response II.</td>
<td>1x2/semester</td>
<td>0</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Basic Surgical Techniques</td>
<td>0.5</td>
<td>2</td>
<td>Microscopic Anatomy and Histology II, Medical Physiology II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>PE VI.</td>
<td>0</td>
<td>1</td>
<td>Testnevelés V.</td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice – Internal Medicine</td>
<td>1 month</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

(*)The prerequisite is that registration has been done for the marked subject – corequisite – as well)
LIST OF TEXTBOOKS (The list may change!)

Recommended textbooks:

13. Zalatnai A.: 500 Practice Questions about Pathology (Semmelweis University of Medicine)
15. Székely E.: Practice on Histopathology I-II. (Semmelweis University of Medicine) - video
PHARMACOLOGY AND PHARMACOTHERAPY I.

Tutor: Dr. Pál Riba

First and Second Semester

Department of Pharmacology and Pharmacotherapy

Credits: 5
Total number of hours: 70 lectures: 35 practices: 35
Type of the course (mandatory/elective): mandatory
Academic year: 2021/2022
Code of the course: AOKFRM034_1A
Course director (tutor): Dr. Ferdinandy, Péter
Contact details:
Department of Pharmacology and Pharmacotherapy, 1089 Budapest, Nagyvárad tér 4.
Tel: +36-1-2104416, e-mail: ferdinandy.peter@med.semmelweis-univ.hu
Position: Head of Department, full professor

Aim of the subject and its place in the curriculum:
Pharmacology is an essential subject in the medical education. It provides strong fundamentals for further clinical subjects since pharmacological therapies have a crucial role in treating diseases. Pharmacology draws upon previously acquired knowledge of biochemistry, physiology, pathophysiology as well as the basics of clinical subjects. The subject includes general pharmacology, detailed pharmacology, clinical pharmacology and toxicology as well as the basics of drug prescriptions. General pharmacology (pharmacodynamics, pharmacokinetics) is important for understanding the basic pharmacological terminology, how medicines act and what is their fate in the body. Detailed pharmacology describes the mechanisms of actions, main effects, adverse effects of the drugs and the most important drug interactions as well as the logics of dosage and prescribing. Clinical pharmacology and pharmacotherapy connect the drugs to diseases dealing with the indications, contraindications and warnings regarding their use. The diseases which have the greatest impact on public health are further detailed and their complex pharmacological treatment strategies are discussed. Medical students gain knowledge from simple case reports that show the logic of pharmacological treatment. Toxicology covers the most important poisons, intoxications, their symptoms and management thereby providing theoretical basics for emergency medicine of poisoning and drug overdoses. During pharmacological education the students will also learn the basics of prescription writing.

Location of the course (lecture hall, practice room, etc.):
Nagyvárad térí Elméleti Tömb, 1089 Budapest, Nagyvárad tér 4.

Prerequisite(s) for admission to the subject:
Medical Physiology II, Medical Biochemistry, Molecular and Cell Biology III, Molecular Cell Biology II

Minimum and maximum number of students registering for the course:
Since it is a mandatory subject all the students in the fourth year of medical education must register.

Student selection method in case of oversubscription:
N/A

How to register for the course:
Through the NEPTUN system
Detailed thematic of the course:

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd week</td>
<td>Basics of the neurotransmission of the autonomic nervous system. Pharmacology of the cholinergic systems</td>
<td>Parasympathomimetics and parasympatholytics, centrally acting cholinergic drugs.</td>
</tr>
<tr>
<td>4th week</td>
<td>Pharmacology of the adrenergic system</td>
<td>Sympathomimetics and sympatholytics.</td>
</tr>
<tr>
<td>5th week</td>
<td>Pharmacology of the skeletal muscles. Pharmacology of the local anesthetics</td>
<td>Nitrates, Ca-channel blockers and other vasodilators. Pharmacology of RAAS.</td>
</tr>
<tr>
<td>6th week</td>
<td>Drugs used in coagulation disorders</td>
<td>Fibrinolytics, drugs against bleeding, drugs acting on blood cell production. Diuretics and antidiuretics.</td>
</tr>
<tr>
<td>7th week</td>
<td>Treatment strategy of ischemic heart disease (CP). Treatment strategy of acute and chronic heart failure (CP)</td>
<td>Positive inotropic agents. Antihyperlipidemic drugs.</td>
</tr>
<tr>
<td>8th week</td>
<td>Treatment strategy of hypertension (CP)</td>
<td>Drugs acting on blood glucose control. Antidiabetics.</td>
</tr>
<tr>
<td>9th week</td>
<td>Treatment strategy of 2nd type diabetes mellitus (CP). Metabolic syndrome (CP)</td>
<td>Antiarrhythmic drugs. Drugs influencing the oxygen demand and oxygen supply of the heart. Drugs improving microcirculation.</td>
</tr>
<tr>
<td>10th week</td>
<td>Pharmacology of the respiratory system. Pharmacotherapy of bronchial asthma and COPD (CP)</td>
<td>Expectorants (secretomotorics, secretolytics, mucolytics), antitussive drugs. Autacoids, histamine, antihistamines.</td>
</tr>
<tr>
<td>12th week</td>
<td>Thyroid hormones and antithyroid drugs. Sexual hormones. Contraceptives (CCP)</td>
<td>Androgens, antiandrogens, anabolic steroids, drugs influencing sexual activity.</td>
</tr>
<tr>
<td>13th week</td>
<td>Special aspects of pediatric and geriatric pharmacology (Pharmacokinetic Differences and Variations in Drug Responsiveness according to Age or State of Health.)</td>
<td>Nutrients, traditional plant medicines, vitamins, anorectic drugs.</td>
</tr>
</tbody>
</table>

CP: clinical pharmacology/pharmacotherapy material

Potential overlap(s) with other subjects:
Physiology, biochemistry, molecular biology, pathology, internal medicine, cardiology, pulmonology, clinical pharmacology, pediatrics

Special training activities required:
N/A

Policy regarding the attendance and making up absences:
Maximum number of absences is 25 percent of the number of practices in the semester. In the case of absence the student can attend another class the same week.

Means of assessing the students’ progress during the semester:
There are no mandatory midterm tests during the semester.

Requirement for acknowledging the semester (signature):
The number of absences must not be more than 25 percent of the number of practices in the semester.
Type of the examination:
oral semifinal exam

Exam requirements:
One question is given from two topic lists each. Acceptable knowledge must be proven.

Topic list "A"
1. Pharmacodynamics I (Molecular targets of drugs. Drug receptors. Receptor theory.)
5. Local anesthetics.
6. Glucocorticoids for oral and parenteral use
7. Mineralocorticoids. Topically applied glucocorticoids
8. Androgens, anabolic steroids, antiandrogens. Agents affecting the sexual activity
9. Estrogens and antiestrogens
10. Progestins and antiprogestins
11. Contraceptives
12. Thyroid and antithyroid drugs. Hypothalamic and pituitary hormones
13. Pancreatic hormones and parenterally applied antidiabetic drugs. Pharmacotherapy of IDDM.
15. Agents affecting bone mineral homeostasis (calcium, vitamin D, parathyroid hormone, calcitonin, etc.). Pharmacotherapy of osteoporosis.
16. Drugs used in coagulation disorders I: Antiplatelet agents
17. Drugs used in coagulation disorders II: Anticoagulant drugs
18. Drugs used in coagulation disorders III: Fibrinolytic drugs. Drugs used in bleeding disorders
19. Agents used in anemias
20. Special aspects of pediatric and geriatric pharmacology
22. Pharmacovigilance (reporting adverse effects), drug registration, ATC code, generics, biosimilar drugs). Drug formulations.

Topic list "B"
1. Cholinergic transmission and its presynaptic modification.
2. Adrenergic transmission and its presynaptic modification
3. Cholinomimetics
4. Muscarinic receptor blocking drugs
5. Catecholamines
6. Indirect sympathomimetics. Selective α_2-agonists and drugs acting on the imidazoline receptors
7. α-receptor antagonists
8. β-receptor antagonists
9. Centrally acting skeletal muscle relaxants (spasmolytics). Dantrolene. Botulinum toxin
10. Skeletal muscle relaxants acting on the neuromuscular junction
11. Selective β_2-stimulants and other bronchodilators. Pharmacotherapy of bronchial asthma and COPD.
12. Antiinflammatory agents used in bronchial asthma. Antitussive agents and expectorants
13. Drugs used for the treatment of peripheral vascular diseases. Therapy of migraine
16. Antiarrhythmic agents
18. Drugs used for the treatment of hypertension II: Ca\(^{++}\)-channel blockers and other vasodilators
19. Drugs used for the treatment of hypertension III: Drugs acting on the renin-angiotensin-aldosterone system
21. Agents used in dyslipidaemias.
22. Potassium excreting (wasting) diuretics
23. Potassium sparing diuretics, ADH antagonists, osmotic diuretics
24. Histamine and antihistamines.

Type and method of grading:
According to the knowledge proven at the exam.

How to register for the exam:
Registration must be done through the NEPTUN system for the days set by the department up to the limits.

Opportunities to retake the exam:
According to the Study and Examination Policy of Semmelweis University

Literature, i.e. printed, electronic and online notes, textbooks, tutorials (URL for online material):
Materials discussed during lectures and seminars: http://semmelweis.hu/pharmacology, Moodle (https://itc.semmelweis.hu)
Pharmacology and Pharmacotherapy II.

Credits: 5
Total number of hours: 70 lectures: 35 practices: 35
Type of the course (mandatory/elective): mandatory

Academic year: 2021/2022
Code of the course: AOKFRM034_2A
Course director (tutor): Dr. Ferdinandy, Péter
Contact details: Department of Pharmacology and Pharmacotherapy, 1089 Budapest, Nagyvárad tér 4. Tel: +36-1-2104416, e-mail: ferdinandy.peter@med.semmelweis-univ.hu
Position: Head of Department, full professor

Aim of the subject and its place in the curriculum:
Pharmacology is an essential subject in the medical education. It provides strong fundamentals for further clinical subjects since pharmacological therapies have a crucial role in treating diseases. Pharmacology draws upon previously acquired knowledge of biochemistry, physiology, pathophysiology as well as the basics of clinical subjects. The subject includes general pharmacology, detailed pharmacology, clinical pharmacology and toxicology as well as the basics of drug prescriptions. General pharmacology (pharmacodynamics, pharmacokinetics) is important for understanding the basic pharmacological terminology, how medicines act and what is their fate in the body. Detailed pharmacology describes the mechanisms of actions, main effects, adverse effects of the drugs and the most important drug interactions as well as the logics of dosage and prescribing. Clinical pharmacology and pharmacotherapy connect the drugs to diseases dealing with the indications, contraindications and warnings regarding their use. The diseases which have the greatest impact on public health are further detailed and their complex pharmacological treatment strategies are discussed. Medical students gain knowledge from simple case reports that show the logic of pharmacological treatment. Toxicology covers the most important poisons, intoxications, their symptoms and management thereby providing theoretical basics for emergency medicine of poisoning and drug overdoses. During pharmacological education the students will also learn the basics of prescription writing.

Location of the course (lecture hall, practice room, etc.):
Nagyvárad térő Elméleti Tömb, 1089 Budapest, Nagyvárad tér 4.

Competencies gained upon the successful completion of the subject:
Students understand the pharmacological terminology, learn the mechanism of action, therapeutic effects, adverse effects, important interactions of drugs and the basics of dosing. They learn the mechanisms of action of the most important poisons, as well as the symptoms and management of intoxications/poisoning. That provides theoretical basics for emergency medicine of poisoning and drug overdoses. Knowing the basics of prescribing drugs is of an utmost importance.
Medical students gain knowledge from simple case reports that show the logic of pharmacological treatment. They learn the pharmacological treatment strategies of the most important diseases with the highest public health interests. This knowledge is based on the actual therapeutic guidelines.
They get insight in the development, applications and the whole lifecycle of drugs and medical devices. They understand the principles and importance of pharmacovigilance and how to report adverse events.

Prerequisite(s) for admission to the subject:
Pharmacology and pharmacotherapy I, Medical Microbiology II, Internal Medicine – Propedeutics OR Internal Medicine I

Minimum and maximum number of students registering for the course: Since it is a mandatory subject all the students in the fourth year of medical education must register.

Student selection method in case of oversubscription:
N/A

How to register for the course:
Through the NEPTUN system
Detailed thematic of the course:

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Basic pharmacology of analgesics</td>
<td>Opiods. Adjuvant analgesics</td>
</tr>
<tr>
<td>2nd</td>
<td>Immunopharmacology (immunosuppressive and immunomodulatory agents)</td>
<td>Non-Steroidal-Antiinflammatory-Drgs (NSAIDs). Drugs for gout</td>
</tr>
<tr>
<td>3rd</td>
<td>Treatment strategy of autoimmune diseases (CP). Treatment strategy of pain</td>
<td>Antidepressants and antimanic drugs, mood stabilizers – case reports (CP)</td>
</tr>
<tr>
<td>4th</td>
<td>Pharmacology of the central noradrenergic and serotonergic systems. Pharmacotherapy of mood disorders (CP)</td>
<td>General anesthetics</td>
</tr>
<tr>
<td>5th</td>
<td>Pharmacology of the central GABA-ergic system. Pharmacotherapy of anxiety and sleep disorders (CP)</td>
<td>Antipsychotics – case reports (CP)</td>
</tr>
<tr>
<td>6th</td>
<td>Pharmacology of the central dopaminergic systems. Pharmacotherapy of neurodegenerative diseases (CP)</td>
<td>Antiepileptics</td>
</tr>
<tr>
<td>8th</td>
<td>Antiviral drugs and pharmacotherapy of viral infections (CP)</td>
<td>Cell Wall Synthesis Inhibitors & Membrane-Active Antibiotics</td>
</tr>
<tr>
<td>9th</td>
<td>Antituberculotics. Antifungal, Antiprotozoal and Antihelmintic Drugs</td>
<td>Antibiotics Inhibiting Bacterial Protein Synthesis</td>
</tr>
<tr>
<td>10th</td>
<td>Pharmacotherapy of bacterial infections (CP)</td>
<td>Antibiotics Inhibiting Bacterial Nucleic Acid Synthesis. Miscellaneous Other Antibiotics</td>
</tr>
<tr>
<td>12th</td>
<td>Basics of toxicology</td>
<td>Cytostatic and other anticancer drugs</td>
</tr>
<tr>
<td>13th</td>
<td>Treatment strategy of cancer (CP)</td>
<td>Toxicology</td>
</tr>
<tr>
<td>14th</td>
<td>Pharmacological aspects of emergency care (CP)</td>
<td>Contrast agents. Disinfectants</td>
</tr>
</tbody>
</table>

CP: clinical pharmacology/pharmacotherapy material

Potential overlap(s) with other subjects:
Physiology, biochemistry, molecular biology, pathology, internal medicine, cardiology, pulmonology, neurology, psychiatry, pediatrics, microbiology, infectology, oncology, immunology

Special training activities required:
N/A

Policy regarding the attendance and making up absences:
Maximum number of absences is 25 percent of the number of practices in the semester. In the case of absence the student can attend another class the same week.

Means of assessing the students’ progress during the semester:
There are no mandatory midterm tests during the semester.

Requirement for acknowledging the semester (signature):
The number of absences must not be more than 25 percent of the number of practices in the semester.

Type of the examination:
Final exam has three parts.
1. Preceding exam from toxicology.
2. Written test from clinical pharmacology.
3. Oral exam.
Exam requirements:
Acceptable knowledge of toxicology and the basics of prescription writing. On the day of the final exam acceptable written clinical pharmacology/pharmacotherapy test exam. During the oral exam one question is given from three topic lists each. Acceptable knowledge must be proven.

Topic list “A”
1. Pharmacodynamics I (Molecular targets of drugs. Receptor theory.)
5. Local anesthetics
6. Glucocorticoids for oral and parenteral use
7. Mineralocorticoids. Topically applied glucocorticoids
8. Androgens, anabolic steroids, antiandrogens. Agents affecting the sexual activity
9. Estrogens and antiestrogens
10. Progestins and antiprogestins
11. Contraceptives
12. Thyroid and antithyroid drugs. Hypothalamic and pituitary hormones
13. Pancreatic hormones and parenterally applied antidiabetic drugs. Pharmacotherapy of IDDM.
15. Agents affecting bone mineral homeostasis (calcium, vitamin D, parathyroid hormone, calcitonin, etc.). Pharmacotherapy of osteoporosis.
16. Drugs used in coagulation disorders I: Antiplatelet agents
17. Drugs used in coagulation disorders II: Anticoagulant drugs
18. Drugs used in coagulation disorders III: Fibrinolytic drugs. Drugs used in bleeding disorders
19. Agents used in anemias
20. Special aspects of pediatric and geriatric pharmacology
22. Pharmacovigilance (reporting adverse effects), drug registration, ATC code, generics, biosimilar drugs). Drug formulations.
23. Inhalational anesthetics
24. Intravenous anesthetics. Perioperative medication
25. Benzodiazepines
27. 1st generation (“typical”) antipsychotic agents
28. 2nd generation (“atypical”) antipsychotic agents
29. Tricyclic, tetracyclic and unicyclic antidepressants. MAO-inhibitors
30. Selective serotonin and/or norepinephrine reuptake inhibitors.
32. Antiepileptics used in partial seizures and generalized tonic-clonic seizures except for the “broad spectrum” agents.
33. Antiepileptics used in absence seizures. “Broad spectrum” antiepileptic drugs. Drugs used for treatment of status epilepticus
34. Drugs used for treatment of neurodegenerative disorders. Nootropic drugs
35. Smooth muscle relaxants used for relief GI and UG spasms. Drugs influencing uterus functions.
37. Drugs used in constipation (laxatives) and diarrhea. Drugs promoting digestion. Pharmacology of liver and biliary tract
38. Drugs used in peptic ulcer diseases. Pharmacotherapy of peptic ulcer diseases.

Topic list “B”
1. Cholinergic transmission and its presynaptic modification.
2. Adrenergic transmission and its presynaptic modification
3. Cholinomimetics
4. Muscarinic receptor blocking drugs
5. Catecholamines
6. Indirect sympathomimetics. Selective α₂-agonists and drugs acting on the imidazoline receptors
7. α-receptor antagonists
8. β-receptor antagonists
9. Centrally acting skeletal muscle relaxants (spasmolytics). Dantrolene. Botulinum toxin
10. Skeletal muscle relaxants acting on the neuromuscular junction
11. Selective β₂-stimulants and other bronchodilators. Pharmacotherapy of bronchial asthma and COPD.
12. Antiinflammatory agents used in bronchial asthma. Antitussive agents and expectorants
13. Drugs used for the treatment of peripheral vascular diseases. Therapy of migraine
16. Antiarrhythmic agents
17. Drugs used for the treatment of hypertension I: Classification of
18. Drugs used for the treatment of hypertension II: Ca**+-channel blockers and other vasodilators
19. Drugs used for the treatment of hypertension III: Drugs acting on the renin-angiotensin-aldosterone system
21. Agents used in dyslipidaemias.
22. Potassium excreting (wasting) diuretics
23. Potassium sparing diuretics, ADH antagonists, osmotic diuretics
24. Histamine and antihistamines.
25. Natural opiates, opioid receptors
26. Semisynthetic and synthetic opiates
27. General properties of NSAIDs. Acetylsalicylic acid.
30. Immunopharmacology II. (Inhibitors of cytokine gene expression, 5-ASA derivatives)
31. Immunopharmacology III. (Antibodies and fusion proteins)
32. Cancer chemotherapy I (antimetabolites)
33. Cancer chemotherapy II (alkylating agents)
34. Cancer chemotherapy III (Topoisomerase inhibitors. Inhibitors of mitotic spindle)
35. Cancer chemotherapy IV. (Hormonal agents)
36. Cancer chemotherapy V. (Small molecule signal transduction inhibitors)
37. Cancer chemotherapy VI. (Large molecule signal transduction inhibitors)

Topic list “C”
1. General considerations of antimicrobial therapy. Disinfectants and antiseptics
2. Antimycobacterial drugs
3. Antiprotozoal and antihelminthic drugs.
4. Antifungal agents
5. Agents to treat Herpes simplex (HSV), varicella-zoster (VZV) virus, cytomegalovirus (CMV) and respiratory syncytial virus (RSV) infection. Anti-influenza agents
6. Antiretroviral agents.
7. Agents against hepatitis viruses
8. Penicillins
9. Cephalosporins
11. Chloramphenicol. Polymyxins. Antifolate drugs
12. Tetracyclines and glycylcyclines
13. Aminoglycosides
14. Quinolones and fluoroquinolones
15. Macrolides. Ketolides

Type and method of grading:
Written test: according to the scores.
Final exam consists of three parts. The grade will be decided after the oral part of the exam (three questions), taken into consideration the results of the preceding two parts, toxicology exam and written clinical pharmacology/pharmacotherapy exam.

How to register for the exam:
Registration must be done through the NEPTUN system for the days set by the department up to the limits.

Opportunities to retake the exam:
According to the Study and Examination Policy of Semmelweis University

Literature, i.e. printed, electronic and online notes, textbooks, tutorials (URL for online material):
Materials discussed during lectures and seminars: http://semmelweis.hu/pharmacology, Moodle (https://itc.semmelweis.hu)
Translational Medicine – Pathophysiology I-II.

5th semester

Credit value: 3
Number of lessons per week: 42 lecture: 21 practical course: 21
Academic year: 2021/2022 Semester 1
Subject code: AOKTLM740_1A
Name of the course leader: Prof. Zoltán Benyó MD, PhD, DSc
Institute of Translational Medicine, 06-1-210-0306
Director

Objectives of the subject, its place in the medical curriculum:
The objective of the course is to have the students understand the complex mechanisms responsible for the development of functional disturbances in common conditions affecting the function of the entire organism through integration of the knowledge imparted by initial courses (most importantly anatomy, biochemistry and physiology), as well as the regulatory processes that are activated in order to fend off these disturbances. Having assimilated the knowledge encompassing organ systems and disciplines and the integrative approach, the students will be ready to understand, in the course of their clinical education, the mechanisms and symptomatology of various diseases and the respective therapeutic possibilities.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Centre of Theoretical Medicine, 37–47 Tűzoltó street, 1094 Budapest
Theoretical Building, 4 Nagyvárad square, 1089 Budapest

Successful completion of the subject results in the acquisition of the following competencies:
Based on their basic training in anatomy, biochemistry and physiology, the students will become capable of understanding the manifestation, on the organism level, of the pathological processes underlying the most common diseases, their symptoms, causes and potential therapeutic outcomes. Helped by practice sessions closely linked with the theoretical material, the students will acquire the skills necessary for following causality relationships in the disturbances of physiological processes and for recognizing the effects of these disturbances on the totality of the function of the organism, and will gain experience in test methods utilized in clinical practice, their theoretical bases, margins for interpretation and actual execution.

Course prerequisites:
Macroscopic Anatomy II.
Medical Biochemistry II.
Medical Physiology II.

Number of students required for the course (minimum, maximum) and method of selecting students:
Based on registration in the Neptun system; offered in the autumn semester for the entire class.

How to apply for the course:
In the Neptun system
Detailed curriculum:
Lectures (1.5 lessons/week)

Semester 1

Complex endocrine disorders
Week 1 Complex endocrine disorders I. (Zoltán Benyó)
Week 2 Complex endocrine disorders II. (Tamás Ivanics)
Week 3 Complex endocrine disorders III. (Tamás Ivanics)

Disorders of the carbohydrate and lipid metabolism. Diabetes mellitus, dyslipidemia, obesity and the metabolic syndrome
Week 4 Insulin resistance. Metabolic syndrome. Etiology and pathomechanism of type 1 and type 2 diabetes. (Domokos Gerő)
Week 5 Complications of diabetes mellitus. (Domokos Gerő)
Week 6 Regulation of body mass; abnormal undernourishment and hypernourishment. Obesity. (László Tornóci)
Week 7 Disorders of lipid metabolism. (Éva Margittai)

Aging, menopause, osteoporosis
Week 8 Aging. (Péter Hamar)
Week 9 Menopause and its consequences. (Zsuzsanna Miklós)
Week 10 The etiology and pathomechanism of osteoporosis. Disorders of the regulation of calcium and phosphate metabolism. (Gábor Kökény)
Week 11 Joint diseases and systemic autoimmune processes. (Gábor Kökény)
Week 11 Joint diseases and systemic autoimmune processes. (Gábor Kökény)

Coagulation disorders
Week 12 (Zoltán Benyó)

Immobilization, cachexia and tumorous condition
Week 13 Disorders developing in the course of immobilization and their treatment. Cachexia. Rehabilitation. (Zoltán Benyó)
Week 14 Secondary disorders developing in tumorous diseases. (Péter Hamar)

Practices (3 lessons every two weeks)

Semester 1

Weeks 1–2 Clinical case discussion: Adrenal cortex + thyroid gland (Tünde Kriston, Tamás Ivanics)
Weeks 3–4 Clinical case discussion: Diabetes (Gábor Kökény, Domokos Gerő)
Weeks 5–6 Complications of diabetes I: Examination of blood vessel functions (Éva Ruisanchez)
Weeks 7–8 Complications of diabetes II: Examination of nervous system functions (Zsuzsanna Miklós)
Weeks 9–10 Determination of nutritional state + clinical case discussion (Tímea Tímár, Éva Margittai, László Hricisák)
Weeks 11–12 Clinical case discussion: Menopause and osteoporosis (Gábor Kökény, Sára Zsigrai)
Weeks 13–14 Vascular cognitive disorder: fNIRS and cognitive tests (Éva Pál, Csaba Schvarcz)

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of the syllabuses:
Pathology, immunology, laboratory medicine and general medicine

Special study work required to successfully complete the course:
None
Requirements for participation in classes and the possibility to make up for absences:
Participation at practice sessions is compulsory. Absence from a maximum of 25% of the practice sessions is acceptable. Absence from more than 75% of the practice sessions in a semester means that the student did not fulfil his/her semestrial study obligations. There is no possibility for making up for absence from lectures; absence from practice sessions can be made up for with another group in the same week, if there is room for additional participants.

Methods to assess knowledge acquisition during term time:
Students give account of their theoretical knowledge of the material so far presented in the lectures on two occasions in the course of the semester, at predetermined dates/times, in the form of written demonstrations. The students should take notes at the practice sessions, which are then evaluated by the practice supervisor by “Excellent”, “Passed” or “Unsatisfactory” qualifications. Unsatisfactory practice notes have to be resubmitted.

Requirements for semestral signature:
The requirement for the end-of-semester signature, and, consequently, for taking the exam is completion of the two intrasemestral written theoretical tests. Absence from more than 75% of the practice sessions in a semester also means that the student did not fulfil his/her semestral study obligations, therefore he/she is not permitted to take the exam.

Type of examination:
Semifinal exam

Requirements of the examination:

List of theoretical items

1. **Possible causes of the overproduction of growth hormone and prolactin, and the pathomechanism of the consequent disorders**
 Regulation of growth hormone secretion and its main effects in the individual organs and tissues. Pathomechanism of the symptoms of acromegaly. Regulation of prolactin secretion and the main causes of the development of hyperprolactinemia. The consequences of hyperprolactinemia and their pathomechanisms.

2. **Male hypogonadism and the androgen insensitivity syndrome**
 Regulation of sex hormone release in men; metabolism and main effects of androgen hormones. Pathomechanisms of the development and consequences of primary, secondary and tertiary hypogonadism; the physiological basis of differential diagnostics. The hormonal basis of sexual differentiation and the pathomechanism of the androgen insensitivity syndrome.

3. **Physiological disturbances of female hormonal regulation**
 The physiological basis of female hormonal regulation; the most common causes and symptoms of primary and secondary amenorrhea/oligomenorrhea and their pathomechanisms. Causes and consequences of functional hypothalamic amenorrhea. The pathomechanism of the development and symptoms of polycystic ovary syndrome and its long-term outcomes.

4. **Pathogenesis of the hypo- and hyperfunctional disorders of the thyroid gland, and the pathomechanisms underlying the symptoms of these conditions**
 The major physiological effects of thyroid hormones. The causes of congenital and acquired hypothyroidisms. Types of primary and secondary hyperthyroidisms. Pathogenesis and diagnostic traits of Hashimoto thyroiditis and Grave’s Basedow disease. The major symptoms of congenital hypothyroidism. Pathomechanisms underlying the symptoms manifesting at the organ system level in adult hypo- and hyperthyroidism. Characteristics of myxoedema coma and thyrotoxic crisis.

5. **The pathogenesis of acute and chronic adrenocortical insufficiency and the pathomechanisms underlying the major symptoms characterizing the conditions. Congenital adrenal hyperplasia**
 The major physiological effects of glucocorticoids and mineralocorticoids. The causes of the development of primary and secondary adrenocortical insufficiency. The leading symptoms of Addison’s disease; changes in hormone levels characteristic of the condition. Pathomechanisms resulting in the organ system damages developing in chronic adrenocortical insufficiency. Characteristics of the Addisonian crisis. Enzyme defects leading to congenital adrenal hyperplasia, and changes in glucocorticoid, mineralocorticoid and androgen hormone production brought about by these defects. Consequences of androgen hypersecretion.

6. **Pathogenesis of Cushing syndrome, pathomechanisms underlying its characteristic symptoms, and diagnosing the condition**
 The major physiological effects of glucocorticoids and mineralocorticoids. Various types of Cushing syndrome. Leading symptoms of the condition. Pathological changes in lipid, carbohydrate and protein metabolism. Characterization of the pathomechanisms resulting...
in abnormal functioning of the individual organs and organ systems. Laboratory tests facilitating the diagnosis of Cushing syndrome. Determination of the origin of Cushing syndrome using the dexamethasone test.

7. **Pathogenesis of primary and secondary hyperaldosteronism. Pathomechanisms underlying the symptoms developing in the conditions**
 Major physiological effects of mineralocorticoids. Causes of the development of primary and secondary hyperaldosteronism. Changes in plasma renin activity taking place in the conditions; mechanism of the change in renin secretion. Leading symptoms of hyperaldosteronism and their causes. Characterization of pathomechanisms elicited by hyperaldosteronism in the abnormal functioning of various organs and organ systems.

8. **Pathogenesis of type 1 diabetes mellitus**
 Genetic factors of type 1 diabetes mellitus, environmental factors playing a role in pathogenesis, and their relative contribution to the development of the disease. The process of the development of type 1 diabetes; the presentation form of manifest diabetes. The concept of absolute insulin deficiency and its consequences regarding clinical presentation and treatment.

9. **Pathogenesis of type 2 diabetes mellitus**
 Genetic factors of type 2 diabetes mellitus and environmental factors playing a role in its pathogenesis. Relative roles of genetic factors in predisposition and the significance of controllable environmental factors. The time course of the development of type 2 diabetes; the concepts of insulin resistance and glucotoxicity. The consequences of relative insulin deficiency regarding the clinical picture and the treatment.

10. **Microvascular complications of diabetes mellitus**
 The role of hyperglycemia in microvascular damage. Mechanism of the development of glucose-induced oxidative stress, inflammation, prothrombogen status and endothelial dysfunction. Clinical presentation forms of microvascular damage; related screening tests and therapeutic intervention points.

11. **Macrovascular complications of diabetes mellitus**
 The process of atherosclerosis in prediabetes and diabetes; factors playing a role in accelerated macrovascular damage. Presentation form and role of dyslipidemia developing in insulin resistance. The significance of residual risk in diabetes. Clinical presentation forms of macrovascular damage; related screening tests and therapeutic intervention points.

12. **Starvation, undernutrition and diets**

13. **Obesity and its relationship with insulin resistance**
 Obesity: definition, extent, types and prevalence. Obesity as a risk factor of other diseases. The major causes of the increase in mortality due to obesity. Possible causes of the increase in the prevalence of obesity observed. The combined effect of the colon microbiome and diet in the regulation of body mass. The concept and significance of the metabolic syndrome. The relationship between hepatic lipid metabolism and visceral adipose tissue. The role of positive energy balance in the development of insulin resistance and type 2 diabetes mellitus: the “double circle” theory. Results achievable in type 2 diabetes patients by negative energy balance.

14. **Characterization of lipoproteins; lipoprotein metabolism**
 Classification and composition of lipoproteins; characterization of the receptors of lipoprotein metabolism; formation and metabolism of chylomicrons, VLDL, HDL and LDL and their routes in the organism; reverse transport of cholesterol.

15. **Classification of dyslipidemias; syndromes associated with primary hyperlipoproteinemia**
 Classification of dyslipidemias; differentiation between primary and secondary forms, through examples. Detailed description of primary hyperlipoproteinemias, enumeration of their types, causes and main properties. Description, causes, diagnostics, symptoms and treatment of familial hypercholesterolemia, hyperchylomicronemia and familial dysbetalipoproteinemia.

16. ** Syndromes associated with secondary hyperlipoproteinemia**
 Enumeration of the most common diseases accompanied by the development of dyslipidemia. Characteristic changes in lipid metabolism, and pathomechanism of lipid metabolism disorders in these conditions.

17. **Aging at the molecular and cell level**
 Definition and forms of aging. Hypotheses at the molecular (genom instability [telomeres, epigenetics], proteostasis) and cell level (disturbance of nutrient perception, mitochondria, senescence, stem cells, intercellular communication).

18. **Organ-level manifestations of the aging syndrome**
 Aging of the cardiovascular and nervous system. Neurocognitive disorders; pathomechanism of Parkinson’s disease. Aging of the sensory organs, the hemato-immune system, the musculature and the kidneys.
19. The menopausal transition and the menopause
Definition of the menopause and the reproductive life stages connected with the menopause. Hormonal events and symptoms of the menopausal transition and the pathophysiological background of the symptoms.

20. The postmenopause
Hormonal changes in the post-menopausal life stage. Long-term consequences of estrogen deficiency and their pathophysiological background.

Hormones playing a primary role in the calcium and phosphate homeostasis of the organism and their effects on their target organs. Pathophysiology and symptoms of primary and secondary hyperparathyroidism. Causes and main symptoms of hypo- and hypercalcaemia.

22. Hormonal regulation of calcium and phosphate metabolism under physiological and pathological conditions; effects on the bone system.
Pathomechanisms, diagnostics and therapeutic possibilities of primary osteoporoses. Etiology and pathomechanisms of osteomalacia and the most common forms of secondary osteoporosis.

23. Non-osteoporotic adult bone diseases and the effects of vitamin D deficiency outside the bone system
Renal osteodystrophy, tumour-associated hypercalcemia; the role of FGF-23 in pathological processes. Etiology and significance of vitamin D deficiency. Effects of vitamin D on the bone system; its non-endocrine effects.

24. General mechanisms of the development of systemic autoimmune diseases
General mechanisms of the development of systemic autoimmune diseases. The concept of autoimmunity. The significance of immune tolerance. The role of genetic and environmental factors in its pathogenesis. The most common organ manifestations of systemic autoimmune diseases; major diagnostic possibilities and general therapeutic directions. Possibilities of biological therapies in autoimmune diseases.

25. Autoimmune joint diseases. Rheumatoid arthritis and Bechterew’s disease
The mechanism of the development of the diseases; the role of known genetic and environmental factors. The pathomechanism of gout. Most common manifestations and related differential diagnostic problems. Main diagnostic and therapeutic possibilities based on the pathomechanisms.

26. Pathomechanisms of systemic lupus erythematoses, systemic sclerosis and Sjögren’s syndrome

27. Conditions involving insufficiency of the blood coagulation system.
Primary and secondary hemostasis. The most common causes of the insufficient function of the blood coagulation system. Pathomechanisms of hemophilia A and B, von Willebrand disease and thrombocytopenies. The main causes of thrombocytopenias; pathomechanism of immune thrombocytopenic purpura.

28. Conditions involving hyperfunction of the blood coagulation system.
Main causes and characteristics of hereditary thrombophilias. The cause and consequence of aPC resistance. The pathomechanism of antiphospholipid syndrome. The role of the Virchow-triad in the development of arterial and venous thromboses. Genetic and environmental factors influencing thrombophilia. The mechanism of the development of increased thrombophilia in Covid-19 infection.

Pathomechanisms of thrombotic thrombocytopenic purpura (TTP), heparin-induced thrombocytopenia (HIT) and disseminated intravascular coagulation (DIC).

30. Effect of the immobilization syndrome on somatic functions
Manifestation of the immobilization syndrome in the central and peripheral nervous system, the bone and muscular system, the skin and the mucous membranes. Pathological regulatory processes underlying the disorders; theoretical basis and practical possibilities of their prevention and reversion.

31. Effect of the immobilization syndrome on vegetative functions
Manifestation of the immobilization syndrome in the cardiovascular, respiratory, gastrointestinal and urogenital organ systems and in hormonal regulation and metabolism. Pathological regulatory processes underlying the disorders; theoretical basis and practical possibilities of their prevention and reversion.

Consequences of the involvement of the heart, the gastrointestinal system (nausea – vomiting), the bone and muscle system (hypercalcemic osteolysis), the bone marrow and the lymphatic system.

Pathomechanisms of systemic inflammation, cachexia and pain.
List of practical items

Case studies
1. Thyroid gland, case 1.
2. Thyroid gland, case 2.
3. Adrenal gland, case 1.
5. Diabetes, case 1.
10. Assessment of nutritional state, case 2.
11. Assessment of nutritional state, case 3.
12. Menopause and osteoporosis, case 1.

Instrumental tasks:
16. Diabetic vessel function – practical test: Please give a brief summary of the principle of laser-doppler flowmetry and transcutaneous measurement of partial oxygen pressure, describe the blood flow response elicited by heating, its alteration in diabetic vessel dysfunction and the underlying pathomechanism.
17. Diabetic vessel function – practical test: Please give a brief summary of the principle of laser-doppler flowmetry and transcutaneous measurement of partial oxygen pressure, describe post-occlusive reactive hyperemia, its alteration in diabetic vessel dysfunction and the underlying pathomechanism.
18. Diabetic vessel function – practical test: Please give a brief summary of the principle of laser-doppler flowmetry and transcutaneous measurement of partial oxygen pressure; describe the venoarterial reflex and its alteration in diabetic vessel dysfunction, together with the underlying pathomechanism.
20. Diabetic neuropathy – practical test: Examination procedures applied in the diagnostics of neuropathies involving somatic nerves. Description of the performance of the physical examinations presented at the practical session.
22. Please enumerate the available methods for the determination of nutritional state. What are the advantages and disadvantages of the different methods?
23. How does the body composition measuring device based on bioelectric impedance work? Which are the most important parameters determined?
24. What are the fields of clinical practice that utilize the body composition measuring device based on bioelectric impedance? What are the parameters mainly used in the various fields?
25. The mechanism of neurovascular coupling and its significance in cerebral functional imaging. The theoretical background of the fNIRS method, the basis of its practical utilization, and its significance in the investigation of frontal cortical functions.
26. Different varieties of cognitive tests and their significance in the diagnostics of neurodegenerative disorders. The significance of the recognition of mild cognitive disturbances, and the theoretical basis of their differential diagnostics.

Method and type of evaluation:
Grades are based partly on theoretical knowledge and partly on its practical application.

Seminfinal exam
The semifinal exam consists of a written and an oral part. If the student fails the written part, he/she cannot sit for the oral exam. The oral exam covers a theoretical and a practical item. The average of the results of the two oral questions is used for calculating the final grade.

How to register for the examination:
Applications for the dates posted should be submitted via the Neptun system.
Possibilities for exam retake:
According to the TVSZ (Study and Examination Regulations (SER))

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
The Figures of the lectures available for download at the website, and short written extracts of the lectures (“handout”)
Gary D. Hammer, Stephen J. McPhee: Kórélettan – Bevezetés a klinikai orvostudományba, Semmelweis Kiadó 2018

6th Semester

Credit value: 3
Number of lessons per week: 42 lecture: 21 practical course: 21
Name of the course leader: Zoltán Benyó MD, PhD, DSc
His/her workplace, phone number: Institute of Translational Medicine, 06-1-210-0306
Position: Director, University Professor
Date and registration number of their habilitation: 2008, 259

Objectives of the subject, its place in the medical curriculum:
The objective of the course is to have the students understand the complex mechanisms responsible for the development of functional disturbances in common conditions affecting the function of the entire organism, through integration of the knowledge imparted by initial courses (most importantly anatomy, biochemistry and physiology), as well as the regulatory processes that are activated in order to fend off these disturbances. Having assimilated the knowledge encompassing organ systems and disciplines and the integrative approach, the students will be ready to understand, in the course of their clinical education, the mechanisms and symptomatology of various diseases and the respective therapeutic possibilities.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Centre of Theoretical Medicine, 37–47 Tűzoltó street, 1094 Budapest
Theoretical Building, 4 Nagyvárad square, 1089 Budapest

Successful completion of the subject results in the acquisition of the following competencies:
Based on their basic training in anatomy, biochemistry and physiology, the students will become capable of understanding the manifestation, on the organism level, of the pathological processes underlying the most common diseases, their symptoms, causes and potential therapeutic outcomes. Helped by practice sessions closely linked with the theoretical material, the students will acquire the skills necessary for following causality relationships in the disturbances of physiological processes and for recognizing the effects of these disturbances on the totality of the function of the organism, and will gain experience in test methods utilized in clinical practice, their theoretical bases, margins for interpretation and actual execution.

Course prerequisites:
Pathology, semifinal exam
Translational Medicine – Pathology, semifinal exam

Number of students required for the course (minimum, maximum) and method of selecting students:
Based on registration in the Neptun system; offered in the spring semester for the entire class.

How to apply for the course:
In the Neptun system
Lectures (1.5 lessons/week)
 Semester 2

Circulatory shock, sepsis and anaphylactic reaction
Week 1 Counterregulatory mechanisms activating in circulatory shock; processes responsible for its progression and its becoming irreversible. (Zoltán Benyó)
Week 2 The development of septic shock and its consequences. Anaphylactic reactions of the organism and their consequences. (Zoltán Benyó)

Hypertension and cardiac insufficiency
Week 3 Overview of the pathomechanism of hypertension. The process of blood vessel aging. The physiological consequences of hypertension, its organ-level complications and their manifestation. Advantageous and adverse effects of long-term antihypertensive therapy. (Zsuzsanna Miklós)
Week 4 The effect of acute and chronic cardiac insufficiency on the physiological function of the individual organ systems and the totality of the organism. (László Tornóci)

The effects of acute alcohol poisoning and alcoholism on the physiological functions of the organism.
Week 5 (Éva Margittai)

Disorders of liver function and bile secretion
Week 6 The effects of acute and chronic disturbances of liver function on the physiological functions of the organism and their regulation. Symptoms of bile secretion disorders and their effects on the physiological functions of the organism. (Éva Margittai)

Acute and chronic impairment of renal function; post renal transplantation state
Week 7 Causes and systemic consequences of acute renal insufficiency. Rejection reactions following renal transplantation and their possible therapies. The consequences of immunosuppression. (Péter Hamar)
Week 8 Pathological changes in organs affected by chronic renal insufficiency (cardiovascular, hematopoietic, bone and central nervous system, lipid metabolism). Hypertensive nephropathy; cooperation of kidneys and liver in detoxication of the organism. Cardiorenal and hepatorenal syndromes. (Péter Hamar)

Respiratory insufficiency
Week 9 Organism-level effects of acute respiratory insufficiency. Special aspects of respiratory insufficiency associated with circulatory insufficiency. (György Losonczzy)
Week 10 Adaptation mechanisms activating in the course of chronic respiratory insufficiency. The effect of chronic respiratory insufficiency on the physiological function of other organs. (György Losonczzy)

Disturbances of the salt-water balance and the acid-base balance; the basics of fluid therapy
Week 11 Complex regulation of acid-base balance as reflected by the metabolic processes of the organism – levels of regulation, diagnostics of complex deviations and the principles of the therapy. (Domokos Gerő)
Week 12 Na⁺-, K⁺- and water balance: complex regulation, pathophysiological significance and treatment of disorders. (Zsuzsanna Miklós)

Disorders and compensation mechanisms of erythropoiesis. The etiology of anemias and their consequences regarding the function of the entire organism.
Week 13 (Miklós Molnár)
Week 14 Competitive examination
Practices (3 lessons every two weeks)
Semester 2

Weeks 1–2 Clinical case discussions with the aim of presenting the differential diagnostics of circulatory shock and the physiological basis of shock therapy
Weeks 3–6 Hypertension, case discussion

Blood pressure measurement and determination of the ankle brachial index. Methods for the examination of blood vessel aging.
Weeks 7–8 Clinical case discussions with the aim of presenting the pathophysiological background of abnormal laboratory results associated with icterus
Weeks 9–10 Urine analysis
Weeks 11–12 Blood gas analysis, respiratory function
Weeks 13–14 Clinical case discussions with the aim of presenting the pathophysiological background of abnormal laboratory results associated with acid-base balance disorders

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of the syllabuses:
Pathology, immunology, laboratory medicine and general medicine

Special study work required to successfully complete the course:
None

Requirements for participation in classes and the possibility to make up for absences:
Participation at practice sessions is compulsory. Absence from a maximum of 25% of the practice sessions is acceptable. Absence from more than 75% of the practice sessions in a semester means that the student did not fulfil his/her semestral study obligations. There is no possibility for making up for absence from lectures; absence from practice sessions can be made up for with another group in the same week, if there is room for additional participants.

Methods to assess knowledge acquisition during term time:
Students give account of their theoretical knowledge of the material so far presented in the lectures on two occasions in the course of the semester, at predetermined dates/times, in the form of written demonstrations. The students should take notes at the practice sessions, which are then evaluated by the practice supervisor by “Excellent”, “Passed” or “Unsatisfactory” qualifications. Unsatisfactory notes have to be resubmitted.

Requirements for signature:
The requirement for the semestral signature, and, consequently, for taking the exam is completion of the two intrasemestral written theoretical tests. Absence from more than two practice sessions in a semester also means that the student did not fulfil his/her semestral study obligations, therefore he/she is not permitted to take the exam.

Type of examination:
Final exam

Requirements of the examination:

List of theoretical items, Semester 1

1. Possible causes of the overproduction of growth hormone and prolactin, and the pathomechanism of the consequent disorders
 Regulation of growth hormone secretion and its main effects in the individual organs and tissues. Pathomechanism of the symptoms of acromegaly. Regulation of prolactin secretion and the main causes of the development of hyperprolactinemia. The consequences of hyperprolactinemia and their pathomechanisms.
2. Male hypogonadism and the androgen insensitivity syndrome
 Regulation of sex hormone release in men; metabolism and main effects of androgen hormones. Pathomechanisms of the development and consequences of primary, secondary and tertiary hypogonadism; the physiological basis of differential diagnostics. The hormonal basis of sexual differentiation and the pathomechanism of the androgen insensitivity syndrome
3. Physiological disturbances of female hormonal regulation
The physiological basis of female hormonal regulation; the most common causes and symptoms of primary and secondary amenorrhea/oligomenorrhea and their pathomechanisms. Causes and consequences of functional hypothalamic amenorrhea. The pathomechanism of the development and symptoms of polycystic ovary syndrome and its long-term outcomes.

4. Pathogenesis of the hypo- and hyperfunctional disorders of the thyroid gland, and the pathomechanisms underlying the symptoms of these conditions
The major physiological effects of thyroid hormones. The causes of congenital and acquired hypothyroidisms. Types of primary and secondary hyperthyroidisms. Pathogenesis and diagnostic traits of Hashimoto thyroiditis and Grave’s Basedow disease. The major symptoms of congenital hypothyroidism. Pathomechanisms underlying the symptoms manifesting at the organ system level in adult hypo- and hyperthyroidism. Characteristics of myxoedema coma and thyrotoxic crisis.

5. The pathogenesis of acute and chronic adrenocortical insufficiency and the pathomechanisms underlying the major symptoms characterizing the conditions. Congenital adrenal hyperplasia
The major physiological effects of glucocorticoids and mineralocorticoids. The causes of the development of primary and secondary adrenocortical insufficiency. The leading symptoms of Addison’s disease; changes in hormone levels characteristic of the condition. Pathomechanisms resulting in the organ system damages developing in chronic adrenocortical insufficiency. Characteristics of the Addisonian crisis. Enzyme defects leading to congenital adrenal hyperplasia, and changes in glucocorticoid, mineralocorticoid and androgen hormone production brought about by these defects. Consequences of androgen hypersecretion.

6. Pathogenesis of Cushing syndrome, pathomechanisms underlying its characteristic symptoms, and diagnosing the condition
The major physiological effects of glucocorticoids and mineralocorticoids. Various types of Cushing syndrome. Leading symptoms of the condition. Pathological changes in lipid, carbohydrate and protein metabolism. Characterization of the pathomechanisms resulting in abnormal functioning of the individual organs and organ systems. Laboratory tests facilitating the diagnosis of Cushing syndrome. Determination of the origin of Cushing syndrome using the dexamethasone test.

7. Pathogenesis of primary and secondary hyperaldosteronism. Pathomechanisms underlying the symptoms developing in the conditions
Major physiological effects of mineralocorticoids. Causes of the development of primary and secondary hyperaldosteronism. Changes in plasma renin activity taking place in the conditions; mechanism of the change in renin secretion. Leading symptoms of hyperaldosteronism and their causes. Characterization of pathomechanisms elicited by hyperaldosteronism in the abnormal functioning of various organs and organ systems.

8. Pathogenesis of type 1 diabetes mellitus
Genetic factors of type 1 diabetes mellitus, environmental factors playing a role in pathogenesis, and their relative contribution to the development of the disease. The process of the development of type 1 diabetes; the presentation form of manifest diabetes. The concept of absolute insulin deficiency and its consequences regarding clinical presentation and treatment.

9. Pathogenesis of type 2 diabetes mellitus
Genetic factors of type 2 diabetes mellitus and environmental factors playing a role in its pathogenesis. Relative roles of genetic factors in predisposition and the significance of controllable environmental factors. The time course of the development of type 2 diabetes; the concepts of insulin resistance and glucotoxicity. The consequences of relative insulin deficiency regarding the clinical picture and the treatment.

10. Microvascular complications of diabetes mellitus
The role of hyperglycemia in microvascular damage. Mechanism of the development of glucose-induced oxidative stress, inflammation, prothrombogen status and endothelial dysfunction. Clinical presentation forms of microvascular damage; related screening tests and therapeutic intervention points.

11. Macrovascular complications of diabetes mellitus
The process of atherosclerosis in prediabetes and diabetes; factors playing a role in accelerated macrovascular damage. Presentation form and role of dyslipidemia developing in insulin resistance. The significance of residual risk in diabetes. Clinical presentation forms of macrovascular damage; related screening tests and therapeutic intervention points.

12. Starvation, undernutrition and diets

13. Obesity and its relationship with insulin resistance
Obesity: definition, extent, types and prevalence. Obesity as a risk factor of other diseases. The major causes of the increase in mortality due to obesity. Possible causes of the increase observed in the prevalence of obesity. The combined effect of the colon microbiome and diet in the regulation of body mass. The concept and significance of the metabolic syndrome. The relationship between hepatic lipid
metabolism and visceral adipose tissue. The role of positive energy balance in the development of insulin resistance and type 2 diabetes mellitus: the “double circle” theory. Results achievable in type 2 diabetes patients by negative energy balance.

14. Characterization of lipoproteins; lipoprotein metabolism
Classification and composition of lipoproteins; characterization of the receptors of lipoprotein metabolism; formation and metabolism of chylomicrons, VLDL, HDL and LDL and their routes in the organism; reverse transport of cholesterol.

15. Classification of dyslipidemias; syndromes associated with primary hyperlipoproteinemia
Classification of dyslipidemias; differentiation between primary and secondary forms, through examples. Detailed description of primary hyperlipoproteinemias, enumeration of their types, causes and main properties. Description, causes, diagnostics, symptoms and treatment of familial hypercholesterolemia, hyperchylomicronemia and familial dysbeta1lipoproteinemia.

16. Syndromes associated with secondary hyperlipoproteinemia
Enumeration of the most common diseases accompanied by the development of dyslipidemia. Characteristic changes in lipid metabolism, and the pathomechanism of lipid metabolism disorders in these conditions.

17. Aging at the molecular and cell level
Definition and forms of aging. Hypotheses at the molecular (genom instability [telomeres, epigenetics], proteostasis) and cell level (disturbance of nutrient perception, mitochondria, senescence, stem cells, intercellular communication).

18. Organ-level manifestations of the aging syndrome
Aging of the cardiovascular and nervous system. Neurocognitive disorders; pathomechanism of Parkinson’s disease. Aging of the sensory organs, the hematopoietic system, the musculature and the kidneys.

19. The menopausal transition and the menopause
Definition of the menopause and the reproductive life stages connected with the menopause. Hormonal events and symptoms of the menopausal transition and the pathophysiological background of the symptoms.

20. The postmenopause
Hormonal changes in the post-menopausal life stage. Long-term consequences of estrogen deficiency and their pathophysiological background.

Hormones playing a primary role in the calcium and phosphate homeostasis of the organism and their effects on their target organs. Pathophysiology and symptoms of primary and secondary hyperparathyroidism. Causes and main symptoms of hypo- and hypercalcaemia.

Pathomechanisms, diagnostics and therapeutic possibilities of primary osteoporoses. Etiology and pathomechanisms of osteomalacia and the most common forms of secondary osteoporosis.

23. Non-osteoporotic adult bone diseases and the effects of vitamin D deficiency outside the bone system
Renal osteodystrophy, tumour-associated hypercalcemia; the role of FGF-23 in pathological processes. Etiology and significance of vitamin D deficiency. Effects of vitamin D on the bone system; its non-endocrine effects.

24. General mechanisms of the development of systemic autoimmune diseases
General mechanisms of the development of systemic autoimmune diseases. The concept of autoimmunity. The significance of immune tolerance. The role of genetic and environmental factors in its pathogenesis. The most common organ manifestations of systemic autoimmune diseases; major diagnostic possibilities and general therapeutic directions. Possibilities of biological therapies in autoimmune diseases.

25. Autoimmune joint diseases. Rheumatoid arthritis and Bechterew’s disease
The mechanism of the development of the diseases; the role of known genetic and environmental factors. Most common manifestations and related differential diagnostic problems. The pathomechanism of gout. Main diagnostic and therapeutic possibilities based on the pathomechanisms.

26. Pathomechanisms of systemic lupus erythematoses, systemic sclerosis and Sjögren’s syndrome

27. Conditions involving insufficiency of the blood coagulation system.
Primary and secondary hemostasis. The most common causes of the insufficient function of the blood coagulation system. Pathomechanisms of hemophilia A and B, von Willebrand disease and the thrombocytopenies. The main causes of thrombocytopenias; pathomechanism of immune thrombocytopenic purpura.
28. **Conditions involving hyperfunction of the blood coagulation system.**
 Main causes and characteristics of hereditary thrombophilias. The cause and consequence of aPC resistance. The pathomechanism of the antiphospholipid syndrome. The role of the Virchow-triad in the development of arterial and venous thromboses. Genetic and environmental factors influencing thrombophilia. The mechanism of the development of increased thrombophilia in Covid-19 infection.

29. **Coagulation disorders involving parallel hypo- and hyperfunction.**
 Pathomechanisms of thrombotic thrombocytopenic purpura (TTP), heparin-induced thrombocytopenia (HIT) and disseminated intravascular coagulation (DIC).

30. **Effect of the immobilization syndrome on somatic functions**
 Manifestation of the immobilization syndrome in the central and peripheral nervous system, the bone and muscular system, the skin and the mucous membranes. Pathological regulatory processes underlying the disorders; theoretical basis and practical possibilities of their prevention and reversion.

31. **Effect of the immobilization syndrome on vegetative functions**
 Manifestation of the immobilization syndrome in the cardiovascular, respiratory, gastrointestinal and urogenital organ systems and in hormonal regulation and metabolism. Pathological regulatory processes underlying the disorders; theoretical basis and practical possibilities of their prevention and reversion.

32. **Secondary disorders developing in tumour patients – 1. Consequences of organ involvement in cancer.**
 Consequences of the involvement of the heart, the gastrointestinal system (nausea – vomiting), the bone and muscle system (hypercalcemic osteolysis), the bone marrow and the lymphatic system.

33. **Secondary disorders developing in tumour patients – 2. Systemic consequences of cancer.**
 Pathomechanisms of systemic inflammation, cachexia and pain.

List of theoretical items, Semester 2

1. **Definition and classification of circulatory shock.**
 Mechanism of the decrease in cardiac output and of shock development in different forms of shock; similarities of and differences between the hemodynamic parameters of hypovolemic and distributive shock. The course of systemic circulatory parameters in the early and late phases of different forms of shock.

2. **Forms of hypovolemic shock**
 Forms of hypovolemic shock classified according to the root cause; their development mechanisms, characteristic features and possible therapies. Systemic and local circulatory changes characteristic of the individual phases of hypovolemic shock, and the mechanisms of their development.

3. **Different phases of hypovolemic shock**
 Counterregulatory processes activating in different phases of hypovolemic shock, their mechanisms, and the cause and kinetics of their activation and depletion.

4. **The progression of circulatory shock**
 Mechanism and consequences of the development of the processes responsible for the progression and eventual irreversibility of circulatory shock. Positive feedback loops and metabolic alterations causing the progression of circulatory shock.

5. **Organ-level manifestations of circulatory shock**
 Organ-level manifestations of the multiple organ failure/multiple organ dysfunction syndrome (MOF/MODS) in the central nervous system, heart, lungs, kidneys, liver and gastrointestinal tract, mechanisms of their development, and their consequences regarding shock progression.

6. **Possible causes of cardiogenic shock**
 Possible causes of cardiogenic shock. Systemic circulatory changes developing in the initial phase of cardiogenic shock, as a function of the root cause. Mechanisms responsible for the progression of cardiogenic shock. Possible causes of the “no-reflow” phenomenon. Treatment choices for cardiogenic shock.

7. **Septic shock: definition and mechanism of development**

8. **Mechanisms of the development of pro- and anti-inflammatory processes and their consequences in septic shock**
 Mechanisms of the development of pro- and anti-inflammatory processes and their consequences in septic shock, and their role in the development of late complications. The effect of septic shock on the blood coagulation system, the mechanism and consequences of these effects, and the relevant therapeutical possibilities. Causes and consequences of the functional changes of the endothel in septic shock. Theoretical basis of the treatment of septic shock.
 Definition of hypertension; criteria of the diagnosis. Measurement methods and threshold limits. Pathomechanisms of hypertension forms with known origins. Complications of hypertension and the underlying mechanisms.

11. Significance, causes and symptoms of cardiac insufficiency

12. Overview of the changes brought about by cardiac insufficiency and of therapeutic possibilities
 Differences in compensation mechanisms between healthy persons and cardiac insufficiency patients. Neurohormonal and cell-level changes. Treatment basics: curative, palliative, pharmacological and non-pharmacological therapies.

13. Alcohol metabolism
 The main routes of ethanol metabolism, varieties of metabolism; the CYP2E1 enzyme; the effect of alcohol on drug metabolism.

14. Acute alcohol poisoning
 The forms, clinical symptoms and therapy of acute alcohol poisoning. The pathomechanism of alcohol poisoning; metabolic changes accompanying the poisoning.

15. Chronic alcoholism
 The symptoms of chronic alcoholism; the forms and pathomechanism of liver damage taking place in alcoholism.

 Causes and laboratory diagnosis of the functional disorders of the liver. The pathomechanism of acute and chronic liver damage. The forms and differential diagnosis of viral liver damage.

17. Functional disorders of the liver 2.
 Characteristics, symptoms and course of acute and chronic liver insufficiency. Pathomechanism of the metabolic conditions causing liver damage.

 Renal functions, causes and consequences of acute renal insufficiency, nephrosis and nephritis syndrome.

 Definition and pathomechanism of hyperacute, accelerated, acute and chronic rejection. Relationships between immunosuppression and cardiovascular mortality.

 The causes of chronic renal insufficiency, the mechanism of the development of uremic symptoms, stage classification and symptoms of chronic renal insufficiency, uremic toxins, undernutrition and inflammation in uremia, the pathomechanism of renal fibrosis.

21. Pathological changes in the organs affected by chronic renal insufficiency.
 Pathological changes of the cardiovascular, hematopoietic, gastrointestinal and central nervous systems, the skin, the lungs, and lipid and bone metabolism.

22. Complex nephrological syndromes
 Cooperation of the kidneys and the liver in detoxication of the organism. Hypertensive nephropathy. Cardiorenal and hepatorenal syndromes.

23. Different forms of pulmonary ventilation disorders and their testing by respiratory function measurement. Definition and forms of respiratory insufficiency.
 Examples for obstructive and restrictive pulmonary diseases. Oxygen transport and oxygen consumption. Arterial blood gas and acid-base tests. The mechanism of V/Q unevenness and arterial hypoxemias of right to left pulmonary shunt origin; the cause of the different efficiencies of O₂ supplementation.

24. The symptoms of acute respiratory insufficiency. The effect of consequential hyperventilation on blood gas and acid-base values

25. The effect of prolonged smoking on large and small airways and the elastic fibers of the lungs.
 Changes in respiratory function in obstructive ventilatory disorders of the lung. Biomarkers of the systemic inflammation elicited by smoking, cytokines, inflammatory cells. The appearance of smoking-related systemic inflammation in certain organs. What are the common clinical signs suggesting that pulmonary disease caused by smoking is also accompanied by the chronic disease of the cardiac and skeletal musculature?
26. The relationship between the decrease in FEV$_1$ and arterial pO$_2$ and pCO$_2$ in chronic respiratory insufficiency (COPD and pulmonary fibrosis).
 The relationships of dyspnea, cyanosis, cardiac insufficiency and hypercapnia in COPD patients suffering in chronic respiratory insufficiency. The cause and clinical significance of erythrocytosis (polyglobulia) developing as a consequence of chronic hypoxemia.

27. Other common organ damages associated with chronic global respiratory insufficiency (most commonly with COPD).
 The cause of the aggravation of respiratory insufficiency in cardiac insufficiency. The prevalence, severity and clinical significance of chronic hypoxic pulmonary vasoconstriction. ECG signs of right heart strain. The causes of muscle degeneration. Main therapeutic methods of chronic respiratory insufficiency; pathophysiological basis.

 The concept of metabolic acidosis and the characteristic parameters of this acid-base disorder. The causes of metabolic acidosis and their classification based on the anion gap. The concept of the anion gap. The concept of respiratory and metabolic compensation developing in metabolic acidosis, and their time course. The mechanism and expectable magnitude of respiratory compensation. A selected example for the condition, and the basis of the therapy of acid-base deviation in the given case.
 The concept of metabolic alkalosis and the characteristic parameters of this acid-base disorder. Root causes of metabolic alkalosis and their classification based on volume status. The concept of respiratory and metabolic compensation developing in metabolic alkalosis, and their time course. The mechanism and expectable magnitude of respiratory compensation. A selected example for the condition, and the basis of the therapy of acid-base deviation in the given case.

 The concept of respiratory acidosis and the characteristic parameters of this acid-base disorder. The causes of respiratory acidosis. The concept and time course of metabolic compensation developing in respiratory acidosis. The mechanism of metabolic compensation and its expectable magnitude depending on the duration of the disorder. The significance of ammonia excretion in metabolic compensation. A selected example for the condition, and the basis of the therapy of acid-base deviation in the given case.
 The concept of respiratory alkalosis and the characteristic parameters of this acid-base disorder. The root causes of respiratory alkalosis. The concept of respiratory compensation developing in metabolic alkalosis, and its time course. The mechanism of metabolic compensation and its expectable magnitude depending on the duration of the disorder. A selected example for the condition, and the basis of the therapy of acid-base deviation in the given case.

31. K$^+$ balance disorders.

32. Megaloblastic anemias.
 The concept of anemias, their symptoms and classification. Aplastic anemias. Anemias associated with chronic renal disorders, liver insufficiency and endocrine diseases. The role of vitamin B$_{12}$ and folic acid in the nucleic acid metabolism of erythrocytes. The causes of folic acid and vitamin B$_{12}$ deficiencies. Characteristic symptoms of megaloblastic anemias.

33. Anemias based on iron deficiency or iron incorporation disorder.
 The cause and pathomechanism of iron deficiency conditions. Clinical, hematological and laboratory changes characteristic of iron deficiency anemias. Forms of anemia brought about by disorders of heme synthesis. Anemias associated with chronic diseases.

34. Hemolytic anemias.
List of practical items, Semester 1

Case studies:
1. Thyroid gland, case 1.
2. Thyroid gland, case 2.
3. Adrenal gland, case 1.
5. Diabetes, case 1.
10. Assessment of nutritional state, case 2.
11. Assessment of nutritional state, case 3.
12. Menopause and osteoporosis, case 1.

Instrumental tasks:
16. Diabetic vessel function, practical test: Please give a brief summary of the principle of laser-doppler flowmetry and transcutaneous measurement of partial oxygen pressure; describe the blood flow response elicited by heating, its alteration in diabetic vessel dysfunction and the underlying pathomechanism.
17. Diabetic vessel function, practical test: Please give a brief summary of the principle of laser-doppler flowmetry and transcutaneous measurement of partial oxygen pressure, describe post-occlusive reactive hyperemia, its alteration in diabetic vessel dysfunction and the underlying pathomechanism.
18. Diabetic vessel function, practical test: Please give a brief summary of the principle of laser-doppler flowmetry and transcutaneous measurement of partial oxygen pressure, describe the venoarterial reflex and its alteration in diabetic vessel dysfunction, together with the underlying pathomechanism.
20. Diabetic neuropathy, practical test: Examination procedures applied in the diagnostics of neuropathies involving somatic nerves. Description of the performance of the physical examinations presented at the practical session.
22. Please enumerate the available methods for the determination of nutritional state. What are the advantages and disadvantages of the different methods?
23. How does the body composition measuring device based on bioelectric impedance work? Which are the most important parameters determined?
24. What are the fields of clinical practice that utilize the body composition measuring device based on bioelectric impedance? What are the parameters mainly used in these various fields?
25. The mechanism of neurovascular coupling and its significance in cerebral functional imaging. The theoretical background of the fNIRS method, the basis of its practical utilization, and its significance in the investigation of frontal cortical functions.
26. Different varieties of cognitive tests and their significance in the diagnostics of neurodegenerative disorders. The significance of the recognition of mild cognitive disturbances, and the theoretical basis of their differential diagnostics.

List of practical items, Semester 2

Case studies:
1. Hypertension, case 1.
2. Hypertension, case 2.
3. Hypertension, case 2.
5. Circulatory shock, case 2.
8. Icterus, case 1.
10. Icterus, case 3.
12. Icterus, case 5.
15. Respiration, case 2.
17. Respiration, case 4.
18. Respiration, case 5.
22. Acid-base, case 1.
23. Acid-base, case 2.
27. Acid-base, case 6.
Instrumental tasks:
30. What rules should be adhered to in the course of blood pressure measurements?
31. What is ABPM? What are its indications, and how is it done? What does assessment of the diurnal rhythm help with?
32. What are the criteria of hypertension in the case of the different available measurement options? What are the indications and benefits of home blood pressure monitoring?
33. Phenotypic presentation of vessel aging; its pathophysiological mechanisms (outline), enumeration of examination methods.
34. Characterization of the physiological arterial pulse wave and its changes brought about by aging.
35. Determination and significance of the ankle brachial index.
36. Measurement and significance of the propagation velocity of the pulse wave.
37. Pathological findings in urine analysis, their leading symptoms and causes. Reference values.
38. Enumeration of the examination methods of renal function; restriction of renal function in old age.
39. Possible causes of the abnormal colour of urine.
40. Pathomechanism of diabetic nephropathy, its stages, monitoring its progression; the consequences of microangiopathy.

Method and type of evaluation:
Grades for the final exam are based partly on theoretical knowledge and partly on its practical application.
Final exam:
The final exam consists of a written and an oral part. If the student fails the written part, he/she cannot sit for the oral exam. The oral exam covers two theoretical items and one practical item. The average of the results of the three oral questions is used for calculating the final grade.

How to register for the examination:
Applications for the dates posted should be submitted via the Neptun system.

Possibilities for exam retake:
According to the TVSZ (Study and Examination Regulations (SER))

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
The Figures of the lectures available for download at the website, and short written extracts of the lectures (“handout”).
Gary D. Hammer, Stephen J. McPhee: Kórélettan – Bevezetés a klinikai orvostudományba, Semmelweis Kiadó 2018
MEDICAL STATISTICS, INFORMATICS AND TELEMEDICINE

lecture 1 hour/week practice 1 hour/week 2 credits

Tutor: Dr Dániel Veres

<table>
<thead>
<tr>
<th>week</th>
<th>lecture topic</th>
<th>practice topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Principles of quantitative medicine.</td>
<td>Introduction. Data types. Introduction to data types.</td>
</tr>
<tr>
<td>2</td>
<td>Summary of data: descriptive statistics</td>
<td>Graphical representation of data and interpretation of plots I. Ploting frequencies: visualization of samples with a large number of elements on a histogram, bar plot.</td>
</tr>
<tr>
<td>3</td>
<td>Event, probability, distribution.</td>
<td>Graphical representation of data and interpretation of plots II. Box plots, scatter plot, mosaic plot. Outliers. Interpretation of percentile curves. Descriptive values. Determination of descriptive values from a large sample size.</td>
</tr>
<tr>
<td>6</td>
<td>T-tests; chi-square tests. Multiplicity.</td>
<td>Hypothesis tests. Logic of hypothesis tests.</td>
</tr>
<tr>
<td>9</td>
<td>Linear regression as a tool against confounding,</td>
<td>Arguing. Examples. Bias. Examples</td>
</tr>
<tr>
<td>10</td>
<td>Evaluation of diagnostic tests.</td>
<td>Regression models. Interpreting the results of regression models.</td>
</tr>
<tr>
<td>12</td>
<td>Our own research, diploma work, dialogue with the statistician: How much is enough? How not to make a very bad questionnaire? How to make a good data table?</td>
<td>Diagnostic tests II. ROC curves. Likelihood ratios.</td>
</tr>
<tr>
<td>13</td>
<td>Introduction to medical decision theory, Bayesian theory: a priori and a posteriori distributions, learning model.</td>
<td>Preparing data. Organizing data tables.</td>
</tr>
<tr>
<td>14</td>
<td>Databases, expert systems, AI supported diagnostics, BigData.</td>
<td>When and how to ask a statistician. Questionnaires. Reflection on a questionnaire - how not to do very badly.</td>
</tr>
</tbody>
</table>
MEDICAL MICROBIOLOGY II.

Institute of Medical Microbiology
Program Director: Prof. Dr. Dóra Szabó
Tutor: Dr. Ágoston Ghidán

Second Semester

Lectures (1.5 hours per week)

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Medical Mycology</td>
</tr>
<tr>
<td>2.</td>
<td>Medical Parasitology – 1</td>
</tr>
<tr>
<td>3.</td>
<td>Medical Parasitology – 2</td>
</tr>
<tr>
<td>4.</td>
<td>Medical Parasitology – 3</td>
</tr>
<tr>
<td>5.</td>
<td>General Virology</td>
</tr>
<tr>
<td>6.</td>
<td>DNA viruses – 1</td>
</tr>
<tr>
<td>7.</td>
<td>DNA viruses – 2</td>
</tr>
<tr>
<td>8.</td>
<td>RNA viruses – 1</td>
</tr>
<tr>
<td>9.</td>
<td>RNA viruses – 2</td>
</tr>
<tr>
<td>10.</td>
<td>RNA viruses – 3</td>
</tr>
<tr>
<td>11.</td>
<td>Hepatitis viruses</td>
</tr>
<tr>
<td>12.</td>
<td>Retro viruses. AIDS. Viral oncogenesis</td>
</tr>
<tr>
<td>13.</td>
<td>Slow viruses and Prions. Control of viral diseases. Antiviral chemotherapy</td>
</tr>
<tr>
<td>14.</td>
<td>Iatrogenic and Nosokomial infections</td>
</tr>
</tbody>
</table>

Practicals (2 hours per week)

<table>
<thead>
<tr>
<th>Week</th>
<th>Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Medical Mycology</td>
</tr>
<tr>
<td>2.</td>
<td>Medical Parasitology – 1</td>
</tr>
<tr>
<td>3.</td>
<td>Medical Parasitology – 2</td>
</tr>
<tr>
<td>4.</td>
<td>Medical Parasitology – 3</td>
</tr>
<tr>
<td>5.</td>
<td>Midterm exam I. General Virology</td>
</tr>
<tr>
<td>6.</td>
<td>DNA viruses</td>
</tr>
<tr>
<td>7.</td>
<td>RNA viruses</td>
</tr>
<tr>
<td>8.</td>
<td>Midterm exam II.</td>
</tr>
<tr>
<td>9.</td>
<td>Clinical Bacteriological Diagnosis – 1: Skin, wound and eye infections</td>
</tr>
<tr>
<td>10.</td>
<td>Clinical Bacteriological Diagnosis – 2: Respiratory tract infections</td>
</tr>
<tr>
<td>12.</td>
<td>Clinical Bacteriological Diagnosis – 4: Bacteraemia, sepsis, endocarditis, meningitis</td>
</tr>
<tr>
<td>13.</td>
<td>Summary and review</td>
</tr>
<tr>
<td>14.</td>
<td>Practical exam</td>
</tr>
</tbody>
</table>
PATHOLOGY I.

1st Dept. of Pathology and Experimental Cancer Research
Tutor: Dr. Gergely Rácz

First Semester

Lectures (14 weeks): (all lectures for the whole class are held at the 2nd Dept. of Pathology).

Autopsy and histology practice (14 weeks) absence: more than 3 absences invalidate semester. Missing any half (either histology or autopsy) of the practice is considered an absence.

Lectures (3 hours per week)

1. Introduction
 - Autopsy demonstration
 - Nutmeg liver H&E (1)
 - Cardiac fibrosis in liver H&E (7)
 - Pulmonary edema H&E (2)

2. Cell injury
 - Haemosiderin in alveolar macrophages H&E (8)

3. Cell injury
 - Thromboembolism H&E (3)
 - Hemorrhagic infarction of the lung H&E (4)
 - Anemic infarction of the kidney H&E (5)
 - Emolliation of the brain H&E (6)
 - Fatty degeneration of the liver H&E (12)

4. Inflammation
 - Phlegmone H&E (13)

5. Inflammation
 - Cerebral abscess H&E (14)
 - Fibrinous pericarditis H&E (15)
 - Pseudomembranous colitis (16)

6. Wound healing, regeneration and fibrosis
 - Actinomycosis H&E (98)

7. Immunopathology
 - Candidiasis PAS (17)
 - Aspergillosis (slide demonstration)
 - Acute appendicitis H&E (66)
 - Oxyuris in appendix H&E (67)

8. Neoplasia
 - Chronic polypous sinusitis H&E (18)

9. Neoplasia
 - Chronic abscess (9)
 - Granulation tissue H&E (19)
 - Foreign-body granuloma H&E (20)

10. Neoplasia
 - Metaplasia (slide demonstration)

11. Genetic diseases
 - Dysplasia of the cervical epithelium (CIN) H&E (24)
 - In-situ carcinoma of the cervix H&E (25)
 - Invasive squamous cell carcinoma of the cervix H&E (26)

12. Haemodynamic disorders
 - Squamous cell papilloma H&E (23)
 - Squamous cell carcinoma of the larynx H&E (10)
 - Tubulovillous adenoma of the colon H&E (30)
 - Adenocarcinoma of the colon H&E (31)
 - Metastasis in lymph node H&E (36)
 - Metastatic carcinoma in the lung (slide demonstration)

13. Haemodynamic disorders
 - Leiomyoma H&E (37)
 - Leiomyosarcoma (slide demonstration)
 - Lipoma H&E (11)
 - Liposarcoma (slide demonstration)
 - Malignant fibrous histiocytoma H&E (38)
 - Immunohistochemistry (slide demonstration)
Lectures (3 hours per week)

14. Environmental and nutritional pathology
 Atherosclerosis of the aorta H&E (45)
 Benign nephrosclerosis H&E(46)
 Coronary-sclerosis H&E(47)
 Polyarteritis nodosa H&E (48)
 Giant cell arteritis H&E (49)
 Cystic medianecrosis of the aorta H&E (86)

15. Blood vessels
 Fatty infiltration of the myocardium H&E (41)

16. Blood vessels
 Myocardial infarction, early H&E (42)
 Myocardial infarction, old H&E (43)
 Myocarditis H&E(44)
 Endocarditis H&E(96)

17. Heart
 IRDS H&E (50)

18. Heart
 Lobar pneumonia H&E(51)
 Bronchopneumonia H&E (52)
 Pneumoconiosis H&E (54)
 Pleurafibrosis H&E (97)

19. Respiratory system
 Miliary tuberculosis in lung H&E (55)

20. Respiratory system
 Tuberculotic lymphadenitis H&E (56)
 Sarcoidosis H&E (57)
 Oat cell carcinoma of the lung H&E (58)
 Mesothelioma H&E (59)
 Nasopharyngeal carcinoma (slide demonstration)

21. Respiratory system
 Mixed tumor of the parotid gland H&E(32)
 Warthin-tumor (slide demonstration)
 Mucoepidermoid carcinoma (slide demonstration)
 Adenoid cystic carcinoma (slide demonstration)
 Chronic peptic ulcer H&E (60)
 Chronic gastritis H&E (61), Giemsa (62)
 Signet ring cell carcinoma of the stomach H&E(63), PAS (64)
 Ventricular-lymphoma (slide demonstration)

22. Infectious diseases
 Villous atrophy in small intestine (65)

23. Infectious diseases
 Ulcerative colitis H&E(68)

24. Infectious diseases
 Crohn’s disease H&E (69)
 Carcinoid H&E (53)
 Peritoneal carcinosis H&E (99)

25. Gastrointestinal tract
26. Gastrointestinal tract
27. Gastrointestinal tract
28. Pancreas

Histopathology practices

- Atherosclerosis of the aorta H&E
- Benign nephrosclerosis H&E
- Coronary-sclerosis H&E
- Polyarteritis nodosa H&E
- Giant cell arteritis H&E
- Cystic medianecrosis of the aorta H&E
- Fatty infiltration of the myocardium H&E
- Myocardial infarction, early H&E
- Myocardial infarction, old H&E
- Myocarditis H&E
- Endocarditis H&E
- IRDS H&E
- Lobar pneumonia H&E
- Bronchopneumonia H&E
- Pneumoconiosis H&E
- Pleurafibrosis H&E
- Miliary tuberculosis in lung H&E
- Tuberculotic lymphadenitis H&E
- Sarcoidosis H&E
- Oat cell carcinoma of the lung H&E
- Mesothelioma H&E
- Nasopharyngeal carcinoma (slide demonstration)
- Mixed tumor of the parotid gland H&E
- Warthin-tumor (slide demonstration)
- Mucoepidermoid carcinoma (slide demonstration)
- Adenoid cystic carcinoma (slide demonstration)
- Chronic peptic ulcer H&E
- Chronic gastritis H&E, Giemsa
- Signet ring cell carcinoma of the stomach H&E, PAS
- Ventricular-lymphoma (slide demonstration)
- Villous atrophy in small intestine
- Ulcerative colitis H&E
- Crohn’s disease H&E
- Carcinoid H&E
- Peritoneal carcinosis H&E
- Organ demonstration
PATHOLOGY II.
Second Semester

Lectures (3 hours per week) **Histopathology** practices

29. Liver and biliary system Alcoholic hepatitis H&E(70)
30. Liver and biliary system Chronic hepatitis H&E (71)
31. Liver and biliary system Liver cirrhosis H&E(72)
 Hepatocellular carcinoma H&E (73)
 Cavernous haemangioma of liver H&E (35)
32. Kidney Chronic cholecystitis H&E(74)
33. Kidney Chronic pancreatitis H&E(75)
 Acute hemorrhagic necrotising pancreatitis H&E(76)
 Pancreatic pseudocyst (slide demonstration)
 Adenocarcinoma of pancreas H&E (77)
 Islet cell tumor of pancreas (slide demonstration)
34. Urinary tract Diabetic nodular glomerulosclerosis
 (Kimmelstiel-Wilson) H&E (78)
35. Male genital syste Glomerulonephritis H&E (79)
 End stage kidney H&E (80)
 Acute rejection in transplanted kidney H&E (22)
36. Gynecologic pathology Acute pyelonephritis H&E (81)
37. Gynecologic pathology Chronic pyelonephritis H&E (82)
 Renal cell carcinoma H&E (83)
 Normal adrenal cortex (slide demonstration)
 Wilm's tumor H&E(84)
 Transitional cell carcinoma H&E (28)
38. Neonatology Nodular hyperplasia of the prostate H&E(85)
39. Breast Adenocarcinoma of prostate H&E(87)
 Seminoma H&E (88)
 Embryonal carcinoma (slide demonstration)
 Teratoma H&E(89)
40. Blood and lymphoid organs Placenta retention H&E (90)
41. Blood and lymphoid organs Extravertine gravidity H&E (91)
 Arias-Stella phenomenon (slide demonstration)
 Hydatiform mole H&E (92)
 Choriocarcinoma H&E (93)
 Endometrial hyperplasia H&E (94)
 Endometriosis (slide demonstration)
 Endometrium carcinoma H&E (95)
42. Blood and lymphoid organs Chronic cervicitis H&E (123)
43. Blood and lymphoid organs HPV infection in cervix H&E (124)
 In situ hybridisation (slide demonstration)
 Condyloma acuminatum (slide demonstration)
 Follicular cyst of the ovary H&E (125)
 Mucinous cystadenoma of the ovary H&E(29)
 Mucinous cystadenocarcinoma (slide demonstration)
 Borderline serous papillary cystadenoma of the ovary H&E (126)
 Serous papillary cystadenocarcinoma of the ovary (slide demo)
 Granulosa cell tumor (slide demonstration)
44. Endocrinology Fibrocystic disease of the breast H&E(101)
Lectures (3 hours per week)

45. Endocrinology

- Peri- and intracanalicular fibroadenoma of the breast H&E (33)
- Phyllloid tumor (slide demonstration)
- Intraductal carcinoma H&E (102)
- Invasive ductal carcinoma H&E (103)
- Invasive lobular carcinoma H&E (104)
- FNAB of the breast (cytol. smear demonstration)

46. Skin

- Normal bone marrow H&E (127)

47. Skin

- Leukemic bone marrow H&E (128)
- Leukemic infiltration of parenchymal organs (slide demonstration)
- Multiple myeloma H&E (106)
- Amyloidosis Congo (21)

48. Head and neck

- Non Hodgkin lymphoma (low grade) H&E (107)
- Non Hodgkin lymphoma (high grade) H&E (108)
- Follicular lymphoma (slide demonstration)
- Tonsillar lymphoma (slide demonstration)
- MALT lymphoma (slide demonstration)
- Hodgkin lymphoma H&E (109)
- Hodgkin lymphoma histologic types (slide demonstration)

49. Bones and joints

- Colloid goiter H&E (110)
- Graves disease H&E (111)
- Follicular adenoma of the thyroid gland H&E (112)
- Follicular carcinoma (slide demonstration)
- Papillary carcinoma of the thyroid gland H&E (113)
- Medullary carcinoma (slide demonstration)
- Adrenal cortical adenoma H&E (105)
- Parathyroid adenoma (slide demonstration)

50. Bones and joints

- Osteosarcoma H&E (114)
- Rhabdomyosarcoma H&E (115)
- Rheumatoid arthritis H&E (116)
- Autoimmun diseases (slide demonstration)

51. Bones and joints

- Purulent meningitis H&E (117)

52. Eye

- Basocellular carcinoma H&E (27)
- Verruca vulgaris H&E (100)
- Naevus pigmentosus H&E (39)
- Malignant melanoma H&E (40)
- Metastatic melanoma (slide demonstration)
- Bowen's disease (slide demonstration)
- Capillary haemangioma of the skin H&E (34)

53. Skeletal muscle

- Encephalitis H&E (118)

54. Nervous system

- Meningeoma H&E (119)
- Glioblastoma multiforme H&E (120)
- Schwannoma H&E (121)
- Neuroblastoma H&E (122)
- Ganglioneuroblastoma (slide demonstration)
- Paraganglioma (slide demonstration)

55. Nervous system

- Review

57. Clinicopathologic conference

Semifinal Exam: Autopsy demonstration on the last autopsy practice will be graded 1 to 5. This grade, if not 1, will be added to the scores of written test. Written test is composed of 100 Qs (true-false, simple choice, problem solving, combination, multiple choice, relations, medical term, assay, scores are 0-65:1; 66-73:2; 74-83:3; 84-89:4; 90-105:5). Further details available in the semifinal exam protocol provided one month before examination period.
PATHOLOGY I - II.

2nd Department of Pathology
Head of Department: *Prof. Dr. András Kiss*

Index

Lectures
List of textbooks
Histopathology practices - slides for the histopathology exam and slide demonstrations
General information - Lectures, practices, competition
Examinations: Semifinal
Examinations - Final
Schedule
Schedule for the academic year

1st SEMESTER

<table>
<thead>
<tr>
<th>WEEK 1</th>
<th>LECTURES</th>
<th>HISTOPATHOLOGY</th>
</tr>
</thead>
</table>
| **Introduction (Kiss)** | Practice 1- Introduction
- Digital teaching system
- Teleconsultation
- E-school
- Safety rules
- Cell injury, adaptation, storage disorders
- Necrosis, coagulative
- Necrosis, liquefactive
- Apoptosis
- Hypertrophy
- Hyperplasia
- Fatty degeneration
- Amyloidosis |

| **WEEK 2** | **Hemodynamic disorders I. (Madaras)** | **Practice 2-Hemodynamic disorders I.**
- Acute congestion –
- Pulmonary edema
- Chronic congestion in lung
- Haemosiderin in alveolar macrophages
 o (“heart failure cells”)
- Chronic congestion in liver
 o (“Nutmeg liver”)
- Nutmeg liver with fibrosis
- Centrilobular necrosis |

| **WEEK 3** | **Inflammation I. (Tímár)** | **Practice 3– Hemodynamic disorders II.**
- Thrombus
- Fat embolism
- Anemic infarction-kidney
- Hemorrhagic infarction-lung |

Practice 2-Hemodynamic disorders II.
- Thrombosis
- Embolism
- Infarction
- Shock
- Hemorrhagic infarction-lung
- Acute congestion –
- Pulmonary edema
- Chronic congestion in lung
- Haemosiderin in alveolar macrophages
 o (“heart failure cells”)
- Chronic congestion in liver
 o (“Nutmeg liver”)
- Nutmeg liver with fibrosis
- Centrilobular necrosis

Practice 3– Hemodynamic disorders II.
- Thrombus
- Fat embolism
- Anemic infarction-kidney
- Hemorrhagic infarction-lung

Practice 3– Hemodynamic disorders II.
- Thrombosis
- Embolism
- Infarction
- Shock
- Hemorrhagic infarction-lung
<table>
<thead>
<tr>
<th>Week 4</th>
<th>Neoplasia I. (Schaff)</th>
<th>Practice 4 –Inflammation, repair</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neoplasia II. (Schaff)</td>
<td>Fibrosing pericarditis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Foreign body granuloma</td>
</tr>
<tr>
<td>Week 5</td>
<td>Neoplasia III. (Tímár)</td>
<td>Practice 5- Neoplasia I</td>
</tr>
<tr>
<td></td>
<td>Molecular mechanisms of tumour development: protooncogenes, oncogenes, tumor suppressor genes, growth factors.</td>
<td>Squamous metaplasia</td>
</tr>
<tr>
<td></td>
<td>Neoplasia IV. (Tímár)</td>
<td>Condyloma (LSIL)</td>
</tr>
<tr>
<td></td>
<td>Tumor growth, tumor progression, metastasis. Familiar cancer</td>
<td>CIN 3 (HSIL)</td>
</tr>
<tr>
<td></td>
<td>Neoplasia V. (Kulka) (Saturday)</td>
<td>Invasive carcinoma</td>
</tr>
<tr>
<td></td>
<td>Prognostic factors in tumour pathology. Staging and grading of tumours. TNM. Handling of surgical biopsy material.</td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td>Childhood tumours (Halász)</td>
<td>Practice 6-Midterm I (cell injury, hemodynamics, inflammation)</td>
</tr>
<tr>
<td></td>
<td>Genetic and developmental disorders. Gene pathology I. (Kiss)</td>
<td>Neoplasia II. (Benign and malignant tumours)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Squamous cell carcinoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adenoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adenocarcinoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lymph node metastasis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liver metastasis</td>
</tr>
<tr>
<td>Week 7</td>
<td>Genetic and developmental disorders. Gene pathology II. (Kiss)</td>
<td>Practice 7-Neoplasia III. (Soft tissue and childhood tumours)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leiomyosarcoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Osteosarcoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wilms tumour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neuroblastoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teratoma maturum</td>
</tr>
<tr>
<td>Week 8</td>
<td>Cardiovascular pathology I. (Glasz)</td>
<td>Practice 8- Biopsy techniques, protein- and DNA-based diagnostics</td>
</tr>
<tr>
<td></td>
<td>Cardiovascular pathology II. (Glasz)</td>
<td>Core needle biopsy</td>
</tr>
<tr>
<td></td>
<td>Endocarditis, myocarditis, pericarditis. Rheumatic heart disease. Ischemic heart disease.</td>
<td>Biopsy by endoscopy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frozen section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Special stains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FISH</td>
</tr>
<tr>
<td>Week 9</td>
<td>Cardiovascular pathology III. (Glasz)</td>
<td>Practice 9- Cardiovascular diseases</td>
</tr>
<tr>
<td></td>
<td>Head and neck (Székely E)</td>
<td>Atherosclerosis</td>
</tr>
<tr>
<td></td>
<td>Neoplastic and non-neoplastic lesions of lips, oral cavity, tongue, teeth, salivary glands, sinuses, pharynx, larynx, ear.</td>
<td>Acut myocardial infarction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Myocardial infarction-healing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Endocarditis</td>
</tr>
</tbody>
</table>
LECTURES

Week 10

Respiratory system I. (Székely E)

Respiratory system II. (Tímár)

Week 11

Immunopathology (Kiss)
Constituents of the immune system. Hypersensitive reactions. Allergy. Transplantation. Immunodeficiency. AIDS.

Autoimmune diseases (Glasz)
Etiology. Monosystemic diseases (e.g. chr. Athrophic gastritis, myasthenia gravism Basedow dis., Hashimoto thyroiditis, Addison dis., Insulin dependent diabetes mellitus, Sclerosis multiplex) and Oligo- polysystemic diseases (e.g. SLE, Sjögren sy, RA, scleroderma, deramatomyositis)

Week 12

Infectious diseases (Lotz)
Diseases caused by viruses (tick-borne viruses, polio, variola, herpes, CMV, EBV, rubella, varicella, mumps, influenza), Rickettsiae, Spirochetes. Bacteria (tularaemia, pertussis, legionella, brucellosis, listeriosis, clostridial infections (tetanus, botulism), Streptococci) Actinomycosis. Mycobacteria (tbc, leprosy). Protozoa (malaria, toxoplasmosis, amebiasis)

Skin pathology (Székely T./Kovács A.)

Week 13

Environmental and nutritional pathology (Kerényi)
Smoking, alcoholism, drugs, iatrogenic injuries. Environmental chemical and physical factors. Obesity, protein malnutrition, vitamins.

Bones and joints (Arató)

Week 14

Clinical pathology I. (Székely E)
Tumor Screening. Cytodiagostics. Basic cytopathological morphology of benign and malignant lesions. Case presentations.

Clinical pathology II. (Kiss)
Diagnostic parameters, requirements, which guide the clinical protocols. Molecular diagnostics of tumors. Targeted therapy

HISTOPATHOLOGY

Practice 10- Midterm II. (Neoplasia, Cardiovascular system, Head and neck)
Pulmonary pathology I. - non-neoplastic
- IRDS
- Bronchopneumonia
- Tuberculosis
- Boeck sarcoidosis

Practice 11- Pulmonary pathology II- neoplastic
- Small cell carcinoma
- Squamous cell carcinoma
- Adenocarcinoma
- Mesothelioma
- Pulmonary metastasis

Practice 12- Skin
- Seborrheic keratosis
- Basal cell carcinoma
- Melanocytic nevus
- Malignant melanoma

Practical exam
2nd Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Gastrointestinal tract I. (Kiss)
Esophagus (anatomy and developmental disorders, inflammation, trauma, tumors).
Stomach- part I.</td>
<td>Practice 1- The pathology report</td>
</tr>
<tr>
<td>Week 2</td>
<td>Gastrointestinal tract II. (Madaras)
Pathology of the stomach(-part 2) and small bowel. Appendix.
Gastrointestinal tract III. (Madaras)
Colon (congenital disorders, infections, diverticular disease, inflammation, Crohn-disease, ulcerative colitis, vascular diseases, neoplasms, other disorders). Peritoneum.</td>
<td>Practice 2- Gastrointestinal pathology I.
- Pleomorphic adenoma- parotis
- Peptic ulcer-stomach
- Gastritis chronica (H. pylori)
- Carcinoma sigillocellulare
- GIST</td>
</tr>
<tr>
<td>Week 4</td>
<td>Pathology of the liver III. (Kiss)
Neoplasms. Gallbladder and bile ducts (congenital anomalies, cholecystitis, cholelithiasis, cholangitis, neoplasms).
Pathology of the exocrine pancreas (Székely E)
Developmental abnormalities, inflammations, tumors of the exocrine pancreas.</td>
<td>Practice 4- Liver pathology
- Alcoholic hepatitis
- Viral hepatitis
- Cirrhosis
- Hepatocellular carcinoma
- Cavernous hemangioma
- Liver metastasis</td>
</tr>
<tr>
<td>Week 5</td>
<td>Endocrinology I. (Székely E)
Pathology of the endocrine pancreas: Diabetes mellitus. The hypothalamus-hypophysis system. Pathology of the pituitary gland. The thyroid gland: hypo- and hyperfunction, inflammations, tumors.
Endocrinology II. (Kovács A)
Pathology of the parathyroid gland. Hypo- and hyperfunction and other diseases of the adrenal cortex. Tumors of the adrenal gland. Pineal gland. Ectopic hormone production.</td>
<td>Practice 5- Pathology of the pancreas
- Acute pancreatitis
- Chronic pancreatitis
- Adenocarcinoma of the pancreas
- Neuroendocrine tumour</td>
</tr>
<tr>
<td>Week 7</td>
<td>Uropathology I. (Székely E)
Congenital abnormalities of the urinary tract. Inflammations. Urinary bladder (malformations, inflammations, tumors). Urethra.
Uropathology II. (Székely E)
Diseases of the epididymis, testis, prostate, penis and scrotum.</td>
<td>Practice 7- Midterm III (GI, liver, pancreas, endocrine) Renal- and uropathology
- Acute pyelonephritis
- End stage kidney
- Renal cell carcinoma
- Transitional cell carcinoma</td>
</tr>
</tbody>
</table>
| Week 8 | **Gynecologic pathology I.** (Schaff)
Gynecologic pathology II. (Madaras)
Pathology of the uterus. Uterine bleeding disorders. Endometrial hyperplasia, endometriosis. Tumours of the endometrium, myometrium and serosa. | **Practice 8- Uropathology- prostate, testis**
- Prostatic hyperplasia
- Prostatic adenocarcinoma
- Testis- seminoma
- Testis-embryonal carcinoma |
|---|---|---|
| Week 9 | **Gynecologic pathology III.** (Kulka)
Pathology of the fallopian tube and ovarium. Pregnancy related pathology of the uterus.
Neonatology (Kiss)
- Ectopic pregnancy
- Endometriosis
- Endometrial hyperplasia (simple)
- Endometrial carcinoma |
| Week 10 | **Breast pathology I.** (Kulka)
Symptoms and diagnosis of breast diseases. Malformations. Benign symptomatic lesions (inflammations, fibrocystic disease, epithelial dysplasia and its significance, benign tumours)
Breast pathology II. (Kulka)
- Follicular cyst- ovary
- Mucinous cystadenoma-ovary
- Serous cystadenoma-ovary
- Serous papillary (cystadeno-)carcinoma-ovary |
| Week 11 | Spring break | |
| Week 12 | **Easter-Public Holiday** | **Practice 11- Breast pathology**
- Fibrocystic disease
- Fibroepithelial tumours
- Ductal carcinoma in situ (DCIS)
- Invasive carcinoma (NOS, lobular)
COMPETITION- 1st round | |
| Week 13 | **Hematopathology I.** (Székely E)
- Reactive lymphadenopathy
- Hodgkin lymphoma
- Nodal non-Hodgkin lymphoma
- Extranodal non-Hodgkin lymphoma |
| Week 14 | **Hematopathology II-** (Székely E)
CNS histopathology:
- Purulent meningitis
- Meningeoma
- Glioma
- Brain metastasis
COMPETITION- 2nd round |
| Week 15 | **Central nervous system I.** (Schaff)
List of textbooks
2 Szende B., Suba Zs Introduction to Histopathology (Medicina, 1999)

Webpage www.path2.sote.hu

General Informations:
www.path2.sote.hu
General information, downloads: www.semmelweis.hu/patologia2
Online available case center (digital slides): http://casecenter-korb2.sote.hu/casecenter/
User name and password for Java based version: student_jav
User name and password for Panoramic Viewer based usage: student_pv

The visit of the internet based Case Center and Practice Test on tuition and exam dates is allowed after 4 p.m. only!
Mr. Rúben Kis and Mr. Endre Kontsek shall be approached with technical problems
regarding server availability:
e-mail: for Mr. Rúben Kis: kis.ruben@semmelweis-univ.hu
for Mr. Endre Kontsek: kontsek.endre@med.semmelweis-univ.hu

Panoramic Viewer free download at: http://www.3dhistech.com/
4D pathology and auxiliary materials at: www.4dpathology.hu

Panoramic Viewer free download: http://www.3dhistech.com/
Practice test: http://casecenter-korb2.sote.hu/espractice/

General information

Lectures
The topic of the lectures include both general and systemic pathology. Each lecture lasts 1 hour 10 minutes and is illustrated with macroscopic and microscopic photographs, radiologic images, illustrating the presented material. Occasionally interesting autopsy cases will be demonstrated during the lectures.

Attending the lectures is compulsory, since the semifinal and final exams are partly based on them. The 2nd Department of Pathology may record the absences and those students who skip more than 15 % of the lectures may not be registered for examination.

Practices
There are 14 two + two hours practices in both semesters, which are divided into autopsy and histopathology. Not more than 2 autopsy practices and not more than 2 histopathology practices can be missed in each semester. Catch up is possible only for autopsy hall practices, students can join other groups and their presence should be registered and signed by the tutor of the autopsy hall practice attended. In case the absences exceed the allowed limit the student will not be accepted for examination.

The histopathology practices provide basic histopathology skills. The topic of the histopathology practices matches that of the lectures. Brief theoretical background for the presented slides will be discussed in the frame of the practice. The pathological lesions will be presented in form of digital slides and will be demonstrated by the tutor with the help of a computerized multidiscussion/teleconsultation system. The digitalized slides will be individually studied and analyzed by the students as well. The digital slides are also available for the students through the internet every day from 4 p.m. till 8 a.m. the next day.

During autopsy practices the students will learn the basic skills of autopsy and how to recognize what’s pathological and will gain skills to demonstrate and describe these lesions. The emphasis is on the clinicopathologic aspects of the discussed cases. If there is no autopsy available, organ demonstration will take place on plastinated organs. Alternatively, visit of the laboratories (Laboratory of Histopathology, Laboratory of Immunohistochemistry and Laboratory of Molecular Pathology) of the Department will be on the program.

The medical and patient information provided during autopsies, lectures and demonstrations is confidential. The requirement to maintain professional secrecy and preserve confidentiality also applies for medical students.

It is strictly forbidden to make any kind of record (photography, video, sound-record) of the material provided during the tuition and demon-
strations in the facilities and building of the Department, especially during lectures and practices (including autopsy and histology practices). The material presented during the tuition is the intellectual property of the Department and their presentation is directly controlled by the Department. Therefore, it is not intended for the public and must not be published or arbitrarily recorded, alternatively taken away without the permission of the Department. Violation of the rules mentioned above implies disciplinary action. Exception can be made only based on the previous and written permission provided by the Head of the Department. The Department reserves the rights to completely control the communication of the information about the Department.

Midterm exams: There are two midterm exams in each semester. The participation and successful absolvation (average result exceeding 60%) of the midterm exam is compulsory. If a student can not attend one of the midterms or the average 60% is not achieved, the tutor should assess the basic knowledge of the student (see list of definitions on our webpage).

Pathology competition

Pathology competition has two rounds: the first, during the 12th and the second, during the 14th week of the 2nd semester. Macroscopic photographs will be projected in the first round and diagnoses should be given. The students with the best results (up to 8-10 people, depending on the number of participants) will enter the second round. The 2nd round has two parts: theoretical and histopathology parts. In the former, participants should recognize and describe autopsy macrophotos (virtual autopsy). During the histopathology part, participants should recognize and describe a neoplastic and a non-neoplastic slide.

Students use pseudonyms in both rounds. Those students who enter the second round are exempt from test writing, those who recognize both of the histopathology slides in the second round are exempt from histopathology in the final exam. The first three ranked students will get only 2 theoretical questions in the final examination.

Consultation

Upon request there is a possibility for a consultation with the tutor. The students are welcome to autopsy practices of other groups for retake or extra occasion as long as it does not disturb the ongoing practice. **There is no consultation during the exam period.**

Examinations

SEMIFINAL:

1. **Prerequisites:**
 - **Absences:** not more than 2 autopsy practices and not more than 2 histology practices (histology practice and autopsy hall practice counts separately) can be missed in each semester. Attending the lectures is compulsory. If one does not fulfill the above mentioned prerequisites the 2nd Department of Pathology has the right for not acknowledging the semester.
 - Midterm exams: Completion of the 2 midterm exams during each semester is compulsory.

2. **Autopsy demonstration** will be held during the last autopsy hall practice. One should be able to recognize the organ (complex), orientate it properly, precisely describe the pathological lesions and establish a macroscopical diagnosis. The performance is graded on a scale from 1 to 5. In case the mark of autopsy demonstration would be 1 (failure) it should be retaken otherwise the student will not be examined at the semifinal. The score (1-5) of the autopsy demonstration will be added to the written exam’s result if the latter is over the passing limit.

3. **The semifinal exam is a written test!!**

 The material for the examinations is based on the book, the lectures and practices as well. The questions are prepared based on the official pathological textbook, but the factual data of the lectures are also constituents of the written test.

 The test consists of 80 questions. The students have 80 minutes for writing the test. The test is given in one session, there will be no break during the examination. Your sitting order is determined by the actual supervisor. The written test will be held in the Histopathology practice room using the teleconsultation computerized system. Every student to be examined on a certain exam day will receive the same set of questions, however, in different order within one question and regarding the numbering of the questions as well. The actual set of questions will be randomly selected from a pool by the computer. Upon submission of the test for evaluation, the computer will evaluate it. The result is immediately available and will be recorded. Since there is no possibility of human error in the correction the result of the written test is not subject of personal consultation.
The test questions include simple choice (one correct answer out of 5), multiple choice (2 answers are correct), “true-false” analysis and definitions should be given. Every correct answer of a multiple choice question will be awarded with one point, false statements of the multiple choice questions will result in one point deduction in order to avoid randomly crossing every possible answer of the multiple choice questions. Altogether, the deductions can not conclude a negative score, the worst score for one question is 0. Before submitting the test for evaluation the answers might be changed. Copying the questions are not permitted. The results are posted at the same day, generally early afternoon.

Evaluation: The passing level is 60 %. Each correct answer is worth of 1 point.

- 0-59,99%: = 1
- 60-69,99%: = 2
- 70-79,99%: = 3
- 80-89,99%: = 4
- 90-100%: = 5

Suspension: If you have any problem during the test, ask the supervisor. In case of communicating, unacceptable behaviour, cheating (usage of mobile phone, books, notes, etc.) your exam is immediately suspended and the exam will not be evaluated and counts as a failed exam. Written report of the incident will be prepared and signed by the teachers.

4. **The exam** for EM begins at 8.30 a.m. sharp at the 2nd Department of Pathology, meeting at the Histology practice room. The grade books are collected by the supervisor before starting the exam. Students without a grade book should provide a photo ID, otherwise they are not allowed to take the examination.

5. **Exam dates:** You will be notified about the dates offered by the Department before the exam period and they will be finalized at the Staff/Student meeting. Then these fixed days will figure in NEPTUN.

 Important! Taking examinations before the exam period is not permitted! (University Policy). In exceptional cases (such as near-delivery, etc.), you must have a written permission from the Dean's Office.

6. **Registration** The internet based sign up system (NEPTUN) regarding pathology has been established for 3rd year students as well. The sign up procedure is controlled and regulated by the software and the institute can not interfere with the system. The officially signed up students will be scheduled for examination.

7. **Rescheduling** the exam date: The list of examinees is completed 2 days before the examination date (deadline: 9.00. a.m.), the NEPTUN system automatically closes the sign up list by expiration of the deadline. Example: if the exam is on Thursday the data sheet for Thursday will be taken in and finalized on Tuesday at 9 a.m. You may remove your name prior to this period. After that changes are not permitted. If you do not show up on the given exam date, you should justify it within 3 days at the head of the Institute or at the tutor responsible for the English program. Otherwise, „not appeared” note is written in your index, and the exam is not allowed without having a retake ticket! The skipped exam is deducted from the number of possible retake exams.

8. **Retake exam:** In case of failure or for those who are unsatisfied with the result of the first exam a retake exam should be taken to improve the mark. For that a retake ticket is required from the secretariat. If one retakes an exam to improve the previous mark it is not granted that mark of the retake exam can not be the same or worst than the previous mark.

 The retake exam - the first retake exam as well - may be oral by request!!

 At least 4 days should be passed between the day of the failed exam and the day of the retake exam (the days of the examinations are not included). One must also register on the NEPTUN system and indicate that this is the first, second, etc. retake exam. Without retake ticket and NEPTUN registration one is not allowed to take an examination.

Any further details regarding the exam and exam dates will be discussed on a STUDENT / STAFF meeting held in the last week of November. The date of the meeting is to be announced on the lecture.
FINAL EXAM

Form of the FINAL examination

The final exam consists of two practical and two theoretical parts. The practical parts are histopathology in the histology practice room and organ demonstration in the autopsy hall. The theoretical parts are: written test (60 questions – 60 minutes) and oral exam about theoretical topics – concerning not only the organ or organ complex to be demonstrated, but the complete material discussed in the official pathology books as well as the material presented in the lectures. The written test is compulsory part of the exam! The passing limit is 60 %. The test is given in one session, there will be no break during the examination. Your sitting order is determined by the actual supervisor.

Written test: The test questions include simple choice (one right answer out of 5), and multiple choice (2 correct answers are correct), “true-false” analysis. Every correct answers of multiple choice questions will be awarded with one point, false statements of the multiple choice questions will result in one point deduction on order to avoid randomly crossing every possible answers of the multiple choice questions. Every answer should be marked in the computer. Before submitting answers for evaluation the answers might be changed.

Oral exam: The 2 theoretical questions of the oral examination are from a list of theoretical questions. The list of these theoretical questions is on the website of the department.

The material for the examinations is based on the book, the lectures and practices as well!!

The examination will take place at the 2nd Department of Pathology starting with the written test in the Histology Practice Room.
The final exam starts at 8.30 a.m. sharp!!

MEETING POINT: In the Histology Practice Room at the 2nd Dept. of Pathology!!!
The students to be examined will be identified by picture ID cards by the supervisor before starting the exam. Therefore, students should present a picture ID, otherwise they are not allowed to take examination!

Evaluation: The passing level is 60 %. Each correct answer is worth of 1 point.

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59,99%</td>
<td>1</td>
</tr>
<tr>
<td>60-69,99%</td>
<td>2</td>
</tr>
<tr>
<td>70-79,99%</td>
<td>3</td>
</tr>
<tr>
<td>80-89,99%</td>
<td>4</td>
</tr>
<tr>
<td>90-100%</td>
<td>5</td>
</tr>
</tbody>
</table>

After test writing, examinees are required to take the histology part of the final. Two slides from the pool are given to the student and the examinee should describe the organ (if there is one present on the side) and the histological findings. Finally, a correct diagnosis should be given. The Histology part can not be examined by the tutor of the student.

After the test and histology, organ demonstration follows. During this part of the exam dissected organs or organ complexes are to be described. The student should be able to orientate the organ (or organ complex) properly, to describe it fully and evaluate the pathological alterations and establish diagnoses.

Finally, the 2 theoretical questions are to be discussed.

The final mark will be decided by the exam board of the institute based on the marks received on the practical and theoretical parts of the final exam.

It should be kept in mind that the final mark is not merely the matemathical average of the given grades of different parts of the exam! Additional factors, for example your midterm results, your general performance during the academic year (evaluated by your tutor), the competition results, etc. are also taken into consideration. Serious mistakes or „clear spots“ in your knowledge may significantly affect the final mark or even result in a failed exam.
Retake exam: In case of failure or for those who are unsatisfied with the result of the first exam a retake exam should be taken to improve the mark. If the student retakes the exam to improve the previous mark, the mark of the retake exam may be the same or worst than the previous mark.

At least 4 days should be passed between the day of the failed exam and the day of the retake exam (the days of the examinations are not included). The student must also register on the NEPTUN system and indicate that this is the first, second, etc. retake exam. Without retake ticket and NEPTUN registration the student is not allowed to take an examination.

By retake examination in case of failure the written test or/and the histology exam should not be repeated in case it has reached at least grade 3 by the previous examination.

In case of a retake exam that serves as improving the grade, the complete examination should be repeated, except if the written test/histology part was grade 5.

Failure on any part of the exam excludes a result of 5!
Announcement of the results is at the same day. Signed grade books can be obtained in the office of the Head of Department.

Suspension: If you have any problem during the test, ask the supervisor. In case of communicating, unacceptable behaviour, cheating (usage of mobile phone, books, notes, etc.,) your exam is immediately suspended and the exam will not be evaluated and counts as failed exam. Written report of the incident will be prepared and signed by the teachers.

Tutors
Dr. Benedek GYÖNGYÖSI
Dr. Judit HALÁSZ
Dr. Dóra HARGITAI
Dr. Ildikő ILLYÉS
Dr. István KENESSEY
Dr. Magdolna KARDOS
Dr. András KISS
Dr. Zsófia KRAMER
Dr. Gábor LOTZ /
Dr. Lilla MADARAS
Dr. Tekla KOVÁCS
Dr. Márton SÁGHI
Dr. Eszter SZÉKÁCS
Dr. Ildikő SZIRTES
CLINICAL ECG

Credit value: 3

Weeks 1–7: Total number of lessons/week: 4 lecture: 2 practical course: 2
Weeks 8–14: Total number of lessons/week: 2 lecture: 0 practical course: 2

Academic year: 2021/2022
Subject code: AOKKAR680_1A

Name of the course leader: Zoltán Benyó MD, PhD, DSc (weeks 1-7)
Institute of Translational Medicine, 210-0306
Position: director, professor

Name of the course leader: Dávid Becker MD, PhD, (weeks 8-14)
Heart and Vascular Center, +36-1-458-10
Position: deputy director

Objectives of the subject, its place in the medical curriculum:
The aim of the subject is to prepare students for the courses in cardiology and internal medicine.
The student should be able to recognize the conditions requiring immediate cardiac intervention and the most important arrhythmias

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Nagyvárad square Building, 1089 Bp. Nagyvárad tér 4. (weeks 1–7: lectures and practicals)
Heart and Vascular Center, 1122 Budapest, Városmajor u. 68. (weeks 8–14: practicals)

Successful completion of the subject results in the acquisition of the following competencies:
The student will be able to independently record an ECG and give a professionally correct description of a 12-lead ECG at rest. He/she will be able to estimate basic parameters, identify abnormalities and list clinical conditions that may cause the abnormalities described. Of particular importance is the ability to recognize ST-elevation myocardial infarction, atrial fibrillation and arrhythmias requiring acute intervention.

Course prerequisites:
biophysics, physiology

Number of students required for the course (minimum, maximum) and method of selecting students:
Based on the registration in the Neptun system

How to apply for the course:
Through the Neptun system

Weeks 1–7, lectures (2·45 min):
<table>
<thead>
<tr>
<th>Week</th>
<th>Translational Medicine (45 min)</th>
<th>Cardiovascular Center (45 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Classification of conduction disorders, mechanisms of bradyarrhythmias</td>
<td>The practical significance of impulse formation and conduction disorders</td>
</tr>
<tr>
<td>3</td>
<td>Repolarization disorders. ECG signs of different forms of ischaemic heart disease.</td>
<td>The role of ECG in the investigation of chest pain pathologies and its role in risk stratification.</td>
</tr>
<tr>
<td>4</td>
<td>Ventricular arrhythmias</td>
<td>Differential diagnosis of wide QRS tachycardias. Detection of ventricular tachycardias, ECG criteria.</td>
</tr>
<tr>
<td>5</td>
<td>Basics of pacemaker systems</td>
<td>ECG of a patient with pacemaker</td>
</tr>
<tr>
<td>6</td>
<td>Cases with multiple abnormalities</td>
<td>Description of complex ECGs, ECG differential diagnostics.</td>
</tr>
<tr>
<td>7</td>
<td>Cases to learn from</td>
<td>Revision</td>
</tr>
</tbody>
</table>

Weeks 1-7, practicals:
1. ECG lead systems, nomenclature. Analysis of normal ECG tracings. Estimation of frequency and heart axis. The ladder diagram
2. Recognition of nomotopic and heterotopic pacemaker disturbances, supraventricular and ventricular tachycardias on ECG tracings.
4. Angina and NSTEMI. Localization and staging of ST-elevation infarcts.
5. Recognition of electrolyte abnormalities, atrial and ventricular strain and hypertrophy.
7. Mid term exam

Weeks 8-13, practicals:
During the practicals, theoretical knowledge is correlated with clinical practice at the bedside of the wards of the Heart and Vascular Center, and ECG curves of patients are analyzed.

Week 14, Examination (written)

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:
biophysics, physiology, cardiology

Special study work required to successfully complete the course: none

Requirements for participation in classes and the possibility to make up for absences:
In accordance with the study and examination regulations, participation in 75% of the practicals is compulsory. It is not possible to make up lectures, but you can make up the practicals in another group in the same week.

Methods to assess knowledge acquisition during term time:
An oral mid term of the material from the basic course (first 6 weeks) in week 7 (analysis of ECG tracings. Attendance is compulsory

Requirements for signature:
Successful (at least satisfactory) oral demonstration (as the subject is taught by two different departments).

Type of examination:
Written MCQ test
Requirements of the examination:
Recognition of attendance

Method and type of evaluation:
Grading is based on performance in the written test.

How to register for the examination:
through the Neptun system

Possibilities for exam retake:
In accordance with the study and examination regulations

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
Thaler, Malcolm S.: Az egyetlen EKG-könyv, amire szükséged lehet, Medicina Kiadó, 2019
Malcolm S. Thaler: The Only EKG Book You’ll Ever Need, Wolters Kluver, 2019
Trappe, Hans-Joachim, Schuster Hans-Peter: EKG-Kurs für Isabel, Thieme, 2013
Simon András–Tornóci László: EKG érthetően (munkafüzet), Semmelweis Kiadó, 2015
INTERNAL MEDICINE - PROPEDEUTICS

First or Second Semester

Department of Internal Medicine and Oncology
Department of Internal Medicine and Hematology

Course directors: prof. István Takács and prof. Tamás Masszi
Course coordinators: dr Péter Studinger and dr Katalin Keltai

Exam type: semi-final, oral exam

Credit: 4

Objective of the course: Primary objective of the course is to have the student to acquire the basic skills of examination of a medical patient. Lectures will present the fundamental components of a complete medical patient interview and methods of physical examination. Bedside practices will allow students to gain experience in using these methods. Special emphasis will be placed on the proper physician behavior with patients.

Lectures:
1. Patient interview, comprehensive health history.
2. Techniques of physical examination: inspection, palpation, percussion, auscultation.
4. Physical examination of the thorax and lung.
5. Physical examination of the heart. Pathophysiology of heart murmurs.
6. Heart sounds and murmurs, diagnosis of valvular diseases.
7. Evaluation of blood pressure, pulse, and vascular system.
8. Physical examination of the abdomen and hernias.
9. Signs, symptoms and differential diagnosis of "acute abdomen".
10. Examination of the urogenital tract.
11. Evaluation of the musculoskeletal system.
13. Examination of the lymph nodes. Physical and laboratory evaluation of the hematologic diseases.
14. Signs and symptoms of diseases of the endocrine system.

Practices:
1. Introduction to medicine. Patient interview and health history
2. Approach to symptoms, patient documentation (patient chart, flowsheet, follow up)
3. Methods of physical examination: inspection, palpation
4. Methods of physical examination: percussion, auscultation
5. Practicing physical examination of the thorax and lung I.
6. Practicing physical examination of the thorax and lung II.
7. Practicing physical examination of the heart I.
8. Practicing physical examination of the heart, ECG evaluation.
9. Practicing blood pressure and pulse measurement, evaluation of the vascular system
10. Practicing physical examination of the abdomen I.
11. Practicing physical examination of the abdomen II.
12. Practicing evaluation of changes in body temperature and examination of the urogenital system. Bedside blood glucose measurement.
13. Practicing physical examination of the musculoskeletal system, breasts and lymph nodes.
14. Summary and review
BASIC SURGICAL TECHNIQUES

Department of Surgical Research and Techniques
Theoretical Block at Nagyvárad Square, Operating training center, 1089 Budapest, Nagyvárad sqr 4.
Lecturer: Professor Dr. György Wéber
Tutor: Dr. Györgyi Szabó

Credit: 2

Second Semester

Prerequisites: Microscopic Anatomy and Histology II., Medical Physiology II.

The aim of the subject is to practice the basic surgical techniques, to present hygienic approach, which attainments are indispensable for clinical doctors working in manual field of medicine. This subject provide basics about special behavior in the operating theatre, preparation of the patent and surgical team before operation, surgical tools and instruments, wound management, laparoscopic instruments and techniques. Recommended for students interesting in manual fields of medicine.

Practices are held on every second week (7x135 minutes).
1. The operating room.
2. Knoting and suturing on in vitro models.
3. Knoting and suturing on in vivo models.
4. Operations on small animals I.
5. Operations on small animals II.

Attendance is obligatory on every practice. Because of limited capacity of operating theatre, absence cannot be repeated by joining another group. One missed practice can be repeated on 14th week of the semester.

Absence should be certified with medical or other official certificate. Absence from practices is not to exceed 25%.

Requirement: Practical exam (5 degree evaluation).

Textbook: Basic surgical techniques (textbook and video)
PROBLEM BASED MEDICAL PHYSIOLOGY

Course Director: Prof. Dr. László Hunyady M.D., Ph.D., D.Sc.,
Head of the Department of Physiology

Lecturers:
Professor László Hunyady M.D., Ph.D., D.Sc.
Professor Péter Enyedi M.D., Ph.D., D.Sc.
Péter Várnai M.D., Ph.D., associate professor
Miklós Geiszt M.D., Ph.D., associate professor
Gábor Czirják M.D., Ph.D., assistant professor

Credits: 4

Programme:
The primary purpose of this course is the synthesis of the theoretical and practical knowledge of the students. The thematic of the course includes various clinical and non-clinical practical problems (e.g. acclimatisation). The students will receive questions related to a specific problem and they have usually one week to find the proper answer in available electronic and printed information sources. Problem solving is based on the discussion of the students with directions from the instructors. This course requires the active participation of the students. The role of the instructor is to determine the thematics of the course and to provide guidance to the discussions.

Thematics:
1. Physiologic principles of circulatory problems I.
2. Physiologic principles of circulatory problems II.
3. Physiologic principles of circulatory problems III.
4. Physiologic principles of respiratory problems I.
5. Physiologic principles of respiratory problems II.
6. Physiology of acclimatisation.
7. Dysfunctions of kidneys I.
8. Dysfunctions of kidneys II.
9. Immune cells and blood coagulation.
10. Physiologic principles of the regulation of food intake.
11. Dysfunctions of neuroendocrine system I.
12. Dysfunctions of neuroendocrine system II.
13. Dysfunctions of central nervous system I.
14. Dysfunctions of central nervous system II.

Requirement and attendance

Requirement: Medical Physiology (AOKIKELT2A)
In case of an over-application selection will be made on the base of the exam achievement.
Condition of the sign: participation at min. 75% of the lessons. Replacement of an absence is not possible.

Absence: Certification of the absence from the lessons is not required. Absence from the exam should be certificated in three weekdays (medical certificate).

Semester requirement: Recitation: every week, oral or written. Details will be given on the first lesson.
End-semester evaluation: Condition of the sign: participation at min. 75% of the lessons. A practical mark will be given.
Mark: Weekly results plus the oral exam grade.
Exam sign up: On the last week, personal.
Written subject-matter of instruction: the discussable themes were selected by the lecturers of the Department of Physiology, and are given to the students every week. The necessary subject-matter of instruction will be published on the home page of the Department of Physiology. Use of data bases in the Central Library of the University (e.g. PubMed) is required.
BIOETHICS—MEDICAL ETHICS

Department:
Institute of Behavioral Sciences
Department of Bioethics
NET Building, 19th, 20th floor
Tel: 210-2953
Secretary: Csilla Motyovszki, e-mail: motyovszki.csilla@med.semmelweis-univ.hu
Tel: 210-2930/56114, NET Building, 20th floor, Room-2015
(28 hours)
2020/2021 year II. semester

Course objectives:
a.) To enable students to recognize ethical issues when encountered in everyday clinical practice and research
b.) To provide students with a conceptual-logical system, which helps them to address ethical questions and to resolve ethical dilemmas in an efficient way
c.) To introduce students to a body of knowledge, which helps them to understand, respect and protect the rights of patients, research subjects and fellow health care professionals
d.) To help the would be health care professional to understand the responsibility of the individual, of the health care system and of the society as a whole in maintaining health

Lectures:
Time: Thursdays, 14.35-16.10
Venue: NET, Brown Auditorium (1089. Budapest, Nagyvárad tér 4.)
or possibly Online lectures via Zoom
1. week. Lecture (18 February, 2021)
Principles of Medical Ethics (Jozsef Kovacs)

2. week. (Lecture) (25 February, 2021)
Informed Consent I. (Jozsef Kovacs)

3. week. (Lecture) (4 March, 2021)
Informed Consent II. (Jozsef Kovacs)

4. week. (Lecture) (11 March, 2021)
Competence and Capacity to Make Health Care Decisions (Orsolya Peter)

5. week. Lecture (18 March, 2021)
Ethical Questions of Human Research (Jozsef Kovacs)

6. week Lecture (25 March, 2021)
Reproductive Issues (Orsolya Peter)

7. week. Lecture (1 April, 2021)
Organ and Tissue Transplantation (Jozsef Kovacs)

8. week. Lecture (8 April, 2021)
Information Disclosure to Terminally Ill Patients. Telling the Truth to Patients (Orsolya Peter)

9. week Lecture (15 April, 2021)
Confidentiality and Medical Records. Reportable Illnesses, HIV-Related Issues, Sexually Transmitted Diseases (STDs) (Orsolya Peter)

10. week. Lecture (22 April, 2021)
End of Life Issues (Jozsef Kovacs)

11. week Lecture (29 April, 2021)
Doctor-Patient, Doctor-Doctor Relationship (Jozsef Kovacs)

12. week Lecture (6 May, 2021)
Doctor and Society (Jozsef Kovacs)

13. week Lecture (13 May, 2021)
Malpractice (Orsolya Péter)

14. week Lecture (20 May, 2021)
The Rights of Patients (Orsolya Péter)

Course Faculty:
Jozsef Kovacs, MD, PhD, (Head of the Department of Bioethics), 210-2930/56115; e-mail: kovacs.jozsef@med.semmelweis-univ.hu (Room 2003)
Course attendance statistics can be found on NEPTUN in the following way:
Takes courses -- options -- Course details -- Attendance statistics.

List of questions
1. The principles of medical ethics
2. Competence and the capacity to make decisions
3. Paternalism in medical practice
4. Informed consent
5. Information disclosure for terminally ill patients
6. Withholding and withdrawal of medical treatment
7. Advance Directives
8. Do not resuscitate (DNR) orders
9. Withholding fluids and Nutrition in terminally ill patients
10. Physician assisted suicide
11. Active and Passive Euthanasia
12. Terminal sedation and the law of double effect
13. Futile medical care
14. Determination of death and brain death
15. Ethical problems of live organ donation
17. Organ donation from brain-dead donors: presumed consent
18. Reproductive issues (abortion, contraception, sterilization, donation of sperm and eggs)
19. HIV-related issues (confidentiality, partner notification, HIV-positive health-care workers, refusal to treat HIV-positive patients) and sexually transmitted diseases (STDs)
20. Malpractice
21. Doctor-patient relationship (beginning and ending the relationship, gifts from patients, doctor/patient sexual contact)
22. Doctor and society (child abuse, elder abuse, impaired drivers, physician participation in executions, torture, spousal abuse, gunshot wounds, gifts and industry funding)
23. Doctor-doctor relationship (reporting impaired physicians, physician disagreements)
24. Confidentiality and medical records
25. Ethical Questions of Human Research
26. The Rights of Patients

Textbook:
MHID 1-25-964121-X

The textbook can be ordered in the following bookshop: Medicina könyvesbolt, Budapest, IX. Üllői út 91/a (tel: 06-1-215-3786)

Lectures: The power point slides of the lectures can be found at:
http://semmelweis.hu/magtud/en/education/faculty-of-medicine
Password is given on the lectures

A thorough knowledge of the textbook is the absolute minimum for passing the exam, although in itself it may not be enough to pass it. Because the power point slides contain only the outline of each lecture, participation on the lectures is indispensable for a full understanding of the subject.
MEDICAL ASPECTS OF DISASTER PREPAREDNESS AND RESPONSE

Directorate for Safety Technology
Department for Disaster Management and Education

Supervisor: Pál Kocsik
Lecturer: Csaba Csendes

Credit value: 1

Second Semester

Purpose of the lecture:
The goal of the subject is to provide basic knowledge of the definition, mission, reasons and circumstances of establishment of civil protection/disaster management, on its place and role in the country’s defense/protection system; to provide information on the types of disasters and their features. Based on experience gained in real incidents, to provide information on the peculiarities of disaster management and the tasks of medical authorities in this context.

The syllabus:

(M1) Concept, mission, tasks and establishment of civil protection and disaster management in Hungary. Types and features of disasters, the disaster vulnerability of Hungary, the organizational system of the protection against disasters, command and control of protection, the role of medical authorities.

(M2) The early warning system and signals of disaster management. The elimination of the consequences of disasters, the staff work applied during protection. Features and activities of Hungarian disaster management organizations and authorities, international possibilities of disaster management and the lessons learnt, demonstrated by examples.

Requirements and the potential for absences to participate in the sessions:
The subject consists of 4 modules. Module 1 does not have any prerequisites; module 2 anticipates the fulfillment of module 1. Students must register to attend the course announced as required. Those who are unable to fulfill module 1 or 2 (do not attend), may participate in a supplementary lesson in the 1st semester of the following year.

The method of certificate for the workshops and the exam absences:
Certificate of absence: medical, official – court of justice, local government, Students’ Union, etc.

The mid-term controls’ (reports, midterm) number, topic and date, replacements and repairs:
Method of making up for the absence justified by certificate: participation in a supplementary lesson.

Requirements for the signature:
Students must participate in the lesson announced to acquire signature, or in case of absence justified by certificate, in a supplementary lesson. Only registered students may participate in a supplementary lesson announced.

The method of grading: signature
Type of examination: none
Requirements: none, students must fulfill the obligation to attend the lessons.
Application for exam: none
Changing procedure for exam application: none

Absence from the examination: none

OBLIGATORY ELECTIVE COURSE FOR MEDICINE I. II. III. YEARS

Course Director: Dr. Valéria László Ph.D.
Prerequisite subject: Anatomy, Cell, Histology and Embryology I.
Credit: 3
Lectures (2 hours per week)

First semester

1. Intracellular transport mechanisms
2. Endoplasmic reticulum. Vesicular transport
3. Secretion and Golgi
4. Endocytosis. Endosomal – lysosomal system
5. Nuclear envelope and nuclear lamina. Nuclear pores and gated transport
6. Functions and malfunctions of some nuclear components
7. rRNA synthesis. Telomerase
8. Endosymbiotic cell organelles. Mitochondrion
9. Peroxisome
10. Cytoskeleton. Microtubules
11. Microfilaments and intermediate filaments
12. Cell – cell and cell – ECM adhesion and junction
13. Regulation of cell cycle I
14. Cell aging and death

Important notes: No possibility to make up of absences.
There are no mid-term exams.
Attendance of 75% of lectures is necessary for the end-term signature.
Requirement: practice grade based on the result of the written or oral exam.
(depending on the number of students).

Core text:
Lecture presentations are available on the homepage: http://gsi.semmelweis.hu (The user name and password is on course datasheet of the Neptun)
CLINICAL CARDIOVASCULAR PHYSIOLOGY

Institute of Translational Medicine

Credit value: 2
Number of lessons per week: lecture: 2 seminar: 2
Subject type: elective course
Academic year: 2021/2022
Subject code: AOVTLM828_1A
Name of the course leader: Dr. Zoltán Benyó
Position: professor, head of department

Objectives of the subject, its place in the medical curriculum:
To refresh and extend – in selected topics – the basic knowledge related to normal and pathological functions of the human circulatory system.
To integrate the latest scientific results related to different organization levels – from molecular mechanisms to system physiology – of the cardiovascular system.
To discuss and demonstrate measurement principles and techniques, as well as physiological and pathophysiological mechanisms related to the application of state of the art non-invasive cardiovascular diagnostic procedures in the clinical practice.
Researchers as well as skilled clinical practitioners have also been included among the lecturers to provide a translational point of view and help the transition of the students’ theoretical knowledge to modern clinical cardiovascular medicine.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Semmelweis University, Centre of Theoretical Medicine

Successful completion of the subject results in the acquisition of the following competencies:
After completion of the subject, students will deepen their knowledge of the physiology and pathophysiology of the cardiovascular system, better understand the pathological processes that occur during the most common cardiovascular diseases and the potential therapeutic options. Completion of the course thus helps and establishes the acquisition of cardiovascular pharmacology, cardiology-angiology and cardiovascular surgery with sufficient detail.

Course prerequisites:
Completion of Physiology II.

Number of students required for the course (minimum, maximum) and method of selecting students:
Min: 5 students
Max: 80 students (in case of more applicants, the first 80)

How to apply for the course:
In the Neptune system.

Detailed curriculum:
- Hemodynamic background of normal and pathological cardiovascular functions; “hemodynamic exercise” and prevention of diseases (Dr. Anna Monori-Kiss)
- Modern methods for measuring and monitoring arterial blood pressure (Dr. Ákos Jobbágy), Cardiovascular effects of hypersensitivity reactions (CARPA) (Dr. László Dézsi)
- Biomechanical properties of cerebral aneurisms, their computer modeling (Dr. István Nyáry, Dr. Róbert Nagy)
- Physiological mechanisms supporting venous return of blood; orthostatic tolerance, Pathophysiology of chronic venous insufficiency (Dr. Anna Monori-Kiss)
- Investigation of blood pressure regulation by use of transgenic technologies (Dr. Zoltán Benyó)
- Cardiovascular implications of the healthy and the diseased kidney (Dr. Péter Hamar)
- Age related changes in the vascular system, role of sexual hormones. Interventional radiological procedures on arteries and veins (Dr. György Nádasy, Dr. Viktor Bérczi)
- Ultrasonic investigation of the human heart: theoretical back-
ground; 2D-, M-, Doppler-mode, color Doppler imaging, echo-cardiography; diagnostics of valve insufficiency and coronary diseases. Duplex ultrasonic investigation of large vessel function: measurement of vessel wall elasticity, Doppler-indexes (Dr. Domonkos Cseh, Dr. Adrienn Sárközi)

- Coronary circulation. Physiological background of the treatment of myocardial ischemia (Dr. Tamás Ivanics, Dr. Gergely Szabó)
- The cardiovascular risk and the protection of menopausal women. Alterations of the cardiovascular system in pregnancy and polycystic ovary syndrome (Dr. Gabriella Masszi, Dr. Szabolcs Várbíró)
- Role of endothelial mechanisms in clinical symptoms (Dr. Zsolt Pécsvárady)
- Visit to the MRI Cardiovascular Diagnostic Unit of the Semmelweis University Heart Center (Dr. Attila Tóth)
- Vascular cognitive impairment (Dr. Zoltán Ungvári)
- Written examination

(Guest lecturers are underlined)

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:
- Cardiology
- Medical Imaging
- Obstetrics and Gynecology
- Vascular Medicine
- Pathophysiology

Requirements for participation in classes and the possibility to make up for absences:
It is compulsory to attend the seminars. Students are not allowed to miss more than 3 seminars (6 lessons), otherwise the semester cannot be accepted.

Methods to assess knowledge acquisition during term time:
Theoretical knowledge will be assessed by a written test on the 14th week.

Requirements for signature:
Regular attendance (max. 3 missed seminars) of classes and successful written exam. No more than three absences from seminars are allowed; otherwise the course will not be credited.

Type of examination:
The semester performance is assessed by the result of the written test (10-15 questions based on the material of the seminars) on the 14th week.

Requirements of the examination:
The question pool for the written test is available for the registered students. The question pool contains 2 short assay-type questions and 5-10 multiple choice questions per seminar.

Method and type of evaluation:
The grade is based on the result of the test written on the 14th week. The written test will be evaluated as follows:
- 90-100% – honor (5)
- 80 – 89 % – good (4)
- 70 – 79 % – fair (3)
- 51 – 69% – pass (2)
- < 51% – fail (1)

How to register for the examination:
There is no exam in the exam period. The exam is organized on the last seminar of the semester.

Possibilities for exam retake:
For students who cannot attend the exam for reasonable excuses, we provide extra occasions to make up for the practical exam.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of material:
Emil Monos: Physiology of the venous system, Second edition, Semmelweis Kiadó, 2010
Material of the lectures and supplementing literature provided by the lecturers.
CLINICAL PHYSIOLOGY OF RESPIRATION AND RESPIRATORY DISEASES

AOVTLM768_1A

Elective course for medical students in the 3rd, 4th and 5th years.
The aims of the course are to strengthen knowledge on basic physiological principles related to respiration, summarize the most important aspects of cardiorespiratory adaptation in sport activities and also its changes in respiratory diseases and to provide integrated information about the physiological and pathophysiological background of the most important respiratory disorders in light of results from cutting edge research.

Program:

1. COVID-19 from the frontline
2. COVID-19 outcome stats
3. Personalized medicine in lung cancer
4. Asthma
5. Bronchiectasis, COPD.
6. Obstructive sleep apnoea
7. Hypoventilation syndromes
8. Translational research, biomarkers, drug development, machine learning
9. Cystic fibrosis-case presentation
10. Pneumonia
11. Invasive ventilation and intensive care, ECMO, particular aspects of COVID-19
12. Chest imaging I - Screening
13. Chest imaging II- Lung Fibrosis-COVID score, Ultrasound
14. Exam

Acknowledgement of the course: regular attendance (maximum 3 absences) is required; signature in the Neptun, and 2 credit points will be provided after a successful written exam.
CARDIORESPIRATORY AND NEUROPHYSIOLOGICAL MEASURING METHODS

Institute of Translational Medicine

Subject type: optional
Subject code: AOSTLM770_1A
Credit value: 2
Name of the course leaders:
Prof. Dr. Zoltán Benyó, Department Head,
Dr. Habil. László Dézsi, Research Associate Professor, Course Director, Semmelweis University
(Invited Lecturers: Dr. Iván Füzes, Dipl. Electrical Engineer, Master Teacher, Semmelweis University
Prof. Dr. Ákos Jobbágy, Professor Emeritus in Electrical Engineering, Budapest University of Technology and Economics,
Dr. György L. Nádasy, Associate Professor, Semmelweis University)

Academic year: 2021/2022/1st semester

Objectives of the subject, its place in the medical curriculum:
The purpose of the course: To review the theory and practice of modern measuring methods in experimental and clinical medicine, and providing practical knowledge to medical and pharmacy students on cardiorespiratory and neurophysiological measurements. The course based on and further extends the material of the course of Medical physiology. Throughout the lectures, we put an emphasis on potential methodological errors of measurements and examinations, discussing how to avoid them.

Successful completion of the subject results in the acquisition of the following competencies:
The course offers practical knowledge to medical and pharmacy students on cardiovascular, respiratory and neurophysiological measurements based on, but further extending the course material of Medical physiology. Involving engineers into teaching, students receive real technological knowledge on a basic level. Throughout the lectures we put an emphasis on potential methodological errors of measurements and examinations, discussing how to avoid them, and so we utilize a critical approach.

Detailed curriculum:
Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks).
1. Introduction. Biomedical engineering. Design and safety requirements of biomedical equipment
2. General metrology. Basics of measurement and control theory
3. Computerized data acquisition and analysis. Telemetry systems
4. Sampling of continuous signals. Digitizing analogue signals
5. Home monitoring of cardiovascular health status. Determination of blood glucose and tissue glucose concentrations
7. Investigating the electrical activity of the heart. Design of ECG amplifiers
8. Direct and indirect methods to determine cardiac output and peripheral blood flow
9. Neurophysiological measurements (action potentials, brain stem evoked potentials). Objective studies in audiology
10. Adaptive processes in the cardiovascular system. Investigative methods in experimental angiology
11. Measuring blood pressure in the lab and clinics (invasive and noninvasive methods)
12. Complement-related immunological and cardiopulmonary responses (CARPA)
13. Studying brain function by functional imaging systems. The linear CT method
14. Experimental methods to study pain and nociception

Requirements for participation in classes and the possibility to make up for absences:
Regular attendance is required, which will be registered. In case of absence make up of material is possible based on lecture sketches.
Methods of verification of absence from classes or the exam:
Absence can be verified by medical notice only.

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)
From the course material, no midterms are written.

Requirements for signature:
Signature will be awarded upon regular attendance of the lectures.

Method and type of evaluation:
(Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark.)
Marks are based upon the result of the written exam. Students will be graded on a 5-grade-scale:
0-49 % - 1, 50-64 % - 2, 65-79% - 3, 80-89% - 4, 90-100% - 5.

Type of examination:
Written exam + 2 re-takes

How to register for the examination?:
Personal registration by the Course Director.

How to modify the registration for the examination?:
Personal notice by the Course Director.

Possibilities for exam retake:
Upon obstacles (medical notice, or parallel exam) or failure of the exam, two re-takes are possible.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material)
to aid the acquisition of the material:
2. Fonyó Attila: Principles of Medical Physiology, Medicina Kiadó, 2002
3. Lecture sketches of course tutors https://drive.google.com/drive/folders/0B5ljI4aPM88ChLU9mR0xobkpOcjg
INTRODUCTION TO THE METHODOLOGY OF CLINICAL RESEARCH I. Observational studies

Number of lessons per week: 2 lecture: – practical course: 2×45 min for 3 weeks seminar: 2×45 min for 11 weeks
Subject type: elective course
Academic year: 2021/2022
Subject code: AOVTLM769_1A
Name of the course leader: Dr. Zoltán Benyó
Institute of Translational Medicine, (+36-1) 210-0306
Position: professor, head of department

Goals of the course:
Nowadays most physicians will inevitably be involved in clinical research during their careers. Many of them will participate actively in clinical research programs, while others will get in contact with clinical studies via the literature or by interpreting new clinical guidelines. Therefore, at the time of graduation physicians of the 21st century must possess skills which enable them to join research programs and critically interpret scientific evidence. The ultimate goal of the course is to prepare future doctors for these challenges by offering a curriculum which helps to acquire these skills during the academic years of their gradual studies.
The course aims to give a comprehensive insight into the methodology of clinical research. The broad spectrum of methodological approaches will be presented in 2 separate courses built on each other. The course „Introduction to the Methodology of Clinical Research I.” will focus on observational studies. Accordingly, the course will:
describe the types of observational studies and the pros and cons of their application
give a deep insight to clinical epidemiology
and to the ethical and legal concepts related to the planning and conduct of these studies;
describe basic concepts of biomarker and genomic research
introduce the background of the application of screening tests.
Beyond these, the course will introduce the students (without showing mathematical formulae) the statistical approaches which are closely related to the analyses of observational studies:
Within the frame of seminars, we will discuss basic biostatistical terms and principles,
and the steps of basic regression model building.
Moreover, the practicums of the course will provide opportunity to apply the knowledge acquired on seminars to real-life situations. On these labs we aim to perform 2 types of practical tasks in small student groups:
Performing simple statistical analyses on simulated patient datasets using a comprehensive statistical software package under the guidance of the tutor.
Problem-based discussion of pre-released publications, critical interpretation of the published research.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Seminar: Semmelweis University, EOK, Tűzoltó street 37-47. Hári Pál auditorium
Practicum: Semmelweis University, EOK, Tűzoltó street 37-47. Department of Biophysics and Radiation Biology

Successful completion of the subject results in the acquisition of the following competencies:
After successful completion of the subject the students:
– will be able to join research projects based on observational studies (even as an undergraduate student!),
– will be able to critically comprehend scientific literature related to observational studies,
– will understand the basic aspects of study design and analysis related to observational studies
– will understand the limitations and factors influencing the validity of observational studies,
– will understand the ethical and legal aspects of observational studies,
– will have basic knowledge about the statistical methodology used to properly plan and analyse observational studies
Number of students required for the course (minimum, maximum) and method of selecting students:
Minimum number students: 5
Maximum number students: 60 (the first 60 applicant can attend the course)

How to apply for the course:
Application occurs via the Neptun system

Detailed curriculum:
(Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks). Please provide the names of the teachers of the seminars and practical lessons and indicate guest lecturers. Do not use attachments!
Always attach a CV for guest lecturers!)

1st week: Types of observational studies (Dr. Monori-Kiss Anna, Institute of Translational Medicine)
- Comparison of observational and experimental studies; types of observational studies, pros and cons of their application (case reports, ecological studies, cross-sectional studies, cohort studies, case-control studies)

2nd week: Introduction to biostatistics I. (Dr. Veres Dániel, Department of Biophysics and Radiation Biology)
- Types of variables, description of variables (mean, median, percentile, IQR); types of distribution, population vs. sample, sampling procedures, estimating the population mean, confidence intervals

3rd week: Introduction to biostatistics II. (Dr. Veres Dániel, Department of Biophysics and Radiation Biology)
- Power, sample size; hypothesis testing; parametric vs. non-parametric probes; revision of known biostatistical tests (t-test, ANOVA, their non-parametric counterparts; Chi square test

4th week: Workshop seminar to introduce the biostatistical analysis software package (STATA) (Dr. Veres Dániel, Department of Biophysics and Radiation Biology)
- Interactive presentation of the most important commands and menu points

5th week: Introduction to epidemiology (Dr. Miklós Zsuzsanna, Institute of Translational Medicine)
- The aim of clinical epidemiology; outcome measures (ratio, odds, incidence, prevalence, incidence-ratio); parameters describing the association between outcome measures and intervention/exposition/risk factors (RR, OR, RR, RD); threats to validity and strategies to handle them (confounding, bias, chance etc.)

6th week: PRACTICUM I. (Dr. Miklós Zsuzsanna, Institute of Translational Medicine)
- Clinical epidemiology. Finding an epidemiology related research question based on a simulated patient dataset and answering the question by performing statistical analysis using STATA statistical software package.

7th week: Ethical and legal aspects of observational studies. (Dr. Szentmártoni Gyöngyvér, Department of Internal Medicine and Oncology)

8th week: Applied regression I. (Dr. Ferenci Tamás, biostatistician, invited lecturer)
- Basic concepts, linear regression

9th week: Applied regression II. (Dr. Ferenci Tamás, biostatistician, invited lecturer)
- Multivariate linear regression, steps of model building

10th week: Applied regression III. (Dr. András Ittzés, biostatistician, invited lecturer)
- Logistic regression

11th week: PRACTICUM II. (Dr. Monori-Kiss Anna, Institute of Translational Medicine; Dr. Veres Dániel, Department of Biophysics and Radiation Biology)
- Steps of multivariate regression model building. The students will build regression models on a simulated patient dataset using STATA statistical analysis software package. They experience how the inclusion of different variables/confounders can affect results and data interpretation.

12th week: PRACTICUM III. (Dr. Szentmártoni Gyöngyvér, Department of Internal Medicine and Oncology)
- Critical interpretation and discussion of a pre-released publication (original article)

13th week: Biomarker research, genomics. (Dr. Tóthfalusi László, Department of Pharmacodynamics) Screening tests. (Dr. Terebessy András, Department of Public Health)

14th week: Test exam.
Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:
Medical statistics, informatics and telemedicine (basic terms in biostatistics – partial overlap)
Medical ethics, bioethics (7th week seminar – partial overlap)

Special study work required to successfully complete the course:
(E.g. field exercises, medical case analysis, test preparation, etc.)
Requirements for participation in classes and the possibility to make up for absences:
Students are required to participate on 70 % of the seminars and on all practices.
We offer several occasions during the semester to make up for the missed practices.

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)
Students must arrive well-prepared for the practices. Completion of the prespecified tasks will be checked by the practice tutors.
We will provide opportunities to make up for the missed practices several times during the semester.

Requirements for signature:
Students are required to participate on 70 % of the seminars and on all practices.

Type of examination:
Practical exam in the form of a written test at the end of the semester

Requirements of the examination:
(In case of a theoretical examination, please provide the topic list; in case of a practical exam, specify the topics and the method of the exam)
Written practical exam test taken via the e-learning site (Moodle) of the university.
Students are eligible to take the exam if they have obtained the signature.

The written test will be compiled from problem-oriented multiple choice questions which are based on the on-line available seminar material (digests, slide shows, scripts) and the practical knowledge acquired on lab practices. We will provide sample test questions during the semester.

The test will be graded as follows:
90-100% – (5)
80 – 89 % – (4)
70 – 79 % – (3)
60 – 69% – (2)
< 60 % – (1)

Method and type of evaluation:
(Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark.)
The final mark will be a 5-grade practical mark obtained on the practical exam test organized in the last week of the semester.

How to register for the examination?:
There is no exam in the exam period.
The practical exam is organized on the last seminar of the semester.

Possibilities for exam retake:
For students who cannot attend the practical exam for reasonable excuses, we provide extra occasions to make up for the practical exam.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
Obligatory:
• On-line uploaded material (digests, practicum descriptions, scripts, slide shows).

Recommended:
INTRODUCTION TO THE METHODOLOGY OF CLINICAL RESEARCH II. – Experimental studies

Credit value: 2
Number of lessons per week: 2 lecture: – practical course: 2 × 45 min for 3 weeks seminar: 2 × 45 min for 11 weeks
Subject type: elective course
Academic year: 2021/2022
Subject code: AOVTLM769_2A
Name of the course leader: Dr. Zoltán Benyó

Goals of the course:
Nowadays most physicians will inevitably be involved in clinical research during their careers. Many of them will participate actively in clinical research programs, while others will get in contact with clinical studies via the literature or by interpreting new clinical guidelines. Therefore, at the time of graduation physicians of the 21st century must possess skills which enable them to join research programs and critically interpret scientific evidence. The ultimate goal of the course is to prepare future doctors for these challenges by offering a curriculum which helps to acquire these skills during the academic years of their gradual studies.
The course aims to give a comprehensive insight into the methodology of clinical research. The broad spectrum of methodological approaches will be presented in 2 separate courses built on each other.
The course „Introduction to the Methodology of Clinical Research II.” will focus on experimental studies. Accordingly, the course will:
• describe the types of experimental studies and the pros and cons of their application;
• discuss the scientific, statistical and economic aspects of experimental study designs;
• discuss the ethical and legal concepts related to the planning and conduct of these studies;
• emphasize the role of clinical trials in the introduction of new therapies to clinical practice and
• give introduction to the background of the application of methodologies related to clinical trials (questionnaires, systematic review, meta-analysis).
Beyond these, the course will introduce the students (without showing mathematical formulae) the statistical approaches which are closely related to the analyses of experimental studies:
• We will emphasize the utilization of basic biostatistical terms and principles we learnt on the first course in clinical trials
• and discuss the principles of survival analysis and analysis of longitudinal studies.
Moreover, the practicums of the course will provide opportunity to apply the knowledge acquired on seminars to real-life situations. On these labs we aim to perform 2 types of practical tasks in small student groups:
• Performing simple statistical analyses on simulated patient datasets using a comprehensive statistical software package under the guidance of the tutor.
Problem-based discussion of informed consent forms and critical interpretation of published research.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Seminars: Semmelweis University, EOK, Tűzoltó street 37-47. Hári Pál auditorium
Practicums: Semmelweis University, EOK, Tűzoltó street 37-47. Department of Biophysics and Radiation Biology

Successful completion of the subject results in the acquisition of the following competencies:
After successful completion of the subject the students:
• will be able to join research projects based on experimental studies (even as an undergraduate student!),
• will be able to critically comprehend scientific literature related to experimental studies,
• will understand the basic aspects of study design and analysis related to experimental studies
• will understand the limitations and factors influencing the validity of experimental studies,
• will understand the ethical and legal aspects of experimental studies,
• will have basic knowledge about the statistical methodology used to properly plan and analyse experimental studies
• will be able to perform simple survival analyses and will understand the problematics of correlated outcomes
Course prerequisites:
Successful completion of Introduction to the Methodology of Clinical Research I. – Observational studies (AOVKIK553_1A)
Number of students required for the course (minimum, maximum) and method of selecting students:
Minimum number students: 5
Maximum number students: 60 (the first 60 applicant can attend the course)

How to apply for the course:
Application occurs via the Neptun system

Detailed curriculum:
(Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks). Please provide the names of the teachers of the lectures and practical lessons and indicate guest lecturers. Do not use attachments! Always attach a CV for guest lecturers!)

1st week: Experimental studies (Dr. Miklós Zsuzsanna, Institute of Translational Medicine)
- comparison of observational and experimental studies; types of experimental studies, pros and cons of their application, the methods of randomization

2nd week: Ethical aspects of clinical trials. (Dr. Szentmártoni Gyöngyvér, Department of Internal Medicine and Oncology)
- ethical issues, ethical approval, the informed consent

3rd week: Issues related to study design and implementation. (Dr. Szentmártoni Gyöngyvér, Department of Internal Medicine and Oncology, Dr. Monori-Kiss Anna, Institute of Translational Medicine)
- elements and importance of the research protocol, factors influencing the study design

4th week: PRACTICUM I. (Dr. Szentmártoni Gyöngyvér, Department of Internal Medicine and Oncology)
- critical interpretation of the informed consent process using sample forms

5th week: Correlated outcomes I. (Dr. Veres Dániel, Department of Biophysics and Radiation Biology)
- The problematics of correlated outcomes, characteristics of longitudinal data

6th week: Correlated outcomes II. (Dr. Veres Dániel, Department of Biophysics and Radiation Biology)
- Analysis of correlated outcomes with LME models

7th week: PRACTICUM II. (Dr. Veres Dániel, Department of Biophysics and Radiation Biology)
- Analysis of simulated longitudinal datasets with correlated outcomes using STATA statistical software package.

8th week: Survival analysis. (Dr. Veres Dániel, Department of Biophysics and Radiation Biology)
- Clinical application of survival analysis. Statistical methods related to survival analysis (log rank test, hazard ratios, Cox regression)

9th week: PRACTICUM III. (Dr. Miklós Zsuzsanna, Institute of Translational Medicine)
- Construction of Kaplan-Meyer survival curves, log rank analysis and Cox regression analysis on simulated patient datasets using Stata statistical software package

10th week: Supplementary methodologies. Big data (Dr. Monori-Kiss Anna, Institute of Translational Medicine)
- How to make a perfect questionnaires. The features and analysis of Big Data.

11th week: The clinical phase of drug development (Dr. Tóthfalusi László, Department of Pharmacodynamics)
- Phase I-IV studies. Aims, methods, implementation.

12th week: Economic exploitation of scientific results. (Dr. Lacza Zsombor, Institute of Translational Medicine)
- patents, introduction to the market

13th week: From data to evidence. (Dr. Ferenci Tamás, biostatistician, invited lecturer)
- metanalysis, systemic review

14th week: Test exam.
Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:
- Introduction to the Methodology of Clinical Research I. – Observational studies (prerequisite – some basic concepts are revised)
- Medical statistics, informatics and telemedicine (basic terms in biostatistics – partial overlap)
- Medical ethics, bioethics (7th week seminar – partial overlap)

Special study work required to successfully complete the course:
(E.g. field exercises, medical case analysis, test preparation, etc.)

Requirements for participation in classes and the possibility to make up for absences:
Students are required to participate on 70% of the seminars and on all practices.
We offer several occasions during the semester to make up for the missed practices.

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)
Students must arrive well-prepared for the practices. Completion of the prespecified tasks will be checked by the practice tutors.
We will provide opportunities to make up for the missed practices several times during the semester

Requirements for signature:
Students are required to participate on 70% of the seminars and on all practices.

Type of examination:
Practical exam in the form of a written test at the end of the semester

Requirements of the examination:
(In case of a theoretical examination, please provide the topic list; in case of a practical exam, specify the topics and the method of the exam)

Written practical exam test taken via the e-learning site (Moodle) of the university.
Students are eligible to take the exam if they have obtained the signature.

The written test will be compiled from problem-oriented multiple choice questions which are based on the on-line available seminar material (seminar digests, slide shows, scripts) and the practical knowledge acquired on lab practices. We will provide sample test questions during the semester.

The test will be graded as follows:
- 90-100% - (5)
- 80 – 89 % - (4)
- 70 – 79 % - (3)
- 60 – 69% - (2)
- < 60 % - (1)

Method and type of evaluation:
(Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark.)

The final mark will be a 5-grade practical mark obtained on the practical exam test organized in the last week of the semester.

How to register for the examination?:
There is no exam in the exam period.
The practical exam is organized on the last seminar of the semester.

Possibilities for exam retake:
For students who cannot attend the practical exam for reasonable excuses, we provide extra occasions to make up for the practical exam.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:

Obligatory:
- On-line uploaded material (seminar digests, practicum descriptions, scripts, slide shows).

Recommended:
Institute of Behavioral Sciences
Lecturer: László Antal Z.
Credit: 2
Code: AOSMAG372_1A

Thematics:
1. week: The history of climate change science
2. week: Climate change and society, sociological perspectives
3. week: Animal and plant health impacts of climate change
4. week: Human health impacts of climate change
5. week: Consumer society and environmental boundaries
6. week: Demographic processes and environmental boundaries
7. week: Climate change and health care
8. week: Adaptation to climate change
9. week: Adaptation to heat waves and to UV radiation
10. week: Adaptation to climate change at local level
11. week: Civil society, social movement and climate change
12. week: Climate communication
13. week: Climate change and the social values
ULTRASONOGRAPHY IN OBSTETRICS AND GYNECOLOGY

(obligatory elective course – 6th semester)

AOVNO1554_1A
Course director: Prof. Dr. János Rigó
Lecturer: Dr. Gábor Szabó PhD
Department: First Department of Obstetrics and Gynecology
Study time: In every second week 2×45 minutes. Advised Semester: between 6. und 12. Semester
Exam: Written test and practical note
Credit: 1
Minimal/maximal participants: (1/5 person)
Application deadline: 1. December
Prerequisite: Completion of second year

The knowledge gained in theoretical basic subjects (anatomy, physiology) can be used by medical students as practical knowledge in the clinic. As a result of more than four decades of experience, ultrasound examination has a fundamental role in modern obstetrical and gynecological diagnostic. The course helps you to acquire skill in this field. Performing obstetrical-gynecological ultrasound tests and assessment of findings can only be learned through appropriate training. This non-invasive procedure is also safe for patients. The modern ultrasound equipment of the Department and the wide range of patients and diseases provide the opportunity for learning. Not only obstetricians and gynecologists, but also other associate colleagues such as clinical genetics, radiologists, gynecological cancer surgeons, anesthetists, and intensive therapists can utilize the knowledge provided by the subject.

Themes:
THE SCALPEL AND THE PARAGRAPH: SPECIAL ISSUES OF MEDICAL PRACTICE IN LIGHT OF THE LAW

elective subject
Lecturer: Prof. Dr. József Kovács
Department of Behavioural Sciences

1st semester

2 hours / week
Within the framework of the course the participants, who have an affinity for Bioethics and Law, will gain insight into the special characteristics of the legal domain and certain fundamental legal concepts and methods that are relevant for a practicing physician, but cannot be sufficiently investigated into within the framework of other compulsory courses. The course considers the general part of medical law governing the legal relationship between medical practitioners and their patients, first by distinguishing between civil law and criminal law and explaining their respective characteristics. The legal position, the customary rights and obligations of physicians and patients are examined, together with the issues of informed consent. Topics will also include the civil and criminal liability of physicians and the issue of malpractice. Selected medico-legal issues over human life are also examined; these will include foetal rights, modern reproductive technologies, various aspects of human genetic research, and certain end-of-life issues such as advance directives and euthanasia. The foregoing topics will be discussed from the perspective of comparative law, by presenting various court cases from the countries of the European Union and the United States of America as well. Attending students will gain the ability to recognise and analyse legal health care issues by engaging in interactive discussions and informative research.

Attending students will gain insight into the special characteristics of the legal way of thinking, the basic concepts of civil and criminal law, and also the approach to the most controversial medico-legal issues in the European Union and the United States.

Students intending to practice in any field of medicine may find the course profitable.

Minimum number of participants: 10
Maximum number of participants: 20; applications are accepted through the „Neptun” system.
Students are to register through the „Neptun” system. No special achievement/prior completion of other course(s) is required.

Thematics:
1. Introduction: Aims and objectives of the course; presentation of the interdisciplinary method (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
2. The concept of „law”; the branches of law particularly relevant for medical practice (civil/private law; criminal law) (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
3. The human being and the law. Legal personhood and capacity to act. Man as a subject to fundamental human rights. (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
4. The parties to a medical legal relationship: doctor and patient. The legal position of the physician and the patient; their principal rights and obligations in the various legal systems (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
5. Creating a doctor-patient relationship: informed consent in the member countries of the European Union and in the USA (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
6. Various legal models of the doctor-patient relationship (mandate agreement, service agreement, treatment agreement etc.) (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
7. The physician and civil liability: malpractice/liability for damages in the member countries of the European Union and in the USA (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
8. The physician and criminal liability: specific criminal offences that can be committed by a physician/health care specialist (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
10. The beginnings of human life and the law: surrogacy and the legal issues generated by the recent developments in assisted human reproduction in Europe and in the world (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).

11. The issues of medical research on humans: the framework set up by law (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).

12. End-of-life decisions and the law: the “living will” and other forms of advance directives in the various legal systems; the refusal of life-saving treatments (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).

13. End-of-life decisions and the law: euthanasia in the member countries of the European Union and in the USA (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).

14. Review of the semester; suggestions, observations and proposals (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).

Participants will meet weekly (2 hours/week) as a discussion/seminary group. Participating students are required to prepare and hold an oral presentation (15-20 mins) about a preferred medical legal issue, to be previously approved by the instructor. A suitable schedule for such presentations will be worked out together with the students. Students are required to attend at least 75% of the meetings; a maximum of 4 (four) absences is acceptable. Attendance will be verified at the beginning of each meeting. In the event of more than 4 (four) absences an additional oral presentation or an essay will be required, provided such excessive absence is unjustified.

No medical certificate/other proof is required up to the maximum number (4) of excused absences. In the event of more than 4 (four) absences an authentic proof of justifiable absence is accepted.

„Aláírás” (the instructor’s „signature” indicating the fulfillment of the term requirements) will be granted as follows:
1. Preparation and actual holding of an oral presentation.
2. Proper attendance (max. 4 absences; proper justification or additional work in the event of more than 4 absences)

The performance of participating students will be graded as follows:
1. Excellent (5): less than four absences; active and constructive participation in group discussions; an oral presentation of outstanding quality.
2. Satisfactory (3): regular attendance; an oral presentation of good quality.
3. Insufficient (1): more than four absences without proper justification; no presentation or presentation of an inferior quality.

Participants will be given a „gyakorlati jegy” (term mark) at the end of the semester; no further examination is required.

Recommended reading materials:
See also the extensive bibliography in Kuhse-Singer
HUNGARIAN MEDICAL TERMINOLOGY V.

Responsible organisational unit:
Department of Languages for Specific Purposes

Programme director:
Dr. Katalin Fogarasi-Nuber, associate professor, Director
4 lessons per week, 2 credits,

Assessment: midterm (written) and endterm (written and oral) tests and a final examination

Role of subject in fulfilling the aim of training:
The role of this subject is to help students acquire the basic vocabulary, grammar and language skills they need for the effective professional communication in the language they use during their field practice. With the help of this course they become able to communicate with the patients in the Hungarian hospitals.

Brief description of subject:
The last module covers the terminology of the main body systems and provides further training in taking history. The symptoms, diseases and common treatments of the diverse body systems (respiratory, cardiovascular, urinary, digestive and endocrine) are discussed during the semester.

Course content of practical lessons:
Lesson 1-4: Communication practice (family and social history)
Lesson 5-6: Communication practice (internal medicine – medical history)
Lesson 7-8: Communication practice (treatments, medication)
Lesson 9-10: Common illnesses - symptoms
Lesson 11-16: The respiratory system
Lesson 17-22: The cardiovascular system
Lesson 23-24: Consolidation
Lesson 25-26: Test 1 + situation
Lesson 27-32: The urinary system
Lesson 33-38: The digestive system
Lesson 39-44: The Endocrine system
Lesson 45-50: Consolidation
Lesson 51-52: Test – situation, communication practice
Lesson 53-56: Mock final exam (oral part), assessment

Course material, recommended text book(s), professional literature and supplementary reading(s)

PHYSICAL EDUCATION V-VI.

Practice: 1 hour per week
SUMMER (INTERNAL MEDICINE) PRACTICE

Managing (and contributing) institutes:
Hajnal Imre Internal Medical Clinic

In English: Internal medicine summer practical

Total hours: practice: 6 hours daily for 1 month
Type of course: compulsory
Course code: AOKNSG600

Responsible for course: Prof. Dr. Tamás Masszi

Aim of the course, its position in the medical curriculum:
The main aim of the internal medicine summer practical following the 6th semester is, apart from practicing taking medical history and performing physical examination, detailed introduction to and participation in practical clinical work, as well as utilisation of obtained pre-clinical knowledge. Acquiring the basics of the integrative approach of internal medicine, practicing differential diagnostics.

Location of course (address of lecture-hall, seminar room, etc.):
SE Hajnal Imre Internal Medical Clinic, H-1085 Budapest, Üllői út 26.
External training sites (see list of accepted practical locations)

Acquired competences after successfully completing the course:
Practical and internal medical utilisation of knowledge obtained during theoretical courses and propaedeutics within the internal medicine famulus practical. The goal is that the student is able to receive the patient, start examination, set up diagnostic and, as far as possible, treatment plan, as well as to perform routine treatment, under supervision. Furthermore, the aim is to acquire professional and human communication skills with medical staff, patients and their relatives.

Prerequisite(s) for admission to the course:
Attendance requirements of propaedeutics and signature in propaedeutics. Successful exam in propaedeutics is not a criteria for attending summer practical.

Student enrolment requirements (minimum, maximum), method of student selection:
Based on registration in the Neptun system maximum 25 students per shift per clinic.

How to apply for course:
In Neptun system

Detailed syllabus:
Students participate in practice 6 hours daily, 5 days a week for 1 month. Students take part once for an evening or weekend shift on call for 6+ hours.

General syllabus:
Introduction to the internal medical ward and the hospital.
Examination of patient, treatment of assigned patients at an assistant physician level under supervision, according to only partial pharmacological knowledge.

Medical history:
- taking medical history of patient, documenting the organised collected information with medical terms.
- interpretation of medical history in patient’s documentation (abbreviations, recognition of connection of events)
- considering an expected home treatment based on medical history

Medication
- connecting the name of the patient’s medications with the active ingredients
- identifying indication of drugs (in medical history)
- setting up a medical treatment plan for the condition indicated upon admission
Physical examination
- practicing head-to-toe examination and its professional description
- practicing targeted examination (e.g. patient with dyspnoea, anaemia, hepatic cirrhosis)
- recognising connection between acquired results of physical examination and medical history

Practicing the most important medical interventions
- Measuring pulse, blood pressure, temperature, weight, blood glucose
- Administration methods of medication
- Blood sample collection, injection administration, insulin administration, utilisation of pen (perhaps insulin pump)
- Prepare and administer infusions with supervision, introduction to transfusion
- Utilisation of diagnostic devices (ECG, Doppler, ultrasound, monitor, blood gas)

Introduction to patient’s documentation (patient’s chart, medical record, glucose chart, fluid chart, critical patient sheet), individual documentation. Professional demonstration of patient case known and followed by student on clinical rounds.

Acquiring skills of communication with patient and relatives, especially of informing patient and confidentiality. Become familiar with informed consents required for interventions, their introduction to patient, obtaining consent.

As far as possible, participation in consultations, in imaging diagnostics, in examination with devices, in clinical pathological consultations, especially in case of patient’s known by student.

Participation in professional consultations of the institute.

Schedule
8:00-8:15 AM short meeting about events of night shift, daily tasks
8:15-9:30 AM medical rounds at ward - making rounds in the ward with the ward physician
9:30-10:00 AM clinical case consultation
10:00-10:20 AM coffee break
10:20-11:00 AM participation in ward tasks, participation in scheduled examinations, admission of new patients
11:00 AM-12:00 PM medical rounds with senior physician of ward
12:00-12:30 PM midday medical consultation
12:30-01:00 PM lunch break
01:00-01:30 PM assessment of and consultation on laboratory findings
01:30-02:00 PM consultation on daily tasks, reviewing and correction of documentation, reviewing activities log book, discussion of home study

Cross-border issues of the given course related to other courses (compulsory and elective). Possible overlaps in curriculum: general hospital bedside practice, practical basics of clinical courses

Special study work required to complete the course:

Activities
The student prepares an activity log book during the practical. Each student follows the patient turnover of a hospital bed. Student prepares medical record for the patient assigned to the bed and documents daily events. Student may analyse and explain patient’s medication, details of therapy (e.g. choice of antibiotics, adjusting medication of cardiac insufficiency, etc.). Student may document main points of examinations, interventions, consultations they participated in during the day. The log book may be electronic or hand-written.

Requirements for participation in classes and opportunities to make up for absences:
According to the Studies and Exams Code, the criteria for obtaining signature is at least 75% participation in the practical.

Examination of acquired knowledge during term:
cannot be interpreted
Type of exam: report

Exam requirements:
Presentation of activity log book, exam on the subjects listed in the general syllabus within the context of a bedside consultation.

Method and type of class marks:
The completion of the practical is confirmed by a signature. Confirmation is given based on the activity shown during the practical and the complex patient examination at the end of the practice.

How to apply for the exam:
Application happens automatically when applying for the practical.

Opportunity to repeat the exam:
you will not receive a failing mark for this exam, no repetition is required

The list of printed, electronic and online notes, textbooks, study aids and literature to be used for to learn the curriculum (in case of online sources, html address):
A belgyógyászat alapjai (Tulassay, Zs. ed., 2016)
A belgyógyászat alapjai (Tulassay, Zs. ed., 2017)
Belgyógyászati diagnosztika (Petrányi, Gy., 2009)
Belgyógyászati fizikális diagnosztika (Szarvas, F.-Csanády, M., 2005)
Herold Internal Medicine, B+V (medical and technical) Lap- és Könyvkiadó Kft., 2009

Practical examination
1. taking medical history of a given patient, documenting the organised collected information with medical terms, complete physical examination of patient and its professional presentation (may be performed previously during the days before the exam, student is expected to present the documentation in the test)
2. theoretical and practical consultation on one item of the exam items.

Exam items
1. targeted examination of patient with dyspnoea
2. targeted examination of patient with anaemia
3. targeted examination of patient with renal insufficiency
4. targeted examination of patient arriving with chest pain
5. targeted examination of patient with fever
6. measurement of pulse, bedside diagnostics of vascular stenosis
7. blood pressure measurement technique, ABPM, assessing values of blood pressure measured at home
8. describing transfusion process (indication, choosing blood supply, bedside tasks)
9. blood glucose measurement (technique), assessing glucose chart, therapy recommendations
10. practical instructions on insulin treatment, describing utilisation of pen
11. primary/hospital treatment of hypoglycaemic patient
12. primary treatment of patient with ketoacidosis
13. diagnosis and treatment of pleural effusion
14. diagnosis and treatment of ascites
15. arterial blood gas analysis (technique, assessment)
16. recognising septic patient/patient in critical condition (ABCDE), report on condition (SBAR)
17. examination procedure of patient with icterus
18. utilisation of bedside ultrasound device
19. administration methods of medication, preparation of infusion
20. placement technique of urinary catheter
OBLIGATORY ELECTIVE SUBJECTS – SCHEDULE OF THE BASIC AND PRE-CLINICAL MODULES (1st, 2nd & 3rd year) – Find detailed curricula after the 5th year

1st semester

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lectures</th>
<th>Practicals</th>
<th>Credit Points</th>
<th>Examination</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Developmental Biology I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Anatomy, Cell, Histology and Embryology II.</td>
</tr>
<tr>
<td>Library Informatics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Clinical Physiology of Respiration and Respiratory Diseases</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Physiology II.</td>
</tr>
<tr>
<td>Basic Cell Biology</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>Anatomy, Cell, Histology and Embryology I.</td>
</tr>
<tr>
<td>Teaching assistance (Demonstrator)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>Only 2nd year students and up with an average of 3.51 from the previous school year and having achieved a final grade of “good” (4) or better in the course related to the teaching assistant work</td>
</tr>
<tr>
<td>Teaching assistance II. (Demonstrator)*</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Work within the union of research students (TDK munka)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Introduction to Clinical Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Profession</td>
</tr>
<tr>
<td>Medical Profession</td>
<td>0,67</td>
<td>1,33</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Mathematical and Physical Basis of Medical Biophysics</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>–</td>
</tr>
</tbody>
</table>

2nd semester

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lectures</th>
<th>Practicals</th>
<th>Credit Points</th>
<th>Examination</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Clinical anatomy – propedeutics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Anatomy, Cell, Histology and Embryology III.</td>
</tr>
<tr>
<td>Developmental Biology II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>Developmental Biology I.</td>
</tr>
<tr>
<td>Clinical cardiovascular physiology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Physiology II.</td>
</tr>
<tr>
<td>Introduction to Medical Informatics</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>pract. mark</td>
<td>Medical Profession</td>
</tr>
<tr>
<td>Library Informatics</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>Med. Fac.: Medical Physiology II; Dent. Fac.: Medical and Dental Physiology I.</td>
</tr>
<tr>
<td>Teaching assistance (Demonstrator)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>Only 2nd year students and up with an average of 3.51 from the previous school year and having achieved a final grade of “good” (4) or better in the course related to the teaching assistant work</td>
</tr>
<tr>
<td>Teaching assistance II. (Demonstrator)*</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Work within the union of research students (TDK munka)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Preclinical and clinical neuropsychopharmacology and psychopharmacogenetics</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>Previous attendance of courses in Biology, Physiology and Biochemistry</td>
</tr>
<tr>
<td>The Scalpel and the Paragraph: Special Issues of Medical Practice in Light of the Law</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Ultrasonography in obstetrics and gynecology</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>completion of second year</td>
</tr>
<tr>
<td>Introduction to Clinical Anatomy</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Macroscopic Anatomy and Embryology I-II.; Microscopic Anatomy and Embryology I-II.</td>
</tr>
</tbody>
</table>
ELECTIVE SUBJECTS

1st semester

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lectures</th>
<th>Practicals</th>
<th>Credit Points</th>
<th>Examination</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art of Learning</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Social media in medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>The theory and the practice of Mindfulness Based Stress Reduction</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Introduction to Epigenetics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Immunology</td>
</tr>
<tr>
<td>Lessons in Digital Health</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Traditional Chinese Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>basic module</td>
</tr>
<tr>
<td>Highlights on Mental Health and Mental Treatment (Culture in Medicine II.)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Culture in Medicine, Culture of Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Basic Cell Biology</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>Anatomy, Cell, Histology and Embryology I.</td>
</tr>
<tr>
<td>Cardiorespiratorical and neurophysical measuring techniques</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Physiology II.</td>
</tr>
<tr>
<td>Jewish Medical Ethics I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>History of Medical Professionalism</td>
<td>2,5</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Introduction to Pharmacological Research</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Biochemistry, Molecular and Cell Biology I.</td>
</tr>
<tr>
<td>Basics of Medical Chemistry</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Medical Genomics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Biochem., Molecular and Cell Biology I, II, III</td>
</tr>
<tr>
<td>Cardiac Electrophysiology</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>semi-final</td>
<td>Medical Physiology I.</td>
</tr>
</tbody>
</table>

2nd semester

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lectures</th>
<th>Practicals</th>
<th>Credit Points</th>
<th>Examination</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art of Learning</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Clinical Hungarian</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>pract. mark</td>
<td>Hungarian Medical Terminology V.</td>
</tr>
<tr>
<td>Medical Terminology II.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Disruptive Technologies in Medicine</td>
<td>2</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Pathobiochemistry</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Biochemistry II.</td>
</tr>
<tr>
<td>Social media in medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Traditional Chinese Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>basic module</td>
</tr>
<tr>
<td>Culture in Medicine, Culture of Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Problem based medical physiology</td>
<td>2,5</td>
<td>–</td>
<td>4</td>
<td>pract. mark</td>
<td>Medical Physiology II.</td>
</tr>
<tr>
<td>Clinical cardiovascular physiology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Physiology II.</td>
</tr>
<tr>
<td>History of Medical Professionalism</td>
<td>2,5</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Course</td>
<td>Credits</td>
<td>Lectures</td>
<td>Pract. Mark</td>
<td>Recommended Courses</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Sexual genetics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Jewish Medical Ethics II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Chemotaxis – Its significance in biology and clinical sciences</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Introduction to Pharmacological Research</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Systems Neuroscience</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Clinical Gastroenterology</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Climate Change and Health in Sociological Perspectives</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Pathobiochemistry</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Hate Crimes</td>
<td>2 hours</td>
<td>14 hours</td>
<td>1</td>
<td>oral semifinal</td>
<td></td>
</tr>
<tr>
<td>Introduction to Principles of Students’ Scientific Research</td>
<td>2</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Biomedical Innovation for the 21st century</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td></td>
</tr>
</tbody>
</table>

Recommendations:
- Anatomy, Cell, Histology and Embryology II.
- Biochemistry, Molecular and Cell Biology I.
- Medical Chemistry
- Medical Biochemistry, Molecular and Cell Biology I. or Medical Biochemistry I.
- Medical Biochemistry, Molecular and Cell Biology II.
- Internal Medicine – Propedeutics
- Medical Sociology
- Medical Sociology, Medical Physiology II.
- Completion of the 1st and 2nd semester
- Recommended from 2nd year
STUDY PROGRAMME

Fourth Year in the 2021/2022 academic year

4th and 5th Years (7th-10th semesters)

Teaching is done in “clean” blocks: Theory + Practice + Exam. (Practices are taught by “shadowing”)
The time span of each block depends on the credit value of the subjects: 1 to 5 weeks
Pharmacology and Pharmacotherapy is taught on a weekly regular basis for 2*14 weeks in the 7th and 8th semesters

For example: based on a subject of 2 credits:
- 2 credits × 14 lessons = 28 lessons (1 semester consists of 14 weeks. The number of credits are equal with the lessons in a week)
- Education is provided as 8 lessons in a day: 4 days x 8 lessons = 32 lessons
- the training and the exam must be completed in 2 weeks
- approx. 40 students will be trained by providing 4 days of training and 2 days of exams within 10 working days.

7th and 8th semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lecture (h/week)</td>
<td>practice (h/week)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Medicine (Metabolism, Endocrinology, Gastroenterology, Nephrology)</td>
<td>13</td>
<td>19+21</td>
<td>4</td>
<td>Internal Medicine - Propedeutics, Medical Physiology II, Medical Microbiology II.</td>
</tr>
<tr>
<td>Cardiology, Heart Surgery, Angiology, Vascular Surgery</td>
<td>2</td>
<td>4,5</td>
<td>6</td>
<td>Medical Microbiology II, Pathology II, Internal Medicine - Propedeutics</td>
</tr>
<tr>
<td>Surgery</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>Anatomy, Histology, and Embryology IV, Basic Surgical Techniques, Pathology II.</td>
</tr>
<tr>
<td>Traumatology</td>
<td>18</td>
<td>26</td>
<td>3</td>
<td>Pathology II, Basic Surgical Techniques, Medical Imaging*, Surgery I-II.*</td>
</tr>
<tr>
<td>Orthopedics</td>
<td>12</td>
<td>48</td>
<td>3</td>
<td>Anatomy, Histology, and Embryology IV, Pathology II, Surgery I-II.*</td>
</tr>
<tr>
<td>Medical Imaging</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Pathology II, Behavioural Science I. (Medical communication), Medical Biophysics II.</td>
</tr>
<tr>
<td>Otorhinolaryngology</td>
<td>14</td>
<td>28</td>
<td>3</td>
<td>Anatomy, Histology, and Embryology IV, Basic Surgical Techniques, Surgery I-II.*</td>
</tr>
<tr>
<td>course name</td>
<td>hours</td>
<td>prerequisite(s)</td>
<td>examination</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>---</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lecture (h/week)</td>
<td>practice (h/week)</td>
<td>credit</td>
<td>Pathophysiology II., Internal Medicine I.*, Pharmacology II.</td>
</tr>
<tr>
<td>Dermatology</td>
<td>1,5</td>
<td>2,5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>28</td>
<td>2</td>
<td>Anatomy, Histology, and Embryology IV., Basic Surgical Techniques Pathology II.</td>
</tr>
<tr>
<td>Oral Surgery and Dentistry</td>
<td>–</td>
<td>28</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>28</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory Medicine</td>
<td>1,5</td>
<td>1</td>
<td>3</td>
<td>Internal Medicine – Propedeutics, Pathology II., Basic Surgical Techniques</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>28</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pulmonology – Thoracic Surgery</td>
<td>1,5</td>
<td>2,5</td>
<td>4</td>
<td>Pathology II., Basic Surgical Techniques Pathology II.</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>28</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Oncology and Reconstructive Oncoplastic Surgery</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Pharmacology II., Pathology II., Basic Surgical Techniques</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>28</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Emergency Medicine and Oxyology</td>
<td>1</td>
<td>1,5</td>
<td>2</td>
<td>Internal Medicine I., Cardiology, Cardiac Surgery, Angiology, Vascular Surgery</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>28</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Pharmacotherapy I</td>
<td>2,5</td>
<td>2,5</td>
<td>5</td>
<td>Medical Physiology II, Medical Biochemistry III, Molecular Cell Biology II</td>
</tr>
<tr>
<td>(7th semester)</td>
<td>–</td>
<td>28</td>
<td>2</td>
<td>Medical Biochemistry, Molecular and Cell Biology III, Pathophysiology II OR Pathophysiology and Clinical Lab. Diagnostics II.</td>
</tr>
<tr>
<td>Pharmacology and Pharmacotherapy II.</td>
<td>2,5</td>
<td>2,5</td>
<td>5</td>
<td>Pharmacology and Pharmacotherapy I, Medical Microbiology II., Internal Medicine I OR Internal Medicine – propedeutics</td>
</tr>
<tr>
<td>(8th semester)</td>
<td>–</td>
<td>28</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Family Medicine</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>Internal Medicine - Propedeutics</td>
</tr>
<tr>
<td>Medical Ethics, Bioethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>Medical Psychology</td>
</tr>
<tr>
<td>PE VII.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>PE VI.</td>
</tr>
<tr>
<td>PE VIII.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>PE VII.</td>
</tr>
<tr>
<td>Summer Practice – Surgery</td>
<td>1 month</td>
<td>1</td>
<td>1</td>
<td>Surgery</td>
</tr>
<tr>
<td>The Medical Basis of Disaster Management III.</td>
<td>2/semester</td>
<td>0</td>
<td>The Medical Basis of Disaster Management II.</td>
<td>signature</td>
</tr>
<tr>
<td>The Medical Basis of Disaster Management IV.</td>
<td>2/semester</td>
<td>0</td>
<td>The Medical Basis of Disaster Management III</td>
<td>signature</td>
</tr>
</tbody>
</table>

The prerequisite is that registration has been done for the marked subject – corequisite - as well
LIST OF TEXTBOOKS (The list may change!)

Recommended textbooks:
2. Lynn S. Bickley: Bates’ Guide to Physical examination and history taking
3. Tulassay Z. (Ed.): A belgyógyászat alapjai (I.-II.)
4. Internet links for Internal Medicine
8. Davis-Christopher: Textbook of Surgery / Synopsis for students (Sabolst)
9. Clive R. G. Quick, Joanna B. Reed et all.: Essential SURGERY(5th Edit.) Churchill Livingston
11. Semmelweis Egyetem e-learning rendszere Ortopédia fejezet – Semmelweis University e-learning system: Orthopaedics
16. full-text online access: http://gateway.ut.ovid.com/gw1/ovidweb.cgi?New+Database=Single0&S=IDNJHKIDNGILPL00
17. Shimizu’s Textbook of Dermatology – accessible online also
INTERNAL MEDICINE I. – Metabolism, Endocrinology, Nephrology, Gastroenterology

Department of Internal Medicine and Oncology, 1083 Budapest, Korányi S. u 2/a

Course director: prof. István Takács
Course coordinator: dr. Péter Studinger

4 weeks
Lectures: 2.5 hours per week
Practices: 10 hours per week
Credit: 4

Examination: semi-final. On the last Monday of the course a written test is taken by all students. On the following days (Tuesday/Wednesday/Thursday/Friday), students continue with a bedside, patient-oriented oral exam.

Objectives of the course:
The primary objective of the course in internal medicine for fourth-year students, who have been acquired the the basic skills of physical examination, is the symptom-based and patient-oriented education of various segments of internal medicine. Internal medicine I comprises nephrology and gastroenterology (students have already learned endocrinology and metabolic diseases). Students become familiar with the diagnostics and the treatment of the most common disorders of these disciplines.

Lectures:
1. Glomerular diseases
2. Tubulointerstitial and cystic kidney diseases
3. Electrolyte disorders
4. Renal transplantation
5. Differential diagnostics of renal disease
6. Disorders of the upper gastrointestinal tract, epigastric pain
7. Diagnosis and differential diagnosis of malabsorption and maldigestion
8. Inflammatory bowel diseases
9. Diagnosis and management of disorders associated with diarrhea or constipation
10. Differential diagnosis of gastrointestinal bleeding
11. Diagnosis and management of acute hepatic failure. Differential diagnosis of jaundice

Case discussions:
1. A young female patient with acute kidney injury and liver dysfunction (90’)
2. Approach to a patient with glomerulonephritis (90’)
3. Dialysis treatment (90’)
4. Management of a patient with chronic kidney disease (45’)
5. Kidney stones, urinary tract infection (45’)
6. Hematuria and proteinuria during pregnancy (45’)
7. Approach to a patient with an abnormal liver function test. (45’)
8. Approach to a patient with acute abdominal pain (90’)
9. Management of a patient with a pancreatic disease (45’)
10. Management of a patient with an inflammation of the large bowel. (90’)
11. Approach to a patient with swallowing difficulty (45’)
12. Celiac disease (45’)
13. Management of a patient with diabetes mellitus (90’)

293
CARDIOLOGY – Heart Surgery, Angiology, Vascular Surgery

Heart Center Department of Cardiology
Tutor: Dr. György Bárczi

Lectures (2 hours per week)
1. Introduction. Differential diagnosis in acute cardiac care
 History, epidemiology
 Acute coronary syndrome, pulmonary embolism, aortic dissection
2.
3. Ischaemic heart disease I.
 atherosclerosis
 Invasive/non invasive tests
 Stable coronary artery disease
4. Ischaemic heart disease II.
 Acute coronary syndrome
5. “Cardiology Day”
 Live demonstrations, interactive lectures, resuscitation practice, etc.
6. Heart failure
 Cardiomyopathies
7. Arrhythmias I.
 Supraventricular arrhythmias
8. Arrhythmias II.
 Ventricular arrhythmias
 Syncope, sudden cardiac death
9. Acquired valve diseases
10. Congenital heart diseases in children and in adults
11. Cardiac Surgery
 Indications and recommendations
12. Infective heart diseases, cardiac tumours
13. Primary and secondary prevention
14. Interactive case presentations

Practices (ward rounds, 4.5 hours per week)
1. Bedside practice – ECG
2. Bedside practice – heart failure, echocardiography
3. Bedside practice – valvular heart diseases
4. Coronary care unit – intraaortic balloon pump
5. Coronary care unit – invasive haemodynamics
6. Coronary care unit – cardiogenic shock
7. Out patient care – ischemic heart diseases
8. Out patient care – arrhythmias
9. Common practice – invasive cardiology
10. Common practice – non-invasive cardiology
11. Common practice – electrophysiology
12. Common practice – pediatric cardiology
13. Common practice – cardiac surgery
14. Practical exam

Students are strongly recommended to visit regularly our website where updated informations are available: http://vszek.semmelweis.hu/education-cardiology
SURGERY I-II.

I. Department of Surgery and Interventional Gastroenterology
Department of Transplantation and Surgery

Tutors: Dr. Ónody Péter
Dr. Gábor Telkes

Lectures (3 hours per week)
- Definitions, indications and types of surgery, surgical techniques, perioperative treatment
- Emergency surgery
- Surgical oncology
- Hernias
- HPB surgery (liver-biliary tract)
- HPB surgery (pancreas I-II)
- Endocrine surgery
- Breast surgery
- IBD, Diverticulitis
- Proctology
- Intensive Care
- Malignant diseases of the small- and large intestine

After all the lectures we have a case report/case discussion about a real case at the department. (11x)

Practice (3 hours per week)
All in wards (bedside practice) and the operation theatre:
- Investigate of surgical patients
- Method of physical examinations.
- Evaluation of the findings.
- Visiting the operation theatre.
- Visiting the intensive care unit
- Wound treatment, dressings
- Participation in the work of the surgical ambulance
- Surgical administration
- Postoperative treatment, medication
- Endoscopy

Form of EXAM:
Oral exam
TRAUMATOLOGY

Department of Traumatology
Type of subject: Mandatory
Code: AOKTRA063_1A
credit points: 3
Head of Department: Prof. Dr. Hangody László

Number of lessons per week: 44* lecture: 18* practical course: 74*
The ratio between lectures and practices may also vary, depending on the institute’s subspeciality.

Objectives of the subject, its place in the medical curriculum:
Traumatology as a specialty deals with the treatment of injured patients, independent of the injured organ, patient’s age or previous diseases. In developed countries, the 4-5th leading cause of death is injury, while in the actively working population, the rate of death is even higher. Morbidity in children and in the elderly is also high. Traumatology treatment for the most part deals with extremity surgery in correlation to orthopedics, however cranial, thoracic, abdominal, spinal and pelvic injuries as well as the treatment of polytraumatized patients also belong to the field of trauma care.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Uzsoki Hospital, Department of Orthopedics-Traumatology, Conference room (ground floor) 1145 Budapest, Uzsoki street 29-41.

Péterfy Traumatology Center, Conference room (8th floor) 1081 Budapest, Fiumei street 17.

Successful completion of the subject results in the acquisition of the following competencies:
During practices, students will have the opportunity to learn the following: physical examination of injured patients, bandaging, suturing, casting techniques, and the uses of orthesises and splints. Students will have the opportunity to enter the operating theater, scrubbing, and become acquainted with special instruments used in Traumatology. Consultation of typical and the more frequent trauma cases, radiologic diagnostics, as well as videos in the operative theater are also part of the curriculum. During on duty shifts, students will have an opportunity to examine and participate in the trauma care of patients under supervision.

Course prerequisites:
Pathology II., Basic Surgical Techniques

Detailed thematic of the course:
Lectures
Traumatology lectures are available on Semmelweis University’s E-learning portal (moodle)
2. Fracture management. Bone healing
3. Immediate care and major accidents. (Multiple injuries, shock, major disasters)
4. Thoracic and abdominal trauma
6. Pelvic injuries. Femoral fractures (proximal femur and shaft)
7. Fractures of the tibia and fibula. Injuries of the ankle, talus, calcaneus and the foot
8. Knee Injuries. Cartilage repair, ligament surgeries
9. Injuries of the upper extremity
10. Hand injuries
11. Pediatric trauma

* Groups are subdivided into further smaller groups, where more tutors will be teaching (the total maximal amount of teaching hours is about 104).
<table>
<thead>
<tr>
<th>Day 1 – Monday</th>
<th>Day 2 – Tuesday</th>
<th>Day 3 – Wednesday</th>
<th>Day 4 – Thursday</th>
<th>Day 5 – Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 – 09:15</td>
<td>Introduction to the Traumatology department</td>
<td>Cast splinting/Wound dressing</td>
<td>Femoral fractures</td>
<td>Femoral fractures</td>
</tr>
<tr>
<td>09:15 – 09:30</td>
<td>Break</td>
<td>Trauma implants</td>
<td>Break</td>
<td>Break</td>
</tr>
<tr>
<td>09:30 – 10:15</td>
<td>Assignment homework</td>
<td>Trauma radiographs demonstration</td>
<td>Knee fractures</td>
<td>Injuries if the upper extremity</td>
</tr>
<tr>
<td>10:15 – 10:30</td>
<td>Break</td>
<td></td>
<td>Break</td>
<td>Break</td>
</tr>
<tr>
<td>10:30 – 11:45</td>
<td>Polytrauma/scenario</td>
<td>Septic ward</td>
<td>Free Day</td>
<td>Free Day</td>
</tr>
<tr>
<td>Chest/abdomin/pelvic trauma</td>
<td>Trauma implants</td>
<td></td>
<td>Free Day</td>
<td>Free Day</td>
</tr>
<tr>
<td>11:45 – 12:30</td>
<td>Lunch break</td>
<td></td>
<td>Lunch break</td>
<td>Lunch break</td>
</tr>
<tr>
<td>12:30 – 16:00 with 30 minutes break</td>
<td>ER</td>
<td>Arthroscopy, cartilage and ligament injuries of the knee</td>
<td>ER</td>
<td>Operating theater 1-3</td>
</tr>
<tr>
<td>Operating theater 1-3</td>
<td></td>
<td></td>
<td>Operating theater 5-6</td>
<td></td>
</tr>
<tr>
<td>Operating theater 5-6</td>
<td></td>
<td></td>
<td>Ward/OPD</td>
<td>ER</td>
</tr>
<tr>
<td>Ward/OPD</td>
<td></td>
<td></td>
<td>Operating theater 1-3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 6 – Monday</th>
<th>Day 7 – Tuesday</th>
<th>Day 8 – Wednesday</th>
<th>Day 9 – Thursday</th>
<th>Day 10 – Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 – 09:15</td>
<td>Neurotraum</td>
<td>Mini presentation</td>
<td>Free Day</td>
<td>Exam/free day</td>
</tr>
<tr>
<td>09:15 – 09:30</td>
<td>Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:30 – 10:15</td>
<td>Pediatric trauma</td>
<td>Mini presentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15 – 10:30</td>
<td>Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30 – 11:45</td>
<td>Physical Th</td>
<td>Mini presentation/ Consultation</td>
<td></td>
<td>Exam/free day</td>
</tr>
<tr>
<td>Bonee healing/Wound healing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:45 – 12:30</td>
<td>Lunch break</td>
<td></td>
<td>Lunch break</td>
<td></td>
</tr>
<tr>
<td>12:30 – 16:00 with 30 minutes break</td>
<td>Ward/OPD</td>
<td>Exam/free day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating theater 1-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating theater 5-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ward/OPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Traumatology Department reserves the right to make changes to the order of practices depending on which institute the student attends the practice at.

Requirements for participation in classes and the possibility to make up for absences:
According to the SZMSZ 17§ 7. regulation of Semmelweis University, the attendance of minimum 75% of seminars and practices is necessary.

Requirements for signature:
Attendance of consultations and practices or repeating of unattended practices and the written exam result is required. We cannot verify the semester, or allow the student to take the midterm if the student did not attend at least 75% of practices during the semester. Only those students will be allowed to take the exam, who have presented their trauma topic to the group and tutor.
Type of examination:
Written MCQ electronic exam (single answer and multiple choice test), on Semmelweis University’s E-learning portal (moodle)

Requirements of the examination:
The knowledge of the given textbook, electronic lecture and practice material.

Method and type of evaluation:
Written electronic exam (single answer and multiple choice test).
Percentage grading, not Bell curve

Possibilities for exam retake:
Retaking of the written electronic exam (single answer and multiple choice test), on Semmelweis University’s E-learning portal (moodle)
Students may take the exam a total of maximum 3 times.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:

Name of Textbook:
The Trauma Manual:
TRAUMA AND ACUTE CARE SURGERY
Third edition

Editors:
Andrew B. Peitzman
Michael Rhodes
C. William Schwab
Donald M. Yealy
Timothy C. Fabian

Publisher:
Wolters Kluwer / Lippincott Williams & Wilkins

Internet
The lecture material can be downloaded from Semmelweis University’s E-learning portal https://itc.semmelweis.hu/moodle/
OTORHINOLARYNGOLOGY

Tutor: Dr. Beáta Bencsik

<table>
<thead>
<tr>
<th>Lecture (1 hour per week)</th>
<th>Practice (2 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute and chronic otitis media I. (etiology, diagnosis, pathology).</td>
<td>Diagnostical methods of the ear.</td>
</tr>
<tr>
<td>Acute and chronic otitis media II. (Complications and therapy)</td>
<td>Evaluation of different types of perforations of the tympanic membrane. Cadaver bone practice.</td>
</tr>
<tr>
<td>Physiology and lesions of the vestibular system.</td>
<td>Examination of the vestibular system. ENG. CCPG.</td>
</tr>
<tr>
<td>Neurological and ophthalmological aspects of ear diseases. Prevention and rehabilitation.</td>
<td>Evaluation of different otological cases.</td>
</tr>
<tr>
<td>Clinical anatomy, physiology and diseases of the pharynx.</td>
<td>Advanced examination of the pharynx. Directoscopy, fiberoscopy.</td>
</tr>
<tr>
<td>Dyspnoe and suffocation with upper airway origin. Conicotomy and tracheotomy.</td>
<td>Emergency management of suffocation.</td>
</tr>
</tbody>
</table>
ORAL SURGERY AND DENTISTRY

Course Leader: Dr. Zsolt Németh
Department of Oro-Maxillofacial Surgery and Stomatology
Dental Training Centre of the Faculty of Dentistry
Department of Community Dentistry

Credit value: 2

Number of lessons per week: 28 hours lecture: 0 practical course: 28 hours seminar: 0
Subject type: compulsory course
Subject code: AOKSZB690_1M, AOKSZB690_1A, AOKSZB690_1N

Objectives of the subject, its place in the medical curriculum:
The main aim of the „Oral surgery and Dentistry” course for 4th year medical students is to introduce the most specific symptoms, recognition and treatment of the most common dental, oral and maxillofacial diseases. In addition, the knowledge of various specialisations of dentistry is important to medical students because later, as specialized medical doctors - regardless of their specialization – they will find numerous correlations and these skills will prove to be essential in case of many borderline diseases and to face diagnostic difficulties. During the course students learn about the method of oral examination and stomato-oncological screening. The practice focuses on the oral and dental contexts of disciplines of medicine. It is extremely important for future medical doctors to be aware of the symptoms of systemic diseases in the oral cavity and know which dental and oral diseases may lead to systemic diseases.

Successful completion of the subject results in the acquisition of the following competencies:
As practicing physicians they will be in the possession of modern theoretical and practical skills and will be able to perform medical practice on their own and build correct human relationships with their patients and family members as well as other health professionals. It is important that they will receive a comprehensive picture of the concept of oral health.
As practicing physicians they will be able to examine the oral cavity and the head and neck region, and interpret the lesions and altered functions, initiate the diagnostic and therapeutic process. In accordance with the preventive approach that is characteristic for today’s medicine, they will be able to prevent and detect tooth (oral) diseases of systemic effect at their early stage.

Course prerequisites:
Microscopic anatomy and embryology II.
Pathology II.
Basic surgical techniques

Number of students required for the course (minimum, maximum) and method of selecting students:
Based on registration through the Neptun system.

How to apply for the course:
through the Neptun system

Detailed curriculum:
(Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks). Please provide the names of the teachers of the lectures and practical lessons and indicate guest lecturers. Do not use attachments! Always attach a CV for guest lecturers!)
The duration of the course is 1 week in one block.
According to the schedule of the 2020/2021 academic year, the English language practice will be on 2nd, 5th, 12th, 15th, 22nd, 25th, 32nd, 35th educational week.
The courses take places in the building of Department of Oro-Maxillofacial Surgery and Stomatology and in the Dental Training Centre of the Faculty of Dentistry during the semester.
The courses take places in the building of Department of Oro-Maxillofacial Surgery and Stomatology and in the Department of Community Dentistry of the Faculty of Dentistry during the semester exam period.
The schedule of the one-week block:

<table>
<thead>
<tr>
<th>one - week block</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>from 8:00 am to 11:30 am</td>
<td>education</td>
<td>education</td>
<td>education</td>
<td>day off (obligatory)</td>
<td>Preparing for the exam</td>
</tr>
<tr>
<td>(with half an hour break)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lunch break from 11:30 am</td>
<td>break</td>
<td>break</td>
<td>break</td>
<td>break</td>
<td>break</td>
</tr>
<tr>
<td>to 12:30 pm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(from 12:30 pm to 16:00</td>
<td>education</td>
<td>education</td>
<td>education</td>
<td></td>
<td>exam</td>
</tr>
<tr>
<td>pm (with half an hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>break)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

About 20-25 students attends to the clinics weekly. The students are divided into six groups (2-4 students per little group) as the practice are taught by six disciplines of Faculty of Dentistry. The small groups of students (2-4 person) take part on practice in the rotating system on Monday, Tuesday and Wednesday. The practices are held in educational period (semester) in Department of Oro-Maxillofacial Surgery and Stomatology and the Clinics of Dental Training Centre of the Faculty of Dentistry, in exam period in Department of Oro-Maxillofacial Surgery and the department of Community Dentistry.

The schedule of rotating system for small (2-4 person) students groups:

| The schedule of rotating system for small (2-4 person) students groups |
|---|----------------|----------------|----------------|----------------|----------------|----------------|
| Monday morning | Monday afternoon | Tuesday morning | Tuesday afternoon | Wednesday morning | Wednesday afternoon |
| A conservative dentistry | prosthodontics | periodontology | oral and maxillofacial surgery | pediatric dentistry and orthodontics | oral diagnostics |
| B prosthodontics | prosthodontics | oral and maxillofacial surgery | periodontology | oral diagnostic | pediatric dentistry and orthodontics |
| C pediatric dentistry and orthodontics | oral diagnostic | conservative dentistry | conservative dentistry | periodontology | oral and maxillofacial surgery |
| D oral diagnostic | pediatric dentistry and orthodontics | prosthodontics | prosthodontics | oral and maxillofacial surgery | periodontology |
| E periodontology | oral and maxillofacial surgery | pediatric dentistry and orthodontics | oral diagnostic | conservative dentistry | conservative dentistry |
| F oral and maxillofacial surgery | periodontology | oral diagnostic | pediatric dentistry and orthodontics | prosthodontics | prosthodontics |

The list of Clinics and Departments are involved in rotating system:
- Department of Oro-Maxillofacial Surgery and Stomatology
- Department of Conservative Dentistry
- Department of Prosthodontics
- Department of Periodontology
- Department of Pediatric Dentistry and Orthodontics
- Department of Oral Diagnostics
- Department of Community Dentistry (in the exam period of Faculty of Dentistry)
The teachers/instructors of Clinics and Departments are involved in rotating system:

- **Department of Oro-Maxillofacial Surgery and Stomatology**
 Zsolt Németh Dr., Sándor Bogdán, Dr., Mihály Vaszkó Dr., Tamás Huszár Dr., Iván Decker Dr., Péter Barabás Dr., Gergely Csókay Dr., Szófia Somogyi Dr., Tamás Würsching Dr., Gábor Pintér Dr., Szófia Szentpéteri Dr., Lillik Péter Dr., Ákos Dora Dr., Lőrincz Zatik Dr.

- **Department of Conservative Dentistry**
 Dr. Eszter Szalai Dr., Andrea Demeter Dr., Ákos Mikolicz Dr., Gergely Hriczó-Koperdák, Dr. Krisztina Árendás, Dr. Eszter Danka, Dr. Roland Daubner, Dr. Réka Fazekas, Dr. Ádám Fekete, Dr. Krisztian Csomó, Dr. Barbara Gedei, Dr. Anna Herczeg, Dr. Brigitta Huszta, Dr. Dávid Jelencsiccs, Dr. Péter Komora, Dr. Alexandra Kovács, Dr. Alexandra Kőmőves, Dr. Barbara Mikcés, Dr. Sándor Mikó, Dr. Eszter Molnár, Dr. Mátýás Nagy, Dr. Fruzsina Anna Németh, Dr. Réka Németh, Dr. Petra Papp, Dr. Orsolya Pethő, Dr. Melinda Polyák, Dr. Kinga Sárda, Dr. Boglárka Szántai, Dr. Barbara Szanyi, Dr. Zsuzsanna Tóth, Dr. Klaudia Varga, Dr. Enikő Vasziné Szabó, Dr. Noémi Zala

- **Department of Prosthodontics**
 Dr. Tamás Hegedüs, Dr. Klaudia Lipták, Dr. Anna Németh, Dr. Judit Schmalzl, Dr. Péter Tajti, Dr. Fanni Andrea Vass, Dr. Máté Jász, Dr. Szilvia Ambrus, Dr. Emőke Takács, Dr. Bálint Jász

- **Department of Periodontology**
 Dr. Ferenc Dőri, Dr. Boldizsár Bartha, Dr. Andrea Dobos, Dr. Kristóf Forgó, Dr. Nándor Haba, Dr. Atila Horváth, Dr. Kinga Kelemen, Dr. Bálint Molnár, Dr. György Nagy Pál, Dr. Florina Németh, Dr. Kristóf Orbán, Dr. Claudia Paár, Dr. Dániel Palkovics, Dr. Zsombor Radóczy-Drájkó, Dr. Eleonóra Solyóm, Dr. Gábor Szabó, Dr. Orsolya Láng, Dr. Lili Sipos, Dr. Fanni Bolya-Orosz, Dr. Dóra Szönyi

- **Department of Pediatric Dentistry and Orthodontics**
 Dr. Bálint Nemes, Dr. Gergely Balaton, Dr. Stefánia Radó, Dr. Réka Bálint, Dr. Dorottya Bányai, Dr. Lili Heckenast, Dr. Levente Szegedi Dr. Gergely Kaán, Dr. Anna Moldován, Dr. Réka Sklánitz, Dr. Violetta Szabó, Dr. Adrienn Auth, Dr. Fanni Török, Dr. Eszter Rózsa Bogárné, Dr. Gergely Lőrincz, Dr. Réka Kulin, Dr. Lili Ács, Dr. Anna Bosch, Dr. Szilvia Baksa, Dr. Löchli Heike, Dr. István Simon, Dr. Bence Benedekti, Dr. Miklós Nagy

- **Department of Oral Diagnostics**
 Dr. Szabolcs Gyulai-Gáal, Dr. László Simonffy, Dr. Róbert Bernát, Dr. Fruzsina Gyekiczki, Dr. Bálint Trimmel

- **Department of Community Dentistry (in the exam period of Faculty of Dentistry)**
 Dr. Flóra Döngölő, Dr. Gergely Oláh

Topics of each sub-practices:

Maxillofacial and dentoalveolar surgery:

Cons

Prosthodontics:
Indications and contraindications of prosthodontics treatments. Making prosthodontic treatment plan: when and which type, fixed or removable and implant retained prosthetic appliances etc. Demonstration of the most frequently used fixed and removable prosthetic appliances emphasizing which types are must be removed from oral cavity of an unconscious patient. The significance of the control and care for patients after prosthetic treatment. Examination of the temporomandibular joint, its disfunction (TMD), diagnosis and conservative treatment options. The clinical team of treating TMD patients. Detection and treatment of early and late outcome of complete endentulousness.

Periodontology:
Survey of the patient’s oral hygiene and setting professional oral hygiene. Examination of the oral mucosa and diagnosis. Opportunity to assist in subgingival depuration (in non-surgical pocket treatment) and surgical periodontic procedures.
Pediatric Dentistry and Orthodontics:
Dental examination in childhood, medical and dental history, dental screening. Opportunity to assist in paedodontic procedures e.g. sealent application, primary and permanent tooth filling, primary tooth extraction; alternative solutions to treatment of childhood caries. Characteristics of primary, mixed and permanent dentition. Difficulties and emergencies in paedodontics. Scanning and eliminating focal infections. Oral manifestations of childhood infections. Use of anaesthetics and drugs in childhood. The connection between paedodontics- orthodontics and other dentistry specialties. Opportunity to assist in activation of removable and fix orthodontic appliances. The most frequently used orthodontic appliances.

Oral diagnostics:

More specialties contain similar course topics:
Emergency cases and its treatments, the importance of prevention and connection of medical specialties. Dental and dentoalveolar outpatient department connection to maxillofacial and otolaryngology departments work. Gerostomatology. Dental infectology.
The study materials of practices are available to students on E-learning interface.
Students can take a written exam on E-learning interface on the educational week on Friday from 7 pm to 8 pm. It is possible to repeat / replace the exam by priori arrangement, following the rules of Study and Exam Policy.

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!):

Possible overlaps of themes:
- Cleft lip and cleft palate – Pediatric surgery
- Sinus illnesses, head and neck cancers – Otorhinolaryngology
- Allergy, mucosa – skin diseases – Dermatology, Internal Medicine
- Focal diseases – Internal medicine, Dermatology, Rheumatology
- Hemorrhagic patients’ care – Hematology
- Head and neck medical imaging – Radiology
- Interventions in general anesthesia – Anesthesiology
- Transfusion – 2 week transfusion course
- Sepsis – Intensive Therapy, Infectology, Microbiology
- Oncologic patients’ care – Oncology, Oncoradiology
- Dental, oral surgical care in elder patients – Gerontology
- Injuries of teeth, maxillofacial bone and soft tissue – Traumatology
- Facial pain – Neurology
- Orbital diseases due to infections and traumatologic causes – Traumatology, Ophthalmology
- Examination of tissue from orofacial area - Pathology

Special study work required to successfully complete the course:
(E.g. field exercises, medical case analysis, test preparation, etc.)
None

Requirements for participation in classes and the possibility to make up for absences:
At least 75% participation is obligatory of the practices, according to the Study and Exam Policy. The replacement of practices is available at the time of same language group by priori arrangement (depending on the student’s number).

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)
During the short modules of education there will be no exams. All through the interactive practices and consultations it is enabled to assess the students knowledge and the usage of the information which is provided, available.

Requirements for signature:
At least 75% participation.

Type of examination:
Written test exam on E-learning interface.

Requirements of the examination:
(In case of a theoretical examination, please provide the topic list; in case of a practical exam, specify the topics and the method of the exam)
Written test exam on E-learning according to the practices. The study materials of practices are available for student on E-learning interface. The test questions (simple choice – 1 correct answer from 4 options) are made up by the Departments and Clinics participated in the education.

Method and type of evaluation:
(Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark.)
Test exam.
Above 90% grade 5, 80-89% 4, 70-79% 3, 60-69% 2, under 60% 1.

How to register for the examination?
On Neptun system.

Possibilities for exam retake:
According to the Study and Exam Policy.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
The study materials are available for students on E-learning interface: https://itc.semmelweis.hu/moodle/
The student can find more study materials, additional resources, notes, textbooks and literature links on the website of clinics and departments participated in education.
DERMATOLOGY

Department of Dermatology-Venerology and Dermatooncology

Head of the Department: Prof. Dr. Miklós Sárdy
Tutor: Dr. Kende Lőrinz

Credits: 4
Lectures: 2 hours (90min) /week; practices: 8 hours (8x45min or 4x90min) /day

At the first day of the block the students have an introduction lesson. Afterwards the focus is on the practical learning. There are special practices – e.g. problem-based learnings, special seminars – and in- /outpatient practices as well divided in smaller groups.

Objectives of the course:

The goal of the training:

a. Knowledge of diagnostics, ethiopathogenesis and treatment of skin diseases concerning the competency of general practitioners.

b. Problem-oriented assessment of skin symptoms and the knowledge of their connections to general medicine.

Half of the fourth-year students take the subject in the first semester, the other half in the second semester in form of block rotations. The curriculum contains the following topics discussed as problem- based learnings or special seminars: anatomy and functions of the skin, dermatoinfectology, oncodermatology, atopic dermatitis, eczema, drug eruptions, bullous diseases, allergic skin diseases, autoimmune skin disorders, sexually transmitted diseases, psoriasis, pathology of the skin.

During practices students examine patients, master the description of skin symptoms, evaluation of symptoms and dermatological treatment options. Fungal infections are discussed during a special practice.

Important notes:
All preclinical modules are required. Registration in the Neptun system is imperative at the beginning of the semester.

Attendance of the lectures and practices is compulsory. Three absences are accepted.
Lectures are compulsory. Each student should attend the practice of one particular teacher. Attendance of a practice at another teacher is accepted for the missed practices. The deputy teacher’s signature is required.

Semester requirement: One mid-term exam (written test) – around the 10th week of the semester. Optional: at the end of semester a competition for clinical examination (a written quiz with projected clinical cases) is announced. The best students are dispensed from taking the practical part of the semi-final examination.

Sign up in the Neptun system is imperative.

Evaluation: Practical part (clinical examination and discussion of one patient) and theoretical part with randomly selected three main topics compose the semi-final examination.

Exam: Semi-final examination.

Sign up and modifying exam: Via Neptun.

Absence from the exam: Only an official medical certificate is accepted within 3 working days.
PULMONOLOGY AND THORACIC SURGERY

Department of Pulmonology
Tömő str. 25-29., Budapest, Hungary 1083
http://semmelweis.hu/pulmonologia/english/

Course director: Prof. Dr. Veronika Muller
Course tutor: Dr. Gabor Horvath

Subject code: AOKPUL751_1A
Credits: 4
Hours: 56 hours/3-week course

Lectures (18 hours)
- Lung cancer
- Chronic obstructive pulmonary disease
- Pneumonia. Tuberculosis
- Respiratory insufficiency. Non-invasive mechanical ventilation
- Bronchial asthma
- Pulmonary rehabilitation. Smoking cessation
- Lung transplantation. Cystic fibrosis
- Pulmonary embolism
- Sleep related breathing disorders
- Chest surgery: lung cancer, pneumothorax, pleural effusion, lung transplantation

Practices (35 hours)
Practical demonstrations/laboratory visits:
- Lung function measurement laboratory techniques
- Pulmonary diagnostics
- Non-invasive ventilation methods
- Oxygen therapy methods
- Inhalation therapy methods
- Pulmonary hypertension

Interactive demonstrations/skill development:
- Bronchology/skill laboratory examinations
- Non-invasive ventilation patient care
- Allergology tests
- Sleep laboratory tools/methods
- Pulmonary rehabilitation procedures
- Chest drainage

General/specific patient examinations:
- Pulmonary dept.
- Pulmonary-oncology dept.
- Transplantation dept.
- Chest surgery dept.

Attendance: lectures and practices are compulsory. Absence hours less than 25% of total are accepted.
Exam type: oral
Exam sign up: Neptun system

Textbook:
Department of Thoracic surgery

Ráth György str.7-9., Budapest, Hungary 1122
https://semmelweis.hu/mellkassebeszet/education/

Course director: **Dr. Rényi-Vámos Ferenc**

Lectures (3 hours)
- Surgical aspects of lung cancer
- Emergency chest pathologies:
 - pneumothorax, pleural effusion
 - lung transplantation

Practices (5 hours)

Interactive demonstrations
- Lung cancer case recognition, diagnosis and treatment
- Recognition, diagnosis and treatment of pulmonary metastases
- Recognition, diagnosis and treatment of pleural effusions
- Recognition, diagnosis and treatment of pneumothorax
- Surgical mediation
- Thoracic drainage

General/specific patient examinations:
- Transplant outpatient clinic/department.
- Thoracic surgery outpatient clinic/department

Attendance: lectures and practices are compulsory. Absence hours less than 25% of total are accepted.

Exam type: oral
Exam sign up: Neptun system

Textbook:
ONCOLOGY AND RECONSTRUCTIVE ONCOPLASTIC SURGERY

Department of Oncology and Department of Clinical Oncology
Credits: 3
Total number of hours: 40 lecture: 14 practice: 26 seminar: 0
Course type: obligatory
Academic year: 2020/21 1st semester
Course code: AOKONK752_1M
Name of the person in charge of the subject: Prof. Dr. Polgár Csaba

The aim and place of the teaching of the subject in the curriculum of medical education: To get acquainted with the epidemiology, etiology, biological properties, prevention (primary and secondary prevention), diagnostics and multidisciplinary therapy of cancer diseases, to acquire the complex oncological approach. To get acquainted with the modern treatment of the most common solid tumours (surgical, radiation, chemo-, hormone, immunological and biological therapy) and their results. Understanding the possibilities of oncological reconstructive and oncoplastic surgeries. Early and late side effects of oncology treatments, their possible prevention and treatment. Palliative treatment, analgesia, somatic and mental rehabilitation of oncology patients. Oncological emergencies and their treatment. Defining the role of the practitioner in the prevention, early detection of tumours and in the care and care of cancer patients.

Place of teaching the subject (address of lecture hall, seminar room, etc.):
Semmelweis University Department of Oncology, National Institute of Oncology, Budapest, 1122 Ráth György u. 7-9. Semmelweis University Department of Oncology Department of Clinical Oncology, Budapest, 1083, Tömő u. 25-29. IV. floor

Successful completion of the subject results in the acquisition of competencies: Acquisition of general oncological knowledge in 4th year medical students, based on preliminary studies, knowledge of the main etiological factors, epidemiology, early detection, diagnosis and main therapeutic modalities of tumours (tumour surgery, radiotherapy, drug treatments) and the main solid tumour type treatment and rehabilitation, including mastering the basics of oncoplastic surgical solutions.

Prerequisite(s) required for the admission or acquisition of the subject: Pharmacology II., Pathology II., Basic Surgical Techniques

Student headcount conditions for starting the course (minimum, maximum), method of selecting students: Based on registration in the NEPTUN system, it is 1/8 of the class

How to apply for the course: In the NEPTUN system

Detailed topics of the subject:
Classroom lectures (14 hours):

Block Day 1:
2. Imaging diagnostics of tumours (45 minutes) (M. Gődény, P. Manninger)
3. Histological and molecular pathological diagnosis of tumours (Szőke J./Tóth E.)
5. Basics of radiotherapy and radiochemotherapy of tumours (Cs. Polgár, J. Lövey, Z. Takácsi-Nagy)
6. Basics of oncological drug treatments (chemo-, hormone, biological and immunotherapy) (Dank M., Rubovszky G.)

Block Day 2:
7. Oncotherapy of head and neck tumours (Takácsi Nagy Z.)
8. Oncotherapy of gastrointestinal tumours (Lövey J.)

Block Day 3:
9. Oncotherapy of gynecological tumours (Polgár Cs., Vízkeleti J.)
10. Complex treatment of breast tumours (Cs. Polgár, N. Mészáros)
Block Day 4:
11. Complex treatment of lung tumours (Lövey J.)
12. Oncotherapy of urological tumours (Ágoston P., Jorgo K.)

Block Day 5:
13. Treatment of central nervous system / bone and soft tissue tumours (Lövey J./Ágoston P.)
14. Oncological emergencies / Oncological rehabilitation and follow-up (Dank M., Szentmártoni Gy.)

Block practices (26 hours):

Block Day 1:
Tumour Diagnosis I: Cytological, Histological, Molecular Pathology Practice (2x45 minutes)

Block Day 2:
Tumour Diagnosis II: Imaging Diagnostic Practice 1. (4×45 minutes; 1 hour mammography / UH, 1 hour CT, 1 hour MRI, 1 hour PET-CT)
Tumour Radiation I: Treatment Planning Practice (2×45 minutes)

Block Day 3:
Tumour surgery (surgical practice) (4×45 minutes)
Oncoteam practice (2×45 minutes)

Block Day 4:
Systemic treatment of tumours I: Chemotherapy, hormone therapy (2x45 minutes)
Systemic treatment of tumours II: Targeted biological and immunotherapy (2x45 minutes)
Systemic treatment of tumours III: Supportation, treatment of side effects (2x45 minutes)

Block Day 5:
Radiation Treatment of Tumours II: Practice of External Radiation Treatment (2x45 minutes)
Tumour radiotherapy III: Brachytherapy practice (2×45 minutes)
Consultation (2×45 minutes)

Other subjects concerning the border issues of the given subject (both compulsory and optional subjects!).
Possible overlaps of themes:

Urology: diagnosis and surgical treatment of urological tumours

Clinical genetics: hereditary tumours

Special study work required for successful completion of the course:
There is no such

Requirements for participation in classes and the possibility to make up for absences:
According to the study and exam regulations, 75% of the classes are compulsory

How to check the acquired knowledge during the diligence period:
During the short period of education available to us, there is no intermediate, formal examination. However, the interactive nature of the practices and consultations allow teachers to test the students’ knowledge and how they use the information available to them. At least 75% participation in classes. Checking each session by keeping a catalog.

Type of exam:
Oral exam based on a pre-issued line of items.
Exam requirements:
General oncology and radiotherapy line items
1. Etiology of cancer
2. Epidemiology of cancer
3. Screening and early detection of tumours
4. Imaging methods and their role in the treatment of tumours
5. Imaging diagnostics of major tumour groups
6. Histological diagnosis of tumours
7. Molecular pathological diagnosis of tumours
8. Methods of treatment of tumours - surgery
10. Methods of treating tumours - medication
11. Physical, chemical and biological bases of radiation therapy
12. Basic concepts of dosimetry
13. Computer treatment planning, significant volumes in radiation therapy
14. Structure and operating principle of teletherapeutic devices
15. Structure and operating principle of brachytherapy devices
16. Brachytherapy applicators
17. Brachytherapy planning system, imaging devices
18. Interstitial brachytherapy
19. Image Guided Radiation
20. Intensity Modulated Radiation Therapy
21. Stereotaxic Radiotherapy and Radiosurgery
22. Basics of chemotherapy
23. Side effects of chemotherapy
24. Basics of simultaneous radio-chemotherapy
25. Basics of targeted, biological therapy
26. Side effects of targeted, biological therapy
27. Basics of immunotherapy
28. Side effects of immunotherapy
29. Basic elements of oncopharmacology
30. Clinical pharmacology studies in cancer
31. Evaluation of objective clinical response and general condition

Detailed line of oncology and radiotherapy items
1. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of head and neck tumours.
2. Radiation therapy, surgical and pharmacological treatment of head and neck tumours.
3. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of oesophageal tumours.
5. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of gastric tumours.
7. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of colorectal tumours.
8. Surgical and pharmacological treatment of colorectal tumours.
9. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of rectal tumours.
11. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of pancreatic tumours.
13. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of liver tumours.
15. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of cervical tumours.
17. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of uterine tumours.
19. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of vulvar, vaginal and ovarian tumours.
20. Radiation therapy, surgery and systemic treatments for tumours of the vulva, vagina and ovaries.
21. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of penis, testis and kidney tumours.
22. Radiation therapy, surgery and systemic treatment for penile, testicular and kidney tumours.
23. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of prostate and bladder tumours.
25. Surgical and pharmacological treatment of prostate and bladder tumours.
27. Radiation therapy of lung tumours.
29. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of breast tumours.
30. Radiation therapy of breast tumours.
31. Surgical and pharmacological treatment of breast tumours.
32. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of central nervous system tumours.
33. Radiation therapy of central nervous system tumours.
34. Surgical and pharmacological treatment of central nervous system tumours.
35. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of bone tumours.
37. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of soft tissue tumours.
38. Radiation therapy, surgery and medication for soft tissue tumours.
40. Radiation treatment of distant metastases and oncological rehabilitation.
41. Principles of the possibilities of reconstructive plastic surgery.
42. Oncoplastic surgery for head and neck tumours.
43. Oncoplastic surgery for breast tumours.

Method and type of rating:
Activity during the block (20%) + oral exam (80%)
Marks: Excellent above 90%, good 80-89%, satisfactory 70-79%, pass 60-69%, fail 60%

How to apply for the exam:
Students apply for the exam exclusively with the help of the NEPTUN unified study system according to the regulations described in the TVSZ (Study and Examination Regulations-SER).

Options for retaking the exam:
According to the Study and Examination Regulations (SER)

Printed, electronic and online notes, textbooks, aids and literature (html title in case of online material) can be used to acquire the study material:
Curriculum: University Note on Oncology and Radiation Therapy (Ed.: Csaba Polgár):
– in Hungarian, English and German in the form of an electronic note
– in Hungarian in print (Semmelweis Publishing House, Budapest, 2018)

Recommended reading:
ORTHOPEDICS

Tutor: Dr. Gergely Holnapy

Lectures

- Subject of Orthopedic Education, Organization.
- Orthopedic care in Hungary. Possibilities of prophylaxis.
- Inflammatory diseases in orthopaedics.
- Anatomy and biomechanics of the spine. Mai posture.
- Scheuermann's disease. Vertebra plana, Calve.
- Spondylolysis and spondylolisthesis. Lumbalization and Sacralization.
- Deformities and diseases of the neck and the upper extremity.
- Madelung deformity. Sudeck dystrophy of the upper extremity.
- Osteoarthrosis of the hip. Etiology, pathology, clinical and radiological symptoms.
- Methods of conservative and operative Treatment.
- Diseases of the knee. Recurrent dislocation of the patella.
- Bone disorders. Osteoporosis, osteomalaclia, osteogenesis imperfecta, Paget disease.
- Developmental anomalies. Congenital anomalies of the extremities.

Consultation.

Practices

- Instruction of correct behaviour in the Hospital and during practicals. Introduction to the Hospital. Therapeutic aims of Orthopedics.
- Methods of the clinical practicals.
- Methodology of learning Orthopedics.
- Fixation, relief of weight bearing, plaster splints, plaster bandages. Examination of patients. Examination of the diseases and deformities of the spine, malposture (Calves deformity, spondylarthrosis).
- Preparation of plaster splints, bandages. Examination of patients with lumbago, ischias syndrome, spondylolysis, spondylolisthesis. Demonstration of Roentgenograms.
- Examination of scoliotic patients. Preparation of plaster and other corsets.
- Examination of patients. Tuberculous spondylitis. Demonstration of Roentgenograms.
- Preparation of plaster beds.
- Examination of patients with congenital dislocation of the hip. Early and late symptoms of this disease. Demonstration of Roentgenograms.
- Examination of patients with congenital dislocation of the hip. Demonstration of the means and methods of therapy and their application.
- Examination of patients with juvenile osteochondritis of the hip. Epiphyseolysis.
- Preparation of hip spica.
- Examination of patients with osteoarthritis of the hip. Examination of contractures of the hip. Demonstration of Roentgenograms.
- Examination of patients with recurrent dislocation of the patella, Osteoarthritis, tuberculous arthritis of the knee. Function of the knee joint. Methods of fixation of this joint, preparation of plaster bandage.
- Examination of patients with diseases and deformations of the neck, upper extremity. Torticollis, cervicobrachial syndrome, periarthritis of the shoulder, tuberculosis of the shoulder joint. Demonstration of Roentgenograms. Application of the methods of hand and arm fixation.
- Examination of patients with congenital clubfoot and flatfoot. Therapy. Application of the methods of foot and lower leg fixation.
- Demonstration of the methods of gymnastics and physiotherapy.
- The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester.
- Exam: Practical exam at the time of last practice.
- Semester Closing exam registration has to be done through the NEPTUN system for the days set by the department up to the limits.
- Students have to fill -during semester- the trial test on Semmelweis University’s e-learning system. Modifying of exam dates through the NEPTUN system, as it allows.
- Semester Closing exam is a written test. The material for examination is based on the lectures.
- Test results of exam are available within one day.
MEDICAL IMAGING

Department of Radiology
www.semmelweis.hu/radiologia
Tutor: Dávid László Tárnoki MD, PhD associate professor

Course Director: Prof. Dr. Viktor Bérczi med. habil. PhD, department chair

Lectures (1 hour)
Practices (2 hours)
Credit: 3

Course topics (order of lectures could change)

Practices
Demonstration of imaging methods. Clinical radiology by interactive case reviews. Ultrasound practice (skill centre). Consultation. (Must-see-images: image collection on our website)

Useful and update information about the Institute and the subject can be found at home page: www.semmelweis.hu/radiologia.
LABORATORY MEDICINE

Department of Laboratory Medicine
Address: H-1089 Budapest, Nagyvárad sq 4. Floor XIV
Phone +36-1-210-0278 ext: 56318

Acting Directors
General: Prof. Barna VÁSÁRHELYI MD., PhD., DSc. (vasarhelyi.barna@med.semmelweis-univ.hu)

Background
The Department of Laboratory Medicine was founded in 2010 with missions on the following areas:
Education. The main goal is the introduction of basic principles of Laboratory Medicine to graduate medical students. The Department also provides post-graduate education for health-care specialists including physicians and clinical biochemists.
Diagnostics. It coordinates laboratory tests at the majority of University and provides professional support for clinical decision making.
Research. The Department actively participates in research studies involving laboratory tests; it also manages research projects of its own. The Department manages its own PhD program.

Education
The Laboratory Medicine curriculum is based on knowledge acquired during studies of Translational Medicine and Pathophysiology obtained during the third year. The major goal is to present some approach and diagnostic algorithms that are required for efficient test ordering and evaluation of lab test results. As part of education the students obtain information regarding: the procedure that generates laboratory test results (from test ordering to laboratory reports) laboratory tests needed to establish a diagnosis the major aspects that the medical doctors should take into account when they evaluate a laboratory report novel techniques used in general laboratory (with their drawbacks and benefits).
Beyond the basic knowledge integrated into the internal medicine training, real diagnostic problems through life examples are discussed during the practices.

Classroom lectures and practices “Laboratory Medicine” for 4th year medical students
The participation in the tuition is obligatory.
The digital slides are available for the students via our website (www.labmed.usn.hu).
The participation on lectures is highly recommended, since the exam is partly based on them.
The topics of the lectures include the elements of general and practical clinical laboratory.

The areas to be covered by the planned lectures:
1. Introduction in Laboratory Medicine (Specimen collection and processing. Preanalytical variables. To identify the major factors interfering with laboratory tests. Establishment and use of reference values/intervals.)
2. Concepts in Laboratory Medicine (Interpretation of laboratory test results: sensitivity and specificity of a laboratory test, predictive values. Quality control, quality assurance in clinical laboratories.)
3. Laboratory investigations of hematology diseases. (To understand the basic principles of modern hematology analyzers in clinical laboratories.)
4. Laboratory investigations of hemostatic disorders. (Identify the appropriate laboratory tests for evaluation of the bleeding patient and the thrombotic patient.)
5. Laboratory investigations of inflammation and tissue damage. (To understand how cell injury and inflammation can be tracked through plasma markers.)
6. Immunological investigations in laboratory medicine. (Learn the diagnostic tests required to the assessment of autoimmune disorders.)
7. Laboratory enzyme diagnostics
8. Endocrine investigations in laboratory medicine (Understand the laboratory tests used in the diagnosis of the more commonly encountered endocrine disorders.)
9. Molecular genetics investigation in laboratory medicine
10. Therapeutic drug monitoring (To learn when therapeutic drug monitoring is required and how it is performed for commonly monitored drugs. To identify the common drugs of abuse and learn how they are detected.)
11. Laboratory investigations of tumor markers
12. Laboratory investigations of cerebrospinal fluid and ascites, pleural fluid
13. To learn the laboratory tests used near patients (Point of care testing)
14. To learn the rationale for selection of laboratory tests in pediatrics including neonatal screening programs.
The topics of the exercises include some clinical case studies, harmonized with the Internal medicine studies, dealing with the following diagnostic problems:

1. “Sick or not?” screening tests.
2. Hypertensive patient.
3. Obese patient.
4. Diabetic patients.
5. Endocrine patients
6. Patient with fever.
7. Patient with joint complaint
8. Alcoholic patient.
10. Liquid, ion homeostasis disorder

We also provide consultation and laboratory visit during the semester.

Exam
The exam is a written test.
The material for examination is based on the lectures. The questions are prepared by lectures.
The exam consists of 50 questions. The students have 60 minutes for writing test.
The test questions include simple choice (one correct answer out of 4 or 5 options).
Test results of exam are available within one day.
Evaluation:

- 0- 60% = 1 (Failed)
- 61- 70% = 2
- 71- 80% = 3
- 81- 90% = 4
- 91-100% = 5

Exam dates: You will be notified about the dates offered by the Department before the exam period and they will be finalized at the Staff-Student meeting.

Taking examination before the exam period is not allowed.

The sign up procedure is controlled and regulated by the NEPTUN software and the Department cannot interfere with system. The officially signed up student will be scheduled for examination. The list of examinees is completed 2 days before the date of exam; then NEPTUN system automatically closes the sign up list.

Diagnostic profile of the Department
The Central Laboratory at Semmelweis University forms the basis of the Department. It performs more than 400 different tests in the field of clinical chemistry, hematology, hemostasis, serology, endocrinology, therapeutic drug level monitoring and clinical microbiology with an annual number over 3 million. The laboratory is classified as FJ-3 meaning that it provides a 24 hour service for 7 days a week. Laboratory reports are provided through GLIMS lab informatics system integrated to eMedSolution.

Research at the Department
Laboratory tests are performed in the majority of clinical studies and drug research. In order to use the results more efficiently the colleague who is directly involved in performing the lab tests also participates in study design and evaluation. Therefore, clinical laboratories at the University are active partners of researchers and medical doctors. The major research profile of the Institute is to characterize specific patterns of biomarkers predictive for specific disorders. Characteristic examples are the determination of immune phenotype and analysis of kinetic alteration of intracellular analytes with flow cytometry, measurement of cytokine levels with biochips, genomic analyses (genotyping and gene expression arrays). These instruments and the professional knowledge are also available for research purposes. Medical students are welcome to do research in any of the fields listed above.

Useful and update information about the Institute and the subject of Laboratory Medicine can be found at home page: Semmelweis.hu/laboratorium
EMERGENCY MEDICINE and OXYOLOGY

Dept. of Anesthesiology and Intensive Therapy
Division of Emergency Medicine and Oxyology
Tutor: Peter Vass MD, (Tel: +36 1 459-1500/62037, 62038, E-mail: seemgrad@gmail.com)

Compulsory subject: Emergency Medicine and Oxyology (EMO)– program and topics

2 credits

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain syndromes. As long as it hurts you know that you are alive.</td>
<td>Headache, chest and abdominal pain, backpain. The basics of pain management.</td>
</tr>
<tr>
<td>Environmental accidents.</td>
<td>Electrocution, drowning, near-drowning, heat exhaustion, heat stroke, hypothermia. What to do on the scene and in the ED.</td>
</tr>
<tr>
<td>Group of symptoms in emergency</td>
<td>Dyspnoe, vertigo, syncope, nausea and vomiting, diarrhoea, weakness.</td>
</tr>
<tr>
<td>Prehospital emergency services as integral parts of emergency care.</td>
<td>First aid, primary emergency systems, levels of rescue, connection of ambulance with hospital care.</td>
</tr>
<tr>
<td>Perfuse it or lose it.</td>
<td>Things you’ve missed from pathophys but will surprise you in acute situations.</td>
</tr>
<tr>
<td>Emergency cardiac care. From the sliding door to the PCI.</td>
<td>Syncope, heart failure, ACS.</td>
</tr>
<tr>
<td>Acute neurological deficit. Time is brain.</td>
<td>Stroke, altered mental states, convulsions.</td>
</tr>
<tr>
<td>Paediatric emergencies.</td>
<td>The most frequent emergency situations in kids. Special view of paediatric emergency care.</td>
</tr>
<tr>
<td>The same but downsized?</td>
<td>Trauma, burns, compartment syndromes. Integration, teamwork, damage control.</td>
</tr>
<tr>
<td>The severely injured patient.</td>
<td>How to deal with bleeding patients?</td>
</tr>
<tr>
<td>Massive bleeding. The dynamic approach of coagulopathies.</td>
<td></td>
</tr>
<tr>
<td>Toxicology. Alle Ding sind Gift-any stuff is a poison. Two steps above earth.</td>
<td></td>
</tr>
<tr>
<td>Fever, infections, sepsis. „Blood poisoning” in the 20th century.</td>
<td>Severe heat imbalance, the emergency aspects of sepsis.</td>
</tr>
</tbody>
</table>

Types of practices in Emergency Medicine - Oxyology:

OMV-OV-NOT-Compulsory: (2x45 min) The basic rules of treatment of a critical ill patient during simulation. Basic airway skills during simulation. Oxygen therapy workshop. IV access or alternative ways in critical ill patient during simulation. **OMV-M-RF-1-NOT-Compulsory (2x45 Min):** Monitorising, basics of red flag treatment and team skills. Diagnostic and therapeutic approach of critical ill patient with basic technical and non technical skills. Basic monitoring technics in treatment of emergency patient during simulation. Presentation and practice during simulations of non-technical skills to make teamwork better. Team member non-technical skills presentation and practice during simulations.

OMV-M-RF-2-NOT-Compulsory (2x45 Min): Monitorising, basics of red flag treatment and team skills. Diagnostic and therapeutic approach of critical ill patient with basic technical and non technical skills. Basic monitoring technics in treatment of emergency patient during simulation. Presentation and practice during simulations of non-technical skills to make teamwork better. Team member non-technical skills presentation and practice during simulations.
PBL-SBAR-Compulsory: Problem Based Learning SBAR communication practice (2x45 min) Acquaintance and practice of SBAR-communication method in emergency situations. Communication with patient and relatives in critical situations and during end of life care procedure. Communication practice between dispatch and HCP on the scene.

PBL-Triage-Compulsory: Problem Based Learning – Priorisation practice (2x45 min) Basic technics to solve different problems, with prioritisation techniques and the usefulness of different early warning scores. How to organize and prioritize to maintain Patient safety.

MEDICAL ETHICS, Bioethics

Institute of Behavioral Sciences
Tutor: Prof. Dr. József Kovács

Course Syllabus.

Course objectives:
a) To enable students to recognize ethical issues when encountered in everyday clinical practice and research
b) To provide students with a conceptual-logical system, which helps them to address ethical questions and to resolve ethical dilemmas in an efficient way
c) To introduce students to a body of knowledge, which helps them to understand, respect and protect the rights of patients research subjects and fellow health care professionals
d) To help the would be health care professional to understand the responsibility of the individual, of the health care system and of the society as a whole in maintaining health

Topics:
1. week Principles of Medical Ethics
2. week Informed Consent I.
3. week Competence and Capacity to Make Health Care Decisions
4. week Informed Consent II.
5. week Information Disclosure to Terminally Ill Patients. Telling the Truth to Patients
6. week Confidentiality and Medical Records. Reportable Illnesses, HIV-Related Issues, Sexually Transmitted Diseases (STDs)
7. week Reproductive Issues
8. week End of Life Issues
9. week Organ and Tissue Transplantation
10. week The Rights of Patients
11. week Malpractice
12. week Doctor-Patient, Doctor-Doctor Relationship
13. week Doctor and Society
14. week Ethical Questions of Human Research

Course Faculty:
Prof. József Kovács, MD, PhD, (Head of the Department of Bioethics), 210-2930/56115;
Orsolya Péter, JD, PhD, peter.orsolya@med.semmelweis-univ.hu; peterorsolya@gmail.com
(Room 2012) (Tel: +36-30-906-5787)
Secretary: Csilla Motyovszki, e-mail: motyovszki.csilla@med.semmelweis-univ.hu
Tel: 210-2930/56114, NET Building, 20th floor, Room-2015

Department:
Institute of Behavioral Sciences
Department of Bioethics
NET Building, 19th, 20th floor
1089, Budapest, Nagyvárad tér 4.
Tel: 210-2953
Secretary: NET Building, 20th floor, Room-2005

List of questions

1. The principles of medical ethics
2. Competence and the capacity to make decisions
3. Paternalism in medical practice
4. Informed consent
5. Information disclosure for terminally ill patients
6. Withholding and withdrawal of medical treatment
7. Advance Directives
8. Do not resuscitate (DNR) orders
9. Withholding Fluids and Nutrition in terminally ill patients
10. Physician assisted suicide
11. Active and Passive Euthanasia
12. Terminal sedation and the law of double effect
13. Futile medical care
14. Determination of death and brain death
15. Ethical problems of live organ donation
17. Organ donation from brain-dead donors: presumed consent
18. Reproductive issues (abortion, contraception, sterilization, donation of sperm and eggs)
19. HIV related issues (confidentiality, partner notification, HIV-positive health-care workers, refusal to treat HIV-positive patients) and sexually transmitted diseases (STDs)
20. Malpractice
21. Doctor-patient relationship (beginning and ending the relationship, gifts from patients, doctor/patient sexual contact)
22. Doctor and society (child abuse, elder abuse, impaired drivers, physician participation in executions, torture, spousal abuse, gunshot wounds, gifts and industry funding)
23. Doctor-doctor relationship (reporting impaired physicians, physician disagreements)
24. Confidentiality and medical records
25. Ethical Questions of Human Research
26. The Rights of Patients

Textbook:
MHID 1-25-964121-X

Important:
To participate on at least 75% of the total number of lessons is a prerequisite of getting the signature. Doctor’s certificate is required to justify absence from the lessons and the exam.

Exam type: semi-final
Sign up for the exam: through the Neptun system.
PHARMACOLOGY AND PHARMACOTHERAPY I–II

Tutor: Dr. Pál Riba

Department of Pharmacology and Pharmacotherapy
Total credits: 2×5 (10)
Course Director: Dr. Ferdinandy Péter

Thematics:
Pharmacology and Pharmacotherapy (two semesters)

Topics of Pharmacology and Pharmacotherapy I:
3 Pharmacokinetics (drug absorption, distribution, elimination). Clinical pharmacokinetic principles.
4 Basics of the neurotransmission of the autonomic nervous system. Pharmacology of the cholinergic systems. Parasympathomimetics and parasympatholytics, centrally acting cholinergic drugs.
5 Pharmacology of the adrenergic system. Sympathomimetics and sympatholytics.
6 Pharmacology of the skeletal muscles. Pharmacology of the local anesthetics. Nitrates, Ca-channel blockers and other vasodilators. Pharmacology of RAAS.
7 Drugs used in coagulation disorders. Fibrinolytics, drugs against bleeding, drugs acting on blood cell production. Diuretics and antidiuretics.
8 Treatment strategy of ischemic heart disease. Treatment strategy of acute and chronic heart failure. Positive inotropic agents. Antihyperlipidemic drugs.
9 Treatment strategy of hypertension. Drugs acting on blood glucose control. Antidiabetics.
10 Pharmacology of the respiratory system. Pharmacotherapy of bronchial asthma and COPD. Expectorants (secretomotorics, secretolytics, mucolytics), antitussive drugs. Autacoids, histamine, antihistamines.
13 Special aspects of pediatric and geriatric pharmacology (Pharmacokinetic Differences and Variations in Drug Responsiveness according to Age or State of Health.) Nutrients, traditional plant medicines, vitamins, anorectic drugs.

Topic of Pharmacology and Pharmacotherapy II:
1 Basic pharmacology of analgesics. Opioids. Adjutant analgesics.
2 Immunopharmacology (immunosuppressive and immunomodulatory agents). Non-Steroidal-Antiinflammatory-Drgs (NSAIDs). Drugs for gout.
3 Treatment strategy of autoimmune diseases (CP). Treatment strategy of pain. Antidepressants and antimanic drugs, mood stabilizers.
5 Pharmacology of the central GABA-ergic system. Pharmacotherapy of anxiety and sleep disorders. Antipsychotics.
Maximum number of absences is 25 percent of the number of practices in the semester.

Certifying absence from the lesson:
Medical certificate is accepted.

In each semester two written midterms are arranged. The topics of the midterms are the material discussed from the beginning of the semester or after the previous midterm. The number of absences must not be more than 25 percent of the number of practices in the semester.

Grading: Written test: according to the scores. The semi-final exam is oral.
Final exam consists of three parts. The grade will be decided after the oral part of the exam (three questions), taken into consideration the results of the preceding two parts (see below).

Exam type:
1st semester. Semi-final, oral
2nd semester. Final exam has three parts. 1. Preceding exam from toxicology. 2. Written test from clinical pharmacology. 3. Oral exam.

Exam sign up:
Registration has to be done through the NEPTUN system for the days set by the department up to the limits.

Modifying:
Through the NEPTUN system, as it allows.

Certifying absence from the exam:
Medical certificate is accepted.

Literature:
2. Materials discussed during lectures and seminars.
FAMILY MEDICINE

Department of Family Medicine
H-1085 Budapest, Stáhly u. 7-9. Phone: +36-1-355-8530
Head of the Department: Dr. Péter Torzsá M.D. Ph.D.
Credits: 2
Total number of hours: 20 lectures: 8 practices:16
Type of the course (mandatory/elective): mandatory

Academic year: 2021/2022
Code of the course: AOKCSA695_1A

Aim of the subject and its place in the curriculum:
Health care is based on the family practice system. It’s important for future doctors to get to know the gatekeeping function of family practices. It’s also important to show them on a one-to-one tutoring basis that family practice is an integrating profession. While getting involved in the work of the family practice medical students are introduced to the preventive approach, the ways of how to solve holistic, complex, bio-psycho-social and somatic problems and the differential diagnostics of frequent diseases. The aim is to teach them how to use and apply the basic means of diagnostic and therapeutic procedures and tools, to give them an insight into the most frequent laws and courses of action they may meet, to develop the medical students’ communication skills in practice and to practise how to work with short interventions.

Location of the course (lecture hall, practice room, etc.):
Accredited tutorial practices
The lecture hall of the Department of Family Medicine

Competencies gained upon the successful completion of the subject:
- Preventive approach, screening
- Holistic patient care
- Managing complex bio-psycho-social-health problems
- Frequent chronic illness care
- Differential diagnostics
- How to use basic diagnostic tools on their own and how to assess test results
- Basic health-care-connected legal knowledge

Prerequisite(s) for admission to the subject:
Internal medicine propaedeutics, Pharmacology I, Laboratory medicine

Minimum and maximum number of students registering for the course:
Student selection method in case of oversUBscription:
Turn based system.

How to register for the course:
To register for the course in the ‘Neptun’ system

Detailed thematic of the course:
Lectures
- Lectures take place on the first day of the course in an eight-hour period in the following categories:
 - Screening procedures
 - Mood- and sleep disorders
 - Diabetes screening and care
 - Gastrointestinal disease care
 - Emergency care in the practice
 - Cardiovascular prevention, hypertonic patient care
 - Supplementary medicine

Practices
- The subject is taught in blocks. Medical students have five lessons in the family practice on one-to-one tutoring basis on the second and the fourth day plus a three-lesson long case discussion with a practical and differential diagnostic approach.
- During the training session in the family practice medical students will get to know and acquire
 - the possible forms of prevention
 - chronic illness care
 - acute illness care
 - the managing of complex bio-psycho-social problems
 - how to use the available diagnostic and therapeutic devices and tools
The subject of the case discussion includes the most frequent problems in basic care and provides an opportunity to discuss the diagnostic, differential diagnostic and therapeutic ways and possibilities in the following topics in an interactive way:
Screening procedures
- Complex cardiovascular/metabolic diseases
- Frequent, serious communicable diseases
- Patients with musculoskeletal diseases that have a strong negative impact on their life
- Patients with psycho-social problems

Potential overlap(s) with other subjects:
Internal medicine

Policy regarding the attendance and making up absences:
It’s compulsory for the student to attend 75 percent of the training sessions.

Means of assessing the students’ progress during the semester:
During training the tutor checks whether the students have acquired the practical and theoretical content of the training. There is no formal assessment.

Requirement for acknowledging the semester (signature):
It’s compulsory for the student to attend at least 75 percent of the training sessions.

Type of the examination:
Assessment of how actively the student has participated in the training by the tutor.
Compiling a 3-4,000 character case study based on what students have learnt through the training period in one of the topics given in advance.

Exam requirements:
Compiling a case study about a specific patient based on the following topics:
Patient picked through screening
A complex cardiovascular/metabolic disease
Frequent serious communicable disease
Patient with a musculoskeletal disease that has a strong negative impact on their life.
A case study displaying psycho-social problems

Parts of the presentation of the case:
1. Anamnesis
2. Current complaints
3. An examination plan
4. Examinations
5. Diagnosis
6. Therapy
7. Care
8. Processing and assessing the case based on professional literature
9. Bibliography

Type and method of grading:
Assessment and grading of the course: with a 1 to 5 term mark:
It’s based on the student’s activity through the training assessed by the tutor (40 percent) and the grade of the required case study (60 percent).
Assessment of the case study is based on the following:
Grade 1: failing to hand in the essay on the deadline, the number of characters is under 3,000, the case study is not original, but plagiarism
Grade 2: absence of a required part of the case study, unsophisticated wording, serious professional failure
Grade 3: 2-3 professional or formal mistakes
Grade 4: one not too significant professional mistake
Grade 5: precise and accurate wording in the medical jargon, logical conclusions

How to register for the exam:
Registering for the exam in the ‘Neptun’ system

Opportunities to retake the exam:
In accordance with the Studies and Exams Code.
Chapters of Sports Surgery and Sports Medicine

Department of Traumatology Departmental Group of Sports Surgery and Sports Medicine and University of Physical Education

Credit value: 2
Number of lessons per week: 1 lecture 2x45 minutes practical course
Subject type: compulsory course
Academic year: 2021-2022 / 1
Name of the course leader: Prof. Dr. István Berkes
Position: Head of the Departmental Group

Objectives of the subject, its place in the medical curriculum: Our aim is to teach our students the basic knowledge of sports surgery and sports medicine. Gaining knowledge about the complex health effects of sport. Mastering the concept of locomotor medicine. The knowledge of the subject is closely related to the knowledge of all major clinical subjects, especially surgery, accident surgery and orthopedics, as well as internal medicine and rehabilitation. Among the theoretical subjects, the most related are physiology, pathophysiology and biochemistry.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Lectures: in the lecture hall of the Uzsoki Hospital
Practice: in the classroom, the library, the wards, the outpatient care rooms, the operation theatre of Uzsoki Hospital
Address: 1145 Budapest, Uzsoki utca 29-41.

Successful completion of the subject results in the acquisition of the following competencies:
The following competencies will be gained by the students upon successful completion of course:
Guidance of physical activity life style, prevention of NCDs and sports injuries, and the field side assessment of sports injuries.

Course prerequisites:
Finished the 3rd year of a Medical University with completed subjects of anatomy 2 and physiology.

Number of students required for the course (minimum, maximum) and method of selecting students:
min:3;
max: 30
none

Detailed curriculum:
(Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks) Please provide the names of the teachers of the lectures and practical lessons and indicate guest lecturers. Do not use attachments! Always attach a CV for guest lecturers!)
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Prof. István Berkes MD, PhD: History of sports medicine. Epidemiology, prevention and management of sports injuries</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>Time Kovács MD, PhD: Effect of the sport for the human system organs</td>
<td>Konditioning</td>
</tr>
<tr>
<td>3rd</td>
<td>Prof. Miklós Tóths MD, DSC: Conception of Exercise Medicine</td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td>Prof. Béla Merkely MD, DSC: Knowledges of Sports Cardiology</td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td>István Győre MD: Basics of Load physiology</td>
<td></td>
</tr>
<tr>
<td>6th</td>
<td>Dr. Péter Osváth MD, PhD: Sports nutrition, dietary supplements, antidoping activity</td>
<td>Surgical demonstration</td>
</tr>
<tr>
<td>7th</td>
<td>Prof. László Hangody MD, DSC: Up to date management of sports injuries</td>
<td></td>
</tr>
<tr>
<td>8th</td>
<td>Imre Szerb Md, PhD: Sports injuries of upper limb</td>
<td>Clinical, radiological, ultrasound, CT and MRI examinations</td>
</tr>
<tr>
<td>9th</td>
<td>György Béres MD, Krisztián Magos MD: Sports injuries of lower limb</td>
<td>Clinical, radiological, ultrasound, CT and MRI examinations</td>
</tr>
<tr>
<td>10th</td>
<td>Gergely Pánics MD, PhD: Field side assessment of sports injuries</td>
<td>First aid</td>
</tr>
<tr>
<td>11th</td>
<td>Árpád, Viola MD, PhD: Acute and chronic spine injuries</td>
<td>Clinical, radiological, ultrasound, CT and MRI examinations</td>
</tr>
<tr>
<td>12th</td>
<td>Zsófia Duska: Rehabilitation of sports injuries</td>
<td>Kinesio-Taping</td>
</tr>
<tr>
<td>13th</td>
<td>Sándor Nagy: Sportpsychology</td>
<td>Relaxations techniques</td>
</tr>
<tr>
<td>14th</td>
<td>Zsolt Komka MD: Szeminar, prectice – physical examinations, resuscitation</td>
<td></td>
</tr>
<tr>
<td>15th</td>
<td>Exam (written test)</td>
<td></td>
</tr>
</tbody>
</table>

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:
Orthopaedics, Traumatology, First aid, Hand surgery, Plastic surgery

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)

Homework (modern management of different sports injuries) until the end of the 13th week of the semester

Type of examination:
written test

Requirements of the examination:
(In case of a theoretical examination, please provide the topic list; in case of a practical exam, specify the topics and the method of the exam)

Method and type of evaluation:
(Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark.)

The grade depends on the practice score and homework given by the tutor of the student and on the result of the written test.

How to register for the examination?
Through the Neptun system

Possibilities for exam retake:
Oral exam, registration through the Neptun System

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
1. Note book of the Departmental Group
2. Power point presentation collected by Departmental Group
3. Lars Peterson and Per Renström: Sports Injuries Their Prevention and Treatment, Third Edition

Online:
Semmelweis University E-learning (Moodle)
https://itc.semmelweis.hu/moodle/
PHYSICAL EDUCATION VII-VIII.

Practice: 1 hour per week
Credit value: 0
Number of lessons per week: 1
Practical course: 14
Subject type: compulsory course
Subject code: AOTS1009_7A
Name of the course leader: Várszegi Kornélia

Objectives of the subject, its place in the medical curriculum:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice - so that they can represent those in their later practice, through their own health-promoting behavior.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Gymnasium, Artificial football court, Artificial tennis court
University’s Centre for Physical Education and Sports 1107 Budapest Zágrábi utca 14.

Successful completion of the subject results in the acquisition of the following competencies:
Upon completion of the course the student will be able to carry out regular physical activity.
After completing the „beginner swimming” course, one will acquire water-confident swimming skills.

Detailed curriculum:
(Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks). Please provide the names of the teachers of the lectures and practical lessons and indicate guest lecturers. Do not use attachments!
Always attach a CV for guest lecturers!)

Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:
60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations.
1107 Bp, Zágrábi utca 14.
1x60 min./week sessions:
Aerobics, BlessYou Gym, boulder, functional circuit training, golf, beginner Yoga, advanced Yoga, male football, salsa, step aerobics, badminton, beginner ultimate frisbee, advanced ultimate frisbee, zumba
1 x 90 mins./week sessions: women’s football, ice hockey, beginner tennis, beginner tennis 2,
4 x 3 hrs. and 1x 2 hrs. session packages: Hiking 1, Hiking 2.
2x90 mins./week sport training (competitive sport, for qualified only): cheerdance, cheerleader, men’s football, handball, basketball, volleyball

Fee-based:
at the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.
P.E. Teachers:
Doharné Buczkó Anikó
Farkas Dominika
Kalmus Dániel
Lehel Zsolt
Sótonyiné Hrehuss Nóra
Várszegi Kornélia
Weisz Miklós

Requirements for participation in classes and the possibility to make up for absences:
The number of active participations for physical education classes is 10, regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.
Another way to complete the Physical Education course is to 15 times actively participate in the training of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes!

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)

There is no mandatory control during the term.

Requirements for signature:
Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate to the TSK or
2. does sports regularly and submits a certificate of association and federation to the Foreign Students Secretariat

until the last study day in the 4th week of the semester. On the basis of the submitted application and its annexes, the TVB decides on the exemption of both the Hungarian and foreign students.

ELECTIVE SUBJECTS

Detailed programs see in the 5th year Study Program of Medicine!
SUMMER (SURGERY) PRACTICE

Credit point: 1
Total hours: practical: 160
Type of course: compulsory
Responsible for course: Dr. Szijártó Attila
Workplace, contact details: 1st Department of Surgery, phone: +36-1-333-5343
Position: university professor, director
Date and number of habilitation: 2015.06

Aim of the course, its position in the medical curriculum:
The main aim of the fourth semester surgery practical is introduction to the general symptomology, diagnostics, and specifics of therapeutic decisions of surgical conditions. In addition to the basics of surgery, students learn about surgical conditions of the organ systems, their diagnosis and surgical treatment. Our primary task is to teach an approach of cooperation with accompanying specialities, we guide students through the process of outpatient specialist treatment through surgery to postoperative care.

Acquired competences after successfully completing the course:
Education of surgery starts in the 4th year, and it embraces the whole curriculum until the 4th year comprehensive surgery exam, providing the framework of clinical training. During this time our main goal is to blend the knowledge provided by theoretical courses and accompanying clinical specialities with the surgical approach and decision making.

Prerequisite(s) for admission to the course:
- According to the Study and Examination Policy.
- Student enrolment requirements (minimum, maximum), method of student selection:
- Based on registration in the Neptun system.

How to apply for course:
In Neptun system

Detailed syllabus:
The surgery summer practical, based on “block” syllabus education for the 4th year, provides practical knowledge involving students in daily patient care.

Recommended practical activities:
- Examination of acute surgical patient
- Examination of elective surgical patient
- Wound care
- Participation in the work of the surgical outpatient clinic
- Surgery assistance
- Surgery administration
- Postoperative care, medication

Cross-border issues of the given course related to other courses (compulsory and elective). Possible overlaps in curriculum:
- internal medicine – gastroenterology, endocrinology
- oncology
- anaesthesiology and intensive therapy
- radiology
Special study work required to complete the course:

none

Requirements for participation in classes and opportunities to make up for absences:

There is an attendance register for the practical.

According to Chapter 3, Section 17 § 7 of the Organisational and Operational Rules of the Semmelweis University, attendance at min. 75-75% of lectures and practices is compulsory.

Further general information on attendance at lectures and practical can be found in the Studies and Exams Code (Section 17 § 7; 8) of the Semmelweis University.

Examination of acquired knowledge during term:

There is no intermediate exam during the short practical time. The interactive features of the practical and consultations provide an opportunity to continuously assess students’ knowledge.

The criteria for end-of-term signatures:

Attendance at min. 75% of classes.

Type of exam:

Practical exam based on previously defined syllabus

Exam requirements:

Practical exam items:

Knowledge of the below exam items will be tested based on information acquired from literature and practical:

1. What is vital indication?
2. How can free abdominal air be detected by means of percussion?
3. What are the most common complications of thyroid surgery?
4. What is a fundoplication?
5. What can cause dysphagia?
6. With what tissue can the oesophagus be replaced?
7. Draw the Billroth’s gastric resections.
8. List the blood supplying vessels of the stomach.
9. Draw/describe the Calot’s triangle.
10. What are the 3 main signs of cholangitis, what is the name of the triad?
11. What are the surgical indications of a benign liver tumour?
12. What are the blood supplying vessels of the liver?
13. What imaging diagnostic(s) is necessary to diagnose a liver tumour?
14. What are the pillars of the diagnosis of acute pancreatitis?
15. Name the typical symptoms of chronic pancreatitis.
16. Which laboratory parameter indicates obstructive jaundice?
17. What is the Courvoisier sign? What is the Murphy sign?
18. With which surgical process can a caecal tumour be removed?
19. Why is “short” bowel resection the aim in case of a Morbus Crohn?
20. When is a rectum extirpation performed?
21. What is an indirect inguinal hernia?
22. Which is the most common benign breast tumour?
23. What is a sentinel lymph node?
24. What is a Hartmann surgery?
25. What is an R0 resection?
26. Name 3 precancerous signs in surgery.
27. What is a neoadjuvant therapy?
28. What is pseudomembranous colitis?
29. When is nasojejunal feeding applied?
30. Where is the McBurney’s point?
31. What are the indirect signs of acute appendicitis?
32. List the conditions of wound healing.
33. Define the phases of wound healing in chronological order.
34. How can nosocomial infections be prevented?
35. What is the difference between an abscess and a phlegmon?
36. List the inflammatory conditions (min. 3) of the skin and cutaneous annexes.
37. What is a relative indication?
38. What is the difference between a curable and a resectable case/tumour?
39. How is a bite wound and a gunshot wound to be treated?
40. What is the LES?
41. What is diastasis recti?
42. What are (surgical) complications of peptic ulcers?
43. What is the surgical relevance of a Meckel’s diverticulum?
44. What are surgical indications in inflammatory bowel diseases?
45. Which perianal diseases are emergency surgical conditions?
46. What vaccination is necessary in case of a planned splenectomy?
47. What causes haematemesis?
48. What causes haematochezia?
49. What are the 3 groups of ileuses based on aetiology?
50. Which is more critical, urgent: ileus of the small or large intestine?

Method and type of class marks:
Practical test of one exam item

How to apply for the exam:
In Neptun system

Opportunity to repeat the exam:
As described in the Study and Examination Policy

The list of printed, electronic and online notes, textbooks, study aids and literature to be used to learn the curriculum (in case of online sources, html address):
Sebészet Horváth, Örs Péter - Oláh, Attila (editors)
Sebészet (10th edition) Gaál, Csaba (editor)
Sebészeti műtéttan Boros, Mihály (editor)
Littmann Sebészeti műtéttan Horváth, Örs Péter - Kiss, János
STUDY PROGRAMME

Fifth Year in the 2021/2022 academic year

4th and 5th Years (7th-10th semesters)

Teaching is done in “clean” blocks: Theory + Practice + Exam. (Practices are taught by “shadowing”)
The time span of each block depends on the credit value of the subjects: 1 to 5 weeks
For example: based on a subject of 2 credits:

- 2 credits × 14 lessons = 28 lessons (1 semester consists of 14 weeks. The number of credits are equal with the lessons in a week)
- Education is provided as 8 lessons in a day: 4 days x 8 lessons = 32 lessons
- the training and the exam must be completed in 2 weeks
- approx. 40 students will be trained by providing 4 days of training and 2 days of exams within 10 working days.

9th and 10th semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lecture (h/week)</td>
<td>pratice (h/week)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Medicine (Hematology, Infectology, Immunology, Rheumatology)</td>
<td>2</td>
<td>5,5</td>
<td>7</td>
<td>Internal Medicine I., Laboratory Medicine, Medical Imaging</td>
</tr>
<tr>
<td>Forensic Medicine</td>
<td>18</td>
<td>10</td>
<td>2</td>
<td>Pathology II., Genetics and Genomics, Pharmacology II.</td>
</tr>
<tr>
<td>Obstetrics and Gynecology</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>Pharmacology II., Medical Imaging, Surgery I-II.</td>
</tr>
<tr>
<td>Pediatrics</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>Internal Medicine I., Laboratory Medicine, Medical Imaging</td>
</tr>
<tr>
<td>Urology</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Pharmacology II., Surgery I-II.</td>
</tr>
<tr>
<td>Intensive Therapy and Anesthesiology</td>
<td>1,5</td>
<td>2,5</td>
<td>4</td>
<td>Cardiology, Heart Surgery, Angiology, Vascular Surgery, Emergency Medicine and Oxylogy</td>
</tr>
<tr>
<td>Ophthalmology</td>
<td>1,5</td>
<td>2,5</td>
<td>4</td>
<td>Pharmacology II., Medical Imaging, Surgery I-II.</td>
</tr>
<tr>
<td>Neurology and Neurosurgery</td>
<td>2</td>
<td>4,5</td>
<td>6</td>
<td>Internal Medicine I., Medical Imaging</td>
</tr>
<tr>
<td>Psychiatry and Psychotherapy</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>Pharmacology II.</td>
</tr>
<tr>
<td>Sports Medicine</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>Internal Medicine I., Cardiology, Heart Surgery, Angiology, Vascular Surgery</td>
</tr>
<tr>
<td>course name</td>
<td>lecture (h/week)</td>
<td>pratice (h/week)</td>
<td>credit</td>
<td>prerequisite(s)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Clinical Genetics</td>
<td>0</td>
<td>20</td>
<td>2</td>
<td>Pharmacology II., Genetics and Genomics, Pathology II.</td>
</tr>
<tr>
<td>Medical Rehabilitation</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>Cardiology, Heart Surgery, Angiology, Vascular Surgery, Orthopedics</td>
</tr>
<tr>
<td>Public Health</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>Cardiology, Heart Surgery, Angiology, Vascular Surgery, Oncology and Plastic Surgery, Medical Statistics, Informatics</td>
</tr>
<tr>
<td>PE IX.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>PE VIII.</td>
</tr>
<tr>
<td>PE X.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>PE IX.</td>
</tr>
</tbody>
</table>
LIST OF TEXTBOOKS (The list may change!)

2. Lecture Notes of Forensic Medicine Ed. by Péter Sótonyi, Éva Keller, Semmelweis Publisher, 2008.
10. Lindsay, Bone, Callender: Neurology and Neurosurgery Illustrated. Churchill Livingstone

Recommended textbooks:

4. Silver, Kempe Bryn and Fulginiti’s Handbook of Pediatrics. Appleton and Lange. ISSN 0440-192
10. Duus: Topical Diagnosis in Neurology. Thieme Medical Publishers
INTERNAL MEDICINE – Hematology, Infectology, Immunology, Rheumatology

Lecture: 2 hour per week
Practice: 5,5 hours per week
Credit: 7
Examination: semi-final

Internal Medicine II. is taught in a block system. During the 5-week block, students spend 14 days (8 hours/day) in the Department. Theoretical and practical (bedside) classes are taught. Students are assigned into groups for bedside practices, case discussions and consultations that are held in rotation resulting in fewer students learning about a given topic at a time.

According to the topics below, classes are taught also dependent on the available patients.

Hematology

Topic list of the lectures:
- Aplastic anemia. Agranulocytosis. Hemopoetic stem cell transplantation. (Prof. Masszi Tamás)
- Acute myeloid leukemia. Myelodysplastic syndromes (dr. Szombath Gergely)
- Chronic myeloproliferative diseases: CML, myelofibrosis, polycythemia rubra vera, essential thrombocythemia (dr. Várkonyi Judit)
- Regulation of hemopoiesis. Differential diagnosis of anemias (dr. Farkas Péter)
- Thrombocytopenias and és thrombocytopathy. Hemophylas (dr. Horváth Laura)
- Increased coagulation (thrombophylas). Disciplines and practice of anticoagulant therapy. (dr. Bodó Imre)
- Plasmacytic dyscrasias. Acute lymphoid leukemia. (dr. Varga Gergely)

Topic list of the practices:
- Neutropenic fever
- Palliative treatment of acute leukemia
- Curative treatment of acute leukemia
- NHL low-grade / NHL high-grade / Hodgkin’s disease
- CLL
- Myelodysplasia
- Bone marrow sampling. Presentation of sampling.
- Myeloma

Topic list of the consultations:
- Ph-negative myeloproliferative diseases
- Anemia – differential diagnostics
- Anemia – case based discussion
- CML
- Hemophylia
- Thrombophylia
- Bone marrow transplantation

Infectology

Topic list of the lectures:
- Emergencies in infectology (dr. Kempler Miklós)
- Differential diagnosis of fever (dr. Temesszentandrási György)
- HIV/AIDS, Tropical diseases in Hungary (dr. Lakatos Botond)
- Multiresistant pathogens, infection control and antimicrobial stewardship (dr. Peskó Gergely)

Topic list of the practices:
- Urinary tract infections
- Airway tract infections
- Skin and soft tissue infections
- Infectological situations in practice (sepsis, meningitis, Lyme, pharyngitis)

Topic list of the consultations:
- Introduction to infectology
- FUO
- Sepsis
- Intraabdominal infections
- Infective endocarditis
- Application of antibiotics in the practice, stewardship
Immunology

Topic list of the lectures:
- Vasculitides of the great vessels. (dr. Temesszentandrási György)
- Rare autoimmune diseases (PAN, sarcoidosis, polychondritis) (dr. Temesszentandrási György)
- HANO (dr. Farkas Henriette)
- Topic list of the practices:
 - SLE
 - Autoimmune myopathies
 - Kisereket érintő (ANCA asszociált) vasculitisek
 - Sjögren sy – Progressive systemic sclerosis
 - Primary and secondary immunodeficiencies
 - Therapy of autoimmune diseases. Side effects of steroid therapy
 - Rheumatoid arthritis
 - Spondylarthopathies
 - Gout, arthrosis

Topic list of the consultations:
- Autoimmune ophthalmopathies
- Dermatological presentation of autoimmune diseases
- Allergic diseases

Examination: semi-final
Each course is concluded by a practical skill oriented oral exam. During the exam the students are required to answer questions based on the knowledge acquired during practical sessions and by reading the compulsory chapters of the theoretical curriculum, by elaborating on 3 themes of the titles below.

OBSTETRICS AND GYNECOLOGY

Dept. of Obstetrics and Gynecology

Tutor: Dr. Gyula Richárd Nagy

Lectures and Practices in blocks
- Normal labor and delivery. Obstetrical examinations.
- Changes in maternal anatomy and physiology during pregnancy.
- Prenatal care. Symptoms and signs of pregnancy.
- Abnormalities of pregnancy.
- Abnormalities of labor and delivery.
- Monitoring of the fetus.
- Hypertensive disorders in pregnancy.
- Premature delivery. Intrauterine growth retardation (IUGR).
- Neonatology.
- Twin pregnancy. Operative delivery.
- Normal and abnormal puerperium.
- Major issues in current obstetrics.
- Gynecological endocrinology. Menstrual disorders.
- Inflammatory diseases in obstetrics and gynecology.
- Sterility, infertility. Assisted reproduction.
- Cervical cancer.
- Tumors of the ovary.
- Tumors of the vulva, vagina and corpus uteri.
- Principles of cancer therapy.
- Endometriosis. Polycistic ovary syndrome (PCOS).
- Genetic Counseling.
- Prenatal genetic diagnosis.
- Fetal anomalies. Dysmorphology.
- Perimenopausa.
- Genital prolapse. Urogynecology.
- Vital statistics. Medical legal problems in obstetrics and gynecology.
- Occasionally the topics are interchangeable.
PEDIATRICS

1st Dept. Tutor: Dr. Dóra Krikovszky
2nd Dept. Tutor: Dr. Klára Horváth

Credits: 8
Total duration: 112 hours, lectures: 28 hours, practices: 84 hours
Prerequisites: Internal Medicine I., Laboratory Medicine, Medical Imaging

Aims: To introduce students to the most common diseases of the pediatric population.

Curriculum:

The 5th year Pediatric course is organized in the framework of the new block structure. Students spend 3.5 weeks in our department, 1.5 weeks are reserved for home study and the oral exam.

LECTURES IN PEDIATRICS FOR 5th GRADE MEDICAL STUDENTS

Location:
I. Department of Pediatrics, Budapest VIII, Bokay J. u. 54. I. floor
II. Department of Pediatrics, Budapest IX, Tűzoltó u. 7-9.

1. Introduction to Pediatrics, Growth and development
2. Development, screening, immunisation
3. Pediatric emergencies
4. Pulmonology
5. Neonatology // Cardiology
6. Infectious diseases
7. Gastroenterology, hepatology
8. Nephrology
9. Neurology
10. Endocrinology
11. Surgery // Traumatology
12. Dermatology // Immunology
13. Psychiatry
14. Genetics // Inborn errors of metabolism

Practices

Location:
I. Department of Pediatrics, Budapest VIII, Bokay J. u. 53–54.
II. Department of Pediatrics, Budapest IX, Tűzoltó u. 7-9.
Practices at 1st Department of Pediatrics:
- Physical examination of children
- Communication with families
- Cardiology
- Diabetology
- Emergency
- Gastroenterology
- Hepatology
- Hematology (at 2nd Department)
- Infancy
- Neonatal Intensive Care Unit
- Neonatal surgery
- Nephrology
- Neurology
- Pulmonology
- SKILL (Pediatric Basic Life Support)
- Surgery

Requirements (1st Department):
Attendance: according to Semmelweis University regulations, students may not miss more than 25% of their scheduled sessions (including practices, seminars and lectures). Students will be provided an opportunity to make up missed sessions at the end of the semester.

Students should bring their own gown and stethoscopes to the practices.

Examination (1st Department):
Practical exam will be scheduled at the end of the pediatric blocks. Practical exams are not graded. Grades will be given based on the result of the oral exam.

SEMI-FINAL TOPIC
1. The unconscious child
2. Paediatric headaches
3. Sore throat
4. Fever of unknown origin
5. Paediatric rashes
6. Allergic skin diseases
7. Chough
8. Heart murmurs
9. Arrhythmias
10. Principles of fluid and electrolyte balance and their disorders
11. Principles of acid-base balance and it’s disorders
12. Hypo-, and hyperglycaemia
13. Obesity in children
14. Lymphadenopathy
15. Acute abdomen

Practices at 2nd Department of Pediatrics:
- Physical examination of children
- Pediatric Basic Life Support
- Foreign body airway obstruction
- Rheumatology
- Neurology
- Hematology
- Endocrinology
- Cardiology
- Communication with families
- Gastroenterology
- Oncology
- Surgery
- NICU (at 1st Department of Pediatrics and at the Obstetrics and Gynecology Departments)

Requirements (2nd Department):
Students should bring their own stethoscopes to the practices.

Attendance: students have to attend all practices with making up for all absences according to university regulations. 25% of the lectures and 25% of the consultations can be missed.

Examination (2nd Department): The final grade consists of the average grade of the practical and the oral exams (50-50%), students should pass both parts with a minimum grade of 2. The practical exam is organised to the last day of the block. If the final average is between two grades, we round the final grade towards the mark of the oral exam.

16. Abdominal mass
17. Chronic abdominal pain
18. Differential diagnostics of vomiting
19. Differential diagnostics of diarrhoea
20. Eating disorders in children
22. Hematemesis
23. Bloody stool
24. Anaemia in children
25. Haemostatic disorders
26. Hepatomegaly, splenomegaly
27. Differential diagnostics of oedema
28. Haematuria
29. Polyuria, polydipsia
30. Causes of enuresis in children

Note concerning the 6th year’s rotations: Only legibly, completely and accurately filled out, institutionally sealed, original acceptance letters are recognized!
PSYCHIATRY, PSYCHOTHERAPY

Tutor: Dr. Attila Pulay

1st WEEK Monday
 Practice: Psychiatric patient examination, psychiatric status, preparation of psychiatric medical history, psychopathology

1st WEEK Tuesday
 Lecture: Classification of mental disorders.
 Lecture: Affective disorders: diagnosis and treatment
 Practice: Psychopathological reports of students, Organic diseases, affective diseases, anxiety disorders

1st WEEK Wednesday
 Lecture: Schizophrenia and other psychotic disorders
 Practice: Student Psychopathological Reports, Schizophrenia and Psychotic Disorders, Emergency Care, Psychiatric Risk Assessment, Voluntary and Compulsory Treatment

1st WEEK Friday
 Lecture: Neurocognitive disorders: diagnosis and treatment. Geriatric Psychiatry
 Lecture: Emergency psychiatry. Legal and ethical issues in psychiatry. Suicide
 Practice: Psychopathological reports of students, general patient presentation, psychiatric referral, request for consultation

2nd WEEK Monday
 Lecture: Introduction to psychotherapy. Definition, indications, effects, main trends, basic competencies of psychotherapy
 Lecture: The cognitive model: anxiety disorders, depression, somatization, sleep disorders, psychotherapeutic approach of sexual disorders
 Lecture: Stages of motivational interview and behaviour change: addictions, eating disorders, lifestyle changes required due to chronic diseases, management of compliance problems. Sleep disorders: diagnosis and treatment
 Lecture: Suicide prevention, crisis intervention, aggressive, psychotic, psychotherapeutic approach for patients with personality disorders

2nd WEEK Tuesday
 (group with the lower number within the rotation)
 Introductory session, the process of group formation, the presentation of the group’s functions through passing around a string, sensitization to psychotherapeutic work and role-plays. Practicing empathic reflection, feedback.
 Presentation and application of a cognitive model to conceptualize everyday anxieties. Imagination of a conversation: Someone comes face to face in the street and ignores our greetings. Three-column method, logical errors, 7-column method, cognitive model of panic attack and its education, practice of progressive relaxation.
 Depression, cognitive conceptualization of sleep disorders (three-column method, logical errors, 7-column method, behaviour activation), psychotherapeutic approach.
 Exploration of sexual disorders, basic techniques for treatment

2nd WEEK Tuesday
 (group with the higher number within the rotation)
 Addictology practice
 Lecture: Neuropsychology, Clinical Psychology (Theoretical Introduction)
 Neuropsychology, Clinical Psychology Practice (Case Study)

2nd WEEK Wednesday
 Lecture: Pharmacotherapy in psychiatry
 Transcultural psychiatry
 Lecture: EEG and event related potentials in psychiatry

2nd WEEK Friday
 (group with the lower number within the rotation)
 Motivational interview and identification of stages of behavior change, practice of interventions: addictions, eating disorders, required due to chronic diseases
 Treatment of lifestyle changes and compliance problems required due to chronic diseases
 Suicide prevention, practice of crisis intervention steps, basic techniques, Psychotherapeutic interventions in aggressive, psychotic, borderline personality disorder

2nd WEEK Friday
 (group with the higher number within the rotation)
 Child psychiatry practice
 Community Psychiatric Practice (Day Hospital)

3rd WEEK Monday
 Lecture: Child and adolescent psychiatry (ADHD, autism, tic disorders)
 Lecture: Adult ADHD (symptoms, comorbidity, course, therapy)
 Lecture: Diagnosis and treatment of alcohol and substance use disorder
 Electroconvulsive therapy and repetitive transcranial magnetic stimulation in psychiatry
3rd WEEK Tuesday
(group with the lower number within the rotation)
Addictology practice
Lecture: Neuropsychology, Clinical Psychology (Theoretical Introduction)
Neuropsychology, Clinical Psychology Practice (Case Study)

3rd WEEK Tuesday
(group with the higher number within the rotation)
Introductory session, the process of group formation, the presentation of the group’s functions through passing around a string, sensitization to psychotherapeutic work and role-plays. Practicing empathic reflection, feedback. Presentation and application of a cognitive model to conceptualize everyday anxieties. Imagination of a conversation: Someone comes face to face in the street and ignores our greetings. Three-column method, logical errors, 7-column method, cognitive model of panic attack and its education, practice of progressive relaxation.
Depression, cognitive conceptualization of sleep disorders (three-column method, logical errors, 7-column method, behaviour activation), psychotherapeutic approach. Exploration of sexual disorders, basic techniques for treatment

3rd WEEK Wednesday
Lecture: Personality disorders
Lecture: Community psychiatry, rehabilitation of psychiatric patients. Consultation and liaison psychiatry
Practice: Patient presentation, differential diagnosis, discussion of drug and psychotherapeutic treatment strategies, writing a medical history

3rd WEEK Friday
(group with the lower number within the rotation)
Child psychiatry practice
Community Psychiatric Practice (Day Hospital)

3rd WEEK Friday
(group with the higher number within the rotation)
Motivational interview and identification of stages of behaviour change, practice of interventions: addictions, eating disorders, required due to chronic diseases
Treatment of lifestyle changes and compliance problems required due to chronic diseases
Suicide prevention, practice of crisis intervention steps, basic techniques, Psychotherapeutic interventions in aggressive, psychotic, borderline personality disorder

4th WEEK Monday
Lecture: Consultation
Practical exam: i.e. report of a patient case to the practice teacher on the last practical session of the rotation.
At the end of the course of Psychiatry, Psychotherapy there is a practical report of a patient case presented by all students participating within the rotation.

4th WEEK Wednesday, Thursday, Friday: Written semi-final exam
Written semi-final exam
The written semi-final exam on MOODLE containing 50 multiple choice questions. Some of them are related to case vignettes within the body of the test paper.

Opportunities to retake the semi-final exam:
Retake of the semi-final exam are permitted: there are two occasions of passing attempts in the form of a written exam. The third attempt to correct the failed exams can be oral.

Textbook:
FORENSIC MEDICINE

Tutor: Dr. Zsófia Almádi

The course is organised in the block-based education system, throughout 40 weeks, in blocks of 2 weeks. Practical classes are preceded by short theoretical preparation sessions, followed by a gradual introduction to the clinically oriented practices, emphasising the importance of examination of cadavers for every student. During the sessions we organize the students into small groups, challenging them to examine and process cases, while the theoretical preparation classes are held in bigger groups. Regular oral and written contribution of the students (case reports, and independent documentation) is substantial during the course. All sessions are required to contain feedback elements. At the end of the course an oral exam is conducted on the second week (see details below).

Week A

Monday
- Examination of dead bodies, Postmortem changes (number of classes: 2 periods)
- Examination and documentation of injuries (number of classes: 2 periods)
- Suffocation and asphyxia, sexual offence (number of classes: 1 period)
- Electrical fatalities (number of classes: 1 period)
- Head trauma (number of classes: 1 period)
- General toxicology, Drug related death (number of classes: 1 period)

Tuesday
- Autopsy (number of classes: 2 periods)
- Crime scene (number of classes: 2 periods)
- Crime scene practice I-II (number of classes: 1 period)
- Autopsy practice (number of classes: 1 period)
- Medico-legal aspects of traffic accidents (number of classes: 1 period)
- Firearm injuries, burns and scalds (number of classes: 1 period)

Wednesday
- Autopsy (number of classes: 2 periods)
- Sudden death and forensic histopathology (number of classes: 2 periods)
- DNA (number of classes: 2 periods)
- Identification (number of classes: 2 periods)

Friday
- Autopsy (number of classes: 2 periods)
- Child abuse (number of classes: 1 period)
- Natural or violent death - Consultation (number of classes: 1 period)

Week B
- Wednesday, Friday – oral exam
UROLOGY

Tutor: Dr. András Horváth

UROLOGY
Head of Department: Prof. Dr. Péter Nyirády
Tutor: Dr. András Horváth

Aim of education: Our aim is to teach our students for a basic knowledge in urology (the most important differential diagnostic steps, urological physical examination, imaging techniques, different treatment options) and also to educate them to perform the most important, minor urological procedures (like urethral and suprapubic catheterization).

Syllabus:
- Embryology of the urological tract
- History of urology, Symptoms, Diagnostic Measures
- Urolithiasis. Diagnosis and Treatment
- Incontinency, Neurogenic Bladder
- Benign Prostatic Hyperplasia
- Prostate Cancer
- Renal Tumours
- Tumours of the Urinary Bladder
- Injuries to the GU Tract
- Testicular and Penile Tumours
- Male Infertility
- Endoscopic Urology (Endourology)
- Emergency in Urology
- Paediatric Urology
- Nonspecific Infections of the GU Tract

Attendance

Lectures: 1 lecture weekly

Practice: 2 weeks course in rotation system at the Department of Urology. During practices all parts of urology are covered and as many as possible physical examinations and procedures are shown.

Absence from practice: 20% absence is accepted, in case of more absence it has to be compensated by joining another group’s practices.

Exam: oral exam, topics are available at our website.
The mark depends on the practice score given by the tutor of the student and also on the oral exam result.

Absence from the exam: Only an official medical certificate is accepted.

Exam sign up: Through the Neptun system.
INTENSIVE THERAPY AND ANESTHESIOLOGY (ITO)

Tutor: Dr. András Kállai
Dr. Dóra Konczig

Lectures:

1. Introduction
 Basics of intensive therapy and anesthesiology. Diseases requiring intensive therapy. Patient safety. Psychological methods (hypnosis, suggestive communication) in anesthesiology and intensive therapy
3. Disorders of salt - water homeostasis. Disorders of electrolyte homeostasis, hypokalaemia and hyperkalaemia. Enteral and parenteral nutrition
5. Principles of ventilatory support. Postoperative respiratory failure. Weaning
6. Shock states: pathophysiology, classification, diagnosis and therapy
7. SIRS, sepsis and septic shock
9. Cardiopulmonary resuscitation (CPR, BLS, ALS), the periarrest period and the Post Cardiac Arrest Syndrome (PCAS). Chain of survival. In-hospital BLS and ABCDE-approach. Managing ALS (defibrillation, 4H-4T, iv./io., drugs) and PCAS. Importance of non-technical skills (task management, team work, situation awareness, decision making, community). Organizing CPR. CPR on CPR-Bas and CPR-Sim practices
11. Polytrauma: Emergency and Intensive care management
14. Regional (spinal and epidural) anesthesia: anatomy, techniques, indications, practice and complications. Local anesthetics. Pain management

Lecture attendance:
Recommended. Attendance will not be taken.

Practices:

ICU bed side practices:
1. Introduction, ABCDE-approach (BEV)
2. Respiratory intensive care practice 1 (RespInt 1)
3. Respiratory intensive care practice 2 (RespInt 1)
4. Shock practice 1 (Shock 1)
5. Shock practice 1 (Shock 1)
6. Gastrointestinal bleeding and metabolic disorders (GIVMET)
7. Anesthesiology practice (ANE)
8. Anesthesiology and intensive care of trauma patients (TraumIA)

Simulation practices:
9. CPR-Basic
10. ABC-skills
11. ALS-Sim1 (CPR Simulation 1)
12. ALS-Sim2 (CPR Simulation 2)
13. HiFi-Sim (High Fidelity Simulation)

Problem based learning practices:
14. Perioperative care
15. Pain management
16. Homeostasis
17. Case report
18. Consultation
Attendance criteria and absences:
In order to complete Intensive Therapy and Anesthesiology you need to be present on 13 out of the first 17 practices. Also you need to pass a practical exam in In-Hospital Basic Life Support (CPR) and ABC-skills.
Bed-side practices will be held at the Intensive Care Unit of the new building “Központh Betegellátó Épület” (Klinikák metro station, Bp. 1082 Úllői út 78., building section “B”, 4th Floor). TraumIA practices will be at the Trauma-ICU (1081. Budapest, Fiumei út 17., 7th floor). Simulation practices will take place at Simulation Center (Bp. IX. Ernő u. 7.). The PBL practices will be held via Zoom. Practice schedule will be uploaded in Moodle.
Keep in mind that before the HiFi-sim and CPR-sim practices you need to pass a 5-minute “pre-practice test” in order to attend.
For bed-side practices we kindly ask you to wear a white coat and have a stethoscope on you. For changing clothes please use the wardrobe located under the escalator at the entrance of the 2nd Dept. of Gyne/Obs. (In the case of TraumIA practices our colleagues on the 7th floor will give you coats for the practice.)
In case of a missed practice you have two options. You can find another group (on a different week) in Moodle with the same theme as the practice you have missed and join them (please note that the group limit is 7 students). Or at the end of the semester you can join the extra practices we will hold, but please note that the capacity of these practices will be limited to 7 person just like the ones during the semester.

Grading:
1. Written (multiple choice test)
2. Retaking of the written exam is also possible. Repeating of the examination can be taken in the form of oral exam.

Type of exam: written (multiple choice test)
Make-up exam: written or oral

Exam requirements:
The knowledge of the given textbook, lecture and practice material.

If there is anything we can help you with feel free to contact us via int.ane.edu@gmail.com.
OPHTHALMOLOGY

Dept. of Ophthalmology
Tutor: Dr. Miklós Resch

24 theoretical lessons, 32 practical lessons in 3-week blocks

Educational materials: pre-recorded, available in the Moodle
E: 60 minute blocks of lectures; 70x 10-20 minutes lectures
ES: case presentation seminars 12x; 5 minute case presentations (total of 80-100 cases);
Pre-recorded lectures (in Kaltura) can be viewed in the Media Gallery.

The students should attend 20 classes at our Department
Contact consultation (CC): 8x 45 minutes
PP: patient presentation, 12x 45 minutes (9x 60 min)

In 1 block: 18-24 students, 6 teachers
DAY 1: basic knowledge, preparation of patient examination
students divided into 3 groups, i.e. 6-8 students / lecturers; 3 working hours / instructor
DAY 2-7: patient examination
students are divided into 6 groups, i.e. max. 2-4 students / lecturers; 9 working hours / instructor
Colloquium from DAY 8 (test exam)

For students:
- at least 75% attendance in practical sessions: the instructor signs each contact consultation or patient examination class in the student’s attendance document. According to new regulations of the University, the missed practical sessions need to be retaken. There is an opportunity for delayed completion in case of absence, at the time of on-call shifts, by appointment with the block leaders.
- successful partial tests
 - partial test: opens on Day 1 in the morning, can be tried several times, longer writing time. Target: to reach min. 90% satisfactory result
 - Exam I.: Lectures 1-7. and contact consultations 1-6.
 must be completed till Day 2, 9am
 - Exam II.: Lectures 8-37. and case presentations 1-6.
 must be completed till Day 8, 13pm
 - Exam III.: Lectures 38-70. and case presentations 7-12.
 must be completed till Day 8, 13pm
- practical exam: on Day 7.
- Colloquium (test): from Day 8

Contact consultations
2. General ophthalmic physical examination, exploration of conjunctival sac, eversion of the eyelids, estimation of the intraocular pressure with palpation, applanation tonometry. Anterior segment: focal light (pupil lamp) and slitlamp; examination of eye movements, pupil reactions.
3. Red reflex, indirect ophthalmoscopy using an eye model, methods of fundus Examination; eye drops, bandage; kötés; Hertel exophthalmometer; colour vision (Ishihara, Farnworth), contrast sensitivity; critical fusion frequency (CFF).
4. Vision tests: visual acuity (automatic refractometry, eye charts, ophthalmic trial lens set), visual field (confrontational, Goldman, automatic), electrophysiology testing.
5. Fluorescein staining of the cornea, diagnostic tools of the anterior segment (demonstration), lasers.
6. OCT, invasive angiographies, ophthalmic ultrasound: demonstration of diagnostic tools.
7. Consultation
8. Practical exam
Checklist for practical lessons:

Vision, refraction:
- automatic refractometry, keratometry
- eye charts
- handheld eye-chart (Csapody)
- ophthalmic trial lens set

Physical examination of the anterior segment:
- slit lamp
- Hertel exophthalmometer
- fluorescein dye
- Schirmer paper
- eversion of the upper eyelid
- bindings

Glaucoma:
- Goldmann applanation tonometry; non-contact tonometry
- automatic perimetry
- papilla OCT
- manual eye pressure checking

Functional examinations:
- perimetry
- critical fusion frequency (CFF)
- Color vision (Ishihara, Farnworth)

Posterior segment:
- direct ophthalmoscope
- Volk lens
- macula OCT, angiography
- ultrasound
- laser

Eye movements:
- cover test
- guided eye movements

Basic skills in Ophthalmology

In practice:
1. Assessment of near and distance visual acuity in adults and in children
2. Confrontal visual field testing
3. Color vision test
4. Examination of eye movements in the six cardinal directions
5. Checking ocular alignment, screening for amblyopia
6. Examination of the pupil: pupil size, reactions
7. Examination of the eyelids, lacrimal apparatus, conjunctiva, cornea, anterior chamber, iris, and the pupil with pupil lamp
8. Fluorescein staining of the cornea
9. Estimating intraocular pressure with palpation
10. Examination of the upper tarsal conjunctiva by eyelid eversion
11. Red reflex examination
12. Examination of the papilla, posterior segment, retinal vessels by direct ophthalmoscopy

In theory:

Diagnostics:
1. Differential diagnosis of red eye (conjunctivitis, keratitis, scleritis, anterior uveitis, acute glaucomatous attack).
2. Papilla oedema
3. Hemianopic visual field loss
4. Acute cranial nerve III, IV and VI palsy
5. Leukocoria
6. Orbital cellulitis
7. Retinal tear, suspected retinal detachment
8. Suspected postoperative endophthalmitis
9. Sudden visual impairment
10. Mechanical eye injuries, symptoms of blow out fracture

Therapy:
Conjunctivitis (viral, bacterial, allergic)
Hordeolum

Emergency care: chemical burns, injuries, conjunctival foreign body removal
Management of acute angle closure glaucoma

Conditions requiring ophthalmology specialist care:
When should a patient be referred urgently to an ophthalmologist?
Ophthalmic screening in adulthood and in childhood
Interpretation of an ophthalmic medical record
NEUROLOGY – NEUROSURGERY

General information
Tutor: Dr. Róbert Debreczeni
Tel.: 210-0330, Fax: 210-1368

Office hours at the Department of Neurology: Monday 13,00-14,00 Friday 10,00-12,00
Responsible Secretary: Andrea Kovács (Andi)

Official textbooks for 5th year:
2. Lindsay, Bone, Callender: Neurology and Neurosurgery Illustrated. Churchill Livingstone

Other suggested books:
2. Duus: Topical Diagnosis in Neurology. Thieme Medical Publishers

Hours per week: The two-semester curriculum for fifth-year neurology education is given in 4-week block training. For the first three weeks of the block, there is one day off a week to prepare. There are 32 practical lessons in the first week, 26 practical and 6 theoretical lessons in the second week, 24 practical lessons and 8 theoretical lessons in the third week. In the fourth week of the block, you will have to take both practical and theoretical exams. The detailed schedule will be given to students on the first day of the block.
Form of tuition: lecture, bedside practice

Lecture title
- Basic principles of neurological diagnosis. The anamnesis. The connection between symptoms, localization and causes of neurological diseases.
- Patient examination I. Cranial Nerves (part 1).
- Patient examination III. Motor system (part 1)
- Patient examination IV. Motor system (part 2)
- Patient examination II. Cranial Nerves (part 2)
- Patient examination V. The sensory system
- The spinal cord. The peripheral nervous system.
- The brainstem. The thalamus
- The cerebellum
- Altered states of consciousness
- Organization of speech, language
- The temporal and the parietal lobe
- Control of behaviour. Memory and related structures
- Neuroradiology (CT, MRI, angiography)
- Classification and treatment of cerebrovascular disorders
- Tumors of the central nervous system
- Dementias
- Movement disorders
- Diagnosis and treatment of epilepsy
- Neurological Emergencies
- Neurosurgical aspects of Neurology
- Neuromuscular disorders. Myopathies. Neuropathies
- Motoneuron diseases.
- Multiple sclerosis
- Neurological consequences of craniospinal traumas
- Alcohol related nervous system disorders
- Headaches and neuralgias
- Inflammatory neurological disorders. AIDS.
Block Practice
- Signs of meningeal irritation.
- Examination of the I. and II. Cranial nerve. The visual fields.
- Examination of the III., IV., VI. Cranial nerves. The eye movements. Gaze disorders.
- The V cranial nerve. The facial nerve palsy. The nystagmus. Dizziness and vertigo. The vestibular system.
- Motor functions of cranial nerves. Bulbar, pseudobulbar and suprabulbar paresis.
- Assessment of the paresis. Examination of muscle tone and trophy.
- The mono- and polysynaptic reflexes. The pyramidal signs. The upper and lower motoneuron lesion.

Neurology Examination Question List for 5th year Students

I. Neuroanatomical, physiological and biochemical basis of neurology
1. The visual system
2. Innervation of extraocular muscles. The oculomotor nuclei.
3. Gaze control. Gaze disturbances
5. Trigeminal nerve
6. Facial nerve
7. The vestibular system
8. Hearing
9. Glossopharyngeal, vagus, accessory and hypoglossal nerves
10. Organization of motor control
11. Sensory systems
12. Gross anatomy of the hemispheres
13. Basal ganglia and the thalamus
14. The limbic system
15. The cerebellum
16. Blood supply of the hemispheres. Cerebral metabolism
17. Blood supply of the brainstem, cerebellum and the spinal cord
18. The cerebrospinal fluid

II. Basic Neurology
1. Classification of reflexes (stretch, superficial, abnormal and primitive reflexes)
2. Characteristics of upper and lower motoneuron lesion
3. Paresis syndromes according to the site of lesion
4. Symptoms of spinal cord damage
5. Medulla oblongata (bulbar) syndromes caused by circulatory disorders
6. Pontine syndromes caused by circulatory disorders
7. Mesencephalic syndromes caused by circulatory disorders
8. Muscle tone control
9. Nystagmus
10. Vertigo and dizziness; peripheral and central vestibular syndromes
11. Symptoms of cerebellar lesions
12. Symptoms of frontal lobe damage
13. Symptoms of temporal and occipital lobe damage
14. Symptoms of parietal lobe damage
15. Symptoms of occipital lobe damage
16. Thalamic syndromes
17. Clinical examination and types of aphasia
18. Structural basis and types of unconsciousness
19. Physical examination of the unconscious patient
20. Increased intracranial pressure, brain herniations, hydrocephalus
21. Hyperkinesia
22. Gait disturbances
23. Bladder and bowel dysfunction
24. Symptoms of intervertebral disc herniation
25. Lesions of the peripheral nerves of the upper extremity. Tunnel syndromes on the upper limb.
26. Lesions of the peripheral nerves of the lower extremity.
III. Neurological Disorders
1. Classification of ischaemic cerebrovascular disorders
2. Intracranial bleedings, subarachnoid hemorrhage
3. Symptomatology of Parkinson’s disease
4. Classification of headaches. Trigeminal neuralgia
5. Focal epilepsies
6. Generalized epilepsies
7. Meningitis. Examination of the CSF in inflammatory neurological diseases
8. Encephalitis
9. Diagnosis of polyneuropathies
10. Emergency in neurology
11. Traumatic CNS diseases
12. Diagnosis of dementia
13. Multiple sclerosis: signs and diagnosis
14. Intracranial tumors
15. Spinal tumors
16. Disorders of the nervous system due to alcoholism
17. Myasthenia gravis
18. Guillain-Barre syndrome
19. Encephalopathies
20. The motor neuron diseases
21. Muscular dystrophies
SPORTS MEDICINE

Lecture: Sportsphysiology, Sports surgery, Sports Nutrition
Practice: ECG, Spiroergometry, Echocardiography, MRT, Patient examination, Sport surgery- operating room, ambulance, rehabilitation, physiotherapy
Credit: 2

Examination: semi-final

The aim of sports medicine education is to provide a wide range of up-to-date, usable basic knowledge of sports medicine and to account for the future generation of doctors within the framework of general medical education. Students interested in sports medicine should be provided with advanced training.

Detailed topics:
1. Physiological bases and energy sources of muscle function.
2. Motion control, motion learning. Warming up, dead center, fatigue, muscle fever.
7. The role of physical activity in the primary and secondary prevention and treatment of internal medicine diseases. Obesity, hypertension, diabetes and sports.
9. Imaging procedures in sports-related cardiac remodeling.
10. The importance of sports cardiology screening. Sudden cardiac death in athletes.
11. The concept, division, etiology, prevention and diagnosis of sports injuries. General principles for the treatment of acute and overload sports injuries. One head, one neck, one chest and one have sports injuries.
12. Typical sports injuries and injuries of the upper limb.
13. Typical sports injuries and injuries of the lower limb.
14. Rehabilitation, movement therapy, scientific methods in the conservative treatment of sports injuries. The aim of sports medicine education is to provide a wide range of up-to-date, usable basic knowledge of sports medicine and to account for the future generation of doctors within the framework of general medical education. Students interested in sports medicine should be provided with advanced training.
CLINICAL GENETICS

Institute: Institute of Genomic Medicine and Rare Disorders
Location: Semmelweis University Central Patient-Care Unit (Korányi Tömb, Központi Betegellátó Épület) 1082 Budapest Úllői Str. 78/B Building „A” (Radiology Wing) 4th floor
Course lecturer: Prof. Dr. Mária Judit Molnár
Course tutor: Dr. Viktor Molnár
Exam type: multiple choice test
Participation: min. 75% is obligatory

Aim of the subject and its place in the curriculum:
The Clinical Genetics course introduces medical students to the clinical significance of human genetic variations, covering the principles of diagnosis and treatment of rare diseases, mainly through the presentation of cases, clinical situations and demonstrating correct communication. In addition to diagnosis of monogenic diseases and chromosomal abnormalities, genetic tests are now used to predict susceptibility to certain diseases or the efficacy and side effects of certain therapeutic options (pharmacogenomics) or delineate disease prognosis. The role of the physician in the management of hereditary diseases and the practice of good decision making will also be addressed. The discipline is one of the most rapidly developing field and it is presumably going to be an important component of the future medicine.

Competencies gained upon the successful completion of the subject:
• Students meet the typical clinical scenarios requiring genetic-genomic knowledge for diagnostic, predictive, preventive and pharmacogenomic questions, as well as they are introduced into most common diagnostic, therapeutic decision-making, management and ethical dilemmas of the field.
• Students gain insight into practice how to elicit, document, and act on relevant family history pertinent to the patient’s clinical status, how to choose the right genetic or genomic testing to guide patient management and how to use genomic information to make treatment decisions.
• Through problems represented by several real and synthetic/standardized clinical cases and through getting involved into the patient flow of in- and outpatient units, they will learn
• how to gather information from appropriate information resources,
• how to employ artificial intelligence-based decision-making systems for phenotype pattern recognition an a problem-based manner.
• how to communicate with the patients and families with hereditary diseases by playing the role of a counselee (genetic counselling), and
• how to work together as a team if they are encountered with real-world diagnostic challenges.

Overview of the blocked course with thematic learning modules (2x45 minutes each):

Seminars:
• Clinical genetics in medicine
• The significance and diagnostic potential of congenital genetic disorders
• Genetic disorders of public health significance
• Personalised medicine
• Small group work:
 • Case presentation part 1
 • Case presentation part 2
 • Bedside practice: inpatient department
 • Bedside practice: neurogenetic clinic
 • Team competition (decision-making simulation)

Workshops:
• Web-based search methods in clinical genetics
• Developing genetic diagnostic skills
• Management of patients with a rare disease
• Genetic counselling
• Ethical problems, pre-exam consultation
Institute: Department of Rehabilitation Medicine, National Institute for Medical Rehabilitation
Location: National Institute for Medical Rehabilitation, 1121 Budapest, Szanatórium utca 19. Tel: +36 1 391 19 03.

Course director: Dr Zoltán Dénes
Tutors: Dr Orsolya Masát, Dr Mihály Fórián Szabó
Coordinator: Gabriella Tápay

practical training: 32 hours

Aim of the subject and its place in the curriculum:
Special medical knowledge required for recognizing and managing disabilities is summarized in the field of Rehabilitation Medicine. According to WHO about 10 % of the world’s population lives with some form of disability. All medical students need to gain a basic knowledge of Rehabilitation Medicine for completion of the graduate program and to practice later as a physician. For this purpose, two theoretical lectures (one in Neurology and one in Traumatology) and one practical seminar in Orthopedics are held during the graduate years on the topic. According to the new curriculum, fifth year students will participate in a one-week clinical rotation in Rehabilitation Medicine.

Detailed thematic of the course:
The course will be one week long and consist of lectures on basics followed by clinical practice. Students will participate in daily clinical activities, such as bedside visits and multidisciplinary team meeting. Moreover, they will perform patient assessment, physical examination and write medical reports under supervision. Getting familiar with basic rehabilitation methods is part of the course: physiotherapy, physical and other treatment modalities, occupational therapy, psychotherapy, speech therapy, neuropsychology, sport therapy, hydro therapy. Students will also gain experience in ambulatory care.

Detailed schedule:
1. Rehabilitation Medicine (RM): core competencies, the field of RM, definition, philosophy, objectives and methods, concept of ICF, quality of life.
2. Clinical and functional assessment in RM.
3. Interventions in RM: medical treatments, physical and other treatment modalities, therapeutic exercises, orthoses and prostheses.
4. Musculoskeletal and orthopedic rehabilitation: upper limb dysfunctions (including hand- and nerve injuries), lower limb dysfunctions (including nerve injuries and amputation).
6. Rehabilitation in other disabling conditions: geriatric-, pediatric-, cardiovascular- and pulmonary rehabilitation and rehabilitation in malignancy.
PUBLIC HEALTH AND PREVENTIVE MEDICINE

Institute: Department of Public Health
Location: NET building, 1089 Budapest, Nagyvárad tér 4., 13th, 14th, 19th and 21st floors.
 NET 13th floor, room 1314
 Phone: 061 210-2930, extension 56313
 E-mail: terand@net.sote.hu

Course lecturer: Prof. Dr. Károly Cseh
Course tutor: Dr. András Terebessy

Lectures:
- Introduction, history of public health
- Concepts and levels of prevention.
- Health determinants. Health status of the Hungarian population.
- Epidemiology of smoking and related diseases
- Epidemiology of alcohol and illegal drug consumption
- Epidemiology of cardiovascular diseases
- Epidemiology of cancer
- Basics of health policy, public health programs.
- The structure and financing of healthcare.
- Quality assurance in healthcare.
- Basic concepts of health promotion
- Mother-, infant and youth health.
- Public health aspects of handicapped people. Gerohygiene
- Mental hygiene, suicide
- General epidemiology of communicable diseases: Epidemics and the primary and secondary factors of the epidemic process
- Environmental medicine: ecological basics, air pollution, smog
- Environmental medicine: water, the water cycle of Earth, water supply, water management
- Environmental medicine: Ionizing radiation, types, effects and limits
- Environmental medicine: Chemical safety, basics of toxicology, risk assessment
- Environmental medicine: Housing and settlement hygiene
- Occupational medicine: The basics of occupational medicine, occupational diseases, exposition
- Occupational medicine: Physical agents
- Occupational medicine: Chemical agents
- Occupational medicine: Ergonomics. Stress at the workplace.
- Nutrition: Evaluating the nutritional status
- Nutrition: Diet-related diseases
- Nutrition: Food safety
Seminars:

- Basics of demography, standardization
- Epidemiology I: Basic concepts, basic measures. Overview of statistical knowledge
- Epidemiology II: Risk and cause. Epidemiological analysis
- Epidemiology IV: Midterm. Critical reading
- Smoking prevention and cessation programs.
- Alcohol and illegal drug prevention programs
- Prevention of cardiovascular diseases and cancer. Screening methods.
- Evaluation of public health programs
- Health care planning, quality assurance.
- Different levels of health promotion. Health plan.
- Mother and youth hygiene.
- Field trip
- Consultation
- Communicable diseases I.: Basic concepts of communicable diseases. Classification of communicable diseases, international statistics
- Communicable diseases II.: Vaccination. Sterilization, disinfection
- Communicable diseases III.: Airborne and enteral diseases
- Communicable diseases IV.: Haematogenic-lymphogenic and animal derived diseases
- Communicable diseases V.: STD
- Basic concepts of toxicology
- Toxicology of certain chemicals.
- Impact of environmental factors on health
- Occupational diseases III.: Physical and chemical occupational agents.
- Nutrition I.: Assessment of nutritional status, nutritional fact charts
- Nutrition II.: Diet planning. Food intoxication / infection.
- Field trip

ELECTIVE SUBJECTS

(basic/pre-clinical/clinical modules) – curricula

It is compulsory to choose one subject each semester.
ANTIBIOTIC THERAPY AND INFECTOLOGY

Held in both semesters.

Lectures: 2 hours/week

Credits: 2

Exam type: multiple choice test

Participation: min. 70% is obligatory

Obligatory elective subject for medical students already trained in microbiology, pharmacology and basic clinical subjects.

The subject gives an overview on the basic principles and practice of antimicrobial therapy. The antibiotics represent one of the most important classes of drugs that are prescribed practically in all branches of clinical medicine. It seems easy to use them and that is why we abuse them. Discussing the most important clinical features of the frequent infections, the subject shows the optimal approach to patients with infections diseases and antimicrobial treatment.

The first two lessons discuss the specific features of antimicrobial therapy, the basic principles of empiric treatment and the pharmacokinetic/pharmacodynamic concept that substantiates the application of antimicrobials in term of choice, dosage and combination. The following seven lectures deal with the specific features of the most important infections, such as respiratory tract infections, urinary tract and intraabdominal infections, endocarditis, meningitis, sepsis. Obviously, the lecturers bring into focus the considerations concerning antibiotic therapy. In the second half of the course, some of the nosocomial infections, infections of immunocompromised hosts and zoonoses are discussed, followed by the problems of antibiotic prophylaxis and antibiotic policy.

The course is organized only in the first semester

Course director: Prof. Dr. Endre Ludwig.

The venue of course: Szent László Hospital
1097 Budapest, Gyáli út 5-7. Building N. 19 Lecture Room

Textbooks:
4. Material of the lectures online availability

Lectures:
- Basic principles of antimicrobial therapy. Microbiological diagnosis, as the basis of antimicrobial therapy. The concept of “drug of choice”
- Diagnosis of infectious diseases: clinical relevance of the various diagnostic tests
- Optimisation of antimicrobial therapy. The pk/pd approach, correlation of dosage and clinical efficacy.
- Infectious diseases with exanthemas
- Upper respiratory tract infections (common cold, acute and chronic rhinosinusitis, acute otitis, tonsillipharyngitis). Epidemiology, the influence of age. Theoretical considerations and practice.
- Community acquired pneumonia. Epidemiology, the difficulties of etiological diagnosis. The impact of emerging bacterial resistance on the clinical efficacy of antibiotics. The modern approach and practice based on it
- Intraabdominal infections (primary and secondary peritonitis, cholecystitis). Urinary tract infections.
- Central nervous system infections. Meningitis, etiological diagnosis, antimicrobial treatment.
- Tropical diseases. HIV and AIDS.
Important note:
Attendance at 70% of the lectures is compulsory. The end semester grade is the result of the multiple choice test.

Recommended textbooks:
2. Szalka A., Tímár L., Ludwig E., Mészner Zs. (Szerk.): Infektológia. Medicina, Budapest, 2005.
4. Figures of the lectures are available electronically
BASICS OF MEDICAL CHEMISTRY

Department of Medical Chemistry, Molecularbiology and Pathobiochemistry

Lecturer: Prof. Dr. Gábor Bánhegyi

Lectures: compulsory

Credit: 1

Topics:
1. Basics of atomic and molecular structure, periodic table, bondings.
7. Electrochemistry. Oxidation and reduction, redox systems in the living cells.
12. The most important groups of organic compounds. Aliphatic and aromatic skeletons, their reactions. Repetitions of their structures.
13. The most important groups of organic compounds according their functional groups, their reactions. Repetitions of their structures.
14. Closing test. 30 multiple choice questions and 10 structures

Exam: closing test. 30 multiple choice questions and 10 structures

Note: Material of the lectures is available on the website of the Department.

Max. 3 absences are allowed.
VALUE OF ULTRASONOGRAPHY IN THE CLINICAL DIAGNOSTICS

(Lecturer: Dr. Ágnes Szebeni M.D., D. Sc.)

1. a) Basic physics of medical ultrasound
 b) Demonstration of the ultrasound laboratory; technique of ultrasound scanning.
2. a) Sonography of the liver, the spleen, the gallbladder and the bile ducts.
 b) Patient demonstrations and training
3. a) Sonography of the pancreas and the lymph nodes.
 b) Patient demonstrations and training
4. a) Invasive sonography (US guided biopsies and punctures, endosonography, intraoperative sonography).
 b) Videodemonstrations.
5. a) Urogenital sonography.
 b) Patient demonstrations and training
6. a) Small part scanning.
 b) Patient demonstrations and training
7. a) Vascular sonography
 b) Patient demonstrations and training

INTRODUCTORY LECTURES OF TRADITIONAL CHINESE MEDICINE

The topics:
1. Chinese way of thinking about medicine – Introductory lecture
2. Basic principles in Chinese anatomy and physiology (Yin-yang, Chi, meridian, points, cun, etc.)
 – 1 lecture
3. The twelve meridians and their points (locations and indications) – 6 lectures
4. The rules of the point selections – 2 lectures
5. The five-element theory, future trends in research and in the clinical use – 1 lecture
LIBRARY INFORMATICS - AOVKPK088_1A

Lecturer: Dr. Lívia Vasas PhD. – Central Library
Institute: Semmelweis University Central Library, 1088 Budapest
Duration: One semester, 30×45 minutes (10×3 lessons)

SUGGESTED SEMESTER 5-10.

Exam-form
Credit-value 3 credit-points
Minimum/maximum group-size 8/200

The aim of the subject:
Teaching students how to use/search in literature sources of medicine, analyse the result of their work supporting the proper competencies.

Thematic:
Medical e-catalogues, e-books, e-libraries, databases, scientific resources of internet

Assistant lecturer: Anna Berhidi, Edit Csajbók, Skultéti Attila, Szluka Péter
Student records officer:
Application deadline: September 4 -8, 2019
Precondition: There isn’t.

1. Introduction, technical details, VPN access, technical details, about the history of the Central Library’s Homepage: www.lib.semmelweis.hu and its facilities, UpToDate, ClinicalKey, HS talks: Biomedical & Lifesciences Collections, EBSCOhost, ProQuest, Pharmacopoeia, Turnitin Dissertations: Dart Europe, Open dissertations, OATD

2. Catalogs: books, online books
Semmelweis University catalog Hunteka: http://hunteka.lib.semmelweis.hu/search
Online book catalog: https://lib.semmelweis.hu/nav/ekonyvek
National Library of Medicine (Bethesda, USA)
Worldcat: https://www.worldcat.org/
Copac: https://copac.jisc.ac.uk/
Books PPT

3. Scientific publishers and periodicals:
printed/electronic/open access
- Browser and matching searching, archive and the newest editions Characterization of periodicals/reviews/journals, ISSN, DOI, Crossmark, Article metrics - Online attention
- Publishers: Springer, LWW, Wiley, video journal: JOVE
- Nature: https://www.nature.com/%0A
- BMC https://www.biomedcentral.com/
- PLOS https://www.plos.org/, DOAJ https://doaj.org/, etc.

4. New routes: Open Science, Open Access
The dangers of publishing on Open Access https://lib.semmelweis.hu/nav/open_access_general_information Support for Open Access Communication at Semmelweis University https://lib.semmelweis.hu/nav/open_access_tamogatas
The Semmelweis repository https://repo.lib.semmelweis.hu/
The concept of plagiarism, its forms of appearance, Plagiarism Search: Turnitin, Copyright questions
5. **NLM databases:** history, OpenI: https://openi.nlm.nih.gov/
value added services: registration, advances search.
MeSH, PMC, etc.
Dictionary: https://www.merriam-webster.com/

6. OVID databases, online books, electronic periodicals, Evidence Based Medicine databases: the role of the EBM in research, full text journals in Ovid databases MEDLINE, PsycINFO, subject heading systems, value-added services, access to the full text version, WHO https://www.who.int/

7. Bibliographic and citation databases, search engine: Web of Science platform, Google Scholar; citations, general searching in the databases, bibliographic and citation searching on keywords, using Boolean operators, value-added services
Scientometrics: quality of journals: Clarivate Analytics InCites JCR (Science Edition and Social Science Edition), IF: calculating Impact factor; SCImago: SJR

8. **Reference Manager:** EndNote, EndNote Online; the role of reference softwares in modern publishing, Literature searching: Importing and exporting records (from Web of Science, OVID Medline, PubMed) creating own records search facilities within our records and from PubMed; data handling: creating groups, filtering duplicates
Semmelweis Knowledgebase, Scientific Discovery of the Internet: find medical information you can trust, Building search strategies, Google Scholar, Medworm

9. **Summary of the course, Test writing**

10. **Consultation, Retake the 1st/2nd test OR Renewal opportunity for each tests**
INTRODUCTION TO CLINICAL ANATOMY

This elective course is for medical students having finished successfully three semesters in Anatomy.
Course Director: Prof. Dr. Tibor Wenger

Time and location: Every second year in spring semester 2 hours weekly in the lecture hall of the Department of Human Morphology and Developmental Biology (district 9, Tűzoltó u. 58.)
Exam: written
Value of the course: 2 credit points

Subject:
The proposed subjects are the followings (the order is subject to possible changes).

- General introduction, surface anatomy.
- Slide anatomy I-II.
- Application of slide anatomy in CT and MRI pictures.
- Psychiatric neuroanatomy.
- Neuroanatomy and cannabis.
- Anatomical relations of the endoscopy pictures, particularly in lesser pelvis.
- Anatomical changes in hypertension.
- Applied anatomy in family medicine and daily practice.
- Special anatomical relations in premature and newborn children.
- Anatomical changes during pregnancy.
- Anatomical bases of the traditional eastern medicine.

CLINICAL GENETICS

1st Dept. of Obstetrics and Gynecology
First Semester

- The fundamentals of classical genetics
- Polygenic inheritance, multifactorial determination
- General cytogenetics
- Basic principles of embryology and teratology
- Clinical molecular genetics
- Amniotic fluid cell culture for cytogenetic analysis
- Alphaetoprotein (AFP)
- Genetic amniocentesis
- Pathology of multiple pregnancy
- Genetic counseling
- General aspects of decision making regarding the fate of pregnancy
- Elements of phenotype analysis
- Embryopathology and fetal pathology
- Sphingolipidoses
- Mucopolysacharidoses and mucolipidoses
- Disorders of carbohydrate metabolism
- Diseases of amino acid metabolism
- Haemophilia and other bleeding disorders. Congenital immunodeficiencies. Congenital hypothyroidism. Cystic fibrosis
- Hereditary muscular and neurological diseases
- Congenital disturbances of ossification
- Neural tube defects (NTDs). Hydrocephalus. Other craniospinal malformations
- Thoracic and abdominal malformations
- Cystic kidney disease. Obstructive uropathies
- Down syndrome. Further autosomal trisomies
- Duplication and deficiency (deletion) syndromes
- Fragile X mental retardation syndrome (MartinBell syndrome)
- Disturbances of sex differentiation.
- Prenatal screening for fetal malformations and trisomies
ANESTHESIOLOGY AND INTENSIVE THERAPY

Dept. of Anesthesiology and Intensive Therapy

First Semester

Lectures

1. Central venous access and other invasive procedures: indications, performance and pitfalls
2. Advanced cardiac and hemodynamic monitoring. Swan-Ganz catheter, PiCCO, measured and calculated parameters, relevancies (45’)
 Advanced antiarrhythmic therapy: decision between electric and pharmacological treatment (45’)
3. Polytrauma, head trauma, chest trauma
4. Ultrasound: stethoscope of the 21st century (45’)
 Ultrasound in regional anesthesia (45’)
5. Acute pancreatitis (45’)
 The confused patient: principles of management (45’)
6. Pathophysiology of thermoregulation: malignant hyperthermia, NMS, hyper- and hypothermia syndromes, fever in the ICU (45’)
 Anesthesia for one-day-surgery (45’)
7. Principles of antibiotic therapy in the ICU (45’)
8. Principles of antibiotic therapy in the ICU (45’)
9. Difficult airway management (45’)
 Special respiratory therapy: high frequency and jet ventilation (45’)
10. Organ transplantation. End stage organ failure, long term mechanical support, organ transplantation, donor management
11. (Respiratory) Physiotherapy in the ICU
12. CRM: aviation safety and human factors in healthcare
13. Obstetrical intensive therapy: toxaemia, HELLP, Mendelson’s syndrome, pulmonary embolisation, amniotic fluid embolisation (35’)
 Pediatric anesthesia (35’)
 MCQ test (compulsory!) (20’)

Topics may change depending on lecturers’ availability.
NEONATOLOGY

Course Director: Prof. Dr. Istvan Seri

Second Semester

Credits: 2
Lessons: 28
- Principles of patient care in the NICU
- Resuscitation of the newborn
- Neonatal respiratory pathology: Pathophysiology
- Neonatal respiratory pathology: Diagnosis/Treatment
- Neonatal shock: Diagnosis and treatment
- Complications of severe prematurity: P/IHV & PVL
- Perinatal asphyxia/Neonatal Follow-up
- Congenital heart disease: Diagnosis and treatment
- Surgical conditions of the neonate
- Fluid-electrolyte & acid-base homeostasis
- Neonatal imaging
- Closing Session/Exam

Aim of the subject and its place in the curriculum: The Neonatology Elective course introduces basic information on neonatal physiology, pathophysiology and the diagnosis and clinical management of the most common neonatal conditions. The course deepens the knowledge-base of the students in pediatrics in general and neonatology in particular.

Competencies gained upon the successful completion of the subject: Recognition of the most common neonatal conditions based on clinical, laboratory and imaging information and gaining a basic knowledge on neonatal resuscitation.

Prerequisite(s) for admission to the subject: Ongoing enrollment in or completed session of the pediatric curriculum.

Minimum and maximum number of students registering for the course: 8-30

Requirement for acknowledging the semester (signature): Attendance of 60% of lectures.

Type of the examination: Multiple-choice written test exam at the end of the course.

Type and method of grading: Pass (60% of questions correctly answered) or fail (<60% of questions correctly answered) at the final exam. Literature, i.e. printed, electronic and online notes, textbooks, tutorials (URL for online material): Uploaded presentation slides on the university website following the lectures.
COURSE ON HUMAN LACTATION & BREASTFEEDING – THEORY, SUPPORT AND PROMOTION

Credits: 2
Lessons: 28
Requirement: Medical Physiology II.
Academic teachers:
Miklos Szabo MD, PhD, Med Habil Neonatologist, Chief of neonatal services
Erzsébet Várady MD Neonatologist, IBCLC

Background and importance of the topic
Optimal infant feeding is one of the most efficient interventions to improve child health and psychosocial wellbeing of mother and child. The gold standard of infant feeding is exclusive breastfeeding/human milk feeding for the first 6 months and while introducing complementary feeding at around 6 month, continuing breastfeeding at least in the first year of life, preferably until 2 years of age.
To achieve this goal, it is paramount, that all health professionals, regardless of their subspecialty are equipped with sufficient knowledge, competence and skills to help families in their decision on infant feeding, establishment, maintenance and support of breastfeeding and treatment of breastfeeding complications. The WHO, UNICEF and the Academy of Breastfeeding Medicine has called for action, that theory and evidence-based practice of breastfeeding should be incorporated into the medical school curricula.

Topics of the 14 session course
1. The importance of breastfeeding/human milk feeding for the child, the mother and the society. Risks of not breastfeeding and less than optimal breastfeeding. Definitions related to breastfeeding. Hungarian data on breastfeeding rates, international goals. Communication skills from the aspect of the breastfeeding mother.
5. The golden hour – skin to skin (S2S) contact between mother and infant immediately after birth. Facilitation of S2S care in the delivery room or operating room. Beneficial effects and safety issues. Observation during the golden hour. Sudden unexpected postnatal collapse (SUPC) – risk factors, prevention.
7. Consultation, in small groups and elaboration of homework mini reviews.

364

14. Consultation, in small groups and elaboration of homework mini reviews and virtual practical session: online participation in streaming of lactation consultation with patients

Aim of the course: the student acquires the following theory and practice-based competencies:

Theory based competencies

<table>
<thead>
<tr>
<th></th>
<th>Knowledge about the basic anatomy (normal and pathological) and physiology (including hormones related to breastfeeding) of the breast and the mechanism of breast milk production and secretion.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Describe contraception related to breastfeeding.</td>
</tr>
<tr>
<td></td>
<td>Describe the mechanism of sucking on the breast and compare the mechanism of breast and bottle feeding.</td>
</tr>
<tr>
<td></td>
<td>Understand, what is the role of breastfeeding and human milk feeding in maintaining health and prevention of illnesses in the mother and child and the potential problems related to artificial (formula) feeding.</td>
</tr>
<tr>
<td></td>
<td>Understand, why exclusive breastfeeding is important and what is its association with optimal health outcome.</td>
</tr>
<tr>
<td></td>
<td>Understand the advantages of S2S contact immediately after birth. Describes preventive measures for SUPC.</td>
</tr>
<tr>
<td></td>
<td>Knowledge about potentially adverse outcomes of the infant, mother and society in those cases, when the infant is not breastfeeding.</td>
</tr>
<tr>
<td></td>
<td>Understand the meaning of the Baby-friendly Hospital Initiative 10 steps.</td>
</tr>
<tr>
<td></td>
<td>Understand the possible impact of medical interventions and drugs during labor and childbirth on the outcome of breastfeeding. The student is aware of it, how to support the mother in breastfeeding after caesarean section.</td>
</tr>
<tr>
<td></td>
<td>Understand the role of behavioral, social, cultural and environmental factors in the breastfeeding-related decision and practice.</td>
</tr>
<tr>
<td></td>
<td>Knowledge about the evidence-based contraindications of breastfeeding/human milk feeding.</td>
</tr>
</tbody>
</table>

Skill based competencies

<table>
<thead>
<tr>
<th></th>
<th>Obtain detailed breastfeeding history and perform breastfeeding-related examination of the breast.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Describe the effect of intrapartum interventions and drugs on breastfeeding. Advise the mother on breastfeeding after caesarean section.</td>
</tr>
<tr>
<td></td>
<td>Facilitation and support of the golden hour.</td>
</tr>
<tr>
<td></td>
<td>Recognize the correct position, attachment on the breast, the signs of milk transfer and can suggest corrections, if needed.</td>
</tr>
<tr>
<td></td>
<td>Counsel mothers about establishing and maintaining lactation in case of separation (illness, returning to school/employment).</td>
</tr>
<tr>
<td></td>
<td>Counsel mothers on the normal course of lactation and on the prevention of potential complications (not enough breast milk, painful nipple, jaundice, etc.).</td>
</tr>
<tr>
<td></td>
<td>Discuss family planning options with the breastfeeding mother.</td>
</tr>
<tr>
<td></td>
<td>Describe signs of adequate milk intake by the infant and guide the mother, in case she has the perception not to have enough milk.</td>
</tr>
<tr>
<td></td>
<td>Understand the need to encourage the mother to breastfeed after introduction of complementary feeding and after one year of age.</td>
</tr>
<tr>
<td></td>
<td>Understand the normal growth pattern of the breastfed infant.</td>
</tr>
<tr>
<td></td>
<td>Discuss with the pregnant women the beneficial effects of breastfeeding for baby and mother, share with her information on the expected care in the birthing facility and give practical advice on breastfeeding.</td>
</tr>
</tbody>
</table>
| | Explain, why is the Code protecting breastfeeding and how to follow the Code in the birthing facility.
Exam:
Written – Test
Grading:
 88 % – 100 % Excellent
 76 % – 87 % Good
 64 % – 75 % Satisfactory
 51 % – 63 % Pass
Under 51% – Fail

We intend to check the efficacy of the course with pre and posttest.

Resources:
CLINICAL ENDOCRINOLOGY

2nd Department of Internal Medicine

Second Semester

Lectures

- Introduction to clinical endocrinology. Case Presentations.
- Use of hormone measurements in the diagnosis of endocrine diseases.
- Molecular genetics of endocrine diseases.
- Radiological imaging methods of endocrine organs.
- New developments in surgical treatment of endocrine tumors.
- Case presentations: pituitary gland disorders.
- Case presentations: adrenal gland disorders.
- Case presentations: thyroid gland disorders.
- Case presentations: parathyroid gland disorders.
- Sex determination and its disorders.
- Hormone-replacement therapy
- Inherited disorders presenting with endocrine tumors.
- Osteoporosis.
- Endocrine hypertension.
EMERGENCY IN SURGERY

Course Director: Prof. Dr. Pál Ondrejka

Second Semester

Purpose of the subject: In the practice of surgery is very important the early detection of emergency cases. For this reason the collaboration with the representatives of other medical professions is indispensable. The goal of our lectures is to present the appropriate procedures of physical examination, laboratory and radiological findings in order to recognize the correct diagnosis; to know what is necessary, what is possible and what is enough to do in a case of surgical emergency; when to ask for a consultation for adequate therapy.

The inborn errors, injuries, inflammations and tumors of the organs are also presented. In order to make the lectures more interesting we are going to review the relevant episodes in history of medicine and final arts.

Main topics:

- Gastric, duodenal, small bowel emergencies.
- Peritonitis acuta.
- Abdominal trauma.
- Surgery of the wound, infections, anaerob infections in surgery (MRSA, Furnier, tetanus, anaerob)
- Small bowel obstruction, large bowel obstruction.
- Esophageal emergencies.
- Biliary emergencies.
- Complications of peptic ulcer.
- Gastrointestinal bleeding.
- Pancreatitis acuta.
- Pancreatitis chronica.
- Appendicitis, diverticulitis, sigmoiditis, typhlitis.
- Surgical infections.

Minimum 80% attendance rate for getting the signature is obligatory.
CLINICAL HEMATOLOGY

2nd Dept. of Internal Medicine
Course Director: Prof. Dr. Tamás Masszi

Second Semester

Topics of interest in the field of hematology, state of the art of various hematological and hemato-oncologic diseases

2 hours per week

Main topics:

1. Place and significance of hematology. Normal blood production, basics of hematologic diagnosis.
2. Classification of anemias, diagnosis.
3. Myelodysplastic syndromes.
4. Diagnosis and treatment of acute leukemias.
5. Acute leukemias of the childhood.
6. Classification and treatment of lymphomas I.
7. Classification and treatment of lymphomas II.
10. Dermatologic manifestations of hematological diseases and hematological symptoms of dermatologic diseases.
11. Immunocytopenias.
14. Infectious complications of hematological diseases
HISTORY OF MEDICINE

Institute of Public Health

Lecturer: Dr. Judit Forrai

The history of medical science, considered as a part of the general history of civilization. The study of the history of medicine helps us to describe and understand how people in different times and cultures experienced and dealt with these fundamentals of human existence. This knowledge can inform debate about the present and the future, and help to bring medicine and science to a wide audience. All human societies have medical beliefs that provide explanations for birth, death, and disease. Many cultures in ancient times treated illnesses with magic and herbal remedies. Ancient Egyptians thought that their gods healed them. The ancient Greeks pursued medicine as a science. Hippocrates, the most famous physician of the time (c. 400 B.C.), believed that diseases had natural causes, not supernatural ones. By the Middle Ages, Europe was hit with a terrible epidemic that killed millions of people called the plague, or Black Death. The Renaissance marked a new period of interest in art and science throughout Europe. Despite new medical discoveries, many doctors still practiced old ways. Most sick people could not afford to see a trained physician. Instead, they consulted midwives who assisted with childbirths and made herbal remedies to treat illnesses. Minor surgeries were not done in the hospital but at the local barbershop. Medical research and training improved in the 18th century but there were still no cures for diseases like smallpox, a disease that killed millions of people over thousands of years. Middle Eastern doctors gave people mild doses of the smallpox to combat the disease. The portrayal of the history of medicine becomes more difficult in the 19th century. Discoveries multiply, and the number of eminent doctors is so great that the history is apt to become a series of biographies. Nevertheless, it is possible to discern the leading trends in modern medical thought. In the beginning of 20th century the research and technology have expanded medical knowledge and improved medical practices like surgery. Today, doctors are able to perform less invasive surgical procedures. The science of medicine has progressed dramatically in just the last 50 years. Career opportunities in health care have also expanded. There is a need for more skilled medical professionals, not only in hospitals, but in dentist and doctors’ offices, research labs, rehabilitation centres, mental health clinics, nursing homes and even schools.

Topics/week

13. Consultation

Important: 3 absences are allowed. Doctor’s certificate is required to certify absence from the exam.

Exam requirement: written test

Textbook:

CLINICAL CARDIOVASCULAR PHYSIOLOGY

AOVKIK102_1A

Elective course for medical students in the 3rd, 4th and 5th years.

The purposes of the course:
- To refresh and extend – in selected topics – the basic knowledge related to normal and pathological functions of the human circulatory system
- To integrate the latest scientific results related to different organization levels – from molecular physiology to system physiology – of the cardiovascular system.
- To discuss and demonstrate measurement principles and techniques, as well as physiological and pathophysiological mechanisms related to the application of modern non-invasive cardiovascular diagnostic procedures in the clinical practice.

Program:
1. Investigation of blood pressure regulation by use of transgenic technologies
2. Complement-related immunological and cardiopulmonary responses (CARPA). Modern methods for measuring and monitoring arterial blood pressure
3. Hemodynamic background of normal and pathological cardiovascular functions
4. Pathophysiology of chronic venous insufficiency
5. Physiological mechanisms supporting venous return of blood; orthostatic tolerance
6. Recent results in control of cerebral blood supply, physiological and clinical aspects
7. Clinical physiology of the microcirculation
8. Interventional radiological procedures on arteries and veins
9. Age related changes in the vascular system, role of sexual hormones
10. Role of endothelial mechanisms in clinical symptoms
12. Biomechanical properties of cerebral aneurisms, their computer modeling
13. Visit to the MRI cardiovascular diagnostic unit of the Semmelweis University Heart Center
14. Ultrasonic investigation of the human heart: theoretical background; 2D-, M-, Doppler-mode, color Doppler imaging, echocardiography; diagnostics of valve insufficiency and coronary diseases. Duplex ultrasonic investigation of large vessel function: measurement of vessel wall elasticity, Doppler-indexes

Students who meet the following criteria will receive 2 credit points: regular attendance of classes and successful written exam. Material for the exam includes lecture topics and textbooks suggested by the lecturers.
CARDIORESPIRATORIC AND NEUROPHYSIOLOGICAL MEASURING METHODS

AOSKIK151_1A

Elective course for medical students in the 3-6th years
Course director: Dr. Habil. László Dézsi, Private Professor of Physiology, Semmelweis University

The purpose of the course: To review the theory and practice of modern measuring methods in experimental and clinical medicine, and providing practical knowledge to medical students on cardiorespiratoric and neurophysiological measurements. The course is based on but further extends the material delivered during the course of Medical physiology. Throughout the lectures we put an emphasis on potential methodological errors of measurements and examinations, as well as how to avoid them.

Detailed Program:
1. Introduction. Biomedical engineering. Design and safety requirements of biomedical equipments
2. Computerized data acquisition and analysis. Telemetry systems
3. General metrology. Basics of measurement and control theory
4. Home monitoring of cardiovascular health status. Determination of blood glucose and tissue glucose concentrations
5. Sampling of continuous signals. Digitizing analogue signals
6. Direct and indirect methods to determine cardiac output and peripheral blood flow
8. Significance of objective studies in the practice of audiology. Neurophysiological measurements (action potentials, brain stem evoked potentials)
10. Measuring blood pressure in the lab and clinics (invasive and noninvasive methods)
11. Complement-related immunological and cardiopulmonary responses
12. Studying brain function by functional imaging systems
13. Experimental methods to study nociception
14. Investigating the electrical activity of the heart. Design of ECG amplifiers

Acknowledgement of the course: Prerequisite of the course is the completion of the first 2 years (Theoretical module). Regular attendance (maximum 3 absences) is required. Signature in the Index and 2 credit points will be awarded after successful exam. Source: material of the lectures, supplementary literature will be provided by the lecturers.

Applications: via Neptun system. Contact person: Dr. László Dézsi (e-mail: dezsi.laszlo@richter.hu; phone: 06-1-431-4823; phone/fax: 06-72-536-019). The application of min. 5 students is required.
CLINICAL PHYSIOLOGY OF RESPIRATION AND RESPIRATORY DISEASES

AOVKIK099_1A

Elective course for medical students in the 3rd, 4th and 5th years.
The aims of the course are to strengthen knowledge on basic physiological principles related to respiration, summarize the most important aspects of cardiorespiratory adaptation in sport activities and also its changes in respiratory diseases and to provide integrated information about the physiological and pathophysiological background of the most important respiratory disorders in light of results from cutting edge research.

Program:

1. Physiological function of the respiratory system
2. Smoking, e-cigs, supporting cessation
3. Lung development
4. Inhalation therapy
5. Sleep related respiratory disorders.
6. COPD and COPD exacerbation
7. The lung in systemic diseases
8. Cystic fibrosis
9. Pulmonary circulation
10. Bronchoscopy
11. Cardiovascular exercise testing, COPD
12. Asthma bronchiale
13. Non-invasive ventilation
14. Chest imaging

Acknowledgement of the course: regular attendance (maximum 3 absences) is required; signature in the Index, and 2 credit points will be provided
MEDICINAL, EPIDEMIOLOGICAL, AND SOCIAL ASPECTS OF DRUG ABUSE

Department of Pharmacology and Pharmacotherapy
Course director: Prof. Dr. Susanna Fürst

Second semester

Credit: 2

Topics:

Psychomotor stimulants. Pharmacological action of amphetamine, its derivatives (methamphetamine, MDMA-“Ecstasy”, etc.) and cocaine. Role of the dopaminergic transmission in the drug abuse.

Hallucinogens. Ethanol. Pharmacological action of hallucinogens, (LSD, mescaline, phencyclidine, etc.). Role of the serotonergic transmission in hallucination. Characteristics of ethanol dependence.

Marihuana (hasis, THC) Pharmacological action of cannabinoids. Cannabinoid receptors and their endogenous ligands.

Epidemiological data. Significance of epidemiological data collection. Forms of questionnaires. Tendency of drug abuse, national (Hungarian) and international data. High risk groups.

Psychotherapy. Individual and group therapy. The problems of long-term rehabilitation. Counselling.

Drug abuse and society. Legal issues. Statutory rules and regulations. Human rights.

Role of public and civil crystalline. Role, task and potential of governmental and non-governmental crystalline in the prevention of drug abuse.

Detection of drug consumption. Laboratory analysis of blood and urinary samples. The role of objective laboratory control in prevention and reduction of drug abuse.

Psychosocial questions of drug abuse. Psychosocial aspects. Self-destructive attitudes. Psychological and social background. Role, task and possibilities of the medical doctor.

Absence: Maximum number of absences is 25 percent of the lectures in the semester

Absence justification: Medical certificate is accepted

There is no midterm

Requirement: Participation at the lectures

Evaluation: On the base of the scores of the written test

Exam: written test

The written test is on the last lecture, registration has to be done through the NEPTUN system

How to modify the exam date: Personal discussion for another appointment

Exam absence justification: Medical certificate is accepted
BASICS OF FAMILY MEDICINE

Department of Family Medicine

Director: Dr. Péter Torzsa

Family medicine as a speciality
Past and present of family medicine in Hungary
Daily routine of family doctor
 Dr. Kalabay László
Doctor-patient relationship in family practices. Communication skills
 Dr. Torzsa Péter
Emergency care in family practice
 Dr. Szabó János
Cardiology and prevention in family practice
 Dr. Simon Judit
Diabetes mellitus in family practice
Optimal treatment of diabetes mellitus
 Dr. Dani Vilmos
Prevention program in family practice
Optimal treatment of hypertension
 Dr. Torzsa Péter
Primary care in cities
 Dr. Torzsa Péter
Primary care in the countryside
 Dr. Szabó János
Care of gipsy patients
 Dr. Horváth Péter
Medical ethics and law
 Dr. Vajer Péter
Continuing home care
Rehabilitation
Terminal illnesses
Summary
 Prof. Dr. László Kalabay
 Dr. Péter Torzsa
HISTORY OF THE MEDICAL PROFESSIONALISM

Lecturer: Dr. Péter Balázs

Class Sessions: Medical professionalism as an ethical norm is an ancient behavioural pattern and theoretical construction alike based on sacral calling. Consequently, roots of the modern professional mythology may be traced back to the late Neolithic age, but the whole framework was systematized as soon as in the old Egyptian and Mesopotamian culture. Since the Hippocratic age, the medicine of craftsmen was based on teachings of natural sciences and the Middle Age supported the medicine with mythology of sciences, but only the Enlightenment provided the social environment for a de-sacralized professionalism, nevertheless it followed exactly the ancient religious patterns.

General part of the topic is concerning the onset of professionalism while discussing different manifestations and transitions related to ideologies, socio-economic circumstances and scientific teachings from the Neolithic age down to the latest market economies. Specific part demonstrates milestones and historic ages, which were decisive in this proceeding: Old Egypt, Mesopotamia, old age Judaism, early and consolidated Christianity, impact of Islam on Europe, Reformation of the Roman Catholic church, Enlightenment, the Communist ideology and the social market economy.

Attendance at lectures, options for additional lectures:
Basic requirement: attendance at 8 sessions. In case of justified non-attendance of more students at a specific session, additional lecture is available.

Justification for non-attendance at lectures
Up to 2 sessions no need for justification, in case of more than 3 sessions missed no confirming of the course.

Justification for non-attendance at the exam
Only certificates of administrative authorities.

Control of knowledge acquired within the time-frame of sessions
No control during the session period

Requirements for confirming the session attendance
Having attended less than 8 sessions no confirming of the course. Additional sessions, if organized, are parts of the 10 session contingent.

Preliminary and final marks
Type of marks: five degree evaluation (1-5). Preliminary mark on the written work, which becomes a final mark automatically except additional questions answered (see below).

Type of exam
Base of exam: homework written about the history of medical professionalism sent by e-mail to the lecturer (deadline: 7 days before the exam, 5-6 A4-pages, margins, fonts, space agreed at the first session) Type of exam: each student will get several questions based on his/her own homework to determine the final mark.

Entering for examination
Student Administration System (NEPTUN)

Modification of data entered for examination
When registered in NEPTUN only after consulting the lecturer

Justification for non-attendance at the exam
Only certificates of administrative authorities.

Note on readings
Handout of Power Point presentations at the beginning of each relevant session.
HEALTH INFORMATICS

Institute of Digital Health Sciences

Credit: 2
Lecture: 2 hours/week

<table>
<thead>
<tr>
<th>Themes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Classification and Coding Systems</td>
</tr>
<tr>
<td>2. ICD-10 Coding System</td>
</tr>
<tr>
<td>3. Electronic patient’s Record</td>
</tr>
<tr>
<td>4. Electronic patient’s Record</td>
</tr>
<tr>
<td>5. DRG System</td>
</tr>
<tr>
<td>6. Hospital Information Systems</td>
</tr>
<tr>
<td>7. WEB 2.0</td>
</tr>
<tr>
<td>8. WEB 2.0 Solutions in Health Care</td>
</tr>
<tr>
<td>9. Introduction to Health Databases</td>
</tr>
<tr>
<td>10. Oncology Database</td>
</tr>
<tr>
<td>11. Evaluation of Country data. Presentation</td>
</tr>
<tr>
<td>12. Evaluation of Aggregated data</td>
</tr>
<tr>
<td>13. Principles of Documentation Making</td>
</tr>
<tr>
<td>14. Documentation of Breast cancer: case study</td>
</tr>
</tbody>
</table>

Self work: Stomach Cancer Documentation (data collection, evaluating, presentation, documentation) Deadline: half semester. Sending: via Internet
JEWISH MEDICAL ETHICS I - II.

Institute of Behavioral Sciences

Course Director: Rabbi Baruch Oberlander

Credit: 4 credits (2 credits for each semester; I and II)

Attendance at 75% of lectures is compulsory. Missed lectures cannot be made up for. In case of missing more than 25% of lectures (3 lectures) a note from a healthcare professional is required.

Semester grade requirement: A written report (paper) based on list of topics and recommended reading material.

Successful completion of semester I is the prerequisite of signing up for semester II.

Obligatory: Handouts given during lectures

Fred Rosner: Pioneers in Jewish Medical Ethics, Jason Aronson, New Jersey, 1997

Rabbi Moshe Tendler–Fred Rosner: Practical Medical Halachah, Association of Orthodox Jewish Scientists, New Jersey 1990

Fred Rosner: Medicine and Jewish Law II, Jason Aronson, New Jersey, 1993

Semester I.

1-2. Lecture: The religious orders and the duty of saving a life
3-4. Lecture: Doctors and God – The function of healing and prayer in Jewish ethics
5-6. Lecture: Euthanasia – The questions of death and dying in society
7-8. Lecture: Smoking and use of light drugs from the aspect of Judaism
9-10. Lecture: Medical malpractice in the light of Jewish law and ethics
11-12. Lecture: The possibilities for artificial insemination in Jewish law
13-14. Lecture: The advantages, disadvantages and conditions of cloning

Semester II.

1-2. Lecture: Genetics and Jewish law – What rights do we have over our gene pool?
3-4. Lecture: Genetics and Jewish law – The problem of the gene manipulated food products
5-6. Lecture: Siamese twins – The question of valuation between two living persons
7-8. Lecture: Parasolvency – What is the best method to compensate the doctor?
9-10. Lecture: Contraception in Jewish law
11-12. Lecture: Permitted and prohibited methods of organ transplantation
13-14. Lecture: The questions of DNA identification in Jewish law
CLINICAL ONCOLOGY

– elective for students in the 4th and 5th year
Course Director: Prof. Dr. Zsolt Tulassay

2 hours/week, 2 credits

2nd Department of Internal Medicine

- Basic principles of clinical application of chemotherapy, principles of immunotherapy and endocrine therapy.
- Cancer screening: principles, gastrointestinal, gynecologic, breast, lung.
- Specialized techniques in cancer management: vascular access, interventional radiology, RFA photodynamic therapy, molecular imaging and functional imaging of cancer.
- Cancer of head and neck: molecular epidemiology, treatment and rehabilitation.
- Cancer of the lung: molecular biology, NSCLC, SCLC.
- Cancer of esophagus and stomach: stage directed multimodality treatment.
- Pancreatic cancer: clinical presentation, evaluation, treatment of resectable and advanced diseases.
- Cancer of the liver: etiology, screening populations, clinical management, systemic therapy, regional therapy, radiotherapy.
- Cancer of unknown primary site: histologic types of CUPS, management of CUPS.
- Immunosuppression related malignancies: AIDS, transplantation, chemotherapy.

The lecturers of the elective are the oncologists of Semmelweis University.
ORGAN TRANSPLANTATION

First Semester

Department: Faculty of Medicine, Department of Transplantation and Surgery

Time: 14x90 minutes
For semesters: 7, 9
Type of exam: written
Credits: 2
Minimum/maximum number of students: 20/140

Course thematics:
1. Introduction - History, Terminology, Organ Donation
2. Pediatric Kidney Transplantation
3. Histocompatibility, Immunologic Aspects and Immunsuppression
4. Kidney Transplantation Indication, Operation, Results, Complications
5. Liver Transplantation
6. Pediatric Liver Transplantation, Hepatocyte Transplantation
7. Follow-up of the Transplant Patient
8. Small Bowel and Multiorgan Transplantation
9. Pancreas and Islet Cell Transplantation
10. Lung Transplantation
11. Heart Transplantation
12. Radiological Aspects of Transplantation
13. Ethics of Transplantation - Case reports
14. Terminal Examination

Sign up: through the Neptun system
Deadline of sign up: September 1
INFLAMMATION BIOLOGY

Department of Genetics, Cell and Immunobiology

Course director: A. Kristóf Fülöp, PhD
Prerequisite subject: Immunology, Molecular Cell Biology II.
Credits: 2

In Every Second Academic Year

Lectures (2 hours per week):

- The place of inflammatory processes in the immune response and in the health science
- Molecular mechanisms in the induction of acute inflammation
- Inflammatory cells I.
- Inflammatory cells II.
- Chemotaxis and chemokines in the inflammation
- The systemic acute phase reaction and the termination of inflammation
- Histaminology
- The systemic inflammation
- Chronic inflammatory diseases I.
- Chronic inflammatory diseases II.
- Genomics of inflammation and asthma bronchiale
- Inflammation, regeneration and tumorigenesis
- Inhibition of inflammation, biological therapies
- Review and consultation

Attendance of a minimum of 75% of the lessons is necessary for the end-term signature.
Exam: written test in the exam period.
Literature: see on the homepage
Homepage: http://gsi.semmelweis.hu
GENETICS OF SEX

Department of Genetics, Cell and Immunobiology

Course director: Dr. Sára Tóth
No Prerequisites
Credits: 2

Second Semester

Lectures (2 hours per week):

1. Genetic background of sex determination; asexual and sexual reproduction; reproductive strategies.
2. From sex determining gene to sex chromosome
3. Male and female sex determination
4. Abnormalities in sex determination I.
5. Abnormalities in sex determination II.
6. Abnormalities in sex determination III.
7. Mechanism and role of X inactivation
8. Epigenetic effects; genome imprinting.
9. Causes of male infertility. Y chromosome mutations and ICSI.
10. Importance of Y chromosomal and mitochondrial polymorphisms in population genetics
11. Influence of sex on heredity
12. Aggressivity and sex
13. Genetics of sexual orientation
14. Ecology and sex; role of endocrine disruptors

Attendance of a minimum of 75% of the lessons is necessary for the end-term signature. No possibility to make up of absences.

Exam: no midterms, practice grade

Core texts: Chapters from Strachan & Read: Human Molecular Genetics 2nd Ed. and Gilbert: Developmental Biology 8th Ed. Both are downloadable from Pubmed Bookshelf.

Lecture presentations and additional texts are available on the homepage: www.dgci.sote.hu

Homepage: http://gsi.semmelweis.hu
EPIGENETICS

Department of Genetics, Cell and Immunobiology

Course directors: Dr. Sára Tóth

Credits: 2

First Semester

Lectures (2 hours per week):

1. Timeline of epigenetics; levels of epigenetic changes; targets of epigenetics
2. DNA methylation; de novo and maintenance methylation; Dnmt interactions
3. Histone modifications; histone code; histone modifying enzymes
4. Polycomb and trithorax complexes; Methylated DNA binding proteins
5. Transposons, and non-coding RNAs in epigenetic regulation; RNAi
6. Genome imprinting; skewed X inactivation their connection to DNA methylation
7. Epigenetic changes during early development and gametogenesis;
 Epigenetic consequences of cloning and ART
8. Transgenerational epigenetics; epigenetics of endocrine disruptors;
 maternal behaviour and its epigenetic consequences
9. Paramutation, transvection and mitotic bookmarking
10. Role of epigenetics in carcinogenesis; epigenetic therapy in cancer
11. Epigenetics in aging and autoimmunity
12. Epigenetic changes in diseases of the central nervous system
13. Methods used for the detection and analysis of epigenetic alterations.

Important notes:

Only for third and upper year students. There are no midterm exams. Attendance of 75% of lectures is necessary for the end-term signature.

Exam: Written or oral exam (depending on the number of students).

No possibility to make up of absences.

Lecture presentations and additional texts are available on the homepage: www.dgci.sote.hu

Homepage: http://gsi.semmelweis.hu
CHEMOTAXIS – its significance in biology and clinical sciences

Department of Genetics, Cell and Immunobiology
Course director: Dr. László Köhidai

Credits: 2

Second Semester

Lectures (2 hours per week):

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Migratory responses of cells – General significance of chemotaxis in biology</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>2.</td>
<td>Phylogeny of signaling molecules and their receptors with special respectial to chemotaxis</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>3.</td>
<td>Chemotaxis in invertebrates and vertebrates</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>4.</td>
<td>Chemotaxis in Inflammatory cells I.: Antigen presenting cell, monocytes-macrophages, eosinophils and neutrophils</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>5.</td>
<td>Chemotaxis in bacteria - A well studied signaling pathway</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>6.</td>
<td>Genetical backgrounds of bacterial chemotaxis</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>7.</td>
<td>Inflammation and chemotaxis</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>8.</td>
<td>Immunological aspects and their clinical implications in general</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>9.</td>
<td>Phagocytosis: the target reaction of chemotaxis</td>
<td>Szabó Rita, PhD</td>
</tr>
<tr>
<td>10.</td>
<td>Chemotactic ligands – Characterization of their genomics and proteomics</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>11.</td>
<td>Chemokines</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>12.</td>
<td>The optimal chemotactic ligand</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>13.</td>
<td>Clinical approaches – Tumor biology</td>
<td>Láng Orsolya, MD, PhD</td>
</tr>
<tr>
<td>14.</td>
<td>Does persist ‘Life’ without ‘Chemotaxis’?</td>
<td>Kohidai László, MD, PhD</td>
</tr>
</tbody>
</table>

Important notes:
Prerequisite: Medical Chemistry.
Max. allowed absences: 3. Attendance of 75% of lectures is necessary for the end-term signature.
One individual oral presentation (not for grade) is compulsory.
Exam: oral for practice mark
Possibility to make up of absences from the material on the website:
www.chemotaxis.usn.hu and www.dgci.sote.hu
Homepage: http://gsi.semmelweis.hu
NEUROSURGERY – Introduction to neurosurgery with case presentations and operating room visit

Department of Neurosurgery

For 5th and 6th year students

Program Locations: Department of Neurology (1086 Bp. Balassa u. 6.) & National Institute of Neurosurgery (1145 Bp. Amerikai út 57.)
Length of course: 14 weeks, 2 hours (lectures)/week
Credit: 2
Final exam: multiple choice test

Detailed program (weeks): Every lecture includes a summary of the topic, 2-3 relevant case presentations and if possible video presentation of surgeries.

- Introduction to neurosurgery: history of neurosurgery
- Basics of micro-neurosurgical anatomy
- Neurological investigation of the neurosurgical patient
- Increased intracranial pressure, Hydrocephalus
- Head injury and neurotrauma basics
- Spine and spinal cord injuries
- Spinal tumours
- Brain tumours, neurooncology
- Vascular malformations of CNS
- Degenerative spine diseases
- Epilepsy surgery and investigations
- Functional neurosurgery and stereotactic procedures
- Radiosurgery
- Visiting the operating theatre and examination

Note: 2 absences are allowed. No possibility to make up of absences.
SOCIAL MEDIA IN MEDICINE

Institute of Behavioural Sciences
Course leader: Prof. Dr. Ferenc Túry
Presenter of the course: Dr. Bertalan Mesko

credit: 2 credits; elective course

Second Semester

Course objectives:
To present the role of web 2.0 or social media, the new generation of web services, in a medical practice, medical education and communication through specific examples, case studies and practical solutions.

Course Syllabus:
Week 1: Introduction: Web 2.0 or social media
The role of social media in medicine

Week 2: Medical search engines
The Google phenomenon

Week 3: Being up-to-date with RSS
How to follow your field of interest online?

Week 4: Medical communities online
Facebook from the physician’s perspective

Week 5: Patients on the web
The era of e-patients

Week 6: The medical blogosphere
From the first comment to blog carnivals: Step by step

Week 7: Everything you have to know about Wikipedia
Medical wikis

Week 8: Second Life: Virtual medicine I.
Second Life: Virtual medicine II.

Week 9: Managing a medical practice online
Should medical professionals use social media?

Week 10: Education online: medical resources
Week 11: Podcasts and medical videos
The era of new media

Week 12: A new way of collaboration: Google Docs

Week 13: Dangers of social media
Describing topics requested by the students

Week 14: Future: is there a web 3.0?
The results of the surveys
Participation and making up for absences:
A signature will be given with the prerequisite of participation (minimum 75% of the lectures and seminars). It is possible to make up for an absence by participating in another seminar group the same week. One absence can be overlooked by the teacher if the student writes an essay. The topic of the essay must be discussed with the seminar leader in advance.

Justification of the absence in the lectures and examinations:
Participation list will be recorded at the end of every lecture/seminar. In case of absence medical certificate has to be presented within three workdays to the course leader.

Checks during the semester (reports, written checks):
One written exam on week 12. It can be made up during the semester.

Requirements for the signature at the end of the semester:
Regular participation on the lectures and seminars, filling in two surveys online (week 2 and 12). One written exam (week 12)

Method of the calculation of marks:
- Written exam: 60 points
- Two surveys: 30 points
- Work during classes: 10 points

Categories:
- 5: 85-100 points
- 4: 75-84 points
- 3: 65-74 points
- 2: 50-64 points
- 1: 50 points

Requirements for the exam: fulfilment of the requirements of the semester
Application for the exam: Through the Neptun system.
Changing the application for the exam: Through the Neptun system.
Justification of the absence from the exam: Medical certificate has to be presented within three workdays to the course leader.

Course and recommended text books:

http://www.med20course.com
http://www.scienteroll.com
CULTURE IN MEDICINE, CULTURE OF MEDICINE – Popular Themes of Current Clinically Applied Medical Anthropology

Institute of Behavioral Sciences
Course Director: Prof. Dr. Ferenc Túry
Lecturer: Dr. László Lajtai

Credit: 2

Second Semester

Weekly topics of the seminars:
1. „We have never been modern?” – An initiation to critical approaches to evidence base in medicine – How to respond? - / - Discussion of the semester: Requirements and timescale.
2. Alternatives 1: Narratives and explanatory models – Confusions and the lay perspective
3. Alternatives 2: Complementary medicine – Competition at our doorstep
4. Alternatives 3: Healing and folk medicine – Wisdom or beliefs?
5. Alternatives 4: Biomedicine for anthropology, or the twist of perspectives
6. Challenges 1: Migrants, refugees and minorities
7. Challenges 2: Reproduction, sex, age, death and other trends in „western” medicalization
8. Challenges 3: Nutrition and taboos - biopower and social body
9. Challenges 4: Placebo, pharmaceuticals and the rule of pharmaceutical industry
10. Challenges 5: Public medicine, private medicine and the reproduction of inequities
11. Favourite themes 1: Alcohol, drug, and AIDS at crossroads of culture and law
12. Favourite themes 2: Shrinks and madness – CBS and the mirage of the normal
Recapitulation, feedback and evaluation.
ART OF LEARNING

Institute of Behavioral Sciences

Course Leader: Dr. János Kollár

First and Second Semester

Objectives of the subject, its place in the medical curriculum:
Improving students’ learning and presentation skills, increasing their performance in the acquisition of study materials.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Seminar room.

Successful completion of the subject results in the acquisition of the following competencies:
- knowledge of creativity development practices,
- increase in educational and presentation skills (including the development of individual skills and knowledge of technical innovations),
- knowledge of mnemonic methods,
- knowledge of the wide application of the possibilities offered by the Internet (information search, communication),
- knowledge of the theory and practice of relaxation.

Course prerequisites:
None.

Number of students required for the course (minimum, maximum) and method of selecting students:
Minimum: 3, maximum: 10.

How to apply for the course:
By using Neptun.

Detailed curriculum:
1. Meeting 1: Keys of Originality - participants can learn simple but effective methods that can be used on a daily basis to develop their creativity.
2. Meeting 2: Lecturing technique - mastering the basic rules of presentation, acknowledging modern presentation methods developed in recent years and their application. Rules for developing and exercising confident performing skills.
3. Meeting 3: Learning technique - Acquiring mnemonic methods and appropriate time management to support learning.
4. Meeting 4: Advantages on the Internet - learning the application of RSS, doing own research by using RSS. Mapping Internet resources that can be used for learning and research. Relaxation: Learning the basics of relaxation, mastering the creation of body-soul-spirit harmony.
5. Meeting 5: Exam - Participants present their own presentation by using their knowledge acquired in the course, receive feedback from each other and from the course leader.

Lecturer: Dr. János Kollár

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:
None.

Special study work required to successfully complete the course:
Not required.
Requirements for participation in classes and the possibility to make up for absences:
Out of the 20 hours of the 5 meetings, a maximum of 4 hours of absence is accepted.

Methods to assess knowledge acquisition during term time:
The course ends with an exam at the 5th meeting.

Requirements for signature:
1. Making a presentation at an appropriate level.
2. Active participation, respect for the work of fellow students and active support.

Type of examination:
Practical grade based on the above mentioned requirements.

Requirements of the examination:
Preparing a presentation based on the topics discussed during the course at an appropriate level.

Method and type of evaluation:
5 grade evaluation.

Excellent: Active and constructive participation, high quality performance of tasks. Completing the exam presentation to a high standard.

Good: Active and constructive participation, good performance of tasks. Completing the exam presentation to a good standard with minor errors.

Satisfactory: Passive participation, completion of the exam presentation at an appropriate level.

Failed: Passive participation, failure to present or failure to complete the exam presentation.

How to register for the examination?:
The exam is a part of the course. Special registration is not required.

Possibilities for exam retake:
In case of failure, the student will be given a one-time opportunity to improve his/her presentation.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:

Books:
Disruptive technologies bring groundbreaking changes to medicine and healthcare. While medical students are being prepared for the present conditions, medical technology is going to add different values and require new skills by the time students graduate, therefore modern medical education must prepare them for a world they will have to face in their professional lives. This course was designed to present and analyze today’s medical challenges with tomorrow’s technologies in a meaningful way addressing skills that students will be able to implement in their everyday practices.

Second Semester

Topics

I. Introduction
II. Personalized medicine and point of care diagnostics
III. Personalized medicine - Genomic health
IV. Personalized medicine - Imaging health
V. Social Media and Medicine - Introduction
VI. Social Media and Medicine - Filtering online
VII. Social Media and Medicine - Sharing information
VIII. Harnessing big data in healthcare
IX. Mobile health and telemedicine
X. Biotechnology and gene therapy
XI. Regenerative medicine
XII. Medical robotics, bionics, virtual reality
XIII. Future of medical technologies

Textbooks:
Social Media in Clinical Practice, Springer, 2013
The Guide to the Future of Medicine http://scienceroll.com/2013/10/30/whitepaper/
INTRODUCTION TO PHARMACOLOGICAL RESEARCH

Department of Pharmacology and Pharmacotherapy

Supervisors:
Dr. Péter Ferdinandy
Dr. Tibor Zelles

HEALTHCARE MANAGEMENT

Course Leader: Dr. habil. Éva Belicza Ph.D.
Prerequisite: Internal Medicine I.
Credit: 2
Lecture: 2 hours / week
Subject code: AOVEMK444_1A

Thematics:
1st week: Introduction: the role of management in healthcare, basics
2nd week: Healthcare economics I.
3rd week: Healthcare economics II.
4th week: Healthcare financing
5th week: Healthcare system models and their international comparison
6th week: Organisational management
7th week: Organisational behavior
8th week: Human resource management in healthcare
9th week: Change management in healthcare
10th week: Patient safety in practice
11th week: Quality management and development in healthcare
12th week: Health politics
13th week: Project and time management
14th week: Summary
MATHEMATICAL AND PHYSICAL BASIS OF MEDICAL BIOPHYSICS

Lecturer: Dr. Miklós Kellermayer
Credit: 1
14 hours lecture in the first four weeks of the semester.

Thematics:
1. Mathematics necessary for understanding biophysical laws
2. Physical quantities and units
3. Kinematics – physics of motion
4. Statics – changes of shape, forces, mechanical stress, pressure
5. Dynamics – work, energy
6. Oscillations, waves
7. Fluid mechanics
8. Thermodynamics
9. Electricity – charges in rest and in motion
10. Magnetism, magnetic induction

The presence in at least 75% of the lessons is obligatory.
The grade is based on the result of test written on the 5th week. This test should be written by all students irrespective of taking this elective subject. The result of test is expected to be at least satisfactory (2) as a condition for signature in Medical biophysics 1. The elective subject helps in the preparation for this test.
Evaluation: practical grade based on the result of test written on the 5th week.
Textbook: Lecture notes on the homepage of the department.
High school physics textbooks.
MEDICAL GENOMICS

Department of Genetics, Cell and Immunobiology
Lecturer: Prof. Dr. Csaba Szalai

Medical genomics introduces the basic knowledge in medical and human genomics and the associated genomic methods. The main topic of the course is the genetic and genomic background of the most common multifactorial diseases, like asthma, allergy, type 1 diabetes mellitus, type 2 diabetes mellitus, obesity, high blood pressure, atherosclerosis, Alzheimer disease and Parkinson disease. The lectures show the most important genes and genetic variations in these diseases which can influence the susceptibility to the them and how these knowledges can be used to get to know the pathomechanisms of these diseases and to reveal novel therapy and drug targets. There are also lectures about pharmacogenomics and how our genes influences our responses to different environmental effects. As genomics belongs to systems biology, a lecture introduces to basic terms of systems biology, and concentrating on diseases, some examples of the application and utilization of this scientific field are also be shown.

Planned lectures:
- Introduction to genomics, the human genome
- Multifactorial diseases
- Genomic methods
- Asthma, allergy
- Type 1 diabetes mellitus
- Type 2 diabetes mellitus
- Obesity
- High blood pressure
- Atherosclerosis
- Alzheimer and Parkinson diseases
- Gene-environmental interactions
- Pharmacogenomics
- Systems biology

Prerequisite subjects: Medical Biochemistry, Molecular and Cell Biology I, II and III.
SYSTEMS NEUROSCIENCE I–VI.

Faculty of Medicine, Department of Anatomy, Histology and Embryology

Type of course: optional course-unit
credit: 2
Name of the responsible person: Dr. Gábor Gerber

Second Semester

Role of the course in the training of the Department:
The Systems Neuroscience program follows the approach of systems theory in understanding the brain. The aim is to provide students a view of the brain as a whole via unfolding, at least in part, its immense complexity. This is a major challenge of all time, but the right answer should be one that can integrate actual knowledge. As we are in the fortunate period of time when high performance tools (both hardware and software) and large datasets are getting more and more available, systems thinking is inevitable in brain research. Therefore, throughout the course students will learn how different approaches - reductionist, holist and functionalist - are all useful and necessary in understanding the brain.

In one way the course is structured by introducing the students the different levels of organization all being complex systems themselves. After an introductory about the systems science approach of the brain (course 2) we discuss the molecular machineries at the subcellular level (course 3) then turn into the cellular level by learning why and why not the neuron is considered as the unit of brain organization (course 4). In the next step it is shown how billions of neurons make up the cerebral cortex and how this evolutionarily new structure can perform diverse cognitive and other functions (course 5). Finally, whole brain functions and functioning will be approached via its role in behavior (course 6).

In other way, each course will show how the brain functions at lower organizational levels such that synaptic and neuronal populations of different structures as well as a whole. Such holistic approaches have high importance in recent efforts made in deciphering the neurobiological basis of neuropsychiatric and neurological diseases (courses 5,6). Finally, with the closing series of lectures (course 7,8) we aim to provide tools, rules and examples, which help integrating knowledge acquired throughout the courses and also provide an outlook whereby the brain can be compared to other complex systems (course 2). Another notable feature of the Systems Neuroscience program is its interdisciplinary nature: it will introduce the students into several state of the art methods both experimental (molecular biology, cellular and extracellular physiology, different kinds of imaging) and theoretical (data and network analyses, simulation and modelling).

Each course includes visiting the lecturers’ lab.

The program of the course:
Weekly schedule of the Courses
1. Central European Culture
2. Introduction to Systems Neuroscience
4. Single neurons and beyond
5. Neocortex: from structure to function
7. Neuroelectricity
8. Statistics and the Brain

Practical courses: introduction into cutting edge research techniques during the lab visits
Consultations: personally with the actual course leader
Requirements of course participation and options to recover missed hours:
1. Total absence allowed: 10% of the total course hours
2. Recovering missing hours: studying the material provided by the course leaders, consultation

Eligibility: US grade point average (GPA) of 3.0. Students with a GPA lower than 3.0 should inquire with the Directors on the possibility of a waiver.

Justification of absence from course hours or exams:
Hungarian medical certificate

Number and schedule of the examinations:
The course is divided into eight blocks each covering different fields and scheduled in a weekly basis. Each block ends with an exam in the last teaching day of the actual week.

Requirements of the successful completion of the program:
written or oral test in each course material

Marks:
In case of a written test grades are given after obtaining points as follows: 0-50% fail, 51-60% pass, 61-75% fair, 76-90% good, above 90% excellent.

Types of exam: test, essay, verbal

Requirements of the examinations:
Verbal and electronic etc. material provided by the lecturers. Syllabus is available upon opening the program on the web page.

Registration for exams: NEPTUN

Rescheduling the tests:
N/A
Each student has to take an examination in each block of the course.

Justification of absence from the exam:
Hungarian medical certificate (see above).

List of useful literature (books, papers etc):
It is made available for the students two weeks before the first lecture
PRECLINICAL AND CLINICAL NEUROPSYCHOPHARMACOLOGY AND
PSYCHOPHARMACOGENETICS

(Hungarian: Preklinikai és klinikai neupszichofarmakológia és pszichofarmakogenetika)

Name of the Programme: Medicine, uninterrupted graduate programme
English name of the course: Preclinical and clinical neuropsychopharmacology and psychopharmacogenetics
Neptun-Code (planned): AOVGYH198_1A
Institute: Department of Pharmacodynamics
Name of the tutor/lecturer: Dr. György Bagdy PhD, Dsc.
Phone: +36-1-4591495, +36-1-2104411, +36-1-2102927
E-Mail: bagdy.gyorgy@pharma.semmelweis-univ.hu

Further tutors: Juhász Gabriella Associate Professor, PhD, Lévay György PhD, CSc, Gyertyán István PhD, Gonda Xénia PhD, Ujváry István PhD, Tamási Viola PhD, Vas Szilvia PhD, Eszlári Nóra researcher psychologist (MA)

Number of lectures /week:
blocked course (2X7 lessons)
Credit points: 1

Brief course summary:
The aim of this course is to introduce the function of the central nervous system (CNS), diseases that impact the CNS as well as the (psychiatric, neurological, neurosurgical and addictological) way of their treatment for the interested students. The course creates a bridge between theoretical and clinical subjects. During the course, genetics, molecular sciences, animal models and human investigating methods are demonstrated as well as the possibilities and limits of their application using concrete examples.

Course data

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
</table>
| from the 4th semester | 14 | | | | 14 | Spring semester*
| | | | | | | Winter semester*
| | | | | | | Both semesters* |

Semester program

1. Lecture topics/week

1. **week:**
 Principles of the function and pharmacological modification of the central nervous system. (György Bagdy) (I-III.)
 Animal models of diseases affecting the central nervous system (György Lévay) (IV-V.)
 The dopamine theory of schizophrenia. Antipsychotic drug research (István Gyertyán) (VI-VII.)
 Experimental studies in learning and memory (István Gyertyán) (VIII.)
 Genetics of behavioural characteristics influencing psychiatric disorders (Nóra Eszlári) (IX.)

2. **week:**
 Application of neuroimaging techniques in the neuropsychopharmacology (Gabriella Juhász) (X.)
 Pharmacogenetics (Xénia Gonda) (XI.)
 Sleep and behaviour. The neurotransmitter regulation of sleep (Vas Szilvia) (XII.)
 The phenomenon of hallucination: from tribal customs to chemical structures (Ujváry István) (XIII.)
 The role of “omic” methods in the innovation of psychopharmacons (Viola Tamás) (XIV.)
Course requirements

Prerequisites: previous attendance of courses in Biology, Physiology and Biochemistry

Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.)
Attendance of 11 of 14 lectures is required.
Knowledge testing during the semester:
Requirements of the signature at the end of the semester:
Attendance of 11 of 14 lectures. Repetition of the lessons during the course is not possible.

Individual activity of the student during the semester (protocol, etc.) -

Performance control in the examination period (final, semi-final) - final examination

Performance control in the examination period (written, oral, written and oral) written, correction examination: oral

Prescribed external practice: -

List of teaching materials: (List of textbooks, hand-outs, scripts, etc.)

List of course materials: classroom, projector

Scientific, course related researches, publications/essays:

PATIENT SAFETY

Lecturer: Zsolt Baranyai MD, Ph.D

The patient safety course with the code number BBSEB1 in the Moodle system, in the course category Independent from Faculty with the title „Patient safety from Semmelweis until today“.

The late Ignaz Philipp Semmelweis is the best-known Hungarian physician in the world. Confirming this truth, Semmelweis is among the twelve most innovative individuals commemorated in the Hall of Immortals at the International Museum of Surgical Science (Chicago, IL, USA). In 2013, his discovery was inscribed on the list of the UNESCO Memory of the World Register, where it will remain with us until the end of human history. Tribute is even more important for a university named after Semmelweis; the heritage of our famous ancestor is a source of even greater pride for us. At the same time, however, it also requires us to live up to everything his name signifies for Hungary and the whole world. The value of his life’s work cannot be overstated, because he succeeded – through perseverant work and major conflicts – in discovering the underlying cause the most serious obstetrical infection of his era on one hand, and in its prevention on the other. His achievement is a classical example of eternity and furthermore, his accomplishments have contributed greatly to the improvement of patient safety.

The Elearning course can be studied after registration. The course is successfully accomplished if the online test is solved with at least 60%. Students have 5 opportunities to take the test. At least 3 days have to be passed between each attempt, the system won’t let students enter the interface.

After former request (email: baranyai.zsolt@med.semmelweis-univ.hu) there is a possibility for consultation in groups. Students are welcome who had difficulties to fill in the test or have questions regarding the course.
ULTRASONOGRAPHY IN OBSTETRICS AND GYNECOLOGY

Department: Department of Obstetrics and Gynecology
AOVNO1554_1A

Study time: In every second Semester 2×45 minutes. Advised Semester: between 6. und 12. Semester
Exam: Written test and practical note
Credit: 1
Minimal/maximal participants: (1/5 person)
Application deadline: 1. December
Prerequisite: Completion of second year

The knowledge gained in theoretical basic subjects (anatomy, physiology) can be used by medical students as practical knowledge in the clinic. As a result of more than four decades of experience, ultrasound examination has a fundamental role in modern obstetrical and gynecological diagnostic. The course helps you to acquire skill in this field. Performing obstetrical-gynecological ultrasound tests and assessment of findings can only be learned through appropriate training. This non-invasive procedure is also safe for patients. The modern ultrasound equipment of the Department and the wide range of patients and diseases provide the opportunity for learning. Not only obstetricians and gynecologists, but also other associate colleagues such as clinical genetics, radiologists, gynecological cancer surgeons, anesthetists, and intensive therapists can utilize the knowledge provided by the subject.

Themes:

György Bagdy
CARDIAC ELECTROPHYSIOLOGY

Gestor Institute: Department of Physiology
Credits: 2
Total number of hours (semester): 28 lectures: 28 practices: – seminars: –
Type of the course (mandatory/elective): elective

II. semester
Code of the course: AOVELT694_1A
Course director (tutor): András TÓTH, DSc.
Contact details: Semmelweis University, Department of Physiology; phone: +36-1-459-1500/60436
Position: External lecturer

Date of habilitation and reference number: 2009; reference number:

Aim of the subject and its place in the curriculum:
The course is intended to provide up-to-date and extended knowledge based on the latest literature for practically all medical students, especially those planning to be cardiologists or internists in order to meet a predictable future requirement of a strongly established knowledge related to the electrophysiological background and ion channel dependent pathomechanisms of severe, often lethal heart diseases and to facilitate their better understanding of the corresponding scientific literature. Their expected competent knowledge on cardiac electrophysiological mechanisms will significantly help young MDs to introduce novel, highly effective cardiopharmacological agents and/or to select optimal clinical therapeutic strategies. Via providing a detailed introspection into molecular and cellular basis of the electric activity of the heart the course is willing to offer the students an important section of these competences during their student years.

During the course the motivated students may collect a comprehensive knowledge on:
- the biophysical basis of cardiac electrophysiology; the principles of operation and regulation of major cardiac ion channels
- the kinetic properties and regulation of ion currents generating cardiac action potentials; the significance of the repolarization reserve; the molecular background of substantial differences between atrial and ventricular and among various ventricular action potentials; and the basic pathomechanisms of arrhythmogenesis
- the principles of intracellular Ca$^{2+}$ homeostasis in cardiomyocytes; the major mechanisms of excitation/contraction coupling; functional adaptation of the Ca$^{2+}$-cycle; pathomechanisms of Ca$^{2+}$-dependent and Ca$^{2+}$-facilitated heart diseases and several therapeutic strategies
- common genetic disturbances leading to malfunction of cardiac ion channels
- most important experimental techniques and animal models applied in experimental cardiac electrophysiology and the human/clinical relevance of the collected data

Finally a practical demonstration (13-th week) based on the material of the lectures is organized in order to help realistic, problem-oriented application of the theoretical knowledge via jointly processing experimental data derived from a few running scientific projects.

Location of the course (lecture hall, practice room, etc.):
Semmelweis University; EOK; H-1094 Budapest, Tűzoltó u. 37-47.

Competencies gained upon the successful completion of the subject:
Understanding of the human physiology which is foundation of medical practice.

Prerequisite(s) for admission to the subject:
Medical Physiology 1 (the course is suggested for 2-4 year students)

Minimum and maximum number of students registering for the course: Minimum 5 and maximum 80 students

Student selection method in case of oversubscription: chronology of registration in the NEPTUN system.

How to register for the course:
Registration must be recorded through the NEPTUN system.
BIOMEDICAL INNOVATION FOR THE 21st CENTURY

We would like to bring to the attention of Semmelweis University students a newly started English course on the topic of engineering innovation in medical research and patient care. By Béla Merkely Rector, the course is being promoted with the Pázmány Péter Catholic University Faculty of Information Technology and Bionics. The course does not require any engineering previous experience. This course was designed for medical student with basic biophysical knowledge.

The aim of the course is to introduce those interested in areas where engineering opportunities are becoming increasingly important in patient care. Each lecture converges on a theme that is presented by a medical and an engineering specialist based on their own perspectives. This allows the audience to learn about the engineering and medical aspects of the same topic. On the other hand, this course provides a deeper insight into the specific field of medical engineering to facilitate the development of research collaboration between the two fields. We strive to promote medical developments and facilitating a safe but rapid transfer of research results into clinical practice.

Language English.

Exam: 2-page essay on a selected topic.

Held by Medical and Engineering specialists

Thematics

- Recent advances in biomedical engineering.
- Microfluidics for diagnostics and therapy.
- Robotics for healthcare: robotics surgery from minimal invasive surgery to DaVinci.
- Ultrasound diagnostics and therapy.
- Advances in bioimage processing.
- Deep learning algorithms in medical imaging.
- Proteomics: the new era of microbiology.
- 3D printing and 3D planning in medicine.
- Prosthetics in medical and engineering field.
- Biosignal processing for personalized treatment.
- Gene Therapy from the perspective of Systems Biology.
- Organ-on-a-chip, and investigation and development of stem cell based therapies.
- From patents to university spin-off companies.

CLINICAL HUNGARIAN from the second semester of the 3rd year

Division of Foreign Languages and Communication – Faculty of Health Sciences

H-1088 Budapest, Vas u. 17., room 130
Phone: +(36-1) 486-4960 Fax: +(36-1) 486-4962 Bakó
Head of the Division: Katalin Zöldi Kovács Ph.D.

PHYSICAL EDUCATION IX-X.

Practice: 1 hour per week
OBLIGATORY ELECTIVE AND ELECTIVE SUBJECTS – SCHEDULE OF THE CLINICAL MODULE

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lectures</th>
<th>Practicals</th>
<th>Credit Points</th>
<th>Examination</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anesthesiology and Intensive Therapy</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Surgery II.</td>
</tr>
<tr>
<td>Medicinal, Epidemiological, and Social Aspects of Drug Abuse</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Pre-clinical module</td>
</tr>
<tr>
<td>Clinicopathology II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>Pathology final</td>
</tr>
<tr>
<td>Clinical Endocrinology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Basic module</td>
</tr>
<tr>
<td>Clinical Hematology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Pre-clinical module</td>
</tr>
<tr>
<td>Clinical practice</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>pract. mark</td>
<td>Pre-clinical module</td>
</tr>
<tr>
<td>Clinical Oncology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Internal Medicine II.</td>
</tr>
<tr>
<td>Health Informatics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Pre-clinical module</td>
</tr>
<tr>
<td>Neonatology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Pre-clinical module</td>
</tr>
<tr>
<td>Clinical cardiovascular physiology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Pre-clinical module</td>
</tr>
<tr>
<td>Clinical Physiology of Respiration and Respiratory Diseases</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Physiology II.</td>
</tr>
<tr>
<td>Healthcare Management</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>Ultrasonography in Obstetrics and Gynecology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Methodology of Clinical Experiments – Observational Experiments</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Lectures</td>
<td>Practicals</td>
<td>Credit Points</td>
<td>Examination</td>
<td>Prerequisite</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>------------</td>
<td>---------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Antibiotic therapy & infectology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Pre-clinical module Pharmacology and Pharmacotherapy II.</td>
</tr>
<tr>
<td>Cardiorespiratorical and neurophysical measuring techniques</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Physiology II.</td>
</tr>
<tr>
<td>Social media in medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Communication</td>
</tr>
<tr>
<td>Emergency Surgery</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Surgery I.</td>
</tr>
<tr>
<td>Neurobehavioral assessment of infants</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Pre-clinical module</td>
</tr>
<tr>
<td>Neurosurgery</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Neurology</td>
</tr>
<tr>
<td>Traditional Chinese Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>For 3rd year students and up</td>
</tr>
<tr>
<td>Introduction to Epigenetics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>semi-final</td>
<td>Immunology</td>
</tr>
<tr>
<td>Clinical Hungarian</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>pract. mark</td>
<td>Hungarian Medical Terminology V.</td>
</tr>
<tr>
<td>Inflammation Biology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Immunology, Molecular Cell Biology II.</td>
</tr>
<tr>
<td>Introduction to Pharmacological Research</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Molecular Cell Biology II., Medical Biochemistry</td>
</tr>
<tr>
<td>Clinical work - Radiology</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Gastroenterology</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>Internal Medicine – Propedeutics</td>
</tr>
<tr>
<td>Patient Safety</td>
<td></td>
<td></td>
<td></td>
<td>e-learning course</td>
<td></td>
</tr>
<tr>
<td>Medical and Dental Terminology on advanced level I-II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Hungarian Medical Terminology in semesters 6-12 on B2 level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardio Electrophysiology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>for 2-4 year students</td>
</tr>
<tr>
<td>Network, Management, Career Building</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>for 3-5 year students</td>
</tr>
<tr>
<td>Course on Human Lactation and Breastfeeding – Theory, Support and Promotion</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>for 5 year students</td>
</tr>
</tbody>
</table>
Faculty of Medicine
6th year
COMPULSORY INTERNSHIPS AND RESPONSIBLE DEPARTMENTS

Internal Medicine

Department of Internal Medicine and Oncology
(former 1st Department of Internal Medicine)
Budapest VIII., Korányi Sándor u. 2/A Phone: 459-1500 / ext. 51465
Head of the Department: **Dr. István Takács**
Tutor: **Dr. Péter Studinger**

Department of Internal Medicine and Hematology
(former 2nd and 3rd Department of Internal Medicine)
Budapest, VIII. Szentkirályi u. 46. Phone: 459-1500
Head of the Department: **Prof. Dr. Tamás Masszi**
Tutor: **Dr. Katalin Keltai**
E-mail: keltaikati@gmail.com

Infectology

Department of Internal Medicine and Hematology, Division of Infectology at Szent László Hospital
Budapest, Albert Flórián u. 5-7.
Head of the Department: **Prof. Dr. Gergely Kriván**
Tutor: **Dr. János Sinkó**
E-mail: infectology.hun@gmail.com (Ms. Júlia Nagy)

Surgery

1st Department of Surgery and Interventional Gastroenterology
Budapest VIII., Üllői út. 78. Phone: 459-1500 / ext. 52120
Head of the Department: **Prof. Dr. Attila Szijártó**
Tutor: **Dr. Ákos Szűcs**
E-mail: kovacs.zsanett@med.semmelweis-univ.hu (Ms. Zsanett Kovács)

2nd Department of Surgery
Budapest VIII., Üllői út 78/B Phone: 06-20-666-2154, 06-20-666-2155
Head of the Department: **Prof. Dr. Gábor István**
Tutor: **Dr. György Ledniczky**

Department of Transplantation and Surgery
Budapest VIII., Baross u. 23. Phone: 267-6000, 459-1500/ ext. 60857
Head of the Department: **Prof. Dr. László Kóbori**
Tutor: **Dr. Gábor Telkes**
Traumatology

Department of Traumatology
Budapest VIII., Fiumei út 17. Phone: 461-4723
Budapest XIV., Uzsoki u. 29. Phone/fax: 467-3851
Mobile: 06-20-825-8680
Head of the Department: Prof. Dr. László Hangody
Tutor: Dr. Tamás Gál

Vascular surgery

Department of Vascular Surgery
Budapest, XII., Városmajor u. 68. Phone: (+36-1) 458-6700
Head of the Department: Prof. Dr. Péter Sótonyi
Tutor: Dr. Péter Banga

Pediatrics

1st Department of Pediatrics
Budapest VIII., Bókay J. u. 53. Phone: +36-1-313-8212
Head of the Department: Prof. Dr. Attila Szabó
Tutor: Dr. Ádám Balogh
E-mail: education.ped1@med.semmelweis-univ.hu (Ms. Enikő Stolmár) : 52656

2nd Department of Pediatrics
Budapest IX., Tűzoltó u. 7-9. Phone: 215-1380 / ext. 52976
Head of the Department: Dr. Gábor Kovács
Tutor: Dr. Erdélyi Dániel

Obstetrics and Gynecology

Department of Obstetrics and Gynecology
Budapest VIII., Baross u. 27. Phone: 266-0473
Head of the Department: Prof. Dr. Nándor Ács
Tutor: Dr. Gyula Richárd Nagy
E-mail: szlaby.emese@med.semmelweis-univ.hu (Ms. Emese Szlaby)

Neurology

Department of Neurology
Budapest VIII., Balassa u. 6. Phone: 210-0330
Head of the Department: Prof. Dr. Dániel Bereczki
Tutor: Dr. Róbert Debreczeni (debreczeni.robert@med.semmelweis-univ.hu)
E-mail: kovacs.andrea@med.semmelweis-univ.hu (Ms. Andrea Kovács)
Psychiatry

Department of Psychiatry and Psychotherapy
Budapest VIII., Balassa u. 6. Phone: 210-0330 / ext. 51100
Head of the Department: Dr. János Réthelyi
Tutor: Dr. Erika Szily
E-mail: szecsi.tunde@med.semmelweis-univ.hu (Ms. Tünde Szécsi)

Family Medicine in Daily Practice

Department of Family Medicine
Budapest VIII., Stáhly u. 9. Phone: 355-8530
Head of the Department: Dr. Péter Torzsa
Tutor: Dr. Krisztián Vörös
E-mail: fekete.ilona@med.semmelweis-univ.hu (Ms. Ilona Fekete)

Prehospital Emergency Medicine

National Ambulance Service
Budapest XIII., Róbert Károly krt. 77. Phone: 350-6720
Director: Dr. Gábor Göbl
E-mail: szabados.agnes@mentok.hu (Ms. Ágnes Szabados)

Transfusion Course

Department of Transfusion Medicine
Budapest VIII., Nagyvárad tér 4.
Phone: 210-2940
Head of the Department: Prof. Dr. Attila Tordai
E-mail: kristof.szilvia@med.semmelweis-univ.hu (Ms. Szilvia Kristóf)
STUDY PROGRAM

6th Year in the 2021/2022 academic year

NEW CURRICULUM

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Medicine (final year’s practice)</td>
<td>8 weeks (incl. 1 week Infectology and 1 week Family Medicine)</td>
<td>8</td>
<td>Internal Medicine II., Medical Imaging, Pulmonology and Thoracic Surgery</td>
<td>final</td>
</tr>
<tr>
<td>Surgery (final year’s practice)</td>
<td>6 weeks (incl. 1 week Vascular Surgery, 1 week Traumatology)</td>
<td>6</td>
<td>Traumatology, Urology, Ophthalmology</td>
<td>final</td>
</tr>
<tr>
<td>Pediatrics (final year’s practice)</td>
<td>6 weeks</td>
<td>6</td>
<td>Internal Medicine II., Pediatrics, Clinical Genetics</td>
<td>final</td>
</tr>
<tr>
<td>Obstetrics and Gynecology (final year’s practice)</td>
<td>4 weeks</td>
<td>4</td>
<td>Clinical Genetics, Obstetrics and Gynecology</td>
<td>final</td>
</tr>
<tr>
<td>Neurology (final year’s practice)</td>
<td>3 weeks</td>
<td>3</td>
<td>Neurology</td>
<td>final</td>
</tr>
<tr>
<td>Psychiatry (final year’s practice)</td>
<td>3 weeks</td>
<td>3</td>
<td>Psychiatry and Psychotherapy</td>
<td>final</td>
</tr>
<tr>
<td>Ambulance</td>
<td>2 weeks</td>
<td>2</td>
<td>Anaesthesiology and Intensive Therapy, Emergency Medicine and Oxyology, Traumatology</td>
<td>pract. mark</td>
</tr>
<tr>
<td>Transfusion</td>
<td>1 week</td>
<td>1</td>
<td>Anaesthesiology and Intensive Therapy, Internal Medicine II.</td>
<td>pract. mark</td>
</tr>
<tr>
<td>Elective</td>
<td>6 weeks</td>
<td>6</td>
<td>Internal Medicine II., Surgery, Last course of the chosen field (announced in the 5th year at latest)</td>
<td>pract. mark</td>
</tr>
<tr>
<td>PE XI.</td>
<td>0</td>
<td>1</td>
<td>PE X.*</td>
<td>signature</td>
</tr>
<tr>
<td>PE XII.</td>
<td>0</td>
<td>1</td>
<td>PE XI.*</td>
<td>signature</td>
</tr>
<tr>
<td>Thesis work</td>
<td>In addition to individual student preparation, at least 20 contact hours with the supervisor.</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

elective subjects in all in the 1-6 years

Optional subjects ** | min. 18 | As determined at the relevant subject. |

Obligatory elective subjects | From the 2021/2022 academic year, minimum 4% of the total number of credits required. | As determined at the relevant subject. |

Complementary elective internship practice | 5 weeks duration (2 “gap” weeks + 3 weeks in May) Practice time: 40 hours per week; Credits: 5 | Internal Medicine II. Obstetrics-Gynecology Pediatrics |

* Simultaneous taking the courses is possible.
** 6 weeks of optional practice: It can be completed at any clinical department or clinic. Major subjects that end with a final exam are also eligible.
Comment:

Please read more about the rules concerning the criteria of selecting the foreign clinical practice positions and accepting the practice period spent abroad:

https://semmelweis.hu/english/education/english-language-program/english-secretariat/official-forms/
https://semmelweis.hu/english/education/departments/

Certificates can be downloaded at
https://semmelweis.hu/english/education/english-language-program/english-secretariat/official-forms/

Please note the followings:

1. When **not at Semmelweis University** the one week Traumatology is to be completed at a surgical department providing **neurochirurgia** as well.
2. It is strongly required to keep the instructions of Article 24 of the Examination and Studies Regulations concerning the requirements of the **diploma work** focusing especially on the **deadlines**.
3. The **final exams** can be done only on the exam **dates** published by the clinical departments of Semmelweis University.

Please note: there are no individual requests and the rule should be kept **strictly**.
INTERNAL MEDICINE

To be present for at least 7 hours per day (35 hours per week), including 1 week Infectology and 1 week Family Medicine.

Activities should include the following subjects: general survey of hospital/department organization, examination of patients in the Medical Department, with special emphasis to case history taking and full physical examination.
The students should gain practice in patient documentation, problem-oriented medical record keeping, taking of pulse, blood pressure of patients.
Participate in the preparation of diagnostic and therapeutic plan for patients.
Be present at invasive and semi-invasive interventions (taps of abdominal and chest fluid, preparation of bone marrow smear etc.).
To spend time at the outpatient department.
To practice basic laboratory techniques needed in bedside diagnosis (urinalysis, stool examination, use of dip sticks etc.).
To be on night duty once during the period.
Consultations in gastroenterology, diabetes, hematology, endocrinology, cardiology, sonography, X-ray, ECG etc.
Watch endoscopy performed.
See the intensive coronary care unit.
Regular consultations with the doctor responsible for the student.

All these activities should be carefully supervised by members of the medical staff.

The students should also practice communication with patients and their relatives, while giving them relevant medical information on the disease but avoiding conflicts with medical confidentiality.
Students should take an active part in medical consultations concerning their patients, as well as in the medical conferences in the department.
INFECTOLOGY IN INTERNAL MEDICINE

One week Infectology practice within sixth year's rotation in Internal Medicine

Subject: Infectious diseases (Infectology)
Head of Division: Dr. Gergely Kriván PhD
Location: Department of Internal Medicine and Hematology, Division of Infectology at Szent László Hospital
1097 Budapest, Albert Flórián u 5-7.
Time period: 30 hours a week
Registration: NEPTUN system

Program: a detailed program plan will be announced about locations and tutors of daily practice in time

Group size: Our institution can only accept a limited number of students (14 persons) at a time. In order to keep the program interactive and to avoid overcrowding at patients' departments we cannot accept your request to register above this quota. If the scheduled practice weeks do not match your plans you can: 1. Switch registration with a fellow student. 2. Collect at least 5 more persons having the same problem and apply to the English Secretariat to schedule an additional week for Infectology rotation. Our Division will do its best to fulfill these requests; however it cannot be granted that rotations will be organized at any desired time.

Overview
Knowledge on infectious diseases has been among the most ancient parts of medical practice and science. Epidemics, isolation of patients with communicable diseases, vaccinations and anti-infective therapy had a significant impact not only on the progress in healthcare but also on history and socio-cultural development of mankind. Although infectology is often considered being of marginal importance within internal medicine, it should be noted that an increasing number of diseases and conditions seem to have an infectious background. In addition, around a third of chapters within major medical textbooks deal with infectious diseases.

Currently development of infectology has two important directions that are complementary to each other. The traditional one will target classical and emerging infections often of global scope, like influenza, gastrointestinal infections, hepatitis or malaria etc. A newer branch of infectology is focusing on infections related to modern medicine, like nosocomial outbreaks caused by multiresistant organisms or infections occurring in immunocompromised hosts. Prophylaxis and therapy of infections as well as knowledge on antibiotic therapy is of significant importance in both fields.

Program details
During the infectology rotation you will be welcome to
- take part in rounds at Departments of Infectious Disease
- participate in round table discussions on current topics in infectology
- discuss real life cases especially in the immunocompromised host setting
- being updated on basic diagnostic and therapeutic approaches in stem cell transplant patients
- have an overview on developments in HIV/AIDS therapy

Sessions are designed to be as interactive as possible, so you are encouraged to actively take part in discussions and feel free asking questions from tutors at all times.

Completion of rotation and signature: Registered students must attend all courses to receive their signature. We can only accept hospital discharge papers for verification of absences. The absence must be substituted at a later time period, assigned by the tutor. In the case of further absences, the practice cannot be accepted. Excuses like having been unable to locate the venue of practice are not acceptable. Students arriving later than 10 minutes past the scheduled start of the sessions will not be accepted to take part in the program.
SURGERY

- Acting as a HO or SHO under strict supervision, including administration and practical skills.
- Admitting of patients with full physical examination, including breast and PR examinations.
- Theoretical planning for examinations and treatments for the examined patients.
- Continuous observation and registration of the patient’s condition with administration.
- Writing of discharge reports.
- Performing different injections (iv., im, sc), insertion of venflons, phlebotomies. To determine blood group, performing of transfusions under strict supervision. Completion of administration.
- Insertion of NG tubes.
- Catheterization (urethral and suprapubic).
- Removal of clips and stitches.
- Changing of dressings.
- Assistance at abdominal and thoracic wash-outs or punctures.
- Taking part in consultations with other specialists.
- Theoretical decisions about operations. Consenting.
- Taking part in operations, scrubbing in, stitching.
- Examination and treating of emergency patients.
- Taking part in anesthesiological preparation of patients.
- Observation of premedications.
- Assistance at several anesthesiological procedures, including spinal, peridural and GA.
- Assistance at intubations. If possible, independent intubation.
- Measurement of CVP.
- Assistance at jugular and subclavian venal punctures.
- Suction of the throat and trachea.
- Observation of ITU work.
- Observation of postoperative treatment.
- Observation of resuscitation and reanimation.
- Observation of autopsies of the ward.
- Being present at every medical discussion of the ward.
- Observation of outpatient work.
- Assistance in outpatient work including assistance at day surgical operations.
- Changing of dressings of outpatients.
- Treatment of infected wounds.
- Assistance at i.v. anesthesia.
- Performing and assisting at local anesthesia.
- Observation and assistance at ultrasound, endoscopies and X-ray examinations.
- As interns, students take part in the daily rounds and report on the patients examined by them or treated in their section. Interns examine the patients under the supervision of the ward chief or ward surgeon. Interns are required to be personally involved in the examinations and the evaluation of the findings.

Involvement in the preparation of the documentation of the patients.
Involvement in the preoperative preparations as well as in the postoperative care and treatments.

Take part in the operations as second assistants.
Take part in on-call duty without numerical limitations. During on-call (night) duty, interns should-under the supervision of the ward chief or authorized surgeon – be involved in solving all problems caused by either acute or chronic diseases.
Interns are required to take part in all consultations organized for them.

Interns will be eligible for the final examination if the above conditions have all been met and their academic achievements during their internship proved.
TRAUMATOLOGY

Department of Traumatology
Subject: Traumatology
Type of subject: Mandatory

The work hours of the practice are 30 hours/week
Head of Department: Prof. Dr. Hangody László

Dear Students,
In order to begin your 6th year practice at Semmelweis University, Department of Traumatology – in Uzsoki Hospital or Péterfy Traumatology Center – the following certificate is required to show on the first day of your 1 week traumatology practice: Occupational suitability health examination results.

Purpose of subject:
Traumatology as a specialty deals with the treatment of injured patients, independent of the injured organ, patient’s age or previous diseases. In developed countries, the 4-5th leading cause of death is injury, while in the actively working population, the rate of death is even higher. Morbidity in children and in the elderly is also high. Since the patient examination and therapeutic algorithm somewhat differ from the previously taught examination and treatment methods in the curriculum, our aim is to offer a general and practical approach to treating trauma patients for students. The prerequisite for 6th year Traumatology is the material and exam from 5th year in Traumatology, to be used in a more practical manner. Beside this, familiarization and active participation in the daily routine of a Traumatology department play a role in the students’ curriculum.

Syllabus: 6th year students – 1 week practice
The student may attend this practice at one of the following institutions: 1. Semmelweis University Department of Traumatology, 2. in the Member States of the European Union (and in Switzerland and Norway), clinical practice is accepted and recognized if it is earned at a Traumatology or Orthopedic-Traumatology department at state-accredited university clinics or teaching hospitals – the legal ground for this is the mutual recognition of diplomas issued by the accredited institutions, or 3. abroad at a Traumatology or Orthopedic-traumatology department of an accredited teaching hospital accredited by the Hungarian Accreditation Committee – HAC (this can be checked on the following website: http://www.semmelweis-english-program.org/index.php?option=com_content&task=view&id=79&Itemid=101 under the link: Approved Health Institutes for 6th year Rotations).

1. Daily attendance of morning conference. After becoming acquainted with the introduced cases, students will have the opportunity to examine the hospitalized patients and familiarize themselves with patient’s documentation.
2. Assisting or observing in the operative theater, depending on the operative program.
3. Students shall participate in patient admission, examination, follow and help in the evaluation of the diagnostic examinations, and take part in the acute treatment of traumatized patients during on duty shifts.
4. Participating in grand rounds, patient presentation, and following up on referrals.
5. Consultation with attending tutor of actual clinical cases, planning the treatment and the course of patient follow up.
6. Taking part in patient follow up examinations. Examining the range of motion, function, evaluating x-rays and CT scans. Identification and treatment of complications
Detailed syllabus:
1. First Aid
2. Evaluation of the mental-stage/orientation with the Glasgow-score
3. Evaluating and management of external wounds
4. Termination of bleeding
5. Transportation of trauma patient
6. Transient fixating bandage of traumatic part of body
7. Preparation of the surgical area
8. Surgical scrub-in and clothing
9. Infiltrational anaesthesia
10. Incision and drainage
11. Management of infected, necrotic wound
12. Closure
13. Stitch removal
14. Applying pressure-bandage
15. Reuniting closed fractures
16. Fracture stabilization
17. Reduction of dislocation
18. Transient fixation of broken extremities
19. Insertion of Foley’s catheter in men
20. Insertion of Foley’s catheter in women
21. Venous-canulating
22. Pain management
23. Assisting surgical procedures

Attendance criteria and absences:
The complete attendance of the one week practice as well as the completion of the syllabus signed by the tutor is mandatory. The syllabus must be handed in at the Traumatology Department upon completion of the practice with the certificate (if practice is spent abroad) and student index. During the course of the one week, 6 hour work days are mandatory.

Verification of absences from practices of from the exam:
We can only accept hospital discharge papers for verification of absences, with a maximum of 3 days. The absence must be substituted at a later time period, assigned by the tutor. In the case of further absences, the practice cannot be accepted.

The topics and monitoring of practices:
Regular attendance is taken during the one week practice on an attendance sheet. The traumatology student syllabus contains the topics and requirements the student must fulfill during the practice.

Students who spend their Traumatology practice abroad must hand in a Letter of Acceptance form (For obligatory internship in Traumatology as part of the student’s sixth year’s curriculum) signed by the professor in charge/Head of Department at least one month prior to beginning their practice at that hospital/clinic. We cannot accept the practice of a student, if the “letter of acceptance” is handed in later than one month prior to starting the practice.

Students who spend their Traumatology practice at the Traumatology Department of Semmelweis University must do so at one of the allotted time periods on the Neptun program.

Criteria for the signature at the end of the semester:
Attendance of the one week of traumatology practice, as well as the completion of the syllabus (which can be downloaded from the Semmelweis University Traumatology Department’s website) signed by the tutor. Traumatology must be attended and signed separately from the general surgery practice in the 6th year. Participation is only accepted, if the department has a trauma care unit, which is qualified according to Semmelweis University guidelines.

Grading: One topic is a traumatology topic, which is part of the surgery oral exam.

Type of exam: Oral exam. One traumatology topic within the surgery exam.

Exam requirements:
The knowledge of the given textbook, lecture and practice material including that of V. year. One topic is chosen from a topic list.

Exam registration: Neptun program

Modification of exam registration: Neptun program

Absence from the exam:
We can only accept hospital discharge papers for verification of the absence from the exam, proving the student was continuously hospitalized during that time period.

List of textbooks, notes, study-aids and references:
The Trauma Manual: TRAUMA AND ACUTE CARE SURGERY Third edition Editors: Andrew B. Peitzman, Michael Rhodes, C. William Schwab, Donald M. Yealy, Timothy C. Fabian, Publisher: Wolters Kluwer / Lippincott Williams & Wilkins
VASCULAR SURGERY

Department of Vascular Surgery

Type of the subject: mandatory
Code: AOKSBE066_SA
Credits: 0
Interval of practice: 1 week
Time of practice: 30 hours a week.

SYLLABUS OF THE SUBJECT

I: Reception, assignment, and tutor appointment
The 6th grade students who registered themselves to the certain term, should appear on the first day of the practice (usually on Monday) at 8 am at the English course coordinator (Zsuzsanna Jaranyi M.D., associate professor). They can get information of the meeting point at the reception. From 8 am till 8:30 the students get their coats and their lockers. After this, they are assigned to their tutor. Our aim is the „one tutor-one student” principle, but this is not possible often, due to the numerous students at same time (4-5 students have 1 tutor). During the practice course it is the tutor’s task to introduce the whole range of the vascular surgical procedures to the students: like the morning ward round – physical examination of the patients – diagnostical steps of vascular diseases – treatment strategy – knowledge of operative techniques – early control, medical therapy, recognition and treatment of adverse events, long term prognosis of patients who underwent vascular surgical operations and the activities of the outpatient clinic.

II: Activities in wards
The student participates in the ward rounds with the tutor’s guidance, where he can get acquainted with the admitted patients’ history, the type of the previously performed operations, or even with the planned operative opportunities. The tutor involves the student in the features of the arterial and venous patient examination: like recording the patient history, listing the risk factors of the vascular diseases, palpation, auscultation, and examination with mini Doppler, performing special tests (Trendelenburg-, Perthes probe, postural-, capillary refill test), including or excluding cardiac co morbidities (ECG, ECHO, history findings), and finding other co morbidities, which affect with the surgical treatment.

III: Diagnostic possibilities of patients with vascular diseases
Students should spend at least one day in the angiography, carotid duplex scan, and CT/MRI laboratories, where they could get acquainted with the most common invasive and non-invasive diagnostical opportunities, and with the endovascular therapy.

IV: Activity in the Operating Theatre
The student participates in the patients’ operations, following all the stations, and in some of these he/she could take a hand in: anesthesia, narcosis, intubation or local anesthesia, catheter usage, canulation, giving injection, disinfection, isolation, surgical techniques, wound drainage, closing, and dressing change, and following the operated patient to the ward or to the intensive care unit. It is recommended for the student to scrub in, and to assist to the surgeon. During the operation he/she should get a possibility to touch the ill and the reconstructed vessels and the tutor should explain the specialties of the actual type of the operation.

V: Outpatient clinic
The student should participate in his/her tutor’s outpatient clinic, where he/she could learn the examinations of the vascular patients. The student should perform patient examination also (palpation, auscultation, Doppler, and evaluating the test results), and should follow the treatment decision strategy, and the aspects of the patient controlling.

VI: Practice oriented theoretical training
The students get a grouped theoretical training, which involves the whole range of vascular surgery. These are one and a half – two hours long discussions which are all practice oriented.

VII: On the last day of the practice course the students give back their coats and their locker keys, and they get the signature in their index, which certifies the successfully fulfilled practice.
PEDIATRICS

According to the curriculum, 6th year medical students should complete a 6-week Pediatric practical (including 1 week Infectology).

– During one half of the practical, students work in infants’ wards, in the other part in children’s wards. This way they can acquire and practice the following activities on both infants and children:
 – Taking of pulse and blood pressure, correct weight and height measurement (also of infants) (use of percentile tables).
 – Under the supervision of the ward physician, active participation in blood sampling, taking throat swab etc.
 – Under the supervision of the ward physician, practice of various injection techniques (venous, im, sc and Mantoux test).
 – Preparation and control of infusion and transfusion accessories and performing these activities under the supervision of the ward physician. Determination of blood group.
 – To assist to special diagnostic or therapeutic interventions and learning eventually to perform them under the supervision of the ward physician (bone marrow sampling, lumbar puncture).
 – Based on the knowledge of the necessary physiological studium: blood counting and urine analysis (also the sediment).
 – Taking of case records and temperature charts.
 – Participation in the daily rounds for students, where simpler differential diagnostic questions are discussed with the instructions of a full or associate professor.
 – Participation in tutorials held on the most important theoretical subjects, enabling students to get acquainted with the standpoint of the hospital in debated questions.
 – In addition to the above, students are expected to be able to contact children patients of various ages (to win the patients for the examination), to do basic nursing duties (feeding, drinking, bathing, changing of infants’ diapers, administering of medicaments).
 – Working in the wards:
 a) ward round (physical examination, discuss about illnesses, therapy, different diagnoses, etc.)
 b) follow up on patients
 c) paperwork (status of physical findings, decursus, discharge report, etc.)
 d) diagnostic procedures (venapuncture, urine collection, etc.)
 – Ward round participation

Note: Only legibly, completely and accurately filled out, institutionally sealed, original acceptance letters are recognized by the I. Department of Pediatrics!
OBSTETRICS AND GYNECOLOGY

Essential Requirements in Obstetrics

- Prenatal care (anamnesis, lab tests, screening during pregnancy, obstetrical examinations, Leopold’s manoeuvres)
- Cardiotocography (NST, OCT)
- Ultrasonography (evaluation)
- Abnormal pregnancy (diagnosis and therapy), intercurrent diseases (diabetes, heart diseases, renal diseases). Preeclamptic toxemia, hypertension, twins, hemorrhages, abortions
- Normal labor
 - Fetal and maternal monitoring, management of the stages of labor (examinations during labor)
- Abnormal labor
 - Breech delivery, transverse lie (diagnosis)
- Obstetric operations (assistance at labor and delivery)
- Obstetric operations (vacuum extraction, forceps, cesarean section, episiotomy)
- Postnatal care
 - Evaluation of the premature, dysmature and eutrophic newborns
 - Fundamentals of neonatal management
- Essential Requirements in Gynecology
- Gynecologic anamnesis
- Gynecologic examinations (to be carried out)
 - Vaginal examination
 - Colposcopy – cytology (basic knowledge, how to take a PAP smear)
 - Examination of the breast
- Gynecologic operations (assistance)
 - Bartholin abscess, cyst
 - D and C
 - Abdominal hysterectomy
 - Vaginal hysterectomy
 - Colporrhaphy
- Postoperative management (basic knowledge)
- Outpatient clinics (to take part in the office work of outpatient clinics for gynecology, genetic counseling, adolescent gynecology, menopause, endocrinology, etc.)
- Bleeding disorders
- Cervical, corporal, ovarian, vulvar cancer (etiology, screening, diagnosis, therapy)
- Inflammation of the genital tract (PID)
- Urinary incontinence
- Contraception
NEUROLOGY

General information

Tutor: Dr. Róbert Debreczeni
Tel.: 210-0330, Fax: 210-1368

Office hours at the Department of Neurology:
Monday 13,00-14,00 Friday 10,00-12,00

Responsible Secretary: Andrea Kovács (Andi)

Rotation periods: set by the English Secretariat, but for individual changes one might apply at the Department of Neurology. To ease the scheduling of other 6th year practices the Department shall organize “early rotations” right after taking the 5th year semifinal exam.

Neurology rotation is 3 weeks long. Students receive their schedule and assignments on the first day of practice. During the training students must write one neurological case report. It is also obligatory to spend one day at our Outpatient Clinic and to take part in one nightduty (no sleep in). Students’ activity in the wards, at the Outpatient Clinic and during duty, and also the case report is evaluated by the student’s tutor on an assessment sheet. The assessment form and the case report must be presented at the final exam. During the training period two days of absence are allowed.

Final examination

One can register for the exam only through the Neptun-system.

The final examination consists of:
1. practical part: neurological examination skills, decision making, tested at the bedside;
2. theoretical part: 3 theoretical questions.

Examinations start at 10 a.m. Students must present their index book, assessment form, case report and in case of retake the permission from the Office of Dean.

On event of failing the earliest possible retake is 10 days later.

Official textbooks:

1. Arányi Zs., Kamondi A., Kovács T., Szirmai I.: Investigation of neurological patients
3. Lindsay,Bone,Callender:Neurology and Neurosurgery Illustrated. Churchill Livingstone

Other suggested books:

2. Duus: Topical Diagnosis in Neurology. Thieme Medical Publishers
6th year Medical Student Clinical Neurology Learning Objectives

Neurologic History and Examination

1. Perform a competent history, noting the following factors:
 A. Establish the onset, progression and character of the disorder identifying all related symptoms.
 B. Perform a standard neurologic review of symptoms with regard to personality, memory, headaches, pain, seizures, impairments of consciousness, vision, hearing, language function, swallowing, coordination, gait, weakness, sensory alterations, sphincter disturbance, and involuntary movements.

2. Perform a neurologic examination
 A. Perform a screening mental status examination to include:
 level of consciousness assessment, and aphasia assessment.
 B. Examine for meningismus, straight leg raising maneuver.
 C. Cranial nerve examination
 D. Motor examination including: tone, strength and bulk, pronator drift, abnormal movements.
 E. Perform a reflex examination (muscle stretch reflexes, superficial reflexes, pathologic reflexes)
 F. Coordination examination including finger-to-nose-test, heel-to-shin test, rapid alternating movements.
 G. Gait examination: stance and Romberg test, gait, tandem gait, ability to rise from sitting, toe walking and heel walking.
 H. Perform sensory examination including primary modalities (pain, temperature, position, vibration) and secondary/cortical modalities (stereognosis, graphesthesia, double simultaneous stimulation).

I. Acquire the following skills:
 A. Anatomic and physiologic basis of the neurologic examination.
 B. Competent history, physical and neurologic examination.
 C. Localize the lesion using the clinical database.
 D. Develop a differential diagnosis of the clinical problem.
 E. Assess the acuteness of neurological diseases, recognize neurological emergencies.
 F. Formulate a plan of investigation and management.

II. Describe the indications, techniques, results, contraindications and risks of the followings:
 A. Lumbar puncture (investigation of CSF)
 B. EEG, EMG, ENG, Transcranial magnetic stimulation
 C. CT, MRI, SPECT, PET
 D. Carotid and transcranial ultrasound

III. Disorders of motor function
 A. Differentiate between upper and lower motor neuron lesion (UMN, LMN).
 B. UMN facial weakness and LMN facial weakness.
 C. Disorders of coordination. Recognize symptoms of cerebellar disorders.
 Define ataxia, dysmetria, wide-based gait, and discuss the localization.
 D. Define and differentiate involuntary movement disorders: tremor, rigidity, spasticity, athetosis, chorea, dystonias, myoclonus, tics. Discuss the findings and treatment of: Parkinson’s disease, essential tremor, tardive dyskinesia, Huntington’s chorea, Wilson’s disease.

IV. Disorders of sensation
 A. Differentiate central sensory disorders from peripheral sensory disorders.

V. Disorders of vision
 A. Localize the lesions causing vision disorders and visual field defects.
 B. Differentiate papilledema from papillitis.
 C. The innervation deficit of the ocular muscles.
 D. Recognize gaze problems and nystagmus.
 E. Assess rystalli abnormalities.
VI. Episodic disorders
 A. Seizure disorders: generalized and partial seizures, distinguish seizure from syncope.
 B. Describe Todd’s postictal phenomenon.
 C. Evaluation of a patient for new-onset seizure.
 D. The anticonvulsants, their indications and side effects.
 E. Management of a patient in status epilepticus.
 F. Narcolepsy and obstructive sleep apnea.

VII. Cerebrovascular diseases
 A. Define the following: asymptomatic carotid bruit, TIA, amaurosis fugax, ischemic infarct, lacunar infarct, hemorrhagic infarct, parenchymal hemorrhage, SAH.
 B. The clinical features of various territorial infarcts.
 C. Treatment options to prevent infarction in atrial fibrillation and carotid stenosis.
 D. The clinical features for hypertensive parenchymal hemorrhage.
 E. The clinical picture and diagnosis of SAH. Early medical/surgical management of a patient with a SAH.

VIII. Multiple sclerosis (MS)
 A. The criteria for the clinical diagnosis of MS.
 B. The treatment of MS.

IX. Head trauma
 A. Define the temporal profile, symptoms and treatment of: commotion, concussion, anterograde and retrograde amnesia, subdural hematoma, epidural hematoma, contusion or hemorrhage, liquorrhea.

X. Dizziness and disorders of hearing
 A. Define vertigo, and contrast it with other type of dizziness.
 B. Describe nystagmus, hanging head test (Hallpike maneuver), caloric.
 C. Identify the clinical features of: benign paroxysmal positional vertigo, vestibular neuronitis, Meniere’s disease, brainstem TIA with vertigo, acoustic neuroma.

XI. Disorders of higher cognitive functions
 A. Define and assess: dementia, delirium, amnesia, confabulation, hallucination.
 B. Define normal-pressure hydrocephalus.
 C. Define the anatomical basis for aphasia and dysarthria.
 D. Differentiate the aphasias on the basis of ability to produce speech, comprehension, naming, repetition.

XII. Disorders of altered consciousness
 A. Define hypnoid and non-hypnoid unconsciousness.
 B. The anatomic basis of consciousness.
 C. Assess the comatose patient, evaluation and treatment.
 D. Localize the following: decorticate and decerebrate rigidity, conjugately deviated eyes, pathologic respiration, pinpoint pupils, anisocoria, intact versus absent oculocephalic response, intact versus disconjugate ice water caloric.
 E. Diagnosis and management of increased intracranial pressure (ICP).
 F. Symptoms of uncal and other herniations.

XIII. Headaches and facial pain
 A. Clinical features of migraine, cluster headache, tension headache, trigeminal neuralgia,"organic"headache.
 B. Treatment for common headaches.

XIV. Brain tumors
 A. Clinical presentation and diagnosis of primary brain tumors.
 B. Metastatic tumors to the brain in adults.
XV. Infections
A. Bacterial meningitis, viral meningitis, encephalitis including herpes simplex, chronic meningitis, brain abscess. Neurosyphilis. Lyme disease.
B. HIV and the nervous system.

XVI. Spinal cord disorders
A. Neurological symptoms caused by compression, transsection and hemisection of the spinal cord.
B. Autonomic deficits caused by spinal cord lesion.
C. Clinical presentation of vitamin B12 deficiency.

XVII. Peripheral nervous system disorders
A. Clinical syndromes of neuropathy, neuromuscular junction disorders, myopathy.
B. Describe: radicular pain, radiculopathy, mononeuropathy, meralgia paresthetica, mononeurosis multiplex, polyneuropathy, paresthesia, fasciculation.
C. Clinical findings in root lesions at C5, L4, L5, S1.
D. Herniated nucleus pulposus.
E. The tunnel syndromes.
F. The acute inflammatory demyelinating polyneuropathy (Guillain-Barre synd.)
G. The motoneuron disease.
H. The myasthenia gravis.
I. Duchenne muscular dystrophy, myotonic dystrophy, polymyositis.

XVIII. Alcohol related disorders
A. Wernicke-Korsakoff syndrome, dementia.
B. Delirium tremens, alcohol withdrawal seizure.
C. Cerebellar degeneration, peripheral polyneuropathy.
Neurology Examination Question List for 6th year Students

1st series Priority questions
1. Brainstem reflexes
2. The facial nerve
3. Differential diagnosis of vertigo and dizziness
4. Localisation of paresis syndromes
5. Symptoms of upper and lower motroneuron lesion
6. Types and localisation of aphasias
7. Classification of unconscious conditions
8. Examination of the unconscious patient
9. Unconsciousness due to metabolic origin
10. Neurological emergencies
12. Traumatic intracranial bleedings
13. Trauma of the spine and spinal cord
14. Clinical syndromes of impaired circulation of the internal carotid artery
15. Clinical syndromes of impaired circulation of the vertebro-basilar system
16. Emergency in cerebrovascular disorders
17. Diagnostic procedures in cerebrovascular disorders.
19. Intracerebral bleedings.
20. Diagnosis, treatment and prognosis of subarachnoid hemorrhage
21. Status epilepticus
22. Meningitis, encephalitis
23. Multiple sclerosis
24. Signs of brain tumors
25. Signs of tumors of the spine and spinal space
26. Brain edema
27. Diagnostic criteria of dementia
28. Diagnosis of Parkinson’s disease
29. Wernicke-Korsakow syndrome
30. Guillain-Barre syndrome
31. Disturbance of micturition and defecation
32. Myasthenia gravis

2nd series
1. Neurological causes of impaired visual acuity. Visual field defects.
2. Ocular movement and gaze disorders
3. Disorders of the vestibular system.
5. Syndromes of pons and mesencephalon lesions
6. The muscle tone control
7. Neuroanatomical basis of sensory disturbances
9. Gait disorders
10. Symptoms of frontal lobe damage
11. Symptoms of temporal lobe damage
12. The limbic system
13. Symptoms of parietal lobe damage
14. Symptoms of occipital lobe damage
15. Classification of aphasia
16. Agnosia, apraxia, alexia, agraphia
17. The basal ganglia
18. Disorders of the thalamus
19. Localisation of memory disturbances
20. Imaging techniques (angiography, CT, MR, PET, SPECT)
21. Investigation of cerebral circulation
22. EEG in the diagnostic workup
23. EMG, nerve conduction studies, transcranial magnetic stimulation and evoked potentials (BAEP, VEP, SSEP)
24. The lumbar puncture and the examination of cerebrospinal fluid
25. The cerebral circulation, and its regulation
26. Classification of cerebrovascular disorders
27. TIA
28. Causes of cerebral ischaemia in young adults
29. Treatment and prevention of cerebral ischaemia
30. Classification of epilepsy
31. Diagnostic workup of epilepsy
32. Differential diagnosis of syncope and other types of disturbed consciousness
33. Treatment of epilepsy

3rd series
1. Neurological disorders caused by viral infections
2. Neurological disorders caused by Herpes virus
3. Prion-diseases, slow virus infections
4. Neurological consequences of AIDS
5. Clinical types and treatment of multiple sclerosis
6. Hystopathological classification of brain tumors
7. Metastic tumors of the brain
8. Paraneoplasias of the nervous system (PML, neuropathies, cerebellar deg., Lambert-Eaton sy.)
9. Disorders associated with parkinsonian syndrome
10. Treatment of Parkinson’s disease
11. Hyperkinetic movement disorders
12. Hyperkinesias
13. Classification of encephalopathies
14. Primary degenerative dementias
15. Multiple system atrophy
16. Disturbed cerebrospinal fluid circulation (hydrocephalus)
17. Syndrome of brachial plexus damage
18. Syndrome of radial, ulnar and median nerve damage
19. Syndrome of lumbosacral plexus damage
20. Etiology of polyneuropathies
21. Neuropathies in diabetes mellitus
22. Inherited neuropathies (Charcot-Marie, Dejerine-Sottas)
23. Low back pain, and cervical disk disease
24. Malformation of the spine and spinal cord
25. Symptoms of the disorder of spinal cord
26. Motoneuron diseases
27. Muscular dystrophies
28. Muscle disorders
29. Primary headache syndromes
30. The neuralgias
31. The physiological sleep and the sleep disorders
32. Genetic disorders in neurology (Huntington chorea, fragile X, dystrophia myotonica
PSYCHIATRY

Department of Psychiatry and Psychotherapy
Tutor: Dr. Erika Szily

Teaching Psychiatry for the sixth-year students at the Department of Psychiatry and Psychotherapy at Semmelweis University

The goals of the psychiatric practices (3 weeks)

The goal of our Clinic is to teach medical students about the most important signs and symptoms of the most common diseases as psychiatric disorders have a relatively high prevalence in the population. Considering the high prevalence and the last but not least economic consequences, psychiatric disorders can be a burden for every society. Every medical student must be familiar with the high prevalence of depressive and anxiety disorders. Hungary was once one of the leading countries among those with high suicide rates; therefore, we require them to get acquainted with important details of the main causes and therapeutic possibilities of suicide, as well. As many psychiatric disorders can mask somatic diseases, medical students have to learn about the differentiation of these conditions.

In the 5th year students must base their knowledge on lectures and materials of practice where they have an opportunity to talk to a psychiatric patient, so they can learn how to detect the most important signs and symptoms of diseases. During the 6th year, they need to explore patients and write a case report according the sample that is available on the website of our Clinic. Before the oral exam they have to discuss this case report with the responsible tutor who will give a mark for it. Students are not allowed to take their final exam without a marked case report. We have a certificate form on our website containing all the details students must bring from the hospital where they have completed their rotation.

The link is: http://semmelweis.hu/pszichiatria/oktatas/the-english-version-can-be-found-here/

Objectives/target abilities:
- The ability how to obtain a complete and reliable history
- The method of asking about specific psychiatric symptoms or how to evaluate the information provided by the patients including:
 - orientation and attention
 - affect
 - thought disorder
 - memory
 - psycho-motor abilities
 - perception
 - motivation, intellect and personality
- The ability of noticing states of potential psychiatric emergency
- The ability to recognize specific symptoms that can refer to any hidden psychiatric problem which is not told by the patients
- The ability of summarizing all the gained information in a detailed case report
- The ability of establishing a tentative diagnosis and to know what kind of tests (either laboratory or psychological or neuro-radiological, etc) are needed for the correct diagnosis
- Being aware of the most important effects and side/adverse effects of drugs used in psychiatry
- To learn that the practitioner must always consider the possible existence of psychiatric disorders even when there are a lot of somatic symptoms, since they can also appear as a result of psychiatric diseases

We have 5 wards with different profiles in our Clinic. Students must join these wards according to their schedule made by our training coordinator. Everybody has a tutor within the ward he or she is scheduled to. The tutor presents the specific profile of that particular ward, but they also have the opportunity to go and see other wards, too. They spend a day at the out-patient department of our Clinic, which is very useful because there are many patient examinations referred from other departments of Semmelweis University. Thus, they can gain insight into the most important psychiatric features of internal medicine, neurology, surgery etc. Students must join for one all-night-duty and they have to participate in the emergency treatment performed during this period.
Under the supervision of an appointed physician students have to:

- Participate in the work of one unit;
- Evaluate patients independently;
- Write a detailed case history of one patient which has to be presented at the exam;
- Participate in consultations.

The internship in Psychiatry has to be completed at a Department of a University or in a Teaching Hospital which has a contract with a University. Students completing the internship abroad have to present a document of evaluation (i.e. Certificate downloadable from our website) indicating their performance during the internship and a grade from 5 (excellent) to 1 (failure).

Requirements

1. The 6th year includes a 3-week-long rotation in Psychiatry in a hospital or clinic which is accredited for teaching by Semmelweis University.
2. If you want to complete your rotation abroad, then before you start it, you must present at our department an officially stamped statement of acceptance issued by the teaching hospital abroad where you intend to spend your rotation.
 - **BE AWARE:** The Letter of Acceptance for the 4-week-long Psychiatry internship requested from practice places abroad must state:
 a) The training place abroad is a teaching hospital
 b) A brief description of how Psychiatry is taught in that institution
 c) The name of the responsible tutor (name, e-mail)
3. The Psychiatry practice must consist of 6 hours on 20 (4×5) workdays at psychiatric wards. Students participate in the everyday work of the ward(s), in patients' admission, in ward rounds and in therapeutic decisions. One all-night-duty is compulsory within the rotation period.
4. Writing a case report during the rotation period is a task for every student. A sample case report is available on the website of our department http://semmelweis.hu/pszichiatria/oktatas/the-english-version-can-be-found-here/
5. Case reports should not include patients’ personal data (name, birth date, national insurance number, etc). Only those practice places are acceptable where the release of the case report is not forbidden by law. Students completing the internship abroad have to present at the exam the CERTIFICATE in which the tutor has indicated their performance during the internship on the scale: excellent-satisfactory-unsatisfactory and commented on their strengths and weaknesses.

Without these documents students are not allowed to take their final exam in Psychiatry.

Please note that the Final Examination in Psychiatry cannot be taken within the 4th week of the rotation, just after the completion of 4 full weeks.

Sign-up for the exams: through the NEPTUN SYSTEM.

7. **It is important to bring to the final exam this signed Certificate of the practice the case report (or a detailed report of the case report by the tutor on a separate sheet of paper) the mark for the case report, the filled-in Register of observed psychiatric conditions that was signed continuously by the tutors during the 5th and 6th year. The form is available on our website:** http://semmelweis.hu/pszichiatria/oktatas/the-english-version-can-be-found-here/
FAMILY MEDICINE IN DAILY PRACTICE within Internal Medicine

One week Family Medicine practice within sixth year’s rotation in Internal Medicine

Department of Family Medicine
Head of the Department: Dr. Péter Torzsa M.D. Ph.D.
Contact details: H-1085 Budapest, Stáhly u. 7-9. Phone: +36-1-355-8530
Tutor: Dr. Krisztán Vörös

Total number of hours: 40 lectures: – practices: 5×8
Type of the course (mandatory/elective): mandatory
Academic year: 2021/2022
Code of the course: AOKCSA154_SA

Aim of the subject and its place in the curriculum:
Family practice training is based on a one-to-one model involving a tutor and a medical student. The training is practice oriented. Medical students can gain experience about what kind of work a family practice involves while taking an active part in managing the consulting hours and being involved in patient treatment and care and screening.

Location of the course (lecture hall, practice room, etc.):
Accredited tutorial practices

Competencies gained upon the successful completion of the subject:
Medical students working together with the family practice team are involved in patient care during the consulting hours as well as in the patients’ home.
During the training they learn how to
– do physical examination
– make a diagnosis
– make a differential diagnosis
– set up a therapeutic plan
– write a case study
– manage paperwork and patient data recording
– manage expert activity
The medical students’ communicative skills develop and they get to know the statistical characteristics of the practice as well as the patient flow, morbidity and mortality data of the practice they are trained at.
During the training medical students are expected to keep a practice training diary and to shortly document the cases they meet (and to make detailed documentation of one particular case).

Prerequisite(s) for admission to the subject:
Internal medicine, Pharmacology, Laboratory medicine, Family Medicine, Public Health

Minimum and maximum number of students registering for the course:
Student selection method in case of oversubscription:
Where they are assigned

How to register for the course:
To register for the course in the ‘Neptun’ system
Detailed thematic of the course:

In a one-week training:
- Paperwork and data management
- Registration of a new patient and setting up a patient care summary for them
- Making out a prescription by hand
- Writing a referral (to hospital or to consultation)
- Compiling a therapeutic sheet and updating it
- Expert activity
- Judging whether the patient is fit for work and managing sick leave documentation
- Compiling patient data for official rehabilitation and social assessment
- Examining patients, diagnosis/therapy
- Recognising and treating upper and lower respiratory infections
- Recognising and treating urogenital infections
- Recognising and treating gastrointestinal infections
- Therapy/care
- Therapy, care and rehabilitation of cardiovascular and hypertonic patients
- Therapy, care and rehabilitation of diabetic patients and patients with metabolic diseases
- Therapy, care and rehabilitation of cancer patients
- Therapy, care and rehabilitation of patients with musculoskeletal diseases
- Therapy, care and rehabilitation of patients with cardiorespiratory diseases

Potential overlap(s) with other subjects:
Internal medicine – Diagnosing and treating symptoms
Public health issues and preventive medicine – communicable diseases, diseases to notify
Surgery – acute abdominal symptoms, treatment of wounds

Policy regarding the attendance and making up absences:
It’s compulsory for the student to attend 75 percent of the training sessions.

Means of assessing the students’ progress during the semester:
During the short training period there is no assessment.

Requirement for acknowledging the semester (signature):
Attending the training sessions, a completed diary and an assessment sheet filled in by the tutor.
TRANSFUSION COURSE

Department of Transfusion Medicine
Course Director: Prof. Dr. Attila Tordai

1. Introduction, the history of transfusion medicine
2. Immunological introduction: basic mechanisms important in transfusion medicine
3. Immune response to incompatible transfusion: antigen (protein, carbohydrate) recognition, primary/secondary immune response
4. The molecular structure and physiological role of red cell antigens
5. Plasticity of stem cells, regenerative medicine
6. Introduction of the HLA system, diagnostics in transplantation immunogenetics
7. Platelet, granulocyte antigen systems
8. The blood group serology compatibility
9. Immunomodulation effects of transfusion
10. Blood donors, blood letting for donation,onor screening, risk assessment and reduction, international trends
11. Red cell, platelet, granulocyte and plasma blood products: manufacturing, storage, quality parameters
12. Generation and clinical use of albumin and immunoglobulin blood products
13. Challenges and approaches of blood supply management, international examples
14. Steps and practices of transfusion execution, international outlook
15. Indications of red cell, platelet and granulocyte transfusion
16. Alternatives to red cell transfusion: stimulation of red cell formation
17. Apheresis and extracorporeal photopheresis
18. Transfusion aspects of hematology patient care, application of special blood products
19. Options for blood saving, peri-operative blood collection
20. Solid organ transplantation and its transfusion aspects (complications, case reports)
21. Infectious diseases transmitted by transfusion, epidemiology, screening, prevention
22. Transfusion aspects of the coagulation system, generation and clinical application of coagulation factor products
23. Treatment and long term care in inherited coagulation disorders
24. Effects of massive transfusion, factor substitution in acquired bleeding disorders
25. Transfusion aspects of cardiac surgery (complications, case reports)
26. Immunological complications of transfusions: hemolytic and non hemolytic
27. Non immunological complications of transfusions: circulatory and iron overload
28. Hungarian and international legal aspects of transfusion medicine
29. Test examination
AMBULANCE PRACTICE (Prehospital Emergency Medicine)

National Ambulance Service
Lecturer: Dr. Gábor Gőbl

Syllabus

During the 2 weeks practice students will join the staff of an ALS (Advanced Life Support) Unit. They will experience the acute, in-field presentation of emergencies, occasionally urgencies, as well as the special viewpoints of interhospital transfer.

- Goal of the ambulance practice is to gain insight into
- Patient’s assessment in the prehospital setting (primary and secondary survey)
- Recognition of critically ill condition and the emergent interventions required (airway management, CPR, IV. line, volume substitution, pain relief, etc).
- Recognition of several emergencies (ACS, stroke, hypertensive emergencies, bronchial asthma, poisoning, psychiatric disorders, etc).
- Patient’s mobilization, immobilization, special viewpoints of extrication
- Monitoring patient en route to the hospital, transportation trauma.

The certification of the practice should contain the
- period of time spent at the ambulance station
- list of cases the student participated at
- signature of the local director of the Ambulance Service

Note: Absence in 25% of practice time is possible, however informing the coordinator in advance and discussion of the new term of the practice are required.

Mode of certifying absences: oral
Evaluation: “completed” or “not completed”

Important information: Solely in the Neptun registered students are welcome at the Central Ambulance Station (1055 Budapest, Markó u. 22) on the first day of the term at 9 in the morning. All the information concerning the location of the practice, schedule of work, information about safety at work, etc. will be announced at this time. Without getting these information nobody will be allowed to start the practice, and there will be no opportunity for replacement.

We ask the students not to turn directly to us with their wish to change schedule.
CARDIORESPIRATORIC AND NEUROPHYSIOLOGICAL MEASURING METHODS

AOSKIK151_1A

Elective course for medical students in the 3-6th years
Course director: Dr. Habil. László Dézsi,
Private Professor of Physiology, Semmelweis University

The purpose of the course: To review the theory and practice of modern measuring methods in experimental and clinical medicine, and providing practical knowledge to medical students on cardiorespiratory and neurophysiological measurements. The course is based on but further extends the material delivered during the course of Medical physiology. Throughout the lectures we put an emphasis on potential methodological errors of measurements and examinations, as well as how to avoid them.

Detailed Program:
1. Introduction. Biomedical engineering. Design and safety requirements of biomedical equipments
2. Computerized data acquisition and analysis. Telemetry systems
3. General metrology. Basics of measurement and control theory
4. Home monitoring of cardiovascular health status. Determination of blood glucose and tissue glucose concentrations
5. Sampling of continuous signals. Digitizing analogue signals
6. Direct and indirect methods to determine cardiac output and peripheral blood flow
8. Significance of objective studies in the practice of audiology. Neurophysiological measurements (action potentials, brain stem evoked potentials)
10. Measuring blood pressure in the lab and clinics (invasive and noninvasive methods)
11. Complement-related immunological and cardiopulmonary responses
12. Studying brain function by functional imaging systems
13. Experimental methods to study nociception
14. Investigating the electrical activity of the heart. Design of ECG amplifiers

Acknowledgement of the course: Prerequisite of the course is the completion of the first 2 years (Theoretical module). Regular attendance (maximum 3 absences) is required. Signature in the Index and 2 credit points will be awarded after successful exam. Source: material of the lectures, supplementary literature will be provided by the lecturers.
Applications: via Neptun system. Contact person: Dr. László Dézsi (e-mail: dezsi.laszlo@richter.hu; phone: 06-1-431-4823; phone/fax: 06-72-536-019). The application of min. 5 students is required.
COMPLEMENTARY ELECTIVE INTERNSHIP PRACTICE

Heart and Vascular Center
Department of Internal Medicine and Hematology
Department of Internal Medicine and Oncology
1st Department of Pediatrics
2nd Department of Pediatrics
Department of Neurology
Department of Psychiatry and Psychotherapy
1st Department of Surgery and Interventional Gastroenterology
2nd Department of Surgery
Department of Transplantation and Surgery
Department of Obstetrics and Gynecology

Credit: 5
Duration: 5 weeks (2 “gap” weeks + 3 weeks in May
Practice time: 40 hours per week

Lecturers: Dr. Béla Merkely
 Dr. Tamás Masszi
 Dr. István Takács
 Dr. Attila Szabó
 Dr. Gábor Kovács
 Dr. Dániel Bereczki
 Dr. János Réthelyi
 Dr. Attila Szijártó
 Dr. Gábor István
 Dr. László Kóbori
 Dr. Nándor Ács

Topic of the subject:
During the practice the student is assigned to a Tutor or to a Medical Team and is shadowing the work of them. Student can work only under the continuous careful supervision of a tutor who is responsible for the student. Daily work hours for the student: 8 hours
Activities during the practice should include the following:
- examination of patients in the department, with special emphasis to case history taking and full physical examination
- gain practice in patient documentation, problem-oriented medical record keeping
- participate in the preparation of diagnostic and therapeutic plan for patients, differential diagnosis of the case
- take an active part in medical consultations concerning their patients, as well as in the medical conferences in the department
- participate actively or as an observer at invasive and semi-invasive interventions, diagnostic or imaging procedures
- evaluation of routine laboratory results
- evaluation of imaging results
- possible participation on night or weekend duties
- get to know the work of the special sections of the department
- regular consultations with the doctor responsible for the student
 students should also practice communication with patients and their relatives, while giving them relevant medical information on the disease but avoiding conflicts with medical confidentiality.

Prerequisite of the course: Completion of the first 10 semester’s subjects.

Special academic work required for completion of the course: Under the supervision of the Tutor(s) the student takes part of the management of out- and inpatients of the Dept thereby obtaining competence in the subdiscipline.

Type of exam: Bedside practical exam

Suggested print, electronic, online material: Material given by the hosting subject for the final year.
PHYSICAL EDUCATION XI-XII.

Practice: 1 hour per week

The subjects taken into consideration when calculating the average of the diploma are the following:

- all subject with final exam
- list of the subjects ending with a semifinal:
 - Medical biology
 - Medical chemistry
 - Genetics and genomics
 - Immunology
 - Otorhinolaryngology
 - Dermatology
 - Clinical Genetics
 - Oncology (from 2025)
 - Orthopedics
 - Pulmonology (from 2025)
 - Radiology
 - Urology
 - Forensic Medicine
 - Ophthalmology
 - Oral surgery and dentistry
 - grade of the thesis
 - grade of the written part of the final board examination
 - grade of the oral part of the final board examination
 - grade of the practical part of the final board examination
GENERAL INFORMATION

Deadline of paying the tuition fee in the 6th year: the first part is to be paid between August 30 - September 3, 2021, the second part between January 24 – January 28, 2022.

The professor responsible for the student’s instruction during the clinical rotation outside Hungary is requested to give a detailed certificate of the student’s performance. It is requested to be done in the Student Handbook! This certificate in the Student Handbook must be signed by the professor, the Head of the Department as well as by the director of the hospital or the Dean of the University the hospital is affiliated to. **Semmelweis University reserves the right to accept a certificate or refuse it in justified cases.** Students have to present these certificates to the concerned departments. After the departments have accepted them, students have to retain the originals and hand them in at the English Secretariat.

Tuition fee reduction:
In case the student completes all the rotations regardless whether the 1 week Transfusion course is completed at Semmelweis University or abroad, he/she has to pay 80% of the tuition fee valid in the academic year. The relevant acceptance letters should be handed in latest until December 15, 2021. Otherwise the student is not entitled for the reduction!

Please write a letter of request addressed to the Academic Program Director when applying for the 20% reduction!

Please note:
that you have to sign up for the General Board Examination held in June latest until April 30, 2022! For the August exam latest until July 15, 2022 and for the November exam latest until October 15, 2022!
Faculty of Dentistry

Study Programs since the 2010/11 academic year
Study program for students started studies in the 2010/11 academic year

BASIC MODULE

1st semester

<table>
<thead>
<tr>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory Anatomy, Histology, Embryology I.</td>
<td>C8L3P5</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory Physical Bases of Dental Materials</td>
<td>C2L2P0</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory Medical Chemistry</td>
<td>C6L3P3,5</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory Medical Biology (Cell Biology)</td>
<td>C3L2P1</td>
<td>final</td>
</tr>
<tr>
<td>compulsory Hungarian Medical Terminology I.</td>
<td>C4L0P4</td>
<td>practice mark</td>
</tr>
<tr>
<td>obligatory elective Medical Terminology</td>
<td>C2L0P2</td>
<td>practice mark</td>
</tr>
<tr>
<td>compulsory Physical Education I.</td>
<td>C0L0P1</td>
<td>signature</td>
</tr>
</tbody>
</table>

Total Credit 25

2nd semester

<table>
<thead>
<tr>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory Anatomy, Histology, Embryology II.</td>
<td>C7L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology I.</td>
</tr>
<tr>
<td>compulsory Biophysics</td>
<td>C5L2,5P3</td>
<td>final#</td>
<td>Physical Bases of Dental Materials</td>
</tr>
<tr>
<td>compulsory Biochemistry, Molecular and Cellbiology I.</td>
<td>C7L3P4</td>
<td>semifinal</td>
<td>Medical Chemistry</td>
</tr>
<tr>
<td>compulsory Hungarian Medical Terminology II.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology I.</td>
</tr>
<tr>
<td>compulsory General Dental Materials</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Physical Bases of Dental Materials</td>
</tr>
<tr>
<td>obligatory elective First aid</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>obligatory elective Medical Informatics</td>
<td>C3L1P2</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory Physical Education II</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>obligatory elective Dental Psychology</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>obligatory elective Medical Sociology</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory Dental Laboratory Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>compulsory Nursing Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 30

The grade influences the qualification of the diploma

C = Credit point

L = Lecture (hours/week)

P = Practice (hours/week)
BASIC MODULE

3rd semester

<table>
<thead>
<tr>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory Anatomy, Histology, Embryology III.</td>
<td>C7L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory Biochemistry, Molecular and Cellbiology II.</td>
<td>C6L3P3</td>
<td>semifinal</td>
<td>Biochemistry, Molecular and Cellbiology I.</td>
</tr>
<tr>
<td>compulsory Medical and Dental Physiology I.</td>
<td>C11L6P5</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory Odontotechnology I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>General Dental Materials</td>
</tr>
<tr>
<td>compulsory Hungarian Medical Terminology III.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology II.</td>
</tr>
<tr>
<td>compulsory Physical Education III.</td>
<td>C0L0P2</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 29

4th semester

<table>
<thead>
<tr>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory Anatomy(Maxillofacial Anatomy) IV.</td>
<td>C5L3P2</td>
<td>final#</td>
<td>Anatomy, Histology, Embryology III.</td>
</tr>
<tr>
<td>compulsory Biochemistry, Molecular and Cellbiology III.</td>
<td>C6L3P3</td>
<td>final#</td>
<td>Biochemistry, Molecular and Cellbiology II.</td>
</tr>
<tr>
<td>compulsory Medical and Dental Physiology II.</td>
<td>C10L6P5</td>
<td>final#</td>
<td>Medical and Dental Physiology I.</td>
</tr>
<tr>
<td>compulsory Odontotechnology II.</td>
<td>C5L0P5</td>
<td>practice mark</td>
<td>Odontotechnology I.</td>
</tr>
<tr>
<td>compulsory Conservative Dentistry and Endodontics, Pre-clinical I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology I.</td>
</tr>
<tr>
<td>compulsory Hungarian Medical Terminology IV.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology III.</td>
</tr>
<tr>
<td>compulsory Physical Education IV.</td>
<td>C0L0P2</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 32

#The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C= Credit point
L= Lecture (hours/week)
P= Practice (hours/week)
PRE-CLINICAL MODULE

5th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical II.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Microbiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Pathophysiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Basic Immunology</td>
<td>C3L1P2</td>
<td>semifinal</td>
<td>Biochemistry, Molecular and Cellbiology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology I.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Pathology I.</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pathology I.</td>
<td>C5L3P2</td>
<td>semifinal</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry II.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics (Pre-clinical course)</td>
<td>C4L1P3</td>
<td>final#</td>
<td>BASIC MODULE</td>
</tr>
</tbody>
</table>

Total Credit: 33

6th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical Course II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine I.</td>
<td>C4L2P2</td>
<td>practice mark</td>
<td>General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Biology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Pathology II.</td>
<td>C3L2P1</td>
<td>final#</td>
<td>Oral Pathology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pathology II.</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Pathology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry III.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Preventive Dentistry II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Prosthodontics, Pre-clinical Course</td>
</tr>
<tr>
<td>compulsory</td>
<td>Radiation protection</td>
<td>C2L1.5P1</td>
<td>semifinal</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology II.</td>
<td>C2L0P4</td>
<td>final</td>
<td>Hungarian Dental Terminology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dento-Alveolar practice (summer, minimum 1 week)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit: 32

The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

7th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>General and Dental Radiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Radiation protection</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine II.</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology I.</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Oral biology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology I.</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td>Pathology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics II.</td>
<td>C7L1P6</td>
<td>semifinal</td>
<td>Prosthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics I.</td>
<td>C2L1P1</td>
<td>practice mark</td>
<td>Pathology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics Pre-Clinical</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td>Oral Biology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Neurorology</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Psychiatry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Ethics</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Gnathology</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Prosthodontics I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Public Health</td>
<td>C3L1,5P2</td>
<td>final#</td>
<td>General and Oral Microbiology</td>
</tr>
</tbody>
</table>

Total Credit 39

8th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine III.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Internal Medicine II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics II.</td>
<td>C1L0P1</td>
<td>semifinal</td>
<td>Oral Diagnostics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Periodontology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology II.</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Pharmacology, Toxicology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Prosthodontics II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Surgery</td>
<td>C3L2P1</td>
<td>final#</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology I.</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dentistry practice (summer, 4weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 25

*The grade influences the qualification of the diploma.
15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry I.*</td>
<td>C4L0P6</td>
<td>practice</td>
<td>Prosthodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry I.*</td>
<td>C4L0P6</td>
<td>practice</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics IV.</td>
<td>C3L0P3</td>
<td>practice</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Forensic Dentistry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Ophthalmology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery IV.</td>
<td>C6L1P5</td>
<td>practice</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology II.</td>
<td>C2L1P1</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics I</td>
<td>C6L1P5</td>
<td>practice</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Otorhinolaryngology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Pediatrics</td>
<td>C1L1P0.5</td>
<td>semifinal</td>
<td>Internal Medicine III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics I</td>
<td>C6L1P5</td>
<td>practice</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology III.</td>
<td>C3L1P2</td>
<td>practice</td>
<td>Periodontology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Prehospital Emergency Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics IV.</td>
<td>C3L0P3</td>
<td>practice</td>
<td>Prosthodontics III.</td>
</tr>
</tbody>
</table>

Total Credit 42

*at the Dept. of Prosthodontics or at the Dept. of Conservative Dentistry
The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>prerequisites code</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry II.*</td>
<td>C4L0P6</td>
<td>practice mark</td>
<td>Clinical Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry II.**</td>
<td>C4L0P6</td>
<td>practice mark</td>
<td>Clinical Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics V</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Conservative Dentistry and Endodontics IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dermatology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Obstetrics and Family Planning</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Diploma Work</td>
<td>C20</td>
<td></td>
<td>9th semester’s subjects</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery V.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Medicine</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Periodontology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics II</td>
<td>C5L1P4</td>
<td>final#</td>
<td>Orthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics II</td>
<td>C5L1P4</td>
<td>final#</td>
<td>Pedodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology IV.</td>
<td>C3L1.5P2</td>
<td>final#</td>
<td>Periodontology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics V.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Prosthodontics IV.</td>
</tr>
</tbody>
</table>

Total Credit 54

* at the Dept. of Prosthodontics
** at the Dept. of Conservative Dentistry
#The grade influences the qualification of the diploma.
15 credits should be gained from the elective subjects during the 5-year studies.
C= Credit point
L= Lecture (hours/week)
P= Practice (hours/week)
Study Program for students started studies in the 2011/12 academic year

BASIC MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology I.</td>
<td>C8L3P5</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Bases of Dental Materials</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Physical Bases of Dental Materials</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Chemistry</td>
<td>C6L3P3,5</td>
<td>semifinal</td>
<td>Medical Chemistry</td>
</tr>
<tr>
<td>compulsary</td>
<td>Medical Biology (Cell Biology)</td>
<td>C3L2P1</td>
<td>final</td>
<td></td>
</tr>
<tr>
<td>compulsary</td>
<td>Hungarian Medical Terminology I.</td>
<td>C4L0P4</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Terminology I.</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>compulsary</td>
<td>Physical Education I.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit: **25**

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology II.</td>
<td>C7L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics</td>
<td>C5L2,5P3</td>
<td>final#</td>
<td>Physical Bases of Dental Materials</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cell Biology I.</td>
<td>C7L3P4</td>
<td>semifinal</td>
<td>Medical Chemistry</td>
</tr>
<tr>
<td>compulsary</td>
<td>Hungarian Medical Terminology II.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology I.</td>
</tr>
<tr>
<td>compulsary</td>
<td>General Dental Materials</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Physical Bases of Dental Materials</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>First aid</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Informatics</td>
<td>C3L1P2</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education II</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Psychology</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Sociology</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsary</td>
<td>Dental Laboratory Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>compulsary</td>
<td>Nursing Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

The grade influences the qualification of the diploma

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
BASIC MODULE

3rd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology III.</td>
<td>C8L3P5</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology II.</td>
<td>C6L3P3</td>
<td>semifinal</td>
<td>Biochemistry, Molecular and Cellbiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology I.</td>
<td>C11L6P5</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II. Biophysics</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>General Dental Materials</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Medical Terminology III.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education III.</td>
<td>C0L0P2</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

4th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy (Maxillofacial Anatomy) IV.</td>
<td>C5L3P2</td>
<td>final#</td>
<td>Anatomy, Histology, Embryology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology III.</td>
<td>C6L3P3</td>
<td>final#</td>
<td>Biochemistry, Molecular and Cellbiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology II.</td>
<td>C10L6P5</td>
<td>final#</td>
<td>Medical and Dental Physiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course II.</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Medical Terminology IV.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Preclinical Practice</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education IV.</td>
<td>C0L0P2</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td>34</td>
</tr>
</tbody>
</table>

*The grade influences the qualification of the diploma.
15 credits should be gained from the elective subjects during the 5-year studies.

C= Credit point
L= Lecture (hours/week)
P= Practice (hours/week)
PRE-CLINICAL MODULE

5th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical II.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Microbiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Pathophysiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Biochemistry, Molecular and Celliology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Basic Immunology</td>
<td>C3L1P2</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology I.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pathology</td>
<td>C6L3P2</td>
<td>final#</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry I.</td>
<td>C3L0P2</td>
<td>practice mark</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course III.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>BASIC MODULE</td>
</tr>
</tbody>
</table>

Total Credit 31

6th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical Course II</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine I.</td>
<td>C4L2P2</td>
<td>practice mark</td>
<td>General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Biology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>General and Oral Pathophysiology, General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Genetics and Genomics</td>
<td>C3L2P1</td>
<td>final</td>
<td>Biochemistry, Molecular and Celliology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Pathology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry II.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Preventive Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Prosthodontics, Pre-clinical Course or Odontotechnology and Prosthodontics and Preclinical III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Radiation protection</td>
<td>C2L1.5P1</td>
<td>semifinal</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology II.</td>
<td>C2L0P4</td>
<td>final</td>
<td>Hungarian Dental Terminology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dento-Alveolar practice (summer, minimum 1 week)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>1-6 semesters compulsory subjects</td>
</tr>
</tbody>
</table>

Total Credit 33

The grade influences the qualification of the diploma

C = Credit point

L = Lecture (hours/week)

P = Practice (hours/week)
CLINICAL MODULE

7th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>General and Dental Radiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Radiation protection</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine II.</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology I.</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Oral biology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology I.</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics II.</td>
<td>C7L1P6</td>
<td>semifinal</td>
<td>Prosthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics I.</td>
<td>C2L1P1</td>
<td>pract. mak</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics Pre-Clinical</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td>Oral Biology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Neurorology</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Psychiatry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Ethics</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Gnathology</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Prosthodontics I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Public Health</td>
<td>C3L1,5P2</td>
<td>final#</td>
<td>General and Oral Microbiology</td>
</tr>
</tbody>
</table>

Total Credit 39

8th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine III.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Internal Medicine II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics II.</td>
<td>C1L0P1</td>
<td>semifinal</td>
<td>Oral Diagnostics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Periodontology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology II.</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Pharmacology, Toxicology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Prosthodontics II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Surgery</td>
<td>C3L2P1</td>
<td>final#</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology I.</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dentistry practice (summer, 4 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>1-8 semesters compulsory subjectcs</td>
</tr>
</tbody>
</table>

Total Credit 25

#The grade influences the qualification of the diploma.
15 credits should be gained from the elective subjects during the 5-year studies.

C= Credit point
L= Lecture (hours/week)
P= Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry I.*</td>
<td>C4L0P6</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics IV</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Forensic Dentistry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Pharmacology and Toxicology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Ophthalmology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery IV.</td>
<td>C6L1P5</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology II.</td>
<td>C2L1G1</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics I</td>
<td>C6L1P5</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Otorhinolaryngology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Pediatrics</td>
<td>C1L1P0.5</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics I</td>
<td>C6L1P5</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology III.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Periodontology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Prehospital Emergency Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics IV.</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Prosthodontics III.</td>
</tr>
</tbody>
</table>

Total Credit 38

*at the Dept. of Prosthodontics or at the Dept. of Conservative Dentistry

#The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C= Credit point

L= Lecture (hours/week)

P= Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>prerequisites code</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry II.*</td>
<td>C4L0P6</td>
<td>practice mark</td>
<td>Clinical Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics V</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Conservative Dentistry and Endodontics IV</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dermatology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Obstetrics and Family Planning</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Diploma Work</td>
<td>C20</td>
<td></td>
<td>9th semester’s subjects</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery V.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Medicine</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Periodontology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics II</td>
<td>C5L1P4</td>
<td>final#</td>
<td>Orthodontics I</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics II</td>
<td>C5L1P4</td>
<td>final#</td>
<td>Pedodontics I</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology IV.</td>
<td>C3L1.5P2</td>
<td>final#</td>
<td>Periodontology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics V.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Prosthodontics IV.</td>
</tr>
<tr>
<td>Total Credit</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*at the Dept. of Prosthodontics
*at the Dept. of Conservative Dentistry
#The grade influences the qualification of the diploma.
15 credits should be gained from the elective subjects during the 5-year studies.
C= Credit point
L= Lecture (hours/week)
P= Practice (hours/week)
Study Program for students started studies
in the 2012/13 academic year

BASIC MODULE

1st semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology I.</td>
<td>C8L3P5</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Bases of Dental Materials</td>
<td>C2L2P0</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Chemistry</td>
<td>C6L3P3,5</td>
<td>final#</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Biology (Cellbiology)</td>
<td>C3L2P1</td>
<td>final#</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics I.</td>
<td>C3L1.5P2</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Medical Terminology I.</td>
<td>C4L0P4</td>
<td>practice mark</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Terminology I.</td>
<td>C2L0P2</td>
<td>practice mark</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education I.</td>
<td>C0L0P1</td>
<td>signature</td>
</tr>
</tbody>
</table>

Total Credit 28

2nd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology II.</td>
<td>C7L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics II.</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Biophysics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology I.</td>
<td>C7L3P4</td>
<td>semifinal</td>
<td>Medical Chemistry</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Medical Terminology II.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Materials</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Physical Bases of Dental Materials</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>First aid</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Informatics</td>
<td>C3L1P2</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education II</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Psychology</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Sociology</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Laboratory Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Nursing Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 29

The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
BASIC MODULE

3rd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology III.</td>
<td>C8L3P5</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology II.</td>
<td>C6L3P3</td>
<td>semifinal</td>
<td>Biochemistry, Molecular and Cellbiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology I.</td>
<td>C11L6P5</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>General Dental Materials</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Medical Terminology III.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education III.</td>
<td>C0L0P2</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 30

4th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy (Maxillofacial Anatomy) IV.</td>
<td>C5L3P2</td>
<td>final#</td>
<td>Anatomy, Histology, Embryology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology III.</td>
<td>C6L3P3</td>
<td>final#</td>
<td>Biochemistry, Molecular and Cellbiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology II.</td>
<td>C10L6P5</td>
<td>final#</td>
<td>Medical and Dental Physiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course II.</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Medical Terminology IV.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Preclinical Practice</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education IV.</td>
<td>C0L0P2</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 34

The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C= Credit point

L= Lecture (hours/week)

P= Practice (hours/week)
PRE-CLINICAL MODULE

5th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical II.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Microbiology</td>
<td>C4L2P2</td>
<td>final*</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Pathophysiology</td>
<td>C4L2P2</td>
<td>final*</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Basic Immunology</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Biochemistry, Molecular and Cellbiology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology I.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pathology</td>
<td>C5L3P2</td>
<td>final*</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course III.</td>
<td>C3L0P3</td>
<td>final*</td>
<td>BASIC MODULE</td>
</tr>
</tbody>
</table>

Total Credit: 30

6th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical Course II</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine I.</td>
<td>C4L2P2</td>
<td>practice mark</td>
<td>General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Biology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Genetics and Genomics</td>
<td>C3L2P1</td>
<td>final#</td>
<td>General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Pathology</td>
<td>C4L2P2</td>
<td>final*</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry II.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Preventive Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics, Pre-clinical Course III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Radiation protection</td>
<td>C2L1.5P1</td>
<td>semifinal</td>
<td>BASIC MODULE</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology II.</td>
<td>C2L0P4</td>
<td>final</td>
<td>Hungarian Dental Terminology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dento-Alveolar practice (summer, minimum 1 week)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>1-6 semesters compulsory subjects</td>
</tr>
</tbody>
</table>

Total Credit: 33

* The grade influences the qualification of the diploma
 C = Credit point
 L = Lecture (hours/week)
 P = Practice (hours/week)
CLINICAL MODULE

7th semester

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Code</th>
<th>Credit</th>
<th>Examination</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory General and Dental Radiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Radiation protection</td>
<td></td>
</tr>
<tr>
<td>Compulsory Conservative Dentistry and Endodontics II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics I.</td>
<td></td>
</tr>
<tr>
<td>Compulsory Internal Medicine II.</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
<td></td>
</tr>
<tr>
<td>Compulsory Oral and Maxillofacial Surgery II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery I.</td>
<td></td>
</tr>
<tr>
<td>Compulsory Periodontology I.</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Oral biology</td>
<td></td>
</tr>
<tr>
<td>Compulsory Pharmacology, Toxicology I.</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td>Pathology</td>
<td></td>
</tr>
<tr>
<td>Compulsory Prosthodontics II.</td>
<td>C7L1P6</td>
<td>semifinal</td>
<td>Prosthodontics I.</td>
<td></td>
</tr>
<tr>
<td>Compulsory Oral Diagnostics I.</td>
<td>C2L1P1</td>
<td>practice mark</td>
<td>Pathology</td>
<td></td>
</tr>
<tr>
<td>Compulsory Orthodontics Pre-Clinical</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td>Oral Biology</td>
<td></td>
</tr>
<tr>
<td>Obligatory elective Neurorology</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
<td></td>
</tr>
<tr>
<td>Obligatory elective Psychiatry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
<td></td>
</tr>
<tr>
<td>Obligatory elective Dental Ethics</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Pathology</td>
<td></td>
</tr>
<tr>
<td>Compulsory Gnathology</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Prosthodontics I.</td>
<td></td>
</tr>
<tr>
<td>Obligatory elective Public Health</td>
<td>C3L1,5P2</td>
<td>final#</td>
<td>General and Oral Microbiology</td>
<td></td>
</tr>
<tr>
<td>Obligatory elective Otorhinolaryngology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
<td></td>
</tr>
<tr>
<td>Obligatory elective Ophthalmology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
<td></td>
</tr>
<tr>
<td>Compulsory Community Dentistry I.</td>
<td>C0L1P1</td>
<td>signature</td>
<td>Oral Pathology</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit: 41

CLINICAL MODULE

8th semester

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Code</th>
<th>Credit</th>
<th>Examination</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Conservative Dentistry and Endodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics II.</td>
<td></td>
</tr>
<tr>
<td>Compulsory Internal Medicine III.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Internal Medicine II.</td>
<td></td>
</tr>
<tr>
<td>Compulsory Oral and Maxillofacial Surgery III.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II.</td>
<td></td>
</tr>
<tr>
<td>Compulsory Oral Diagnostics II.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Oral Diagnostics I.</td>
<td></td>
</tr>
<tr>
<td>Compulsory Periodontology II.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Periodontology I.</td>
<td></td>
</tr>
<tr>
<td>Compulsory Pharmacology, Toxicology II.</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Pharmacology, Toxicology I.</td>
<td></td>
</tr>
<tr>
<td>Compulsory Prosthodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Prosthodontics II.</td>
<td></td>
</tr>
<tr>
<td>Obligatory elective Surgery</td>
<td>C3L2P1</td>
<td>final#</td>
<td>Internal Medicine I.</td>
<td></td>
</tr>
<tr>
<td>Compulsory Implantology I.</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II.</td>
<td></td>
</tr>
<tr>
<td>Compulsory Community Dentistry II.</td>
<td>C0L1P1,5</td>
<td>signature</td>
<td>Community Dentistry I.</td>
<td></td>
</tr>
<tr>
<td>Compulsory General Dentistry practice (summer,4weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credit: 25

The grade influences the qualification of the diploma.
15 credits should be gained from the elective subjects during the 5-year studies.
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry I.*</td>
<td>C3L0P6</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics IV</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Forensic Dentistry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Ophthalmology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery IV.</td>
<td>C6L1P5</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology II.</td>
<td>C2L1P1</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics I</td>
<td>C6L1P5</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Otorhinolaryngology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Pediatrics</td>
<td>C1L1P0.5</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics I</td>
<td>C6L1P5</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology III.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Periodontology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Prehospital Emergency Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics IV.</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Prosthodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Medicine</td>
<td>C1L1P0</td>
<td>Semi final</td>
<td>Pharmacology and Toxicology II.</td>
</tr>
</tbody>
</table>

Total Credit: 38

*at the Dept. of Prosthodontics or at the Dept. of Conservative Dentistry
#The grade influences the qualification of the diploma.
15 credits should be gained from the elective subjects during the 5-year studies.
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry II.*</td>
<td>C3L0P6</td>
<td>practice mark</td>
<td>Clinical Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics V</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Conservative Dentistry IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dermatology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Obstetrics and Family Planning</td>
<td>C1L1P0</td>
<td>Semifinal</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Diploma Work</td>
<td>C20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery V.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics II</td>
<td>C5L1P4</td>
<td>final#</td>
<td>Orthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics II</td>
<td>C5L1P4</td>
<td>final#</td>
<td>Pedodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology IV.</td>
<td>C3L1.5P2</td>
<td>final#</td>
<td>Periodontology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics V.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Prosthodontics V.</td>
</tr>
</tbody>
</table>

Total Credit

| 48 |

*at the Dept. of Prosthodontics

#The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point

L = Lecture (hours/week)

P = Practice (hours/week)
Study Program for students started studies in the 2013/14 academic year

BASIC MODULE

1st semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology I.</td>
<td>C8L3P5</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Bases of Dental Materials</td>
<td>C2L2P0</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Chemistry</td>
<td>C6L3P3</td>
<td>final#</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Biology (Cell Biology)</td>
<td>C3L2P1</td>
<td>final#</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics I.</td>
<td>C3L1.5P2</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Medical Terminology I.</td>
<td>C4L0P4</td>
<td>practice mark</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Latin I.</td>
<td>C2L0P2</td>
<td>practice mark</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education I.</td>
<td>C0L0P1</td>
<td>signature</td>
</tr>
</tbody>
</table>

Total Credit 28

BASIC MODULE

2nd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology II.</td>
<td>C8L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics II.</td>
<td>C5L2P2</td>
<td>final#</td>
<td>Biophysics I., Physical Bases of Dental Materials</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology I.</td>
<td>C7L3P3</td>
<td>semifinal</td>
<td>Medical Chemistry, Medical Biology (Cellbiology)</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Medical Terminology II.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Materials</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Physical Bases of Dental Materials, Biophysics I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>First aid</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Informatics</td>
<td>C3L1P2</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education II</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Psychology</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Sociology</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Laboratory Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Nursing Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 31

The grade influences the qualification of the diploma

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
BASIC MODULE

3rd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology III.</td>
<td>C7L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II., Biochemistry, Molecular and Cellbiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology II.</td>
<td>C5L3P2</td>
<td>semifinal</td>
<td>Biochemistry, Molecular and Cellbiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology I.</td>
<td>C11L6P5</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II., Biochemistry, Molecular and Cellbiology I., Biophysics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prostodontics Preclinical Course I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>General Dental Materials, Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Medical Terminology III.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education III.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 28

4th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy (Maxillofacial Anatomy) IV.</td>
<td>C6L3P2</td>
<td>final#</td>
<td>Anatomy, Histology, Embryology III., Biochemistry, Molecular and Cellbiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology III.</td>
<td>C5L3P2</td>
<td>final#</td>
<td>Biochemistry, Molecular and Cellbiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology II.</td>
<td>C10L6P5</td>
<td>final#</td>
<td>Medical and Dental Physiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prostodontics Preclinical Course II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prostodontics Preclinical Course I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prostodontics Preclinical Course I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Medical Terminology IV.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Preclinical Practice</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>General Dental Materials, Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education IV.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 35

#The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
PRE-CLINICAL MODULE

5th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical II.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conservative Dentistry and Endodontics, Pre-clinical I.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General Dental Preclinical Practice</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Microbiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Pathophysiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Basic Immunology</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology I.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pathology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course III.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Odontotechnology and Prosthodontics Preclinical Course II.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General Dental Preclinical Practice</td>
</tr>
</tbody>
</table>

Total Credit: 30

The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
PRE-CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical Course II., Odontotechnology and Prosthodontics Preclinical Course III</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine I.</td>
<td>C3L2P2</td>
<td>practice mark</td>
<td>General and Oral Pathophysiology, Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Biology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Genetics and Genomics</td>
<td>C2L2P1</td>
<td>final#</td>
<td>Biochemistry, Molecular and Cellbiology III., Medical and Dental Physiology II</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Pathology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Pathology, General and Oral Microbiology, General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry II.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Preventive Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course III, Conservative Dentistry and Endodontics, Pre-clinical II</td>
</tr>
<tr>
<td>compulsory</td>
<td>Radiation protection</td>
<td>C2L1.5P1</td>
<td>semifinal</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology II.</td>
<td>C2L0P4</td>
<td>final</td>
<td>Hungarian Dental Terminology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics I.</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dento-Alveolar practice (summer, minimum 1 week)</td>
<td></td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

| Total Credit | 33 | | | |

Explanation

15 credits should be gained from the elective subjects during the 5-year studies – see the elective list after the 3rd year study program.

#The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>General and Dental Radiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Radiation protection, Pathology, General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics I., Prosthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine II.</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Internal Medicine I., Genetics and Genomics</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology I.</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology I.</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td>Pathology, Biochemistry, Molecular and Cellbiology III, Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics II.</td>
<td>C7L1P6</td>
<td>semifinal</td>
<td>Prosthodontics I., Conservative Dentistry and Endodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics Pre-Clinical</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Neurorology</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Psychiatry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Ethics</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Gnathology</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Prosthodontics I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Public Health</td>
<td>C3L1,5P2</td>
<td>final#</td>
<td>General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Community Dentistry I.</td>
<td>C0L0P1</td>
<td>signature</td>
<td>Oral Pathology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Otorhinolaryngology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Ophthalmology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Pediatrics</td>
<td>C1L1P0.5</td>
<td>semifinal</td>
<td>Internal Medicine I., Pathology</td>
</tr>
</tbody>
</table>

Total Credit: 40

*The grade influences the qualification of the diploma

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

8th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics II., Prosthodontics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine III.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Internal Medicine II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery III.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology II.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Periodontology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology II.</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Pharmacology, Toxicology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Prosthodontics II., Conservative Dentistry and Endodontics II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Surgery</td>
<td>C3L2P1</td>
<td>final#</td>
<td>Internal Medicine I., Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology I.</td>
<td>C1L1G0</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Community Dentistry II.</td>
<td>C0L1P1,5</td>
<td>signature</td>
<td>Community Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dentistry practice (summer,4weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>1-8 semesters compulsory subjets</td>
</tr>
</tbody>
</table>

| Total Credit | 24 |

#The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

- **C** = Credit point
- **L** = Lecture (hours/week)
- **P** = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>9th semester</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry I.*</td>
<td>C2L0P6</td>
<td>practice</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics IV</td>
<td>C3L0P3</td>
<td>practice</td>
<td>Conservative Dentistry and Endodontics III., Prosthodontics III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Forensic Dentistry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery IV.</td>
<td>C5L1P5</td>
<td>practice</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology II.</td>
<td>C2L1P1</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics I.</td>
<td>C5L1P4</td>
<td>practice</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics I.</td>
<td>C5L1P4</td>
<td>practice</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology III.</td>
<td>C3L1P2</td>
<td>practice</td>
<td>Periodontology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Prehospital Emergency Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics IV.</td>
<td>C3L0P3</td>
<td>practice</td>
<td>Prosthodontics III., Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics II.</td>
<td>C1L0P1</td>
<td>semifinal</td>
<td>Oral Diagnostics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Oral Diagnostics I.</td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*at the Dept. of Prosthodontics or at the Dept. of Conservative Dentistry
The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>prerequisites code</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry II.*</td>
<td>C3L0P6</td>
<td>practice mark</td>
<td>Clinical Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics V</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Conservative Dentistry and Endodontics IV.,</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dermatology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Obstetrics and Family Planning</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Diploma Work</td>
<td>C20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery V.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics II</td>
<td>C6L1P5</td>
<td>final#</td>
<td>Orthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics II</td>
<td>C6L1P5</td>
<td>final#</td>
<td>Pedodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology IV.</td>
<td>C3L1.5P2</td>
<td>final#</td>
<td>Periodontology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics V.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Prosthodontics IV., Conservative Dentistry and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Endodontics IV.</td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

* at the Dept. of Prosthodontics
#The grade influences the qualification of the diploma.
15 credits should be gained from the elective subjects during the 5-year studies.
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
Study Program for students started studies in the 2014/2015 academic year

BASIC MODULE

1st semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology I.</td>
<td>C8L3P5</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Bases of Dental Materials</td>
<td>C2L2P0</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Chemistry</td>
<td>C6L3P3</td>
<td>final#</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Biology (Cell Biology)</td>
<td>C3L2P1</td>
<td>final#</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics I.</td>
<td>C3L1.5P2</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Language</td>
<td>C2L0P4</td>
<td>practice mark</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Latin I.</td>
<td>C2L0P2</td>
<td>practice mark</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education I.</td>
<td>C0L0P1</td>
<td>signature</td>
</tr>
</tbody>
</table>

Total Credit 26

2nd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology II.</td>
<td>C8L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics II.</td>
<td>C5L2P2</td>
<td>final#</td>
<td>Biophysics I., Physical Bases of Dental Materials</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology I.</td>
<td>C7L3P3</td>
<td>semifinal</td>
<td>Medical Chemistry, Medical Biology (Cellbiology)</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Medical Terminology</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Language</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Materials</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Physical Bases of Dental Materials, Biophysics I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>First aid</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td>Physical Bases of Dental Materials, Biophysics I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Informatics</td>
<td>C3L1P2</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education II</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Latin II.</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td>Medical Latin I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Psychology</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Sociology</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Laboratory Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Nursing Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 33

The grade influences the qualification of the diploma

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
BASIC MODULE

3rd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology III.</td>
<td>C7L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II., Biochemistry, Molecular and Cellbiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology II.</td>
<td>C5L3P2</td>
<td>semifinal</td>
<td>Biochemistry, Molecular and Cellbiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology I.</td>
<td>C9L6P3.5</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II., Biochemistry, Molecular and Cellbiology I., Biophysics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>General Dental Materials, Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology I.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education III.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy (Maxillofacial Anatomy) IV.</td>
<td>C6L3P2</td>
<td>final#</td>
<td>Anatomy, Histology, Embryology III.,</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology III.</td>
<td>C5L3P2</td>
<td>final#</td>
<td>Biochemistry, Molecular and Cellbiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology II.</td>
<td>C9L6P3.5</td>
<td>final#</td>
<td>Medical and Dental Physiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology II.</td>
<td>C4L0P4</td>
<td>practice mark</td>
<td>Hungarian Dental Terminology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Preclinical Practice</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>General Dental Materials, Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education IV.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#The grade influences the qualification of the diploma.
15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
PRE-CLINICAL MODULE

5th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
</table>
| compulsory | Conservative Dentistry and Endodontics, Pre-clinical II. | C4L1P3 | final# | Anatomy (Maxillofacial Anatomy) IV.
Conservative Dentistry and Endodontics, Pre-clinical I.
General Dental Preclinical Practice |
| compulsory | General and Oral Microbiology | C4L2P2 | final# | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | General and Oral Pathophysiology | C4L2P2 | final# | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Basic Immunology | C3L2P1 | semifinal | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Hungarian Dental Terminology III. | C2L0P4 | practice mark | Hungarian Medical Terminology IV. |
| compulsory | Oral and Maxillofacial Surgery, Pre-clinical course | C2L0P2 | practice mark | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Pathology | C5L3P2 | final# | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Preventive Dentistry I. | C3L1P2 | practice mark | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Odontotechnology and Prosthodontics Preclinical Course III. | C3L0P3 | final# | Odontotechnology and Prosthodontics Preclinical Course II.
General Dental Preclinical Practice |
| compulsory | The Medical Basis of Disaster Management I. | C0L2 hours/semester | signature | |

Total Credit 30

The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
Pre-Clinical Module

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subjects</th>
<th>Credit Code</th>
<th>Examination</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical Course II., Odontotechnology and Prosthodontics Preclinical Course III</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine I.</td>
<td>C3L2P2</td>
<td>practice mark</td>
<td>General and Oral Pathophysiology, Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Biology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Genetics and Genomics</td>
<td>C2L2P1</td>
<td>final#</td>
<td>Biochemistry, Molecular and Cellbiology III., Medical and Dental Physiology II</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Pathology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Pathology, General and Oral Microbiology, General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry II.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Preventive Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course III., Conservative Dentistry and Endodontics, Pre-clinical II</td>
</tr>
<tr>
<td>compulsory</td>
<td>Radiation protection</td>
<td>C2L1.5P1</td>
<td>semifinal</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology II.</td>
<td>C2L0P4</td>
<td>final</td>
<td>Hungarian Dental Terminology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics I.</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>The Medical Basis of Disaster Management II.</td>
<td>C0L2</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Dento-Alveolar practice (summer, minimum 1 week)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit: 33

Notes
- The grade influences the qualification of the diploma.
- 15 credits should be gained from the elective subjects during the 5-year studies.
- C = Credit point
- L = Lecture (hours/week)
- P = Practice (hours/week)
<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>General and Dental Radiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Radiation protection, Pathology, General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics I., Prosthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine II.</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Internal Medicine I., Genetics and Genomics</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology I.</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology I.</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td>Pathology, Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics II.</td>
<td>C7L1P6</td>
<td>semifinal</td>
<td>Prosthodontics I., Conservative Dentistry and Endodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics Pre-Clinical</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Neurorology</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Psychiatry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Ethics</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Gnathology</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Prosthodontics I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Public Health</td>
<td>C3L1,5P2</td>
<td>final#</td>
<td>General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Community Dentistry I.</td>
<td>C0L0P1</td>
<td>signature</td>
<td>Oral Pathology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Otorhinolaryngology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Ophthalmology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Pediatrics</td>
<td>C1L1P0.5</td>
<td>semifinal</td>
<td>Internal Medicine I., Pathology</td>
</tr>
</tbody>
</table>

Total Credit
40

The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics II., Prosthodontics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine III.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Internal Medicine II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery III.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology II.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Periodontology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology II.</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Pharmacology, Toxicology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Prosthodontics II., Conservative Dentistry and Endodontics II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Surgery</td>
<td>C3L2P1</td>
<td>final#</td>
<td>Internal Medicine I., Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology I.</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Community Dentistry II.</td>
<td>C0L1P1,5</td>
<td>signature</td>
<td>Community Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dentistry practice (summer, 4 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>1-8 semesters compulsory subjects</td>
</tr>
<tr>
<td></td>
<td>Total Credit</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The grade influences the qualification of the diploma.
15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry I.*</td>
<td>C2L0P6</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics IV</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III., Prosthodontics III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Forensic Dentistry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery IV.</td>
<td>C5L1P5</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology II.</td>
<td>C2L1P1</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics I.</td>
<td>C5L1P4</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics I.</td>
<td>C5L1P4</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology III.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Periodontology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Prehospital Emergency Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics IV.</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Prosthodontics III., Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics II.</td>
<td>C1L0P1</td>
<td>semifinal</td>
<td>Oral Diagnostics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Oral Diagnostics I.</td>
</tr>
<tr>
<td></td>
<td>Total Credit</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*at the Dept. of Prosthodontics or at the Dept. of Conservative Dentistry

The grade influences the qualification of the diploma
*C = Credit point
*L = Lecture (hours/week)
P = Practice (hours/week)
<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>prerequisites code</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry II. *</td>
<td>C3L0P6</td>
<td>practice mark</td>
<td>Clinical Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics V</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Conservative Dentistry and Endodontics IV., Prosthodontics IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dermatology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Obstetrics and Family Planning</td>
<td>C1L1P0.5</td>
<td>semifinal</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Diploma Work</td>
<td>C20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery V.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics II</td>
<td>C6L1P5</td>
<td>final#</td>
<td>Orthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics II</td>
<td>C6L1P5</td>
<td>final#</td>
<td>Pedodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology IV.</td>
<td>C3L1.5P2</td>
<td>final#</td>
<td>Periodontology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics V.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Prosthodontics IV., Conservative Dentistry and Endodontics IV.</td>
</tr>
</tbody>
</table>

Total Credit | **50**

* at the Dept. of Prosthodontics
#The grade influences the qualification of the diploma.
15 credits should be gained from the elective subjects during th 5-year studies.
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
Study Program for students started studies in the 2015/2016 academic year

BASIC MODULE

1st semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology I.</td>
<td>C8L3P5</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Bases of Dental Materials</td>
<td>C2L2P0</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Chemistry</td>
<td>C6L3P3</td>
<td>final#</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Biology (Cell Biology)</td>
<td>C3L2P1</td>
<td>final#</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics I.</td>
<td>C3L1.5P2</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Language</td>
<td>C2L0P4</td>
<td>practice mark</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Latin I.</td>
<td>C2L0P2</td>
<td>practice mark</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education I.</td>
<td>C0L0P1</td>
<td>signature</td>
</tr>
</tbody>
</table>

Total Credit 26

2nd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology II.</td>
<td>C8L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology I., Medical Biology (Cellbiology), Medical Latin I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics II.</td>
<td>C5L2P2</td>
<td>final#</td>
<td>Biophysics I., Physical Bases of Dental Materials</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology I.</td>
<td>C7L3P3</td>
<td>semifinal</td>
<td>Medical Chemistry, Medical Biology (Cellbiology)</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Medical Terminology</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Language</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Materials</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Physical Bases of Dental Materials</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>First aid</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Informatics</td>
<td>C3L1P2</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education II</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Latin II.</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td>Medical Latin I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Psychology</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Sociology</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Laboratory Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Nursing Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 33

Explanation

15 credits should be gained from the elective subjects during the 5-year studies – see the elective list after the 3rd year study program

#The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point

L = Lecture (hours/week)

P = Practice (hours/week)
BASIC MODULE

3rd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology III.</td>
<td>C7L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II., Biochemistry, Molecular and Cellbiology I., Medical Latin II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology II.</td>
<td>C5L3P2</td>
<td>semifinal</td>
<td>Biochemistry, Molecular and Cellbiology I., Biophysics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology I.</td>
<td>C9L6P3.5</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II., Biochemistry, Molecular and Cellbiology I., Biophysics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>General Dental Materials, Anatomy, Histology, Embryology II., Medical Latin II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology I.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education III.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 26

4th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy (Maxillofacial Anatomy) IV.</td>
<td>C6L3P2</td>
<td>final#</td>
<td>Anatomy, Histology, Embryology III., Biochemistry, Molecular and Cellbiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology III.</td>
<td>C5L3P2</td>
<td>final#</td>
<td>Biochemistry, Molecular and Cellbiology II., Medical and Dental Physiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology II.</td>
<td>C9L6P3.5</td>
<td>final#</td>
<td>Medical and Dental Physiology I., Biochemistry, Molecular and Cellbiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology II.</td>
<td>C4L0P4</td>
<td>practice mark</td>
<td>Hungarian Dental Terminology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Preclinical Practice</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>General Dental Materials, Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education IV.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 36

Explanation

- 15 credits should be gained from the elective subjects during the 5-year studies – see the elective list after the 3rd year study program.
- The grade influences the qualification of the diploma.
- 15 credits should be gained from the elective subjects during the 5-year studies.

Legends

- **C** = Credit point,
- **L** = Lecture (hours/week),
- **P** = Practice (hours/week)
PRE-CLINICAL MODULE

5th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical II.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Conservative Dentistry and Endodontics, Pre-clinical I. General Dental Preclinical Practice</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Microbiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Pathophysiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Basic Immunology</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology III.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pathology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course III.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Odontotechnology and Prosthodontics Preclinical Course II. General Dental Preclinical Practice</td>
</tr>
<tr>
<td>compulsory</td>
<td>The Medical Basis of Disaster Management I.</td>
<td>C0L2 hours/sem</td>
<td>signature</td>
<td>Anatomy IV.</td>
</tr>
</tbody>
</table>

Total Credit 30

Explanation

15 credits should be gained from the **elective subjects** during the 5-year

The grade influences the qualification of the diploma

C = Credit point

L = Lecture (hours/week)

P = Practice (hours/week)
PRE-CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory Conservative Dentistry and Endodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical Course II., Odontotechnology and Prosthodontics Preclinical Course III.</td>
</tr>
<tr>
<td>compulsory Internal Medicine I.</td>
<td>C3L2P2</td>
<td>practice mark</td>
<td>General and Oral Pathophysiology, Pathology</td>
</tr>
<tr>
<td>compulsory Oral and Maxillofacial Surgery I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course, Pathology</td>
</tr>
<tr>
<td>compulsory Oral Biology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory Genetics and Genomics</td>
<td>C2L2P1</td>
<td>final#</td>
<td>Biochemistry, Molecular and Cellbiology III., Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory Oral Pathology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Pathology, General and Oral Microbiology, General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory Preventive Dentistry II.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Preventive Dentistry I., Conservative Dentistry and Endodontics, Pre-clinical Course II., Odontotechnology and Prosthodontics Preclinical Course III.</td>
</tr>
<tr>
<td>compulsory Prosthodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Preventive Dentistry I., Odontotechnology and Prosthodontics Preclinical Course III., Conservative Dentistry and Endodontics, Pre-clinical II.</td>
</tr>
<tr>
<td>compulsory Radiation protection</td>
<td>C2L1.5P1</td>
<td>semifinal</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.</td>
</tr>
<tr>
<td>compulsory Hungarian Dental Terminology IV.</td>
<td>C2L0P4</td>
<td>final</td>
<td>Hungarian Dental Terminology III.</td>
</tr>
<tr>
<td>compulsory Oral Diagnostics I.</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td>Pathology, General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory The Medical Basis of Disaster Management II.</td>
<td>C0L2</td>
<td>signature</td>
<td>The Medical Basis of Disaster Management I.</td>
</tr>
<tr>
<td>compulsory Dento-Alveolar practice (summer, minimum 1 week)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 33

The grade influences the qualification of the diploma

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>General and Dental Radiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Radiation protection Pathology, General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics I., Prosthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine II.</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Internal Medicine I., Genetics and Genomics</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery I., Oral Pathology Radiation protection</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology I.</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology I.</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td>Pathology, Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics II.</td>
<td>C7L1P6</td>
<td>semifinal</td>
<td>Prosthodontics I., Conservative Dentistry and Endodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics Pre-Clinical</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Neurorology</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Psychiatry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Ethics</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Gnathology</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Prosthodontics I. Conservative Dentistry and Endodontics I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Public Health</td>
<td>C3L1.5P2</td>
<td>final#</td>
<td>General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Community Dentistry I.</td>
<td>C0L0P1</td>
<td>signature</td>
<td>Oral Pathology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Pediatrics</td>
<td>C1L1P0.5</td>
<td>semifinal</td>
<td>Internal Medicine I., Pathology</td>
</tr>
</tbody>
</table>

Total Credit: 38
<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics II., Prosthodontics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine III.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Internal Medicine II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery III.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II. Pharmacology, Toxicology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology II.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Periodontology I., Internal Medicine II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology II.</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Pharmacology, Toxicology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Prosthodontics II., Conservative Dentistry and Endodontics II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Surgery</td>
<td>C3L2P1</td>
<td>final#</td>
<td>Internal Medicine I., Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology I.</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II. Periodontology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Community Dentistry II.</td>
<td>C0L1P1,5</td>
<td>signature</td>
<td>Community Dentistry I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Ophthalmology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Otorhinolaryngology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dentistry practice (summer, 4 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 26

Explanation
15 credits should be gained from the elective subjects during the 5-year studies – see the elective list after the 3rd year study program
The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry I.*</td>
<td>C2L0P6</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III., Prosthodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics IV</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III., Prosthodontics III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Forensic Dentistry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery IV.</td>
<td>C5L1P5</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology II.</td>
<td>C2L1P1</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics I.</td>
<td>C5L1P4</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics I.</td>
<td>C5L1P4</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology III.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Periodontology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Prehospital Emergency Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics IV.</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Prosthodontics III., Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics II.</td>
<td>C1L0P1</td>
<td>semifinal</td>
<td>Oral Diagnostics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Oral Diagnostics I.</td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

*at the Dept. of Prosthodontics or at the Dept. of Conservative Dentistry

#The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point

L = Lecture (hours/week)

P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>prerequisites code</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry II. *</td>
<td>C3L0P6</td>
<td>practice mark</td>
<td>Clinical Dentistry I., Prosthodontics IV., Conservative Dentistry and Endodontics IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics V</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Conservative Dentistry and Endodontics IV., Prosthodontics IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dermatology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Obstetrics and Family Planning</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Diploma Work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery V.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics II</td>
<td>C6L1P5</td>
<td>final#</td>
<td>Orthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics II</td>
<td>C6L1P5</td>
<td>final#</td>
<td>Pedodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology IV.</td>
<td>C3L1.5P2</td>
<td>final#</td>
<td>Periodontology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics V.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Prosthodontics IV., Conservative Dentistry and Endodontics IV.</td>
</tr>
</tbody>
</table>

Total Credit 50

Explanation
- **15 credits** should be gained from the **elective subjects** during the 5-year studies – see the elective list after the 3rd year study program
- # The grade influences the qualification of the diploma
- **C** = Credit point
- **L** = Lecture (hours/week)
- **P** = Practice (hours/week)
Study Program for students started studies in the 2016/2017 academic year

BASIC MODULE

1st semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>Examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology I.</td>
<td>C8L3P5</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Bases of Dental Materials</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Chemistry</td>
<td>C6L3P3</td>
<td>final#</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Biology (Cell Biology)</td>
<td>C3L2P1</td>
<td>final#</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics I.</td>
<td>C3L1.5P2</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Language</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Latin I.</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education I.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 26

2nd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology II.</td>
<td>C8L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology I., Medical Biology (Cellbiology), Medical Latin I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics II.</td>
<td>C5L2P2</td>
<td>final#</td>
<td>Biophysics I., Physical Bases of Dental Materials</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology I.</td>
<td>C7L3P3</td>
<td>semifinal</td>
<td>Medical Chemistry, Medical Biology (Cellbiology)</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Medical Terminology</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Language</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Materials</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Physical Bases of Dental Materials</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>First aid</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Informatics</td>
<td>C3L1P2</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education II</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Latin II.</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td>Medical Latin I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Psychology</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Sociology</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Laboratory Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>Prerequisite of registering to the 3rd semester</td>
</tr>
<tr>
<td>compulsory</td>
<td>Nursing Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>Prerequisite of registering to the 3rd semester</td>
</tr>
</tbody>
</table>

Total Credit 33

Explanation

15 credits should be gained from the **elective subjects** during the 5-year studies – see the elective list after the 3rd year study program.

The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point

L = Lecture (hours/week)

P = Practice (hours/week)
BASIC MODULE

3rd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology III.</td>
<td>C7L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II., Biochemistry, Molecular and Cellbiology I., Medical Latin II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology II.</td>
<td>C5L3P2</td>
<td>semifinal</td>
<td>Biochemistry, Molecular and Cellbiology I., Biophysics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology I.</td>
<td>C9L6P3.5</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II., Biochemistry, Molecular and Cellbiology I., Biophysics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>General Dental Materials, Anatomy, Histology, Embryology II., Medical Latin II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology I.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education III.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

4th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy (Maxillofacial Anatomy) IV.</td>
<td>C6L3P2</td>
<td>final#</td>
<td>Anatomy, Histology, Embryology III., Biochemistry, Molecular and Cellbiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biochemistry, Molecular and Cellbiology III.</td>
<td>C5L3P2</td>
<td>final#</td>
<td>Biochemistry, Molecular and Cellbiology II., Medical and Dental Physiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology II.</td>
<td>C9L6P3.5</td>
<td>final#</td>
<td>Medical and Dental Physiology I., Biochemistry, Molecular and Cellbiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology II.</td>
<td>C4L0P4</td>
<td>practice mark</td>
<td>Hungarian Dental Terminology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Preclinical Practice</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>General Dental Materials, Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education IV.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>

Explanation

- 15 credits should be gained from the elective subjects during the 5-year studies – see the elective list after the 3rd year study program
- #The grade influences the qualification of the diploma.
- 15 credits should be gained from the elective subjects during the 5-year studies.
- C = Credit point, L = Lecture (hours/week), P = Practice (hours/week)
PRE-CLINICAL MODULE

5th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical II.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Conservative Dentistry and Endodontics, Pre-clinical I., General Dental Preclinical Practice</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Microbiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Pathophysiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Basic Immunology</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology III.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pathology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course III.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Odontotechnology and Prosthodontics Preclinical Course II., General Dental Preclinical Practice</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Aspects of Disaster Preparedness and Response I.</td>
<td>C0L2</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation

15 credits should be gained from the elective subjects during the 5-year.

The grade influences the qualification of the diploma

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
PRE-CLINICAL MODULE

6th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical Course II.,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Odontotechnology and Prosthodontics Preclinical Course III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine I.</td>
<td>C3L2P2</td>
<td>practice mark</td>
<td>General and Oral Pathophysiology, Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course, Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Biology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>General and Oral Pathophysiology, General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Genetics and Genomics</td>
<td>C2L2P1</td>
<td>final#</td>
<td>Biochemistry, Molecular and Cellbiology III., Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Pathology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Pathology, General and Oral Microbiology, General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry II.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Preventive Dentistry I., Conservative Dentistry and Endodontics, Pre-clinical Course II., Odontotechnology and Prosthodontics Preclinical Course III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course III., Conservative Dentistry and Endodontics, Pre-clinical II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Radiation protection</td>
<td>C2L1.5P1</td>
<td>semifinal</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology IV.</td>
<td>C2L0P4</td>
<td>final</td>
<td>Hungarian Dental Terminology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics I.</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td>Pathology, General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Aspects of Disaster Preparedness and Response II.</td>
<td>C0L2</td>
<td>hours/sem</td>
<td>Pathology, General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dento-Alveolar practice (summer, minimum 1 week)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>prerequisite of registering to the 7th semester</td>
</tr>
</tbody>
</table>

Total Credit

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>General and Dental Radiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Radiation protection, Pathology, General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics I., Prosthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine II.</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Internal Medicine I., Genetics and Genomics</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery I., Oral Pathology Radiation protection</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology I.</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology I.</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td>Pathology, Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics II.</td>
<td>C7L1P6</td>
<td>semifinal</td>
<td>Prosthodontics I., Conservative Dentistry and Endodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics Pre-Clinical</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Neurorology</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Psychiatry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Ethics</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Gnathology</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Prosthodontics I., Conservative Dentistry and Endodontics I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Public Health</td>
<td>C3L1,5P2</td>
<td>final#</td>
<td>General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Community Dentistry I.</td>
<td>C0L0P1</td>
<td>signature</td>
<td>Oral Pathology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Pediatrics</td>
<td>C1L1P0.5</td>
<td>semifinal</td>
<td>Internal Medicine I., Pathology</td>
</tr>
</tbody>
</table>

Total Credit: 38

The grade influences the qualification of the diploma

C = Credit point

L = Lecture (hours/week)

P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics II., Prosthodontics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine III.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Internal Medicine II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery III.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II. Pharmacology, Toxicology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology II.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Periodontology I., Internal Medicine II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology II.</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Pharmacology, Toxicology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Prosthodontics II., Conservative Dentistry and Endodontics II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Surgery</td>
<td>C3L2P1</td>
<td>final#</td>
<td>Internal Medicine I., Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology I.</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II. Periodontology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Community Dentistry II.</td>
<td>C0L1P1,5</td>
<td>signature</td>
<td>Community Dentistry I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Ophthalmology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Otorhinolaryngology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dentistry practice (summer, 4 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>prerequisite of registering to the 9th semester</td>
</tr>
</tbody>
</table>

Total Credit

| Total Credit | 26 |

Explanation

15 credits should be gained from the elective subjects during the 5-year studies – see the elective list after the 3rd year study program

The grade influences the qualification of the diploma

C = Credit point

L = Lecture (hours/week)

P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry I.*</td>
<td>C2L0P6</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prosthodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics IV</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prosthodontics III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Forensic Dentistry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery IV.</td>
<td>C5L1P5</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology II.</td>
<td>C2L1P1</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics I.</td>
<td>C5L1P5</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics I.</td>
<td>C5L1P5</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology III.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Periodontology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Prehospital Emergency Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics IV.</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Prosthodontics III., Conservative Dentistry and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics II.</td>
<td>C1L0P1</td>
<td>semifinal</td>
<td>Oral Diagnostics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Pharmacology and Toxicology II.</td>
</tr>
<tr>
<td>Total Credit</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*at the Dept. of Prosthodontics or at the Dept. of Conservative Dentistry

#The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>prerequisites code</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry II. *</td>
<td>C3L0P6</td>
<td>practice mark</td>
<td>Clinical Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics V</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Conservative Dentistry and Endodontics IV., Prosthodontics IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dermatology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Obstetrics and Family Planning</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Diploma Work</td>
<td>C20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery V.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics II</td>
<td>C6L1P4</td>
<td>final#</td>
<td>Orthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics II</td>
<td>C6L1P4</td>
<td>final#</td>
<td>Pedodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology IV.</td>
<td>C3L1.5P2</td>
<td>final#</td>
<td>Periodontology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics V.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Prosthodontics IV., Conservative Dentistry and Endodontics IV.</td>
</tr>
</tbody>
</table>

Total Credit 50

Explanation

15 credits should be gained from the elective subjects during the 5-year studies – see the elective list after the 3rd year study program

The grade influences the qualification of the diploma

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
Study Program for students started studies in the 2017/2018 academic year

BASIC MODULE

1st semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology I.</td>
<td>C8L3P5</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Bases of Dental Materials</td>
<td>C2L2P0</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Chemistry</td>
<td>C6L3P3</td>
<td>final#</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Biology (Cell Biology)</td>
<td>C3L2P1</td>
<td>final#</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics I.</td>
<td>C3L1.5P2</td>
<td>semifinal</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Language</td>
<td>C2L0P4</td>
<td>practice mark</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Latin I.</td>
<td>C2L0P2</td>
<td>practice mark</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education I.</td>
<td>C0L0P1</td>
<td>signature</td>
</tr>
</tbody>
</table>

Total Credit: 26

2nd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>Examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology II.</td>
<td>C8L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology I., Medical Biology (Cell Biology), Medical Latin I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics II.</td>
<td>C5L2P2</td>
<td>final#</td>
<td>Biophysics I., Physical Bases of Dental Materials</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Biochemistry I.</td>
<td>C3L2P1,5</td>
<td>practice mark</td>
<td>Medical Chemistry, Medical Biology (Cell Biology)</td>
</tr>
<tr>
<td>compulsory</td>
<td>Molecular Cellbiology I.</td>
<td>C4L2,5P2</td>
<td>semifinal</td>
<td>Medical Chemistry, Medical Biology (Cell Biology)</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Medical Terminology</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Language</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Materials</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Physical Bases of Dental Materials</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>First Aid</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Informatics</td>
<td>C3L1P2</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education II.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Latin II.</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td>Medical Latin I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Psychology</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Sociology</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>History of Medicine</td>
<td>C2L2P0</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Laboratory Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>Prerequisite of registering to the 3rd semester</td>
</tr>
<tr>
<td>compulsory</td>
<td>Nursing Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>Prerequisite of registering to the 3rd semester</td>
</tr>
</tbody>
</table>

Total Credit: 35

* The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
BASIC MODULE

3rd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology III.</td>
<td>C7L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II., Molecular Cellbiology I., Medical Latin II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Biochemistry II.</td>
<td>C4L3P1,5</td>
<td>semifinal</td>
<td>Dental Biochemistry I., Molecular Cellbiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Molecular Cellbiology II.</td>
<td>C3L3P0</td>
<td>final#</td>
<td>Dental Biochemistry I., Molecular Cellbiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology I.</td>
<td>C9L6P3.5</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II., Molecular Cellbiology I., Biophysics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>General Dental Materials, Anatomy, Histology, Embryology II., Medical Latin II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology I.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education III.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit</td>
<td></td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

4th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy (Maxillofacial Anatomy) IV.</td>
<td>C6L3P2</td>
<td>final#</td>
<td>Anatomy, Histology, Embryology III., Dental Biochemistry II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Biochemistry III.</td>
<td>C3L2P1,5</td>
<td>final#</td>
<td>Dental Biochemistry II., Molecular Cellbiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology II.</td>
<td>C9L6P3.5</td>
<td>final#</td>
<td>Medical and Dental Physiology I., Molecular Cellbiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Preclinical I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology II.</td>
<td>C4L0P4</td>
<td>practice mark</td>
<td>Hungarian Dental Terminology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Preclinical Practice</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>General Dental Materials, Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education IV.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit</td>
<td></td>
<td></td>
<td>34</td>
</tr>
</tbody>
</table>

Explanation

15 credits should be gained from the elective subjects during the 5-year studies – see the elective list after the 3rd year study program.

#The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point, L = Lecture (hours/week), P = Practice (hours/week)
PRE-CLINICAL MODULE

5th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical II.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Conservative Dentistry and Endodontics, Pre-clinical I. General Dental Preclinical Practice</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Microbiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Pathophysiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Basic Immunology</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology III.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pathology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course III.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Odontotechnology and Prosthodontics Preclinical Course II., General Dental Preclinical Practice</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Aspects of Disaster Preparedness and Response I.</td>
<td>C0L2</td>
<td>signature</td>
<td>Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td>30</td>
<td></td>
<td>15 credits should be gained from the elective subjects during the 5-year</td>
</tr>
</tbody>
</table>
PRE-CLINICAL MODULE

6th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical Course II., Odontotechnology and Prosthodontics Preclinical Course III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine I.</td>
<td>C3L2P2</td>
<td>practice mark</td>
<td>General and Oral Pathophysiology, Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course, Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Biology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Genetics and Genomics</td>
<td>C2L2P1</td>
<td>final#</td>
<td>Biochemistry, Molecular and Cellbiology III., Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Pathology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Pathology, General and Oral Microbiology, General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry II.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Preventive Dentistry I., Conservative Dentistry and Endodontics, Pre-clinical Course II., Odontotechnology and Prosthodontics Preclinical Course III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course III., Conservative Dentistry and Endodontics, Pre-clinical II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Radiation protection</td>
<td>C2L1.5P1</td>
<td>semifinal</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III., Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology IV.</td>
<td>C2L0P4</td>
<td>final</td>
<td>Hungarian Dental Terminology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics I.</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td>Pathology, General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Aspects of Disaster Preparedness and Response II.</td>
<td>C0L2 hours/sem</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Dento-Alveolar practice (summer, minimum 1 week)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>prerequisite of registering to the 7th semester</td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>General and Dental Radiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Radiation protection, Pathology, General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics I., Prosthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine II.</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Internal Medicine I., Genetics and Genomics</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery I., Oral Pathology Protection</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology I.</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology I.</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td>Pathology, Biochemistry, Molecular and Cellbiology III., Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics II.</td>
<td>C7L1P6</td>
<td>semifinal</td>
<td>Prosthodontics I., Conservative Dentistry and Endodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics Pre-Clinical</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Neurorology</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Psychiatry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Ethics</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Gnathology</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Prosthodontics I., Conservative Dentistry and Endodontics I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Public Health</td>
<td>C3L1,5P2</td>
<td>final#</td>
<td>General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Community Dentistry I.</td>
<td>C0L0P1</td>
<td>signature</td>
<td>Oral Pathology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Pediatrics</td>
<td>C1L1P0.5</td>
<td>semifinal</td>
<td>Internal Medicine I., Pathology</td>
</tr>
</tbody>
</table>

Total Credit 38

* The grade influences the qualification of the diploma

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics II., Prosthodontics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine III.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Internal Medicine II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery III.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II., Pharmacology, Toxicology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology II.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Periodontology I., Internal Medicine II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology II.</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Pharmacology, Toxicology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Prosthodontics II., Conservative Dentistry and Endodontics II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Surgery</td>
<td>C3L2P1</td>
<td>final#</td>
<td>Internal Medicine I., Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology I.</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II., Periodontology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Community Dentistry II.</td>
<td>C0L1P1,5</td>
<td>signature</td>
<td>Community Dentistry I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Ophthalmology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Otorhinolaryngology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dentistry practice (summer, 4 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>prerequisite of registering to the 9th semester</td>
</tr>
<tr>
<td></td>
<td>Total Credit</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation

15 credits should be gained from the **elective subjects** during the 5-year studies – see the elective list after the 3rd year study program

The grade influences the qualification of the diploma

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry I.*</td>
<td>C2L0P6</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III., Prosthodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics IV</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III., Prosthodontics III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Forensic Dentistry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery IV.</td>
<td>C5L1P5</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology II.</td>
<td>C2L1P1</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics I.</td>
<td>C5L1P5</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics I.</td>
<td>C5L1P5</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology III.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Periodontology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Prehospital Emergency Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics IV.</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Prosthodontics III., Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics II.</td>
<td>C1L0P1</td>
<td>semifinal</td>
<td>Oral Diagnostics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Pharmacology and Toxicology II.</td>
</tr>
</tbody>
</table>

Total Credit | **32**

*at the Dept. of Prosthodontics or at the Dept. of Conservative Dentistry

#The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>prerequisites code</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry II. *</td>
<td>C3L0P6</td>
<td>practice mark</td>
<td>Clinical Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics V</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Conservative Dentistry and Endodontics IV., Prosthodontics IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dermatology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Obstetrics and Family Planning</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Diploma Work</td>
<td>C20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery V.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics II</td>
<td>C6L1P4</td>
<td>final#</td>
<td>Orthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics II</td>
<td>C6L1P4</td>
<td>final#</td>
<td>Pedodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology IV.</td>
<td>C3L1.5P2</td>
<td>final#</td>
<td>Periodontology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics V.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Prosthodontics IV., Conservative Dentistry and Endodontics IV.</td>
</tr>
<tr>
<td>Total Credit</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation

15 credits should be gained from the elective subjects during the 5-year studies – see the elective list after the 3rd year study program.

The grade influences the qualification of the diploma.

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
Study program for students started studies in the 2018/2019 academic year

BASIC MODULE

<table>
<thead>
<tr>
<th>1st semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>subjects code</td>
</tr>
<tr>
<td>compulsory</td>
</tr>
<tr>
<td>obligatory elective</td>
</tr>
<tr>
<td>compulsory</td>
</tr>
<tr>
<td>Total Credit</td>
</tr>
</tbody>
</table>

BASIC MODULE

<table>
<thead>
<tr>
<th>2nd semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>subjects code</td>
</tr>
<tr>
<td>compulsory</td>
</tr>
<tr>
<td>obligatory elective</td>
</tr>
<tr>
<td>obligatory elective</td>
</tr>
<tr>
<td>compulsory</td>
</tr>
<tr>
<td>obligatory elective</td>
</tr>
<tr>
<td>obligatory elective</td>
</tr>
<tr>
<td>obligatory elective</td>
</tr>
<tr>
<td>obligatory elective</td>
</tr>
<tr>
<td>compulsory</td>
</tr>
<tr>
<td>compulsory</td>
</tr>
<tr>
<td>Total Credit</td>
</tr>
</tbody>
</table>

* The grade influences the qualification of the diploma
 C = Credit point
 L = Lecture (hours/week)
 P = Practice (hours/week)
BASIC MODULE

3rd semester

<table>
<thead>
<tr>
<th>subjects</th>
<th>code</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy, Histology, Embryology III.</td>
<td>C7L3P4</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II., Molecular Cellbiology I., Medical Latin II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Biochemistry II.</td>
<td>C4L3P1,5</td>
<td>semifinal</td>
<td>Dental Biochemistry I., Molecular Cell Biology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Molecular Cell Biology II.</td>
<td>C3L3P0</td>
<td>final#</td>
<td>Dental Biochemistry I., Molecular Cellbiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology I.</td>
<td>C9L6P3.5</td>
<td>semifinal</td>
<td>Anatomy, Histology, Embryology II., Molecular Cellbiology I., Biophysics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>General Dental Materials, Anatomy, Histology, Embryology II., Medical Latin II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology I.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education III.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 28

*The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)*

BASIC MODULE

4th semester

<table>
<thead>
<tr>
<th>subjects</th>
<th>code</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Anatomy (Maxillofacial Anatomy) IV.</td>
<td>C6L3P2</td>
<td>final#</td>
<td>Anatomy, Histology, Embryology III., Dental Biochemistry II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Biochemistry III.</td>
<td>C3L2P1,5</td>
<td>final#</td>
<td>Dental Biochemistry II., Molecular Cellbiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology II.</td>
<td>C9L6P3.5</td>
<td>final#</td>
<td>Medical and Dental Physiology I., Molecular Cellbiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology II.</td>
<td>C4L0P4</td>
<td>practice mark</td>
<td>Hungarian Dental Terminology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Preclinical Practice</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>General Dental Materials, Anatomy, Histology, Embryology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education IV.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 34

*The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)*
PRE-CLINICAL MODULE

5th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical II.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Microbiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Dental Biochemistry III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Pathophysiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Dental Biochemistry III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Basic Immunology</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Dental Biochemistry III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology III.</td>
<td>C2L0P4</td>
<td>practice mark</td>
<td>Hungarian Medical Terminology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Dental Biochemistry III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pathology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Dental Biochemistry III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Dental Biochemistry III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course III.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Odontotechnology and Prosthodontics Preclinical Course II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>The Medical Basis of Disaster Management I.</td>
<td>C0L2</td>
<td>signature</td>
<td>Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
</tbody>
</table>

Total Credit

| Total Credit | 30 |

The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
PRE-CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical Course II. Odontotechnology and Prosthodontics Preclinical Course III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine I.</td>
<td>C3L2P2</td>
<td>practice mark</td>
<td>General and Oral Pathophysiology, Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course, Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Biology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Genetics and Genomics</td>
<td>C2L2P1</td>
<td>final#</td>
<td>Dental Biochemistry III., Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Pathology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Pathology, General and Oral Microbiology, General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry II.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Preventive Dentistry I., Conservative Dentistry and Endodontics, Pre-clinical Course II., Odontotechnology and Prosthodontics Preclinical Course III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course III., Conservative Dentistry and Endodontics, Pre-clinical II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Radiation protection</td>
<td>C2L1.5P1</td>
<td>semifinal</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology IV.</td>
<td>C2L0P4</td>
<td>final</td>
<td>Hungarian Dental Terminology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics I.</td>
<td>C2L1P1</td>
<td>semifinal</td>
<td>Pathology, General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>The Medical Basis of Disaster Management II.</td>
<td>C0L2</td>
<td>hours/sem</td>
<td>The Medical Basis of Disaster Management I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dento-Alveolar practice (summer, minimum 1 week)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>prerequisite of registering to the 7th semester</td>
</tr>
</tbody>
</table>

Total Credit: 33

The grade influences the qualification of the diploma

C = Credit point

L = Lecture (hours/week)

P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>General and Dental Radiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Radiation protection, Pathology, General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics II.</td>
<td>C4L1P3</td>
<td>practice</td>
<td>Conservative Dentistry and Endodontics I., Prosthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine II.</td>
<td>C3L2P1</td>
<td>semifinal</td>
<td>Internal Medicine I., Genetics and Genomics</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery II.</td>
<td>C4L1P3</td>
<td>practice</td>
<td>Oral and Maxillofacial Surgery I., Oral Pathology, Radiation protection</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology I.</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology I.</td>
<td>C3L1,5P1,5</td>
<td>semifinal</td>
<td>Pathology, Dental Biochemistry III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics II.</td>
<td>C7L1P6</td>
<td>semifinal</td>
<td>Prosthodontics I., Conservative Dentistry and Endodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics Pre-Clinical</td>
<td>C1L0P1</td>
<td>practice</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Neurology</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Psychiatry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Ethics</td>
<td>C2L2P0</td>
<td>semifinal</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Gnathology</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Prosthodontics I., Conservative Dentistry and Endodontics I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Public Health</td>
<td>C3L1,5P2</td>
<td>final#</td>
<td>General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Community Dentistry I.</td>
<td>C0L0P1</td>
<td>signature</td>
<td>Oral Pathology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Pediatrics</td>
<td>C1L1P0.5</td>
<td>semifinal</td>
<td>Internal Medicine I., Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>The Medical Basis of Disaster Management III.</td>
<td>C0L2</td>
<td>signature</td>
<td>The Medical Basis of Disaster Management II.</td>
</tr>
</tbody>
</table>

Total Credit 38

The grade influences the qualification of the diploma

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics II., Prosthodontics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine III.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Internal Medicine II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery III.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II. Pharmacology, Toxicology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology II.</td>
<td>C4L1P3</td>
<td>semifinal</td>
<td>Periodontology I., Internal Medicine II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology II.</td>
<td>C3L1,5P1,5</td>
<td>final#</td>
<td>Pharmacology, Toxicology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Prosthodontics II., Conservative Dentistry and Endodontics II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Surgery</td>
<td>C3L2P1</td>
<td>final#</td>
<td>Internal Medicine I., Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology I.</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Oral and Maxillofacial Surgery II., Periodontology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Community Dentistry II.</td>
<td>C0L1P1,5</td>
<td>signature</td>
<td>Community Dentistry I., Diploma criteria subject</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Ophthalmology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Otorhinolaryngology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dentistry practice (summer, 4 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>prerequisite of registering to the 9th semester</td>
</tr>
<tr>
<td>elective</td>
<td>Basic Restorative Digital Dentistry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>The Medical Basis of Disaster Management IV.</td>
<td>C0L2</td>
<td>signature</td>
<td>The Medical Basis of Disaster Management III.</td>
</tr>
</tbody>
</table>

Total Credit: 26

The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry I.*</td>
<td>C2L0P6</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III., Prosthodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics IV</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III., Prosthodontics III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Forensic Dentistry</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery IV.</td>
<td>C5L1P5</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology II.</td>
<td>C2L1P1</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics I.</td>
<td>C5L1P4</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics I.</td>
<td>C5L1P4</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology III.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Periodontology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Prehospital Emergency Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics IV.</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Prosthodontics III., Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics II.</td>
<td>C1L0P1</td>
<td>semifinal</td>
<td>Oral Diagnostics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Medicine</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Pharmacology and Toxicology II.</td>
</tr>
</tbody>
</table>

* The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)

Total Credit 32
<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>prerequisites code</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry II.</td>
<td>C3L0P6</td>
<td>practice mark</td>
<td>Clinical Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics V.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Conservative Dentistry and Endodontics IV., Prosthodontics IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dermatology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Obstetrics and Family Planning</td>
<td>C1L1P0</td>
<td>semifinal</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery V.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics II.</td>
<td>C6L1P5</td>
<td>final#</td>
<td>Orthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics II.</td>
<td>C6L1P5</td>
<td>final#</td>
<td>Pedodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology IV.</td>
<td>C3L1.5P2</td>
<td>final#</td>
<td>Periodontology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics V.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Prosthodontics IV., Conservative Dentistry and Endodontics IV.</td>
</tr>
</tbody>
</table>

Total Credit 30

Diploma work C20

The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
Study Program from the 2020/2021 academic year

BASIC MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subject</th>
<th>1st semester</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>credit code</td>
<td>credit</td>
<td>lecture</td>
<td>practice</td>
<td>prerequisite(s)</td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>Macroscopic anatomy I.</td>
<td>C6L1P5</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>Semi-final</td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>Biophysics I.</td>
<td>C3L1.5P2.5</td>
<td>3</td>
<td>1.5</td>
<td>2.5</td>
<td>Semi-final</td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>Physical Bases of Dental Materials</td>
<td>C2L2P0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>Semi-final</td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>Cell Science</td>
<td>C3L1P2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>Semi-final</td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>Medical Chemistry</td>
<td>C4L2P2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>Semi-final</td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>Physical Education I.</td>
<td>C0L0P1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Medical Terminology</td>
<td>C0L0P2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>Practice mark</td>
<td></td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Introduction to the Hungarian language</td>
<td>C0L0P4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>Practice mark</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

BASIC MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subject</th>
<th>2nd semester</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>credit code</td>
<td>credit</td>
<td>lecture</td>
<td>practice</td>
<td>prerequisite(s)</td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>Macroscopic anatomy II.</td>
<td>C8L2G6</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>Macroscopic anatomy I.</td>
<td>Final#</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Microscopic anatomy and embryology I.</td>
<td>C4E2G2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>Cell Science</td>
<td>Semi-final</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Biophysics II.</td>
<td>C3E1.5G2.5</td>
<td>3</td>
<td>1.5</td>
<td>2.5</td>
<td>Biophysics I., Physical Foundations of Dental Materials Science</td>
<td>Final#</td>
</tr>
<tr>
<td>Compulsory</td>
<td>General Dental Materials</td>
<td>C1E1G0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Macroscopic anatomy I., Physical Foundations of Dental Materials Science</td>
<td>Semi-final</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Dental Biochemistry I.</td>
<td>C4E2G2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>Semi-final</td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>Physical Education II.</td>
<td>C0E0G1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Dental Psychology</td>
<td>C1L2P0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>Semi-final</td>
<td></td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Dental Medical Terminology</td>
<td>C0E0G2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>Medical Terminology</td>
<td>Practice mark</td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Medical Sociology</td>
<td>C1L1P1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Semi-final</td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>Hungarian for Dental Medical Purposes I.</td>
<td>C0L0P4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>Introduction to the Hungarian language</td>
<td>Practice mark</td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>History of Medicine</td>
<td>C1L2P0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>Semi-final</td>
<td></td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Medical Informatics</td>
<td>C2L0P2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>Practice mark</td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>First Aid</td>
<td>C1L0P1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Practice mark</td>
<td></td>
</tr>
<tr>
<td>Criterion requirement</td>
<td>Dental Laboratory Practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summer Practice of Dental Assistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | | | | | | 27 |

* The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
BASIC MODULE

3rd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subject</th>
<th>credit code</th>
<th>credit</th>
<th>lecture</th>
<th>practice</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory</td>
<td>Microscopic anatomy and embryology II.</td>
<td>C4L2P2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>Microscopic anatomy and embryology I., Macroscopic anatomy II.</td>
<td>Final#</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Dental Biochemistry II</td>
<td>C3L2P1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>Dental Biochemistry I.</td>
<td>Final#</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Basic Immunology</td>
<td>C2L2P1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>Cell Science, Dental Biochemistry I.</td>
<td>Semifinal</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Molecular Cell Biology I.</td>
<td>C3L1P2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>Medical chemistry, Dental biochemistry I.</td>
<td>Semifinal</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Odontotechnology and Prosthodontics Pre-clinical I.</td>
<td>C3L1P2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>General Dental Materials, Macroscopic anatomy II.</td>
<td>Practice mark</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Medical and Dental Physiology I.</td>
<td>C8L5P3.5</td>
<td>8</td>
<td>5</td>
<td>3.5</td>
<td>Microscopic anatomy and embryology I., Macroscopic anatomy II., Biophysics II.</td>
<td>Semifinal</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Physical Education III.</td>
<td>C0L0P1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Physical Foundations of Dental Materials Science, Macroscopic anatomy I.</td>
<td>Signature</td>
</tr>
<tr>
<td>Compulsory</td>
<td>General Dental Preclinical Practice</td>
<td>C4E1P3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>Physical Foundations of Dental Materials Science, Macroscopic anatomy I.</td>
<td>Semifinal *</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Hungarian for Dental Medical Purposes II.</td>
<td>C0L0P4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>Hungarian for Dental Medical Purposes I.</td>
<td>Practice mark</td>
</tr>
</tbody>
</table>

4th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subject</th>
<th>credit code</th>
<th>credit</th>
<th>lecture</th>
<th>practice</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory</td>
<td>General and Oral Microbiology</td>
<td>C3L2P2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>Microscopic anatomy and embryology II., Molecular Cell Biology I., Medical and Dental Physiology I.</td>
<td>Semifinal *</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Genetics and Genomics</td>
<td>C2L1.5P1</td>
<td>2</td>
<td>1.5</td>
<td>1</td>
<td>Microscopic anatomy and embryology II., Basic Immunology, Molecular Cell Biology I.</td>
<td>Semifinal</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical I.</td>
<td>C4L1P3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>General Dental Preclinical Practice, Microscopic anatomy and embryology II., Odontotechnology and Prosthodontics Pre-clinical I.</td>
<td>Practice mark</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Molecular Cell Biology II.</td>
<td>C4L2P2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>Dental Biochemistry II., Molecular Cell Biology I.</td>
<td>Final#</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Odontotechnology and Prosthodontics Pre-clinical II.</td>
<td>C4L1P3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>Macroscopic anatomy II., Odontotechnology and Prosthodontics Pre-clinical I.</td>
<td>Practice mark</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Medical and Dental Physiology II.</td>
<td>C8L5P3.5</td>
<td>8</td>
<td>5</td>
<td>3.5</td>
<td>Microscopic anatomy and embryology II., Molecular Cell Biology I., Medical and Dental Physiology I.</td>
<td>Final#</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Physical Education IV.</td>
<td>C0L0P1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Hungarian for Dental Medical Purposes III.</td>
<td>Signature</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Hungarian for Dental Medical Purposes III.</td>
<td>C0L0P4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>Hungarian for Dental Medical Purposes II.</td>
<td>Practice mark</td>
</tr>
</tbody>
</table>

Notes:
- Semifinal * = Counted in the average, similarly
- # = The grade influences the qualification of the diploma
- C = Credit point
- L = Lecture (hours/week)
- P = Practice (hours/week)
<table>
<thead>
<tr>
<th>subjects code</th>
<th>subject</th>
<th>5th semester</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory</td>
<td>General and Oral Pathophysiology</td>
<td>C3L2P2 3 2 2</td>
<td>General and Oral Microbiology, Molecular Cell Biology II., Medical and Dental Physiology II.</td>
<td>Semifinal *</td>
</tr>
<tr>
<td>Compulsory</td>
<td>The Medical Basis of Disaster Management I</td>
<td>C0L2P0 0 2 0</td>
<td></td>
<td>Signature</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical II.</td>
<td>C4L1P3 4 1 3</td>
<td>Microscopic anatomy and embryology II., Molecular Cell Biology I., Medical and Dental Physiology I.</td>
<td>Final#</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Public Health</td>
<td>C2L1.5P2 2 1.5 2</td>
<td>General and Oral Microbiology, Molecular Cell Biology II, Medical and Dental Physiology II.</td>
<td>Semifinal</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Odontotechnology and Prosthodontics Pre-clinical III.</td>
<td>C3L0P3 3 0 3</td>
<td>Odontotechnology and Prosthodontics Pre-clinical II., Conservative Dentistry and Endodontics, Pre-clinical I., Molecular Cell Biology II.</td>
<td>Final#</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Pathology</td>
<td>C4L3P2 4 3 2</td>
<td>Genetics and Genomics, Molecular Cell Biology II, Medical and Dental Physiology II.</td>
<td>Semifinal *</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Preventive Dentistry</td>
<td>C3L2P2 3 2 2</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical Course II., Odontotechnology and Prosthodontics Preclinical Course III.</td>
<td>Semifinal *</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course</td>
<td>C2L0P2 2 0 2</td>
<td>General and Oral Microbiology, Molecular Cell Biology II, Medical and Dental Physiology II.</td>
<td>Practice mark</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Physical Education V.</td>
<td>C0L0P1 0 0 1</td>
<td></td>
<td>Signature</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Hungarian for Dental Medical Purposes IV.</td>
<td>C0L0P4 1 0 4</td>
<td>Hungarian for Dental Medical Purposes III.</td>
<td>Practice mark</td>
</tr>
</tbody>
</table>

Semifinal * = Counted in the average, similarly
The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
PRECLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subject</th>
<th>6th semester</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory</td>
<td>Prosthodontics I.</td>
<td>C4L1P3</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical II., Odontotechnology and Prosthodontics Pre-clinical III., Preventive Dentistry</td>
<td>Practice mark</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Conservative Dentistry and Endodontics I.</td>
<td>C3L1P3</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical II., Odontotechnology and Prosthodontics Pre-clinical III., Preventive Dentistry</td>
<td>Practice mark</td>
</tr>
<tr>
<td>Compulsory</td>
<td>The Medical Basis of Disaster Management II</td>
<td>C0L2P0</td>
<td>The Medical Basis of Disaster Management I.</td>
<td>Signature</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Oral Biology</td>
<td>C4L2P2</td>
<td>General and Oral Pathophysiology, Pathology, Public Health</td>
<td>Semifinal *</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Oral Pathology</td>
<td>C3L2P2</td>
<td>General and Oral Pathophysiology, Pathology, Public Health</td>
<td>Semifinal *</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Oral and Maxillofacial Surgery I.</td>
<td>C3L1P3</td>
<td>General and Oral Pathophysiology, Pathology, Oral and Maxillofacial Surgery, Pre-clinical course</td>
<td>Practice mark</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Physical Education VI.</td>
<td>C0L0P1</td>
<td></td>
<td>Signature</td>
</tr>
<tr>
<td>Criterion requirement</td>
<td>Dento-Alveolar practice</td>
<td></td>
<td></td>
<td>Signature</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Oral Medicine I.</td>
<td>C1L0P1</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical I., Odontotechnology and Prosthodontics Pre-clinical II.</td>
<td>Practice mark</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Oral Diagnostics</td>
<td>C3L1P2</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical I., Odontotechnology and Prosthodontics Pre-clinical II.</td>
<td>Semifinal *</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Radiation protection</td>
<td>C2L1.5P1</td>
<td>Biophysics II.</td>
<td>Semifinal</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Hungarian for Dental Medical Purposes V.</td>
<td>C1L0P4</td>
<td>Hungarian for Dental Medical Purposes IV.</td>
<td>Final#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subject</th>
<th>6th semester</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semifinal * = Counted in the average, similarly
The grade influences the qualification of the diploma

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subject</th>
<th>7th semester</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>credit code</td>
<td>credit</td>
<td>lecture</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Internal Medicine I.</td>
<td>C3L1P2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Prosthodontics II.</td>
<td>C6L1P6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Pharmacology I.</td>
<td>C4L2P2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Conservative Dentistry and Endodontics II.</td>
<td>C4L1P3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>The Medical Basis of Disaster Management III</td>
<td>C0L2P0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Periodontology I.</td>
<td>C2L1.5P0.5</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Emergency Dentistry I.</td>
<td>C0L0P1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Oral and Maxillofacial Surgery II.</td>
<td>C4L1P3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Physical Education VII.</td>
<td>C0L0P1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Pediatrics</td>
<td>C1L1P0.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>General and Dental Radiology I.</td>
<td>C3L1P2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Gnathology</td>
<td>C3L1P2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Neurorology</td>
<td>C1L1P0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Psychiatry</td>
<td>C1L1P0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Dental Ethics</td>
<td>C1L0P2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Semifinal * = Counted in the average, similarly
<table>
<thead>
<tr>
<th>subjects code</th>
<th>subject</th>
<th>credit code</th>
<th>credit</th>
<th>lecture</th>
<th>practice</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory</td>
<td>Internal Medicine II.</td>
<td>C2L1P1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Internal Medicine I., Pharmacology I.</td>
<td>Final#</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Prosthodontics III.</td>
<td>C4L1P4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>Conservative Dentistry and Endodontics II.,</td>
<td>Practice mark</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prosthodontics II., General and Dental Radiology I.</td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>Orthodontics Preclinical</td>
<td>C1L0P1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>General and Dental Radiology I.</td>
<td>Practice mark</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Pharmacology II.</td>
<td>C4L2P2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>Internal Medicine I., Pharmacology I.</td>
<td>Final#</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Implantology I.</td>
<td>C1L1P0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>General and Dental Radiology I., Oral and Maxillofacial Surgery II., Periodontology I.</td>
<td>Semifinal</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Conservative Dentistry and Endodontics III.</td>
<td>C4L1P4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>Conservative Dentistry and Endodontics II.,</td>
<td>Practice mark</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prosthodontics II., General and Dental Radiology I.</td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>The Medical Basis of Disaster Management IV.</td>
<td>C0L2P0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>The Medical Basis of Disaster Management III.</td>
<td>Signature</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Periodontology II.</td>
<td>C4L1P3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>General and Dental Radiology I., Oral and Maxillofacial Surgery II., Periodontology I.</td>
<td>Semifinal</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Emergency Dentistry II.</td>
<td>C0L1P1.5</td>
<td>0</td>
<td>1</td>
<td>1.5</td>
<td>General and Dental Radiology I., Emergency Dentistry I.</td>
<td>Signature</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Oral and Maxillofacial Surgery III.</td>
<td>C4L1P3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>General and Dental Radiology I., Oral and Maxillofacial Surgery II., Periodontology I.</td>
<td>Practice mark</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Physical Education VIII.</td>
<td>C0L0P1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>Signature</td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Ophthalmology</td>
<td>C1L1P0.5</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>Internal Medicine I., Pharmacology I.</td>
<td>Semifinal</td>
</tr>
<tr>
<td>Criterion requirement</td>
<td>General Dentistry practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Signature</td>
</tr>
<tr>
<td>Compulsory</td>
<td>General and Dental Radiology II.</td>
<td>C1L0P1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>General and Dental Radiology I.</td>
<td>Final#</td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Otorhinolaryngology</td>
<td>C1L1P0.5</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>Pathology, Oral Pathology</td>
<td>Semifinal *</td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Surgery</td>
<td>C2L2P1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>Pathology</td>
<td>Semifinal *</td>
</tr>
</tbody>
</table>

Semifinal * = Counted in the average, similarly
The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
<table>
<thead>
<tr>
<th>subjects code</th>
<th>subject</th>
<th>9th semester</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>credit code</td>
<td>credit lecture practice</td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>Prosthodontics IV.</td>
<td>C3L0P4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Orthodontics I.</td>
<td>C5L1P4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Pedodontics I.</td>
<td>C5L1P4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Implantology II.</td>
<td>C2L1P1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Clinical Dentistry I.</td>
<td>C2L0P5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Conservative Dentistry and Endodontics IV.</td>
<td>C3L0P4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Oral Medicine II.</td>
<td>C1L1P0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Periodontology III.</td>
<td>C3L1P2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Oral and Maxillofacial Surgery IV.</td>
<td>C5L1P5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Physical Education IX.</td>
<td>C0L0P1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Forensic Dentistry</td>
<td>C1L1P0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Prehospital Emergency Medicine</td>
<td>C1L1P0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subject</th>
<th>10th semester</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>credit code</td>
<td>credit</td>
<td>lecture</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Prosthodontics V.</td>
<td>C3L0P3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Orthodontics II.</td>
<td>C5L1P5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Gerostomatology</td>
<td>C2L1P1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Pedodontics II.</td>
<td>C5L1P5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Clinical Dentistry II.</td>
<td>C3L0P5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Conservative Dentistry and Endodontics V.</td>
<td>C3L0P3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Periodontology IV.</td>
<td>C3L1.5P2</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Oral and Maxillofacial Surgery V.</td>
<td>C4L1P3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Compulsory</td>
<td>Physical Education X.</td>
<td>C0L0P1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Obstetrics and Family Planning</td>
<td>C1L1P0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Obligatory elective</td>
<td>Dermatology</td>
<td>C1L1P0.5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semifinal * = Counted in the average, similarly
The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
FACULTY OF DENTISTRY

BASIC MODULE
BASIC MODULE

1st semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Macroscopic Anatomy I.</td>
<td>C6L1P5</td>
<td>semi-final</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Foundations of Dental Materials Science</td>
<td>C2L2P0</td>
<td>semi-final</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Chemistry</td>
<td>C4L2P2</td>
<td>semi-final</td>
</tr>
<tr>
<td>compulsory</td>
<td>Cell Sciences</td>
<td>C3L1P2</td>
<td>semi-final</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics I.</td>
<td>C3L1.5P2,5</td>
<td>semi-final</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Introduction to the Hungarian Language</td>
<td>C0L0P4</td>
<td>practice mark</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Terminology</td>
<td>C0L0P2</td>
<td>practice mark</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education I.</td>
<td>C0L0P1</td>
<td>signature</td>
</tr>
</tbody>
</table>

Total Credit: 18

2nd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Macroscopic Anatomy II.</td>
<td>C8L2P6</td>
<td>final#</td>
<td>Macroscopic Anatomy I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Microscopic Anatomy and Embryology I.</td>
<td>C4L2P2</td>
<td>semi-final</td>
<td>Cell Sciences</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Biochemistry I.</td>
<td>C4L2P2</td>
<td>semi-final</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics II.</td>
<td>C3L1.5P2</td>
<td>final#</td>
<td>Biophysics I., Physical Foundations of Dental Materials Science</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian for Dental Medical Purposes I.</td>
<td>C0L0P4</td>
<td>practice mark</td>
<td>Introduction to the Hungarian language</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Materials</td>
<td>C1L1P0</td>
<td>semi-final</td>
<td>Macroscopic Anatomy I., Physical Foundations of Dental Materials Science</td>
</tr>
<tr>
<td>compulsory</td>
<td>First Aid</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Informatics</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education II</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Medical Terminology</td>
<td>C0L0P2</td>
<td>practice mark</td>
<td>Medical Terminology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Psychology</td>
<td>C1L2P0</td>
<td>semi-final</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Sociology</td>
<td>C1L1P1</td>
<td>semi-final</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>History of Medicine</td>
<td>C1L2P0</td>
<td>semi-final</td>
<td></td>
</tr>
<tr>
<td>criterion requirement</td>
<td>Dental Assistant Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>Prerequisite of registering to the 3rd semester</td>
</tr>
<tr>
<td>criterion requirement</td>
<td>Dental Laboratory Practice (summer, 2 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>Prerequisite of registering to the 3rd semester</td>
</tr>
</tbody>
</table>

Total Credit: 27

Explanation

15 credits should be gained from the elective subjects during the 5-year studies – see the elective list after the 3rd year study program

#The grade influences the qualification of the diploma.

C = Credit point

L = Lecture (hours/week)

P = Practice (hours/week)
LIST OF TEXTBOOKS (The list may change!)

Recommended textbooks:

3. Sasvári-Müllner: Bioorganic Compounds 4 kötet. (Bp.)
MACROSCOPIC ANATOMY I – II.

Department of Anatomy, Histology & Embryology
Course Director: Dr. Andrea D. Székely

LEARNING OBJECTIVES
Aims of the lectures in anatomy: Presentation of the important and/or complicated chapters such as introductory chapters, thorax, pelvis, hand, foot, skull, heart, chapters of the visceral organs, central nervous system, organs of special senses, topographical anatomy.

Aims of the practical sessions in the dissecting room: Based on the weekly programs (see separate), students will both observe prosected cadaver specimens (bones, joints, muscles, viscera, brain) and perform dissections on parts of, or on an entire, enbalmed cadaver. Students are supervised by the lab instructors. Bones, joints, muscles and peripheral nervous system will be primarily taught in the dissecting room.

LECTURES: First semester: 1×45 min; second semester: 2×45 min.
PRACTICAL CLASSES: First semester: 5×45 min; second semester: 6×45 min.
ECTS CREDITS: Altogether 14 (first semester: 6; second semester: 8).
MIDTERM TESTS: Oral and/or written

ACCEPTENCE OF THE SEMESTER:
Active participation in lectures, and dissection room sessions is obligatory for every student. Students should attend at least 75% of the scheduled hours to gain a signature proving the validity of the semester. Absences are therefore limited in 25%. Attendance will be recorded in the lectures and in the dissection room classes.

To gain a signature proving the validity of the semester students should attend at least 75% of the scheduled practical hours as well as having a successful midterm result (at last a 2). In case the latter has not been fulfilled, there will be two make up dates offered during the last two weeks of the semester.

TYPE OF EXAMS: oral and written
First semester: semifinal examination, second semester: final exam

Semifinal and final examinations consist of written and oral (practical and theoretical) parts
1. Written pretest (e-learning module – access to SeKA account is obligatory)
2. Macroscopic Anatomy (successful identification of structures on true anatomical specimens) including correct answers to relevant theoretical questions
LIST OF TEXTBOOKS

Recommended textbooks:

4. **Bräuer: Sobotta Flashcards** (Muscles; Bones, Ligaments, and Joints) URBFI, 2013.
COURSE DESCRIPTION

Macroscopic Anatomy I.

Lectures and dissection classes
Subject matter: Macroscopy and clinically oriented anatomy of the parts of the musculoskeletal system, i.e., osteology, arthrology and myology, together with the vascular and nervous supply of the limbs and the trunk. Skull (viscerocranium, neurocranium). Cavities, muscles of the head & neck region. Macroscopy of the brain and spinal cord, membranes (dura, arachnoid and pia mater).

Credits: 6
Prerequisite: none

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Dissection room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>1. The role of anatomy in the medical curriculum. Terminology</td>
<td>General introduction to practical work in the dissection room, tools and rules</td>
</tr>
<tr>
<td></td>
<td>2. General arthrology and myology. Joints, muscles and movements of the shoulder and the upper girdle</td>
<td>Bones of the upper limb and the girdle, shoulder joint</td>
</tr>
<tr>
<td>Week 2</td>
<td>3. Muscles and actions of the elbow joint</td>
<td>Muscles (flexors) of the upper limb/girdle</td>
</tr>
<tr>
<td></td>
<td>4. Joints, muscles and actions of the wrist and the hand</td>
<td>Elbow joint</td>
</tr>
<tr>
<td>Week 3</td>
<td>5. Bones, joints, construction of the pelvis. Muscles and actions of the hip joint</td>
<td>Upper limb, arm, forearm</td>
</tr>
<tr>
<td></td>
<td>6. Muscles and actions of the knee joint. Muscles and joints of the foot. Architecture of the foot</td>
<td>Muscles and joints of the hand</td>
</tr>
<tr>
<td>Week 4</td>
<td>7. Components, muscles, joints, ligaments and movements of the vertebral column, Intervertebral, atlantooccipital and atlantoaxial joints together with the muscles</td>
<td>Dissection of the muscles, vessels and nerves of the upper limb (branches of the axillary a+v, brachial plexus)</td>
</tr>
<tr>
<td>Week 5</td>
<td>8. Ribs, components and movements of the thorax. Diaphragm.</td>
<td>Dissection of the limbs and superficial regions of the the trunk (cadaver)</td>
</tr>
<tr>
<td></td>
<td>11. Bony framework of the skull, neurocranium. Sphenoid and temporal bones.</td>
<td>Dissection of the limbs and superficial regions of the the trunk (cadaver)</td>
</tr>
<tr>
<td>Week 7</td>
<td>12. Introduction to the study of the nervous system Meninges, hemispheres, CSF, lateral ventricles</td>
<td>2. Midterm test (oral): Lower limb including the girdle; bones, joints, muscles and fasciae of the trunk, hernia canals</td>
</tr>
<tr>
<td>Week 8</td>
<td>14. Brain stem, cerebellum, 4th ventricle, spinal cord</td>
<td>Blood supply, meninges, sinuses</td>
</tr>
<tr>
<td></td>
<td>Non-obligatory assessments I-II. : Topics of the semester</td>
<td>CSF circulation, cisterns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadaver dissection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demonstration of prosected specimens</td>
</tr>
</tbody>
</table>

517
Midterm tests: The time and topics of midterm tests will be announced in the departmental homepage at the beginning of the semester (http://semmelweis.hu/anatomia).

Topic list for the semifinal examination:

Macroscopic Anatomy I.

Musculoskeletal Anatomy

- General osteology, classification of bones
- General arthrology
- Components and classification of joints
- General myology
- Joints and muscles of the shoulder girdle.
- Shoulder joint, movements and muscles.
- Axilla, the quadrangular and triangular spaces
- Muscle/fascial compartment of the arm (cross section)
- Elbow joint, the gross anatomy of the muscles acting upon it. Cubital fossa
- Muscle/fascial compartments of the forearm (cross section)
- Movements and muscles of the radiocarpal joint
- Osteofibrous spaces and muscle compartments of the hand, tendinous sheaths
- Joints and muscles of the thumb and fingers
- Composition of the pelvis (bones, ligaments and membranes)
- External and internal muscles of the hip, supra- and infrapiriform hiati
- Hip joint and the muscles concerned with the movements
- Osteofibrous compartments, muscles and cross section of the thigh
- Knee joint and the muscles concerned with the movements. Popliteal fossa
- Subinguinal hiatus, femoral trigone, adductor canal
- Osteofibrous compartments, muscles and the cross section of the leg
- Ankle joint, subtalar and talocalcaneonavicular joints together with the muscles acting upon them.
- Structure of the foot, arches of the foot
- Blood supply and innervation of the upper and lower limbs
- Blood supply and innervation of the trunk
- Brachial plexus, lumbar plexus, sacral plexus.
- Dorsal branches of the spinal nerves, intercostal nerves
- Structure of vertebrae
- Structure of the vertebral column together with the muscles acting upon it
- Back muscles
- Joints, movements and muscles of the head & neck
- Deep neck muscles (scalene and prevertebral muscles)
- Muscles of the nape (suboccipital trigone)
- Osteofibrous structure of the thoracic cage (bones, joints, ligaments, muscles, movements)
- Diaphragm
- Muscles and layers of the abdominal wall, rectus sheath
- Inguinal canal, femoral canal
- Bones, spaces and connections of the skull, external and internal skull bases
- Neurocranium, components and cavities (anterior, middle and posterior cranial fossae)
- Viscerocranium, components and cavities (walls and connections of the nasal cavity, orbit, oral cavity, pterygopalatine and infratemporal fossae)

Macroscopy of the nervous system

- Intracranial topography
- Dura mater, dural sinuses
- Arachnoid mater, pia mater, cisterns, CSF circulation
- Description of the spinal cord. Spinal nerves
- Meninges and blood supply of the spinal cord
- IV. ventricle
- Medulla oblongata
- Pons
- Midbrain
- Cerebellum
- Diencephalon (parts, blood supply).
- Thalamus, hypothalamus
- III. ventricle
- Telencephalon, blood supply. Hemispheres
- Basal ganglia
- Lateral ventricles
- Internal carotid artery (course, parts and branches)
- Vertebral artery (course and branches)
- Circle of Willis
- Veins of the brain
- Cranial nerve exits (brain, dura and skull)
Macroscopic Anatomy II. including Maxillofacial Anatomy

Lectures and dissection classes

Subject matter: Morphology, topography and clinically oriented anatomy of the internal organs (i.e. cardiovascular, gastrointestinal, respiratory and urogenital systems). Morphology and topography of the intracranial spaces. Course and branches of cranial nerves. Autonomic nervous system. Maxillofacial Anatomy.

Credits: 8

Prerequisite: Macroscopic Anatomy I.

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Dissection room</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAXILLOFACIAL ANATOMY</td>
<td></td>
</tr>
</tbody>
</table>
| | **1.** Muscles of facial expression. Muscles, fasciae and muscular trigones of the neck.
2. Temporomandibular joint, muscles of mastication | Cadaver dissection
Demonstration of prosected specimens
Organs of the head and neck |
| 1 | **3.** Composition and part of the oral cavity, palate, faucial isthmus and pharynx
4. Anatomy of teeth | Cadaver dissection
Demonstration of prosected specimens
Organs of the head and neck
Anatomy of teeth |
| 2 | **5.** Nasal cavity, paranasal sinuses
6. Larynx | Cadaver dissection
Demonstration of prosected specimens
Organs of the head and neck |
| 3 | **7.** Topography of the salivary glands.
Demonstration of prosected specimens
Organs of the head and neck |
| 4 | **9.** Imaging anatomy of the jaws, teeth and the maxillary sinus (Radiology lecture)
10. Olfactory nerve (CN 1), optic nerve (CN 2). Orbit, extraocular muscles and eye movements. Protective and lacrimal apparatus of the eye | Cadaver dissection
Demonstration of prosected specimens
Organs of the head and neck |
| 5 | **10.** Oculomotor nerve (CN 3), trochlear nerve (CN 4), abducent nerve (CN 6), facial nerve (CN 7)
12. Trigeminal nerve (CN 5). Innervation of the teeth and the gingiva, the anatomy of dental local anaesthesia | Cadaver dissection
Demonstration of prosected specimens
Organs of the head and neck |
| 6 | **13.** Glossopharyngeal nerve (CN 9), vagus nerve (CN 10), accessory nerve (CN 11), hypoglossal nerve (CN 12)
14. Sympathetic and parasympathetic nervous systems (cranial, thoracic and abdominal parts) | Cadaver dissection
Demonstration of prosected specimens
Organs of the thoracic and abdominal cavities |
| 7 | **15.** Thoracic cavity, mediastinum and lymphatic drainage. Trachea and the lungs. Esophagus.
16. Chambers of the heart, external features. Structure of heart wall, myocardium, valves, anuli fibrosi | Cadaver dissection
Demonstration of prosected specimens
Organs of the thoracic and abdominal cavities |
| 8 | **17.** Vessels, conducting system of the heart. Surface projection of the heart, pericardium. Auscultation points
18. Stomach and small intestines (duodenum, jejunum, ileum) | Cadaver dissection
Demonstration of prosected specimens
Organs of the thoracic and abdominal cavities |
| 9 | **19.** Liver, gall bladder, pancreas, spleen.
20. Large intestine, rectum, porto-caval anastomoses | Cadaver dissection
Demonstration of prosected specimens
Organs of the thoracic and abdominal cavities |
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Dissection room</th>
</tr>
</thead>
</table>
 22. Morphology of the kidney, capsules of the kidney, ureter, urinary bladder | Cadaver dissection
 Demonstration of prosected specimens
 Abdominal, retroperitoneal and pelvic organs |
| 12 | 23. Morphology and coats of the testicle.
 24. Morphology of the epididymis, spermatic cord, seminal vesicle and prostate | Cadaver dissection
 Demonstration of prosected specimens
 Abdominal, retroperitoneal and pelvic organs
 Genitourinary system |
| 13 | 25. Morphology and histology of penis and male urethra. Male perineum
 26. Ovary, Fallopian tube and uterus | Cadaver dissection
 Demonstration of prosected specimens
 Abdominal, retroperitoneal and pelvic organs
 Genitourinary system |
| 14 | 27. Vagina, female perineum, external genital organs
 28. Blood supply and lymphatic drainage of the abdomen and lesser pelvis | Cadaver dissection
 Demonstration of prosected specimens
 Abdominal, retroperitoneal and pelvic organs
 Genitourinary system
 Non-obligatory assessments I–II. : Topics of the first and second semesters |

Midterm tests: The time and topics of midterm tests will be announced in the departmental homepage at the beginning of the semester (http://semmelweis.hu/anatomia).

Topic list for the final examination:

Macroscopic Anatomy I.
(see there)

Macroscopic Anatomy II.

- Muscles of facial expression. Superficial muscles of the neck, muscle triangles
- Orbit. Extraocular muscles. Eye movements.
- Eyelids, conjunctiva, fasciae of the orbit, lacrimal apparatus
- Cranial nerve nuclei (classification and locations)
- CN 1 Olfactory nerve
- CN 2 Optic nerve
- CN 3 Oculomotor, CN 4 Throchlear, CN 6 Abducent nerves
- CN 10 Vagus, CN 11 Accessory, CN 12 Hypoglossal nerves
- Sympathetic nervous system, cervical and thoracic parts (sympathetic trunk)
- Sympathetic nervous system, abdominal and pelvic parts
- Sacral parasympathetic nervous system

Cardiovascular system

- Shape, external features of heart
- Chambers of heart
- Endocardium, valves of heart
- Skeleton of heart, anuli fibrosi
- Structure of heart wall
- Pulse generating and conducting system of heart
- Private vessels of the heart
- Pericardium
- Position and surface projections of heart, radiology of heart, auscultation points
- Pulmonary circulation
- Ascending aorta, arch of aorta and its branches
- Subclavian artery, axillary artery together with the branches
- Blood supply of the thoracic wall (including the mamma), venous and lymphatic drainage
- Thoracic duct, right lymphatic trunk
- Thoracic aorta and its branches
- Abdominal aorta and its branches
- Celiac trunk and its branches
- Superior mesenteric artery and its branches
- Inferior mesenteric artery and its branches
- External and internal iliac arteries together with the branches
- Internal pudendal artery and its branches
- Superior vena cava and its tributaries
- Inferior vena cava and its tributaries
- Azygos and hemiazygos veins and their tributaries
- Portal vein and its tributaries, portocaval anastomoses
- Cutaneous veins and lymphatic vessels of trunk

Alimentary tract

- Pharynx, para- and retropharyngeal spaces
- Esophagus (anatomy and topography)
- Stomach (shape, position, parts)
- Peritoneal relations of stomach
Blood supply and innervation of stomach
Duodenum (shape, position, divisions, vessels)
Jejunum-ileum (shape, position, vessels)
Rectum, anal canal (shape, position, vessels)
Liver (shape, position)
Liver (peritoneal relations, vessels)
Gall bladder and biliary passages (anatomy)
Pancreas (shape, position, vessels)
Peritoneum, greater and lesser omentum, mesentery, omental bursa

Respiratory system
Nose, nasal cavity (boundaries, nasal meatus, vessels)
Paranasal sinuses (connections, vessels)
Skeleton and joints of larynx. Muscles of larynx, innervation
Laryngeal ligaments (fibroelastic membranes, mucous membrane)
Trachea
Lung (shape, parts, surfaces, hilum, position, topography, vessels, nerves)
Pleura
Divisions of mediastinum, contents

Urogenital system
Kidney (shape, position, hilum, sinus, capsules, vessels)
Ureter. Urinary bladder (shape, position, muscles, vessels)
Female urethra
Testis (shape, position, vessels)
Epididymis, vas (ductus) deferens, spermatic cord
Scrotum, coats of testis
Semenal vesicle
Prostate
Male urethra, bulbourethral gland
Penis (shape, position, mechanism of erection, vessels, nerves)
Ovary (shape, position, vessels)
Uterine tube (shape, position, vessels)
Uterus (shape, parts, wall, cavity)
Uterus (position, supporting structures, vessels)
Broad ligament (lig. latum) and its components
Vagina,
External female genital organs (mons pubis, labia, vestibule of vagina, greater vestibular gland, vessels)

Topography of the female pelvic organs (connective tissue spaces, peritoneal relations)
Topography of the male pelvic organs (connective tissue spaces, peritoneal relations)
Pelvic floor
Male perineum, female perineum

MAXILLOFACIAL ANATOMY: macroscopy questions
Oral cavity (divisions, boundaries)
Frontal section of the oral cavity, sulcus lateralis linguae
Palate, palatine muscles. Isthmus of fauces
Tongue (parts, vessels, innervation)
Floor of the mouth (morphology and topography)
Types and morphology of teeth
Dentition, eruption of teeth, exfoliation
Blood supply and innervation of the upper teeth and gingiva
Blood supply and innervation of the lower teeth and gingiva
Temporomandibular joint
Mechanism of mastication, reflex arc of mastication
Muscles concerned with the opening and closing of the mouth.
Muscles of mastication, muscles of facial expression
Anatomy of the submandibular gland, submandibular region
Anatomy of the sublingual gland, sublingual region
Anatomy of the parotid gland, parotid nest
Branches of the ophthalmic nerve (CN 5/1)
Branches of the maxillary nerve (CN 5/2)
Branches of the mandibular nerve (CN 5/3)
Branches of the facial nerve (CN 7)
Branches of the glossopharyngeal nerve (CN 9)
Branches of the external carotid artery
Branches of the maxillary artery
Course and branches of the internal carotid artery
Veins of face and neck
Cervical plexus
Sympathetic system (cranial part)
Parasympathetic system (cranial part)
MICROSCOPIC ANATOMY AND EMBRYOLOGY I (– II).

Department of Anatomy, Histology & Embryology
Course Director: Dr. Andrea D. Székely

LEARNING OBJECTIVES

Aims of the lectures in embryology: Presentation of the early development from the differentiation of the germ cells to the formation of the human embryo (general embryology). Presentation of the development of organs and functional systems parallel with the gross anatomical and histological lectures including the frequently occurring malformations.

Aims of the lectures in histology: Presentation of the cell, basic principles in cell biology (mitosis, cytoskeleton, cellular motility), detailed presentation of the basic (epithelial, connective, muscle and nervous) tissues. Complementing gross anatomy with a detailed presentation of the fine structure of organs, including the ultrastructural details together with the molecular background. Important chapters: basic tissues, viscera, central nervous system.

Aims of the practical sessions in the histology room: Facilitate the understanding of ground (epithelial, connective, muscle and nervous) tissues and the fine structure of the organs through the observation and interpretation of histological specimens.

LECTURES: 2 × 45 min in both semesters
PRACTICAL CLASSES: I.: 2 × 45 min; II.: 2 × 45 min.
ECTS CREDITS: Altogether 8 (I.: 4; II.: 4).
MIDTERM TESTS: written (e-learning type)

ACCEPTENCE OF THE SEMESTER:
Active participation in lectures, and dissection room sessions is obligatory for every student. Students should attend at least 75% of the scheduled practical classes to gain a signature proving the validity of the semester. Absences are therefore limited in 25%. Attendance will be recorded in the Histology classes. Students are obliged to participate in the midterm test or their semester would not be accepted. Missed midterms should be retaken at the given retake timepoints the department offers during the last two weeks of the semester.

TYPE OF EXAMS: oral and written
I.: semifinal examination, II.: final exam

Semifinal and final examinations consist of written and oral parts
1. Written pretest (e-learning module – access to SeKA account is obligatory)
2. Oral test in Microscopic Anatomy: identification of structures on virtual histological specimens including relevent theoretical questions

LIST OF TEXTBOOKS
1. The Developing Human – Clinically Oriented Embryology, 10th ed. by KL Moore, TVN Persaud and M Torchia, Saunders, 2015; ISBN 9780323313384

Recommended textbooks:
COURSE DESCRIPTION

Microscopic Anatomy and Embryology I.

Lectures in Histology and Embryology; practical classes in Histology

Subject matter

Histology: Microscopy of the ground (basic) tissues (epithelia, glandular tissues, connective and supporting tissues, types of muscle tissues. Histology of the corpuscular elements of the blood, cells of the red bone marrow. Microscopical structure of the internal organs (cardiovascular, gastrointestinal, respiratory and the urogenital systems)

Embryology: Basic principles of human development, introduction to the clinical embryology. General embryology, including spermatogenesis, oogenesis, fertilization, cleavage, blastulation, formation of germinal layers, body axes, molecular basis of right-left asymmetry, Hox genes, formation of the placenta, fetal membranes. Organ development including the early onset of fetal circulations, and the development of the limbs, together with the trunk and the skull. Factors inducing congenital malformations. Development of the internal organs together with their malformations

Credits: 5

Prerequisite: Cell Sciences

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Histology laboratory</th>
</tr>
</thead>
</table>
| 1 | 1. Epithelial tissues, cell contacts, intercellular connections
 2. Glandular epithelium | Simple and stratified epithelial tissues, Glandular epithelium |
| 2 | 3. Connective tissue cells and fibres, Extracellular matrix
 Cells and fibrous elements
 Blood and red bone marrow |
| 3 | 5. Supporting tissues (cartilage, bone)
 6. Ossification, bone remodelling | Supporting tissues
 Cartilage, bone
 Types of ossification |
| 4 | 7. Muscle tissues
 8. Histology of vessels | Gastrointestinal tract
 Smooth, skeletal and cardiac muscle types
 Blood vessels |
| 5 | 9. Histology of the tongue and teeth
 10. Histology of the esophagus and stomach | Gastrointestinal tract
 Lip, tongue, lingual papillae. Respiratory system
 Larynx, trachea, lung |
| 6 | 11. Gametes, fertilization, cleavage, blastulation
 12. Implantation. Molecular basis for gastrulation. Formation, differentiation and derivatives of the germinal layers | Gastrointestinal tract
 Esophagus, stomach |
| 7 | 13. Microscopical anatomy of the small and large intestines
 14. Histology of the liver and pancreas | Gastrointestinal tract
 Duodenum, jejunum, ileum, colon |
| 8 | 15. Molecular basis for gastrulation. Formation, differentiation and derivatives of the germinal layers
 16. Neurulation, folding of the embryo. Body axes, left-right lateralization, asymmetry | Gastrointestinal tract
 Liver, gall bladder, pancreas |
| 9 | 17. Microscopical anatomy of urinary organs Development of the urinary system.
 18. Histology of the male genital system | Urinary system
 Kidney, ureter, urinary bladder |
| 10 | 19. Histology of the female genital system
 20. Development of the genital system | Midterm test:
 Histology and Embryology |
Week | Lectures | Histology laboratory
---|---|---
Easter break | |
11 | 21. Development of the heart. Fetal circulation
22. Development of arteries and veins | Male genital system I.
Testis, epididymis, spermatic cord Seminal vesicle, prostate, penis, glans penis

12 | 23. Histology of the airways. Pharyngeal arches, development of the foregut, midgut and hindgut
24. Histology of teeth I. | Female genital system I.
Ovary, corpus luteum, uterine tube Uterus (proliferation, secretion), vagina, placenta

13 | 25. Histology of teeth II.
26. Tooth development, malformations | Tooth development, salivary glands

14 | 27. Development of the face, malformations
28. Parodontal tissues | Histology of the oral cavity
Maxillofacial Histology and Embryology

Topic list for the semifinal examination

Microscopic Anatomy and Embryology I.

General Histology
- Concept of basic tissues
- Definition and classification of epithelial tissue
- Simple epithelia
- Stratified epithelia
- Glandular epithelia
- Pigment epithelium, sensory neuroepithelium
- Cells of connective tissue
- Ground substance and fibres of connective tissue
- Types of connective tissue
- Blood and the corpuscular elements of blood
- Histology of the bone marrow, maturation of erythrocytes and platelets
- Differentiation of granulocytes, lymphocytes and monocytes
- Histology of cartilage and bone tissue
- Intramembranous ossification. Endochondral ossification. Growth and remodeling of bone
- Smooth muscle and myoepithelial cells
- Skeletal muscle tissue
- Cardiac muscle tissue
- Histology of arteries and arterioles
- Histology of veins and capillaries

- Histology of the pancreas
- Histology of kidney. Ureter. Urinary bladder
- Histology of the male and female gonads and genital organs/ducts
- Histology of the uterus (proliferative, secretory phases) menstrual cycle, vagina

General Embryology
- Spermatogenesis, spermiogenesis
- Oogenesis
- Fertilization, cleavage of the zygote
- Blastocyst formation; the bilaminar embryonic disc
- Implantation
- Formation of body axes
- Formation of the intraembryonic mesoderm; the notochord
- Neurulation (neural tube and neural crest)
- Derivatives of ectoderm
- Derivatives endoderm
- Differentiation of the intraembryonic mesoderm
- Folding of the embryo
- Development of the primitive cardiovascular system
- The structure and function of the placenta
- Development of the fetal membranes (chorion and amnion) and the umbilical cord

Histology of organs
- Wall structure of hollow organs
- General composition of parenchymal (solid/compact) organs
- Histology of the lip and tongue
- Histology of the respiratory tract. Larynx. Trachea. Lung
- Histology of the esophagus and stomach
- Histology of the small and large intestines. Fine structure of the intestinal vili, enteroendocrine system
- Histology of the liver. Gall bladder, biliary ducts

Development of internal organs
- Development of the heart, looping of the heart tube
- Formation of atria, development of the interatrial septum
- Formation of ventricles, development of the aorticopulmonary septum
- Development of arteries
- Development of the inferior vena cava
- Development of the portal vein
- Development of the superior vena cava, azygos and hemiazygos veins
- Fetal circulation
- Development and differentiation of the midgut
- Development and differentiation of the hindgut
- Formation of the liver and pancreas
- Development of the lower airways including the lungs
- Kidney development
- Development of the urinary passages
- Gonadal development
- Development of the male genital tract
- Development of the female genital tract
- Development of the male/female external genitals
- Development and divisioning of the body cavities
- Development of the peritoneum

Maxillofacial Histology and Embryology
- Enamel
- Amelogenesis
- Dentin
- Dentinogenesis
- Structure of the dental papilla
- Cementum (two types)
- Parodontium
- Gingiva – subdivisions and histology
- Tooth development
- Tooth eruption
- Development of the mandible and maxilla
- Development of the face. Formation of the nasal cavity and paranasal sinuses
- Microscopic Anatomy and development of the primary and secondary palates
- Microscopic Anatomy and development of the tongue
- Microscopic Anatomy and development of salivary glands
- Derivatives of pharyngeal pouches and grooves
- Derivatives of pharyngeal arches
GENERAL DENTAL MATERIALS

Lecturer: Dr. Judit Borbély D.M.D., PhD – associate professor

Second Semester

Lectures (1 hour/week)

Topics of the lectures (weekly, numbered):

1. History of dental education
2. Impression materials I
3. Impression materials II
4. Casts, models and dies
5. Metals, technologies
6. Investment materials, flasking methods
7. Precious alloys, non precious alloys
8. Dental resins
9. Dental ceramics
10. Dental cad/cam technology
11. Implant materials
12. Luting materials
13. Restorative materials
14. Tooth whitening materials

Department of Prosthodontics, Faculty of Dentistry, Semmelweis University
Detailed information on the subject is available on our website under https://semmelweis.hu/fogpotlastan/en/angol/

PHYSICAL FOUNDATIONS OF DENTAL MATERIALS SCIENCE

Tutor: Dr. István Voszka

First Semester

Lecture (2 hours/week)

1. Basic forms of material, atoms, interactions, bonds
4. Methods for structure examination (diffraction, microscopic, spectroscopic methods)
6. Ceramics, polymers, composites.
10. Other physical (optical, electrical, thermal) properties of materials
11. Comparison of the properties of dental materials
13. Physical bases of implantology.
MEDICAL CHEMISTRY

Department of Medical Chemistry, Molecularbiology and Pathobiochemistry
Detailed information on the subject is available on our website under http://semmelweis.hu/orvosi-vegytan/en/students/medchem/

Cell Sciences

Department of Genetics, Cell- and Immunobiology
Address: NET Building, H-1089 Budapest, Nagyvárad tér 4.
Course director: Edit Buzás MD, DSc
Course coordinator: Orsolya Láng MD, PhD
Credit: 3

Lectures (1 hour per week):
1. Cell theory. Model cells in medicine
2. Cell membrane
3. Structure and function of the nucleus
4. Endoplasmic reticulum
5. Golgi complex, vesicular transport and secretion
6. Endocytosis. Autophagy
7. Cell adhesion and cell junctions
8. Cytoskeleton
9. Cellular movement
10. Structure and function of mitochondria and peroxisomes
12. Cell cycle and mitosis
13. Stem cells and differentiation
14. Cellular ageing and cell death

Practices (2 hours per week):
1. The light microscope
2. The general cell structure. Light microscopic microtechnique
3. The electron microscope. Cell membrane
4. The interphase nucleus. Cyto(histo)chemistry
5. Immunohistochemistry. Super-resolution microscopy
6. Cell and tissue culture
7. Endoplasmic reticulum
8. Golgi complex and secretion
9. Endocytosis and lysosomes
10. Cell surface differentiation, enzyme-histochemistry
12. Mitosis
13. Meiosis
14. Cell death (necrosis and apoptosis)
The order of topics may vary

Course requirements: Students must participate at least 75% of the classes. More than three absences from the practice or more than three absences from the lecture invalidate the semester, no signature is given. There are no extra practices.
The course ends with an exam consists of an oral test (preparations, electron micrographs, methods applied in cell biology) and a written test (multiple choice, essays, drawings, etc. covering theoretical part of the subject). Further details will be announced on the website of the department (http://gsi.semmelweis.hu).
Lecture and practice presentations and additional texts are available on the homepage: http://gsi.semmelweis.hu (The user name and password is on course datasheet of the Neptun)
DENTAL BIOCHEMISTRY I.

Department of Medical Biochemistry

Credits: 4
Total number of hours: 56; lectures (hours): 28; practices (hours): 28
Type of the course: obligatory
Academic year: 2021/2022
Code of the course FOKOBMT305_1A
Course Director: Dr. Krasimir Kolev

Contact details: H-1094 Budapest, Tűzoltó u. 37-47. Phone: +36-1-459-1500#60010 e-mail: Kolev.Krasimir@med.semmelweis-univ.hu
Position: Professor
Date of habilitation: 2008 Ref.: 266

Aim of the course:
The aim of this course is to examine biologically important molecules – namely amino acids, carbohydrates, lipids and nucleotides - identify their contributions to metabolic processes emphasized from a medical point of view, examine the structure and function of proteins, and address mechanisms of catalysis performed by enzymes. Furthermore, three basic biochemistry modules are outlined: The enzymology module, encompassing general principles of enzyme kinetics and how enzymes influence efficiency and controllability of chemical processes in biological systems, as well as how they affect structure and regulation of metabolic pathways; the bioenergetics module, addressing the relationships between mass-energy conversions in the human body emphasizing nutritional aspects, also elaborating on thermodynamic aspects of metabolism; and the 'first' intermediary metabolism module, presenting the salient features of carbohydrate and lipid metabolism which are essential for understanding physiological and pathological processes of the human body. During practices, students apply the theoretical knowledge acquired at lectures as part of case-oriented discussions in an effort to interpret – from a molecular point of view – relevant conditions.

Location of the course (lecture hall, practice room, etc.):
Premises located in the Basic Medical Sciences building (laboratory rooms located on the first floor and lecture halls located on the ground floor).

Upon the successful completion of the curriculum, the student should be able to:
Identify biochemical structures, know and understand the reactions in which medically important molecules participate; know and understand inter-organ biochemical processes; know and understand integrated metabolic functions of the human body. Overall, such knowledge is essential for understanding physiological and pathological processes and, consequently, for making sound professional decisions.

Prerequisite(s) for admission to the course: None
Terms and Conditions for Starting Student Course (Minimum, Maximum), Student Selection Method: Not applicable for compulsory subjects
How to apply for the course: Application is through the Neptun online system

The course in thematic details:

Lectures: weekly 1×90 min (2 hours)
Practices (P): 2 hours every week

Lecturers: Dr. Komorowicz Erzsébet (KE), Dr. Szöllősi András (SZA), Dr. Bak Judit (BJ), Dr. Iordan Iordanov (II)
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures: weekly 1×90 min (2 hours)</th>
<th>Practices (P): 2 hours every week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The chemical structure of proteinogenic amino acids. The primary, secondary and tertiary structure of proteins. (SZA)</td>
<td>P: Structural and chemical characteristics of amino acids; pH and temperature dependent properties.</td>
</tr>
<tr>
<td>10</td>
<td>Metabolism of lipids – overview. Absorption of lipids. Metabolism of chylomicrons. (SZE)</td>
<td>P: Structure and function of the most important lipids in the body and in the diet.</td>
</tr>
<tr>
<td>13</td>
<td>Metabolism of cholesterol, cholesterol transport in circulation. (KE)</td>
<td>P: Determination of triglycerides and cholesterol in blood plasma.</td>
</tr>
<tr>
<td>14</td>
<td>Biosynthesis and metabolism of bile acids, the importance of bile acids in lipid digestion. Cholesterol uptake and release by cells. (KE)</td>
<td>P: Signal transduction of insulin</td>
</tr>
</tbody>
</table>
Potential overlap(s) with other topics: none

Requirement for special study: not applicable
Policy regarding attending practice; policy regarding absences:
Practices are mandatory. It is not possible to make up for missed practices. In case of absences amounting to more than 3 practices, the semester is not acknowledged. Arriving to a practice with a delay of more than 10 minutes is considered an absence. Practice/seminar participation performance will be evaluated by the tutors: as such, maximum 10 points per semester can be obtained that may count towards the semi-final grade, see under “Grading system” for further details.

Means of assessing acquired knowledge during the semester:

Midterms: A midterm will take place in the 6th and another in the 11th week, during the practice/seminar (allocated time per midterm: 20 minutes). Midterms may only be taken in person and not through Zoom, unless otherwise indicated. Each midterm will consist of multiple choice questions (MCQs) from which max 20 points can be obtained (10 points per midterm).
It is obligatory to gather ≥10 points from both midterms in order to be allowed to sit for the semi-final exam. For those students who fail to amass ≥10 points from both midterms, one or both midterms can be retaken in the last week during the practice/seminar (allocated time per midterm: 20 minutes). The midterm points will be added as “points” to the result of the semi-final exam, as detailed in “Grading system”, see below.

Lectures: At the end of each lecture, there will be a Kahoot on the topic of the lecture, consisting of 5 questions; 20 secs are allocated per question. Points can be earned by correctly responding to at least 4 out of 5 Kahoot questions. Maximum 1 point can be earned per lecture, as outlined by the lecturer. Through the Kahoots, students may obtain points that will be added to the points earned at the semi-final exam, as detailed in “Grading system”, see below.

Requirement for acknowledging the semester, and for allowing the student to take the semi-final exam: Attendance of at least 75 % of the practical classes and at least 10 points from both midterms.

Competition: The competition is held on the last week during the practice/seminar (allocated time: 35 minutes) and consists of 70 multiple choice questions (MCQs). The competition may only be taken in person and not through Zoom, unless otherwise indicated. Only students who amass 14 or more points from the midterms (not the retakes) can participate in the competition. Top 10% scorers (from those students enrolled in the Dental Biochemistry I course that participated in the competition) will be invited for an oral exam on the last day of that week.
Points obtained from midterms, Kahoot quizzes, or practice/seminar performance (see below), do not count in the competition. Winners will be announced later in the same day, and will be exempted from the semi-final exam.

Exam Type: Colloquium (semi-final), Form: written test and oral exam, based on material of the official textbook, lectures and practices published at the department’s Moodle e-learning system (https://itc.semmelweis.hu/moodle/).

Exam Requirements: The material for the written test exam is the material of the lectures and practices in the subject, with the corresponding textbook chapters.

Types and modes of grading:
Grading system: The grade of the final exam is based on the points obtained i) in Kahoot quizzes at the lectures, ii) during the seminars/practices, iii) at the two midterms, iv) at the written MCQ semifinal exam, v) during an oral exam. The written MCQ exam and the oral exam will take place in the same day of the examination period.

The grading system is as follows:
(i) Kahoot: maximum 1 point per lecture.
(ii) Seminar/practice points: maximum 10 points.
Total points from (i) and (ii) cannot exceed 20 points
(iii) Two midterms: maximum 20 points.
(iv) Written MCQ exam: This test consists of multiple choice questions (MCQs) from which max 100 points can be obtained (allocated time: 100 minutes).

If the score of the MCQ exam is 49 or below, then the grade of the final exam is ‘fail’. If students reach 50 points on the MCQ exam, the midterm points, practice/seminar performance points and lecture Kahoot points (total max. 40 points) will be added to the MCQ score.

Grade calculation of the final exam from the total points (MCQ+semester):

- 95-140: grade 5 (excellent)
- 86-94: grade 4 (good)
- 71-85: grade 3 (satisfactory)
- 50-70: grade 2 (pass)

(v) Oral exam: Only those students who obtained at least 50 points at the semifinal MCQ test will be invited for an oral exam. For those who scored 49 and below, a final mark of “1” will be registered in the Neptun, and points obtained during the semester will not count. During the oral exam, the examiner will pick five questions from those MCQs that were correctly answered by the student. If the student will not elaborate properly on 2 or 3 MCQs, his/her MCQ mark will be decreased by one grade (i.e. if MCQ Moodle exam is 3 and the student does not elaborate adequately on 2 or 3 MCQs picked by the examiner, the MCQ grade will be 3-1=2). If the student will not elaborate properly on 4 or 5 oral MCQs, his/her MCQ mark will be decreased by two grades (i.e. if MCQ Moodle exam was 3 and the student does not elaborate adequately on 4 or 5 oral MCQs picked by the examiner, the MCQ mark will be 3-2=1, i.e. “fail”). If MCQ Moodle exam is 2 and the student does not elaborate adequately on 3 or more MCQs picked by the examiner, the MCQ mark will be “fail”. The points from Kahoot and midterms will be added only if the student obtained from MCQ+oral exam a grade of ≥2.

How to apply for the exam: The exam dates are announced on the 12th week of the semester. We provide at least one exam date each week. Applications are made in the Neptun system in accordance with the University Study and Exam Rules.

Opportunities to repeat the exam: A retake is possible on the closest announced exam date at least one day after an unsuccessful exam.

Printed, electronic and online notes, textbooks, tutorials, and literature for online learning (html for online material):
Harper’s Biochemistry (30th edition, or latest)

Online material published in the department’s Moodle e-learning system (https://itc.semmelweis.hu/moodle/).
BIOPHYSICS I.

Tutor: *Dr. István Voszka*

First Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture (1.5 hours per week)</th>
<th>Laboratory (2.5 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Radiations (basic concepts)</td>
<td>Laboratory safety rules</td>
</tr>
<tr>
<td>2</td>
<td>Properties of electromagnetic radiations; wave and corpuscular nature</td>
<td>Resonance</td>
</tr>
<tr>
<td>3</td>
<td>Attenuation of radiation</td>
<td>Emission spectroscopy. Light sources</td>
</tr>
<tr>
<td>4</td>
<td>Luminescence and its applications</td>
<td>Spectrophotometry</td>
</tr>
<tr>
<td>5</td>
<td>Lasers and their medical applications</td>
<td>Statistics</td>
</tr>
<tr>
<td>6</td>
<td>Thermal radiation, thermography. Biological effects of light</td>
<td>Detection of nuclear radiations</td>
</tr>
<tr>
<td>7</td>
<td>Production and spectrum of X-radiation</td>
<td>Dosimetry</td>
</tr>
<tr>
<td></td>
<td>Cyclotron; Linear accelerator; Special light microscopes</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Attenuation of X-radiation, interactions</td>
<td>X-ray diagnostics</td>
</tr>
<tr>
<td>9</td>
<td>Atomic structure; Radioactive decay law</td>
<td>Optics of the eye</td>
</tr>
<tr>
<td></td>
<td>Gamma-radiation and its detection</td>
<td>Polarimeter</td>
</tr>
<tr>
<td>10</td>
<td>Radiotherapy, radiosurgery; Isotope diagnostics</td>
<td>Coulter counter</td>
</tr>
<tr>
<td>11</td>
<td>SPECT, PET</td>
<td>Determination of skin-impedance</td>
</tr>
<tr>
<td>12</td>
<td>Beta-radiation, beta-decay</td>
<td>Concentration determination with refractometer</td>
</tr>
<tr>
<td>13</td>
<td>Alpha-radiation, alpha-decay</td>
<td>Repetition</td>
</tr>
<tr>
<td>14</td>
<td>Dosimetry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiation protection; estimation of risk</td>
<td></td>
</tr>
</tbody>
</table>
BIOPHYSICS II.

Second Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture (1.5 hours per week)</th>
<th>Laboratory (2.5 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bonds and their significance in macromolecular structure; Boltzmann distribution, examples</td>
<td>The attenuation of gamma-radiation</td>
</tr>
<tr>
<td>2</td>
<td>Liquid crystals, membranes</td>
<td>Amplifier</td>
</tr>
<tr>
<td>3</td>
<td>Electronic properties of condensed materials (solids, macromolecules)</td>
<td>Gamma energy determination</td>
</tr>
<tr>
<td>4</td>
<td>Ultrasound properties, generation of ultrasound</td>
<td>Amplifier</td>
</tr>
<tr>
<td>5</td>
<td>Ultrasonography, Doppler methods</td>
<td>Pulse generators (e.g. pacemaker, defibrillator)</td>
</tr>
<tr>
<td>6</td>
<td>Methods for structure examination heat</td>
<td>Ultrasound</td>
</tr>
<tr>
<td>7</td>
<td>Basic concepts of Thermodynamics, First law</td>
<td>Audiometry</td>
</tr>
<tr>
<td>8</td>
<td>General description of transport phenomena, Onsager’s equation, examples</td>
<td>Isotope diagnostics</td>
</tr>
<tr>
<td>9</td>
<td>Diffusion; transport across membrane</td>
<td>Densitography (CT)</td>
</tr>
<tr>
<td>10</td>
<td>Resting potential and its local changes</td>
<td>Flow of fluids.</td>
</tr>
<tr>
<td>11</td>
<td>Action potential, properties, interpretation</td>
<td>Electrocardiography</td>
</tr>
<tr>
<td>12</td>
<td>General characteristics of sensory function, hearing, vision</td>
<td>Diffusion</td>
</tr>
<tr>
<td>13</td>
<td>Biophysics of muscle function</td>
<td>Sensory function</td>
</tr>
<tr>
<td>14</td>
<td>Motor proteins</td>
<td>Repetition</td>
</tr>
</tbody>
</table>
DENTAL PSYCHOLOGY

Institute of Behavioral Sciences
Code: FOKVMAG019_1A
Credit: 2
Head of the Department: Prof. Dr. József Kovács
Tutor: Dr. Gyöngyvér Salavecz

Second Semester

Course objectives:
– to introduce the concepts of stress, emotions, states of consciousness, and their role in pain perception
– to emphasize suggestive communication and therapeutic methods that may be used to improve doctor-patient relationship in dental practice
– to enable students to recognize and understand psychological and psychopathological issues when encountered in everyday dental practice

Topics:
1-2. Control problems and their relations to dental practice
3-4. Principles of perception, pain, consciousness, emotions and communication -and their relations to dentistry.
5-6. Stress and stress management in dental practice
7-8. Psychological crisis, presuicidal syndrome, and burn-out prevention
9-10. Role of psychological factors in producing and enhancing pain.
 Psychological interventions for pain suppression.
11-12. National holiday
13-14. Psychotherapeutic methods
15-16. Fables and imagination in dental practice
17-18. Substance misuse and surrounding areas in dentistry
19-20. Dental consequences of eating disorders
21-22. Hypnosis and relaxation therapies, and their possible use in dental practice
23-24. Conscious states, sleep, dreaming, general anesthesia
25-26. Affects, emotion and motivation
27-28. Review

Department:
Institute of Behavioral Sciences
Department of Psychology
NET Building, 20th floor
Phone: 210-2953

Secretary: NET Building, 20th floor, Room-2005. Phone: 2102930/56114.

Lecturers:
Dr. György Purebl e-mail: purgyor@net.sote.hu
Dr. Róbert Bódízs e-mail: bodrob@net.sote.hu
Dr. Adrienne Stauder e-mail: staadr@net.sote.hu
Dr. László Harmat e-mail: laszloharmat@yahoo.com
Éva Pollák e-mail: evipoll@yahoo.com
Gabor Suhai e-mail: shgabor@gmail.com

Participation and making up for absences:
Participation list will be recorded at the end of every lecture. To participate on at least 75% of the total number of lessons is a prerequisite for getting the signature. Maximum number of absences in a semester is 3.
Certifying absence from lesson and exam:
Medical certificate presented to the course leader.

Semester requirements:
Course will conclude with a written semi-final examination in the examination period.

Requirement of semester signature:
A signature will be given with the prerequisite of participation. One absence can be overlooked by the teacher if the student writes an essay. The topic of the essay must be discussed with the course leader in advance.

Method of granting grade: The result of the semi-final.

Type of exam: written semi-final examination
Exam requirements: Content of the lectures
Sign up for exam: through the Neptun system
Modifying sign up for exam: through the Neptun system

Certifying absence from exam:
A telephone message to the secretary of the Institute or an email message to the course leader.

Recommended text books:
MEDICAL SOCIOLOGY (Dentsoc)

Second Semester

Hour/semester: 28
Credit: 1
Code: FOKVMAG235_1A
Lecturer of the course: Prof. Dr. Purebl György
Contact details: SE ÁOK Magatartástudományi Intézet, 1089. Nagyvárad tér 4, (36-1)210-2930/ext.56199, or (36-1) 210-2940/ext.56199; or (36-1)210-2953; purebl.gyorgy@med.semmelweis-univ.hu
Position: Professor, Director of the Institute of Behavioral Sciences, Semmelweis University—Budapest.
Date of habilitation and reference number: 05/2019 Semmelweis University, Budapest
Course leader: Bence Döbrössy dobrossy.bence@med.semmelweis-univ.hu
Teachers: Bence Döbrössy e-mail: dobrossybence@gmail.com Dr. Edmond Girasek email: girasek.edmond@gmail.com

Location of the course (address of lecture hall, seminar room etc.):
Nagyvárad tér Elméleti Tömb, 1089 Budapest Nagyvárad tér 4.
Elméleti Orvostudományi Központ 1094 Budapest Tűzoltó utca 37-47
FOOC, 1088 Budapest, Szentkirályi u. 47.

Goals of the subject:
The aim of this course is to help students realise that social factors have a considerable influence on oral/ dental health and dentistry. Social, economic and cultural factors have a great effect on the dentist-patient relationship, the way people make sense of their symptoms and seek dental help, their oral/ dental health related behaviour as well as on the aetiology of oral and dental conditions.
By understanding how different societies are structured and organised and how the categories people belong to (gender, ethnicity, occupation, educational level, financial situation to name but a few) shape all aspects of their lives and opportunities, our hope is that students will better comprehend the social reality influencing the dental health status of people and the practice of dentistry for dentists.

Syllabus of the subject:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to sociology, basic concepts and principles.</td>
<td>Practice</td>
</tr>
<tr>
<td>2</td>
<td>General health and oral health status through history</td>
<td>Lecture</td>
</tr>
<tr>
<td>3</td>
<td>Social determinants of oral health and oral health related behaviour</td>
<td>Lecture</td>
</tr>
<tr>
<td>4</td>
<td>Intercultural dentistry</td>
<td>Lecture</td>
</tr>
<tr>
<td>5</td>
<td>Patient expectations regarding dentistry: the theory and practice of dental patient satisfaction studies.</td>
<td>Lecture</td>
</tr>
<tr>
<td>6</td>
<td>Socio-cultural aspects of pain</td>
<td>Lecture</td>
</tr>
<tr>
<td>7</td>
<td>The profession of dentistry, dentist patient relationship</td>
<td>Lecture</td>
</tr>
<tr>
<td>8</td>
<td>Introduction to practicals. Project work discussion</td>
<td>Practice</td>
</tr>
<tr>
<td>9</td>
<td>Social inequality and health inequality</td>
<td>Practice</td>
</tr>
<tr>
<td>10</td>
<td>Health Care Systems workshop</td>
<td>Practice</td>
</tr>
<tr>
<td>11</td>
<td>21st century dentistry technological and socio-cultural changes</td>
<td>Practice</td>
</tr>
<tr>
<td>12</td>
<td>Dental help seeking behaviour, illness behaviour</td>
<td>Practice</td>
</tr>
<tr>
<td>13</td>
<td>Medicalisation in dentistry, cosmetic dentistry</td>
<td>Practice</td>
</tr>
<tr>
<td>14</td>
<td>Project reports</td>
<td>Practice</td>
</tr>
</tbody>
</table>

Courses (obligatory and elective) which in part or entirely overlap the topics of above course:
Public Health
The Basics of Digital Healthcare
Special academic work required for completion of the course:
Project work done in the practicals

Attendance on practices and lectures, replacement in case of missed sessions:
75% of practicals must be attended. One practical absence can be made up by undertaking an extra task set by the practical leader or by participating in the practical with another group

Consequences of absence from sessions and exams:
No signature is given if 75% of the practicals is not attended, the project work is not done

Method of checking acquired knowledge during the study period:
Completion of project work is required for getting a signature. The project work is graded and makes up 40% of the final grade.

Requirements of an accepted semester (signature of the lecturer):
Completion of project work and 75% practical attendance is required for getting a signature

Type of the exam:
written semi-final in the examination period (60% of the final grade)

Requirements of the exam:
- The written exam will consist of multiple choice questions and an essay type case analysis where students are required to understand, explain and apply to the given case concepts and knowledge acquired in the course.
- In order to undertake the exam successfully, students must know the material made available to them on the departmental home page as well as the textbook.
- The material covered in the exam:
 - 21st century dentistry technological and socio-cultural changes
 - Dental help seeking behaviour
 - Intercultural aspects of dentistry
 - Medicalisation in dentistry, cosmetic dentistry
 - Patient expectations regarding dentistry
 - Social determinants of oral health and oral health related behaviour
 - Social inequalities and inequalities in dental health
 - Socio-cultural aspects of pain
 - Systems of dental health care provision
 - The profession of dentistry

Grading of courses :
40%- project work
60% -written semi-final

Grades:
0-50 points – 1
51-60 points – 2
61-74 points – 3
75-84 points – 4
85 points and over 5

All lecture notes and slides are made available on Moodle (https://itc.semmelweis.hu/moodle/)
textbook: Graham Scrambler (ed) Sociology as Applied to Health and Medicine, Palgrave Macmillan 2018

Exam sign up: Through the Neptun System
Modifying: Through the Neptun System
Absence from the exam: With medical document submitted to the course director
HISTORY OF MEDICINE

Institute of Public Health
Lecturer: Dr. Judit Forrai

The history of medical science, considered as a part of the general history of civilization. The study of the history of medicine helps us to describe and understand how people in different times and cultures experienced and dealt with these fundamentals of human existence. This knowledge can inform debate about the present and the future, and help to bring medicine and science to a wide audience. All human societies have medical beliefs that provide explanations for birth, death, and disease. Many cultures in ancient times treated illnesses with magic and herbal remedies. Ancient Egyptians thought that their gods healed them. The ancient Greeks pursued medicine as a science. Hippocrates, the most famous physician of the time (c. 400 B.C.), believed that diseases had natural causes, not supernatural ones. By the Middle Ages, Europe was hit with a terrible epidemic that killed millions of people called the plague, or Black Death. The Renaissance marked a new period of interest in art and science throughout Europe. Despite new medical discoveries, many doctors still practiced old ways. Most sick people could not afford to see a trained physician. Instead, they consulted midwives who assisted with childbirths and made herbal remedies to treat illnesses. Minor surgeries were not done in the hospital but at the local barbershop. Medical research and training improved in the 18th century but there were still no cures for diseases like smallpox, a disease that killed millions of people over thousands of years. Middle Eastern doctors gave people mild doses of the smallpox to combat the disease. The portrayal of the history of medicine becomes more difficult in the 19th century. Discoveries multiply, and the number of eminent doctors is so great that the history is apt to become a series of biographies. Nevertheless, it is possible to discern the leading trends in modern medical thought. In the beginning of 20th century the research and technology have expanded medical knowledge and improved medical practices like surgery. Today, doctors are able to perform less invasive surgical procedures. The science of medicine has progressed dramatically in just the last 50 years. Career opportunities in health care have also expanded. There is a need for more skilled medical professionals, not only in hospitals, but in dentist and doctors’ offices, research labs, rehabilitation centres, mental health clinics, nursing homes and even schools.

Topics/week

13. Consultation

Important: 3 absences are allowed. Doctor’s certificate is required to certify absence from the exam.

Exam requirement: written test

Textbook:
FIRST AID

Department of Oxyology and Emergency Care
Faculty of Health Sciences
1088 Budapest, Vas u. 17., room 145
Phone: +(36-1)486-5840
Head of the Department: Andrea Szekely, MD, PhD, DEAA
Teacher: Istvan Hornyak, associate professor

Second Semester

Topics
Dangerous scene. Safety measurements on the scene. Call for an ambulance.
Emotional viewpoints of managing emergencies.
The unconscious patient. Airway management. Assessment of the vital signs.
Recovery position.
Heart attack. Sudden death. Chain of survival.
BLS (Basic Life Support)
BLS
AED (Automated External Defibrillator). PAD (Public Access Defibrillation)
BLS + AED
BLS + AED
Chocking, Drowning. Electrocution.
Fainting. Shock. Allergy
Poisoning. Drugs. Drunkenness.

Note: Participation at 75% of practices is necessary. Compensation of absences is possible in subsequent practices.
Development in learning skills will be controlled all the time during the practices in the semester.
Mode of certifying absences: oral – referring to practices
Requirements: The student should be able to recognize emergencies, and call for help
start with BLS + AED
provide airway management in unconscious patients
provide first aid for patients complaining for chest-pain, shortness of breath, signs for hypoglycaemia and having suffered from fainting, shock condition, convulsion, injuries.
The practical exam on the last practical lesson is evaluated with 5 grades method.
MEDICAL INFORMATICS

Name of the educational organizational unit: SE EKK Institute of Digital Health Sciences
Name of the subject: Medical Informatics
Type of the subject: 1 theory, 2 practice / week
Code: FOKVINF009_1A
Credit value: 3
Name of the lecturer of the subject: Dr. Miklós Szőcska

Teachers: Dr. Ádám Zoltán Tamus (PhD, associate professor)
Tamás Tóth (assistant lecturer)
Zoltán Sándor (assistant lecturer)
Péter Dombai (lecturer)

Administrator: Ms. Dóra Bacska

Term: spring

The exercise of the subject in the realization of the aim of the education:
To introduce the students to the medical application of informatics, the characteristics of modern, integrated information systems with respect to quantitative aspects and to decision demands of the modern sciences.
The medical informatics leans on methods of mathematics, statistics and computer sciences and it also includes from the different engineering, management and informatics procedures.

Topics of the subject:
Topic of the theoretical lectures (broken down into weekly figures): 2×7 lectures = 14 lectures
1. Introduction: disruptive technologies in the healthcare
2. Medical data – definitions, their collection and use on the individual and population level
3. Medical information on the Internet
4. Informatics background of the ambulance care – mobilcommunication
5. The background of basic healthcare informatics – integrated healthcare systems
6. The active aging – lifestyle supported by informatics
7. Clinical evidences – Scientific proofs and their data sources

Topic of the practical practices: 2×14 practices = 28 practices
1. Application of MS Excel in the pharmacist practice (functions, diagrams, advanced level) 4×2 lessons
2. Application of MS Word in the pharmacist practice 2×2 lessons
3. Execution of individual complex exercise 1×2 lessons
4. Database management (PuPha (MS Access)) 3×2 lessons
5. Practice with data representation and data visualisation (MS Powerpoint, Prezi) 3×2 lessons
6. Execution of individual complex exercise 1×2 lessons

Requirements of participation of the lessons and the possibility of substitution of the absence:
According to rules of the Studies and Exam Code. Attendance at min. 75% of the classes (both lecture and practice). Max. 2 absence allowed from lectures. Max. 3 absence allowed from practices. Practices and lectures are evaluated separately!

The mode of the certificate in case of absence from the lessons and from the exams:
According to rules of the Studies and Exam Code. No certificate accepted.

The requirements of signature at the end of the term:
Suitable percentage of participation and solution of a computer test
Type of the exam:
Colloquium.

Exam requirements:
Exam: solution of a computer test (five-grade valuation).

Mode of the application for the exam:
Via Neptun system.

Mode of the certification in case of absence from the exam:
By a medical certification within three days.

List of lecture notes, course books, study-aids and literature which can be used to acquisition of the syllabus:
The educational materials are available at http://dei-cloud.semmelweis.hu
Username and password is announced at the lecture/first practice.
LANGUAGE COURSES – Medical Terminology

Department of Languages for specific purposes
Lecturer: Dr. Fogarasi-Nuber Katalin
Subject name: Medical Terminology; Dental Medical Terminology
Code: FOKVNYE227_1A; FOKVNYE234_1A
Credit value: 0

Thematics:
The aim of this course is to help students understand English, Latin and Greek medical and dental medical terms used in Hungary and worldwide. The material implies anatomical and clinical vocabulary adjusted to the schedule of the anatomy course. Terms for diagnoses and procedures are demonstrated by authentic medical documents. In addition, students get acquainted with the basic linguistic phenomena required for diagnostic skills.

Attendance and absence:
Attendance of lessons is obligatory. Students are allowed to have maximum 3 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. once a semester).

Certifying absence:
A medical certificate is required if the student has been absent more than 3 times.

Requirements:
midterms (week 7 and 13)
Topics of midterms: vocabulary, construction of Latin phrases, used in anatomy, pathology, pharmacology
Students who fail a midterm have to retake it.

Semester signature:
Attendance of lessons is obligatory. Students are allowed to have maximum 3 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. once a semester). Students have to pass the two midterms.

Evaluation:
The evaluation of student performance is based on the marks for the 2 written papers as well as the active participation in classes.

<table>
<thead>
<tr>
<th>Percentage Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–50%</td>
<td>1</td>
</tr>
<tr>
<td>51–60%</td>
<td>2</td>
</tr>
<tr>
<td>61–75%</td>
<td>3</td>
</tr>
<tr>
<td>76–89%</td>
<td>4</td>
</tr>
<tr>
<td>90–100%</td>
<td>5</td>
</tr>
</tbody>
</table>

Textbooks:
Teaching material

Excerpts of the following optional textbooks (chapters containing the basic vocabulary of dentistry):
Medical Terminology

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
</table>
| 1. | Skills: Communication between medical professionals, distinguishing medical English and Latin-Greek medical terminology
 Vocabulary: parts of the human body, anatomical planes and directions
 Linguistic phenomena: pronunciation, alphabet, basic form and dictionary entry of medical nouns and adjectives
| 2. | Skills: Part–whole theory in anatomical nomenclature
 Vocabulary: general terms of skeletal system
 Linguistic phenomena: possessive phrases in anatomy and in elemental diagnostics
| 3. | Skills: Part–whole theory in diagnostics adjusted to anatomical studies
 Vocabulary: bones of the upper and lower extremities
 Linguistic phenomena: nouns and their adjectives in anatomy
| 4. | Skills: Attribution in anatomical nomenclature and maxillofacial diagnoses
 Vocabulary: bones and joints of skull, terms used in maxillofacial surgery
 Linguistic phenomena: nouns and their adjectives
| 5. | Skills: Attribution in dental and clinical diagnostics adjusted to anatomical studies
 Vocabulary: oral and nasal cavity, related clinical terms
 Linguistic phenomena: nouns and their adjectives in possessive phrases
| 6. | Skills: Understanding complex anatomical and diagnostical phrases
 Vocabulary: tooth names, parts of teeth
 Linguistic phenomena: nouns and their adjectives in possessive phrases of anatomy and elemental dental and clinical diagnostics
| 7. | 1st midterm
 Skills: Distinguishing types of medical and dental medical documentation
 Vocabulary: pectoral girdle
 Linguistic phenomena: common endings of anatomical and clinical terms
| 8. | Skills: Understanding plural forms in anatomy and in clinical documentation
 Vocabulary: bones, joints and muscles of hand and elbow, Greek and Latin endings of clinical terms
 Linguistic phenomena: plural phrases in anatomy
| 9. | Skills: Describing symptoms and locations in dental and clinical diagnoses
 Vocabulary: pelvic girdle
 Linguistic phenomena: possessive phrases of anatomy and dental diagnostics
| 10. | Skills: Understanding plural forms in clinical diagnostics
 Vocabulary: joints and muscles of lower extremity
 Linguistic phenomena: complex phenomena of anatomical phrases and accident surgical diagnoses
| 11. | Skills: Describing common facial and dental lesions
 Vocabulary: muscles of neck and face
 Linguistic phenomena: complex phenomena of diagnostic phrases
| 12. | Revision
| 13. | 2nd midterm
| 14. | Evaluation of student performance; retake of the midterms |
Dental Medical Terminology

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
</table>
| 1. | Skills: Distinguishing pharmaceutical products
 Vocabulary: musculoskeletal system, composition, diseases and injuries
 Linguistic phenomena: gramma, litra, gutta; numerals |
| 2. | Skills: Understanding medical prescriptions, factory products
 Vocabulary: circulatory system, composition, diseases
 Linguistic phenomena: Using Genitive and Accusative in prescriptions |
| 3. | Skills: The use of anatomical and clinical word stems, pre-and suffixes
 Vocabulary: gastrointestinal tract, composition, symptoms, diseases
 Linguistic phenomena: splitting terms in pre-and suffixes and stems |
| 4. | Skills: Understanding terms related to caries; ICD-10 in use
 Vocabulary: respiratory system, composition, significance, symptoms and diseases, terms used in conservative dentistry
 Linguistic phenomena: Prepositional phrases in diagnostics and prescriptions |
| 5. | Skills: Use of terms pertaining to diseases of pulp and periapical tissues, phrases on surgical procedures due to a condition, conditions after a procedure
 Vocabulary: urinary passages, pelvis, ureter, and bladder, endodontic terms
 Linguistic phenomena: instructions in prescriptions (Imperative, passive and active voice) |
| 6. | Skills: Use of terms related to the developmental disorders of dentition and craniofacial malformations, phrases on surgical procedures due to a condition, conditions after a procedure
 Vocabulary: urogenital apparatus, terms used in oral pathology
 Linguistic phenomena: instructions in prescriptions; packaging materials used in pharmacology |
| 7. | Midterm test |
| 8. | Skills: Understanding terms of drugs types, prescribing magistral products
 Vocabulary: terms of drug types and effects
 Linguistic phenomena: Greek and Latin roots of pharmacological terms, prepositional phrases in diagnostics and prescriptions |
| 9. | Skills: Use of terms related to gingival, tongue and periodontal diseases, terms pertaining to sensory organs
 Vocabulary: anatomical and clinical terms of sensory organs in medical documentation, parodontological terms, terminology of maculopapular rash
 Linguistic phenomena: Analysis of metaphorical terms describing sensory organs |
| 10. | Skills: Understanding terms related to salivary gland disorders, writing diagnoses and prescriptions
 Vocabulary: endocrinological terms, terms pertaining to endocrine and exocrine glands
 Linguistic phenomena: complex phenomena of medical terminology |
| 11. | Skills: Understanding terms related to diseases of the lips and oral mucosa. Infectious diseases
 Vocabulary: nomenclature of microorganisms, terms describing forms of cheilitis and stomatitis
 Linguistic phenomena: Latin terms and constructions used in clinical and dental infectology |
| 12. | Skills: Use of terms describing tumour diseases of the oral cavity, dental lesions
 Vocabulary: histopathological findings, attrition of teeth
 Linguistic phenomena: Latin-Greek terms combined in complex diagnoses |
| 13. | Endterm test |
| 14. | Evaluation of student performance; retake of the midterms |
Introduction to the Hungarian Language, Hungarian for Dental Medical Purposes I.

Department of Languages for specific purposes
Lecturer: Dr. Fogarasi-Nuber Katalin
Subject name: Introduction to Hungarian Language, Hungarian for Dental Medical Purposes I.
Code: FOKONYE268_1A; FOKONYE269_1A
Credit value: 0

Thematics:
The subject prepares students for the most important everyday communication situations in Hungary. Students get acquainted with the basics of the Hungarian language necessary for everyday communication. In the 2nd semester students expand their communication skills in language basics and become familiar with simpler terms used in conversations in the pharmacy and dental office and in the medical records of internal medicine.

Attendance and absence:
Attendance of lessons is obligatory. Students are allowed to have maximum 7 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. two times a semester).

Certifying absence:
A medical certificate is required if the student has been absent more than 7 times.

Requirements:
midterms (week 7 and 13), oral test (week 14)
Topics of midterms: see detailed course description
Students who fail a midterm or the oral test have to retake it.

Semester signature:
Attendance of lessons is obligatory. Students are allowed to have maximum 3 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. two times a semester). Students have to pass the two midterms and the oral test.

Evaluation:
The evaluation of student performance is based on the marks for the 2 written midterms, the oral test as well as the active participation in classes. Tests under 50% must be retaken. In the latter case, the mark fail will also be calculated towards the final mark. For the oral examination two teachers evaluate separately the grade of the student.
0–50% = 1
51–60% = 2
61–75% = 3
76–89% = 4
90–100% = 5
Curriculum and detailed course requirements

Term 1 Introduction to the Hungarian Language

Hungarian Language is a course for students in the first year without any previous exposure to Hungarian. Students will be introduced to the basic vocabulary of general Hungarian. Topics of the course are arranged into 14 teaching units (weeks), with special attention to the most important expressions. Each text is linked to vocabulary, grammar issues and tasks. The course consists of 56 hours (4 hours per week).

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
</table>
| 1. | Hungarian alphabet, greeting
 „lenni” (to be) verb in present tense
 adjectives: hungry, thirsty, tired, sad, happy, ... (plus „lenni”) |
| 2. | nationalities: Hungarian, English, German, Iranian, Canadian, Russian, etc....
 occupation names: eg. dentistry student, student, dentist, doctor, teacher, assistant, dental technician
 Verbs 1: introduction |
| 3. | Verbs 2: to stand, sit, read, look, ask, talk, cook, relax, walk, dance, like, can, study
 their use in simple sentences (s. lesson 10) |
| 4. | Verbs 3: -ik Verbs |
| 5. | „szeretek olvasni, tudok táncolni, fogorvos szeretnék lenni,” (I like to read, I can dance, I’d like to be a dentist)
 „tilos” -ni, „szabad” -ni (enni, inni, dohányozni) (forbidden to ..., allowed to ...) (eat, drink, smoke)
 When? parts of the day (s. greetings), days (s. lesson 12.)
 With who? to live, study |
| 6. | Numbers + How much is it? How old are you? What time is it?
 Bus, tram line nr. … („hányas”), which district / floor? (“hányadik”)
 With what? (with metro, …) |
| 7. | Summary, 1st written test |
| 8. | course book pp. 50-51, hot, cold, sensitive to hot, cold (What is it sensitive to?)
 Practicing verbs
 Where do you live? |
 „I’d like” + -t other foods and drinks
 Repetition from 8th week: Where do you live? (in detail, which district, floor) |
 three–directedness in detail a.) library, school, restaurant, bank, cafe, shop, hospital, surgery, pharmacy b.) university, square, clinic
 What is the flat like? |
 practice: three–directedness (with pictures) |
 What do we do from morning to night? |
| 13. | Summary, 2nd test |
| 14. | Oral test |

Textbooks

L. Gyöngyösi – B. Hetesy: Jó reggelt kívánok!
A. Weidinger: Nyelvtan
Term 2 Hungarian for Dental Medical Purposes I.

Hungarian for Dental Medical Purposes I. is a course for students who completed the course Introduction to the Hungarian Language in the first term. Course objectives are to acquire basic knowledge and skills in order to understand general medical communication, apply the acquired skills freely and creatively to minimize communication problems with Hungarians and use medical language correctly in practice.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Repetition, conversations (important verbs, questioning pronouns)</td>
</tr>
<tr>
<td>2.</td>
<td>Expression of ownership in Hungarian language; body parts. Adjectives: healthy, sick, weak, having a cold (“náthás”), having fever (“lázas”) Verbs: to cough, sneeze, stay, examine, take</td>
</tr>
<tr>
<td>3.</td>
<td>At the pharmacy 1.</td>
</tr>
<tr>
<td>5.</td>
<td>Medical record (Internal Medicine) 1. (patient records, family history, social history)_past tense</td>
</tr>
<tr>
<td>6.</td>
<td>Medical record (Internal Medicine) 2. (medications, allergies, surgeries, present complaints) speech understanding: coherent, longer text narrated in singular 3rd person.</td>
</tr>
<tr>
<td>7.</td>
<td>Summary, 1st written test</td>
</tr>
<tr>
<td>8.</td>
<td>Introduction to dental vocabulary, terms for teeth. Which tooth hurts? Where exactly does it hurt?</td>
</tr>
<tr>
<td>9.</td>
<td>Questions about pain 1., practice (pronunciation, grammatical explanations)</td>
</tr>
<tr>
<td>10.</td>
<td>Questions about pain 2, practice (pronunciation, grammatical explanations)</td>
</tr>
<tr>
<td>11.</td>
<td>Questions about pain 3., practice (discussing possible answers, practicing listening skill, targeted questions)</td>
</tr>
<tr>
<td>12.</td>
<td>Reading and discussing a sample dialogue Incomplete dialogue: writing or saying the dentist’s sentences based upon the answers of the patient and writing or saying the patient’s sentences based on the dentist’s questions. Case history-taking (questions of the medical record->complaint, pain)</td>
</tr>
<tr>
<td>13.</td>
<td>Summary, 2nd written test</td>
</tr>
<tr>
<td>14.</td>
<td>Oral test</td>
</tr>
</tbody>
</table>

Textbooks
L. Gyöngyösi – B. Hetesy: Jó napot kívánok!
Á. Silló: Szituációk
A. Marthy – Á. Végh: Egészségére!
A. Weidinger: Nyelvtan.
Syllabus of Physical Education

Department of Physical Education

Subject: Physical Education I.

Type of Subject: Compulsory
Code of Subject: FOKOTS1007_1A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

The objectives of Physical Education:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life. The syllabus reduced to bi-weekly scheduled double-classes (90 minutes).

The syllabus (preferably a week and numbered):
Reduced to bi-weekly scheduled double-classes (90 min.).

I. St. year I. semester:

1 – 2 weeks: General information
 Accident, fire and environmental education. The mid-year adoption requirements, the construction of classes and the presentation of the university recreational and sports opportunities for extra-curricular activities. The purpose and practice of the warm-up, such as preventing sport injuries. Common warm-up. Free exercises.

3 – 4 weeks: Stamina Development
 Preferably outdoors, on grass ground running, with the aim of developing good running and breathing techniques.

5 – 6 weeks: Coordination enhancing exercises
 Various arm and leg exercises in place and in motion (walking, running, jumping, etc.)

7 – 8 weeks: Balls skill development
 Introducing the most popular ball-games (football, basketball, handball, volleyball). Exercising technical and tactical elements of the games.

9 – 10 weeks: Strengthening exercises
 Hand-wait exercises in walking, running and jumping stationary.

11 – 12 weeks: Posture improving exercises
 Core muscle strengthening exercises in various positions.

13 – 14 weeks: Stretching exercises and it’s relaxing effects
 The physiological background of stretching and it’s practical role and importance in everyday activities.

Requirements to participate in the sessions and the potential for absences:
Active participation in sport classes.

The method of proof for the workshops and the exam absence:
The absence can not be proved, should make up for the lost lessons

Requirements for signature at the end of semester (including the number of tasks to be solved learning outcomes and type):
Active participation in six classes approved by the staff.

How to prove absence regarding the exam:
Absence must be retaken!
Subject: Physical Education II.

Type of Subject: Compulsory
Code of Subject: FOKOTSI007_2A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

The objectives of Physical Education:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life. The syllabus reduced to bi-weekly scheduled double-classes (90 minutes).

The syllabus (preferably a week and numbered):
Reduced to bi-weekly scheduled double-classes (90min.).

I. St. year II. semester:

1 – 2 weeks: General information
Accident, fire and environmental knowledge. Requirement for acceptance of the semester system, the structure of the classes and the presentation of the university recreational sports opportunities for extra-curricular activities. Theory and practical application of the warm-up as a sports injury risk significantly reducing factor. Common to the bench. Free exercises.

3 – 4 weeks: Stamina Development

5 – 6 weeks: Coordination enhancing exercises
The Floorball – learning the basic technical and tactical aspects of the game to improve hand-eye coordination.

7 – 8 week: Strengthening exercises
Using medicine-balls focusing on different muscle groups.

9 – 10 weeks: Ball games
Basketball – skill improving exercises (dribblings, throws, passes, etc.)

11 – 12 weeks: Posture improving exercises
Wall-bar exercises (pull-ups, crunches, etc)

13 – 14 weeks: Stretching exercises
Stretching exercises in pairs using sitting, standing, recumbent positions.

Requirements to participate in the sessions and the potential for absences:
Active participation in sport classes.

The method of proof for the workshops and the exam absence:
The absence can not be proved, should make up for the lost lessons.

Requirements for signature at the end of semester (including the number of tasks to be solved learning outcomes and type):
Active participation in six classes approved by the staff.

How to prove absence regarding the exam:
Absence must be retaken!
COMPULSORY SUMMER PRACTICE

I.

Dental Assistant Practice – 2 weeks (60’ hours)

Week 1
- Introduction of the summer assistant practice, Fire and job sec. Rules, code of conduct
- Introduction of the Dental Clinical Training Centre, patients check in and patient pathway, dental departments in the Centre

Lecture: General tasks of a dental assistant, the most important parts of their profession in the different departments.
Lecture: The basic structure of the patient registration system.
Lecture: Visit of the main sterilization unit
Lecture: Contamination, surface-, and instrument desinfection. Basic rules of sterilisation, and assistant tasks besides the dental chair
Lecture: Infection control, documentation and quality control
Lecture: Hand hygiene, prevention of the pinprick accidents
Presentation of manual and machine driven mixing of impression materials, different types of material mixing practices: silicone, polyether, alginate.
Lecture: Basic and auxiliary materials used in the dental office: Impression-, filling-, luting materials, endodontic desifcntants
Mixing practice of phosphate-, carboxilate-, and glass ionomer cements
Introduction of four-handed treatment
Lecture: Basic rules of four-handed treatment and patient positions during the dental treatment

Week 2 (practicing the things learnt the previous week)
Clinical assistant practice in the clinical Department

II.

Dental Laboratory Technical Practice (60 hours)

Topics of the practical sessions:

1. week: visiting of a dental laboratory
 - Introduction of the laboratory, of its structure. Demonstration of the cast making, metall casting and porcelain veneering.
 - Getting aquainted with the making of fixed and removable dental appliances.
 - Presentation of a specific odontotechnological workphase, as a group assignement (8 minute ppt presentation).

2. week:
 - Introduction to the training laboratory, handing out of the instruments, demonstration of the instruments
 - Cast making
 - Wax pattern making of and incisor and a premolar tooth.
 - Waxing up of an occlusal surface.
 - Artificial teeth

Important note: Document certifying the completion of the practice must be handed in at registration! Registration to the next year is not allowed without it!
BASIC MODULE
STUDY PROGRAMME

BASIC MODULE

3rd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Microscopic Anatomy and Embryology II.</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Macroscopic Anatomy II., Microscopic Anatomy and Embryology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Biochemistry II.</td>
<td>C3L2P1</td>
<td>final#</td>
<td>Dental Biochemistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Molecular Cell Biology II.</td>
<td>C3L1P2</td>
<td>semifinal</td>
<td>Dental Biochemistry I., Medical Chemistry</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology I.</td>
<td>C8L5P3.5</td>
<td>semi-final</td>
<td>Microscopic anatomy and Embryology I., Macroscopic anatomy II., Biophysics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>General Dental Materials, Macroscopic anatomy II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Basic Immunology</td>
<td>C2L2P1</td>
<td>semi-final</td>
<td>Cell Science, Dental Biochemistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Preclinical Practice</td>
<td>C4L1P3</td>
<td>semi-final*</td>
<td>Physical Foundations of Dental Materials Science, Macroscopic Anatomy I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian for Dental Medical Purposes II.</td>
<td>C0L0P4</td>
<td>practice mark</td>
<td>Hungarian for Dental Medical Purposes I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education III.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>

4th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology II.</td>
<td>C8L5P3.5</td>
<td>final#</td>
<td>Medical and Dental Physiology I., Microscopic anatomy and Embryology II., Molecular Cell Biology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I., Macroscopic anatomy II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Microbiology</td>
<td>C3L2P2</td>
<td>semi-final*</td>
<td>Microscopic Anatomy and Embryology II., Molecular Cell Biology I., Medical and Dental Physiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Genetics and Genomics</td>
<td>C2L1.5P1</td>
<td>semi-final</td>
<td>Microscopic Anatomy and Embryology II., Basic Immunology, Molecular Cell Biology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I., General Dental Preclinical Practice</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian for Dental Medical Purposes II.</td>
<td>C4L0P4</td>
<td>signature</td>
<td>Hungarian for Dental Medical Purposes II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Molecular Cell Biology II.</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Dental Biochemistry II., Molecular Cell Biology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education IV.</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

Explanation

15 credits should be gained from the elective subjects during the 5-year studies – see the elective list after the 3rd year study program.

grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point, L = Lecture (hours/week), P = Practice (hours/week)
LIST OF TEXTBOOKS (The list may change!)

5. A.Newbrun: Cariology Quintessence. ISBN 0867152052

Recommended textbooks:

8. Hermann Péter, Szentpétery András: Gnatológia (Semmelweis Kiadó, 2018)
MICROSCOPIC ANATOMY AND EMBRYOLOGY (I –) II.

Department of Anatomy, Histology & Embryology

Course Director: Dr. Andrea D. Székely

LEARNING OBJECTIVES

Aims of the lectures in embryology: Presentation of the early development from the differentiation of the germ cells to the formation of the human embryo (general embryology). Presentation of the development of the organs and functional systems parallel with the gross anatomical and histological lectures including the frequently occurring malformations.

Aims of the lectures in histology: Presentation of the cell, basic principles in cell biology (mitosis, cytoskeleton, cellular motility), detailed presentation of the basic (epithelial, connective, muscle and nervous) tissues. Complementing gross anatomy with a detailed presentation of the fine structure of organs, including the ultrastructural details together with the molecular background. Important chapters: basic tissues, viscera, central nervous system.

Aims of the practical sessions in the histology room: Facilitate the understanding of ground (epithelial, connective, muscle and nervous) tissues and the fine structure of the organs through the observation and interpretation of histological specimens.

LECTURES: 2 x 45 min in both semesters
PRACTICAL CLASSES: I.: 3 x 45 min; II.: 2 x 45 min.
ECTS CREDITS: Altogether 9 (I.: 5; II.: 4).
MIDTERM TESTS: written (e-learning type)

ACCEPTENCE OF THE SEMESTER:
Active participation in lectures, and dissection room sessions is obligatory for every student. Students should attend at least 75% of the scheduled practical classes to gain a signature proving the validity of the semester. Absences are therefore limited in 25%. Attendance will be recorded in the lectures and in the histology classes.

Students are obliged to participate in the midterm test or their semester would not be accepted. Missed midterms should be retaken at the given retake timepoints the department offers during the last two weeks of the semester.

TYPE OF EXAMS: oral and written
I.: semifinal examination, II.: final exam

Semifinal and final examinations consist of written and oral parts
1. Written pretest (e-learning module – access to SeKA account is obligatory)
2. Oral test in Microscopic Anatomy: identification of structures on virtual histological specimens including relevant theoretical questions

LIST OF TEXTBOOKS
1. The Developing Human – Clinically Oriented Embryology, 10th ed. by KL Moore, TVN Persaud and M Torchia, Saunders, 2015; ISBN 9780323313384

Recommended textbooks:
COURSE DESCRIPTION

Microscopic Anatomy and Embryology II.

Lectures in Histology and Embryology; practical classes in Histology

Subject matter
Histology: Microscopical structure of the CNS and PNS (cerebrum, cerebellum, brain stem, spinal cord, ganglia) organs of special senses (apple of eye, inner ear), endocrine glands (pineal, pituitary, thyroid, suprarenal glands) skin and appendages, lymphatic system and the mammary gland.
Embryology: Development of the central and peripheral nervous systems, development of the organs of senses together with their malformations

Credits: 4

Prerequisites: Macroscopic Anatomy I-II, Microscopic Anatomy I, Cell Biology

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Histology laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>1. Cellular components of lymphatic tissue. Thymus, tonsils, MALT. 2. Structure and circulation of lymph nodes and spleen.</td>
<td>Thymus, tonsils</td>
</tr>
<tr>
<td>Week 2</td>
<td>3. Microscopy of the CNS – fine structure of the spinal cord. 4. Microscopy of the CNS – spinal reflexes, receptors, effectors, monosynaptic/proprioceptive reflexes.</td>
<td>Lymph node, spleen</td>
</tr>
<tr>
<td>Week 3</td>
<td>5. Microscopy of the CNS – Nociceptive (withdrawal) and autonomic reflex arcs. 6. Microscopy of the CNS – Fine structure of the cerebral cortex. Cortical fields, Brodmann areas.</td>
<td>Histology of the peripheral nervous system (peripheral nerve, motor end plate, spinal cord).</td>
</tr>
<tr>
<td>Week 4</td>
<td>7. Microscopy of the CNS – Cranial nerve nuclei. 8. Microscopy of the CNS – Cross section of the brain stem.</td>
<td>Endocrine system</td>
</tr>
<tr>
<td>Week 5</td>
<td>9. Microscopy of the CNS – Thalamic nuclei. 10. Microscopy of the CNS – Sensory systems, epicritical and protopathic pathway arising from the brain stem.</td>
<td></td>
</tr>
<tr>
<td>Week 14</td>
<td>27. Bony and membranous labyrinth. Vestibular system. 28. Microscopy of the CNS – Olfactory and gustatory systems.</td>
<td>Histology test</td>
</tr>
</tbody>
</table>

The topics of the Histology laboratories together with the accurate time and topics of the MIDTERM tests are going to be announced in the departmental homepage (as well as in the Handbook)
TOPICS OF THE FINAL EXAMINATION

Topic list for the final examination:

Microscopic Anatomy and Embryology I.
(see there)

Microscopic Anatomy and Embryology II.

Lymphatic organs
- Histological structure of lymph nodes
- Spleen (fine structure and circulation)
- Thymus
- Tonsils, MALT

Development of the nervous system and organs of special senses
- Development and primary differentiation of the neural tube
- Development of brain vesicles
- Development of the peripheral nervous system (neural crest, placodes)
- Development of the organ of vision
- Development of the organ of hearing&equilibrium

Development of the locomotor system
- Membranous and cartilaginous neurocranium and viscerocranium
- Development of the limbs and vertebral column
- Development of the muscular system

Histology of the nervous system
- Histology of the neurons developing from the neural tube
- Glial cells
- Histology of the neurons and supporting cells developing from the neural crest
- Fine structure of peripheral nerves
- Receptors and effectors
- Interneuronal synapses

Microscopy of the central nervous system
- Fine structure (microscopy) of the spinal cord
- Proprioceptive reflexes
- Nociceptive reflexes
- Autonomic reflexes
- Fine structure of the medulla oblongata
- Fine structure of the pons
- Fine structure of the midbrain
- Classification of cranial nerve nuclei
- Tracts of the brain stem
- Reticular formation, monoaminergic systems
- Fine structure of the cerebellum
- Cerebellar afferents and efferents
- Fine structure of the thalamus
- Hypothalamo-hypophyseal system
- Fine structure of the basal ganglia

- Fine structure of the cerebral cortex, cortical fields
- Tracts of the protopathic sensibility (anterolateral system)
- Tracts of the epicritic sensibility (posterior funiculus/medial lemniscus)
- Corticospinal tract (pyramidal tract)
- Extrapyramidal system
- Limbic system (nuclei and tracts)

Endocrine organs
- Microscopical anatomy of the pituitary gland; development of the posterior lobe
- Microscopical anatomy and development of the anterior and intermediate lobes of the pituitary gland Blood supply of the pituitary gland
- Microscopical anatomy of the pineal gland
- Microscopical anatomy and the development of the thyroid gland
- Microscopical anatomy and the development of the parathyroid gland
- Microscopical anatomy and the development of the suprarenal gland
- Histology of the islands of Langerhans

Organs of special senses
- Microscopical structure and development of the skin (scalp and palm)
- Histology and development of skin appendages, mammary gland
- Coats of the eyeball
- Chambers of the eye, vitreous body
- Lens, accomodation
- Visual pathway, visual reflexes
- External ear, tympanic membrane. Tympanic cavity, auditory tube, hearing ossicles.
- Organ of Corti. Auditory pathway
- Vestibular system
- Bony and membranous labyrinth
- Cochlea and cochlear duct
- Organs of olfaction and taste

- External ocular muscles, eye movements
- Accessory and protective apparatus of the eye (palpebrae, conjunctiva, fasciae, lacrimal apparatus)
- External ear, tympanic membrane. Tympanic cavity, auditory tube. Hearing ossicles (joints, muscles)
- Vestibular system
- Bony and membranous labirynth, vestibulum
- Cochlea, cochlear duct
- Organ of olfaction, olfactory pathway, olfactory nerve
- Organ of taste, central processing of taste (tracts)
BASIC IMMUNOLOGY

Department of Genetics, Cell and Immunobiology

Course director: Prof. Dr. Edit Buzás
Tutor: Dr. Marianna Csilla Holub
Subject code: FOKGEN037_1A
Prerequisite subject: Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.; Medical and Dental Physiology II

Credits: 3

<table>
<thead>
<tr>
<th>Lectures (2 hr / week)</th>
<th>Practicals / Seminars (1 hr / week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The role, processes, organs and cells of the immune system</td>
<td>Basic terms, the immune system in the lab</td>
</tr>
<tr>
<td>2. Principles of natural immunity</td>
<td>Methods based on antigen-antibody interactions I. Immunoserology</td>
</tr>
<tr>
<td>3. The complement system; inflammation and acute phase reaction</td>
<td>Methods based on antigen-antibody interactions II.</td>
</tr>
<tr>
<td>4. Antigen, antigen presentation and MHCs</td>
<td>Methods based on antigen-antibody interactions III.: Flow cytometry</td>
</tr>
<tr>
<td>5. Antigen receptors and their formation</td>
<td>Complement assays</td>
</tr>
<tr>
<td>6. T lymphocytes and cell-mediated immune response</td>
<td>HLA typing</td>
</tr>
<tr>
<td>7. B lymphocytes and humoral immune response</td>
<td>Vaccination I.</td>
</tr>
<tr>
<td>8. Mucosal immunity</td>
<td>Vaccination II.</td>
</tr>
<tr>
<td>9. Immune response in infections</td>
<td>Biological therapies I.</td>
</tr>
<tr>
<td>10. Immunodeficiencies</td>
<td>Biological therapies II.</td>
</tr>
<tr>
<td>11. Hypersensitivity</td>
<td>Hypersensitivity I</td>
</tr>
<tr>
<td>12. Tolerance and autoimmunity</td>
<td>Hypersensitivity II-IV.</td>
</tr>
<tr>
<td>12. Antitumor immunity</td>
<td>Screening methods for autoantibodies</td>
</tr>
<tr>
<td>13. Immunology of transplantation</td>
<td>Case studies</td>
</tr>
<tr>
<td>14. Immunology of transplantation</td>
<td>Case studies II.</td>
</tr>
</tbody>
</table>

The sequence of lessons may change.

75% minimum attendance of both the lectures and practical lessons is necessary for the end-term signature. Retake for the midterm will be organized for those student, how miss the midterm because an acute disease, but they have to show up the medical record.

Midterm: written test once in the semester. The midterm is not a requirement for the validity of the semester. Retake (one make up day) will be organized for those student, who miss the midterm because an acute disease, but they have to show up the medical record.

Exam: written test in the exam period. The exam grade will be calculated from the sum of midterm scores and exam scores. For passing you have to reach more than 50 % of both the exam scores and total scores.

Literature:
KUBY Immunology W. H. Freeman and Company New York 2013
Immunology seminars (e-book): http://gsi.semmelweis.hu (The user name and password is on the course datasheet of the Neptun.)
GENETICS AND GENOMICS

Department of Genetics, Cell- and Immunobiology

Course director: Prof. Dr. Edit Buzás
Course coordinator: Dr. F. Ágnes Semsei
Subject code: FOKGEN181_1A
Prerequisite subject: Medical Biochemistry, Molecular and Cell Biology III., Medical and Dental Physiology II
Credit: 2

Lectures (2 hours per week):
1. Introduction to human genetics, the human genome
2. Monogenic inheritance (Autosomal inheritance)
3. Role of sex in inheritance
4. Genetic variations
5. Chromosomal aberrations I.
6. Chromosomal aberrations II.
7. Epigenetics
8. Introduction to genomics. Methods in genomics
9. Genomic approach of complex inheritance
10. Pharmaco- and nutrigenomics
11. Midterm
12. Gene and genome manipulation
13. Genetics of biological processes
14. Population genetics and genomics; Genome and environment

Practices (1 hour per week):
1. Cytogenetics I.
2. Cytogenetics II.
3. Molecular genetic methods and applications in human genetics I.
4. Molecular genetic methods and applications in human genetics II.
5. Pedigree analysis: autosomal inheritance I. (AD)
6. Autosomal inheritance II. (AR)
7. Sex-linked inheritance I. (XR)
8. Sex-linked inheritance II. (XD, mitochondrial)
9. Complex inheritance
10. Consultation
11. Case studies
12. Genetic aspects of cell cycle and cell division disorders
13. Meiosis, gametogenesis; pre-implantation genetic testing
14. From genes to bedside

Important notes:
Students must visit at least 75% of the lessons. More than three absences from the practice or more than three absences from the lecture invalidate the semester, no signature is given. There are no extra practices.
There is one midterm during the semester. Spare midterm is organized for those students, who miss the midterm because an acute illness, but they have to show up the medical record to the tutor in one week. There is no opportunity to improve the midterm scores.
After the course there is a written exam (single choice and essay questions, family tree, karyogram, evaluation of molecular genetic studies etc.). The exam grade is calculated from the sum of midterm scores (maximum 40) and exam scores (maximum 60). Students have to reach more than 50% of both the exam scores and total scores to pass the exam. In the third exam midterm scores are not calculated.

Core text: Medical Genetics and genomics (e-book)
Lecture and practice presentations and additional texts are available on the homepage: http://gsi.semmelweis.hu (The user name and password is on course datasheet of the Neptun)
DENTAL BIOCHEMISTRY II.

Department of Medical Biochemistry

Credits: 3
Total number of hours: 42; lectures (hours): 28; practices (hours): 14
Type of the course: obligatory
Academic year: 2021/2022
Code of the course FOKOMBT305_2
Course Director: Dr. Kraszimir Kolev
Contact details: H-1094 Budapest, Tűzoltó u. 37-47. tel: +36-1-459-1500#60010 email: Kolev.Krasimir@med.semmelweis-univ.hu
Position: Professor
Date of habilitation: 2008 Ref.: 266

Aim of the course:
The aim of the course is to comprehensively describe metabolic processes in the human body, from a medical point of view. The main theme of the semester is to elaborate further on carbohydrate and lipid metabolism commenced in Medical Biochemistry I, elaborate on amino acid and nucleotide metabolism, examine more thoroughly intermediary metabolism including the integration of processes throughout the organs and the human body as a whole. Furthermore, this course aims to afford to medical students the skills of being able to interpret complex physiological processes in the human body at a molecular level. During practices they discuss rapidly developing, promising areas of medicine ("tomorrow's medicine"). The medical biochemical orientation of the course is based on the presentation of molecular bases of diseases that pose serious public health problems (cardiovascular, neurodegenerative, cancer states), with particular emphasis on discussing potential molecular targets of therapy.

Location of the course (lecture hall, practice room, etc.):
Premises located in the Basic Medical Sciences building (laboratory rooms located on the first floor and lecture halls located on the ground floor).

Upon the successful completion of the curriculum, the student should be able to:
Identify biochemical structures, know and understand the reactions in which medically important molecules participate; know and understand inter-organ biochemical processes; know and understand integrated metabolic functions of the human body. Overall, such knowledge is essential for understanding physiological and pathological processes and, consequently, for making sound professional decisions.

Prerequisite (s) for admission to the course: Medical Biochemistry I.

Terms and Conditions for Starting Student Course (Minimum, Maximum), Student Selection Method: Not applicable for compulsory subjects.
How to apply for the course: Application is through the Neptun online system.

The course in thematic details:
Lectures: weekly 1x90 min (2 hours)
Lecturers: Dr. Bartha Katalin (BK), Dr. Ambrus Attila (AA), Dr. Komorowicz Erzsébet (KE), Dr. Törőcsik Beáta (TB)
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures: weekly 1x90 min (2 hours)</th>
<th>Practices (P): 2 hours every other week</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biosynthesis and degradation of heme. Iron homeostasis (BK)</td>
<td>P: Vitamin B12 deficiency and methylmalonic acidemias</td>
</tr>
<tr>
<td>4</td>
<td>Structure and function of nucleotides. The fate of nucleotides obtained through diet. Formation and elimination of uric acid; its metabolic role in humans. Synthesis and degradation of purine and pyrimidine nucleotides. Effects of cytostatic drugs on nucleotide metabolism. (BK)</td>
<td>P: Vitamin B12 deficiency and methylmalonic acidemias</td>
</tr>
<tr>
<td>5</td>
<td>Integration of metabolism. Metabolism of red blood cells. Red blood cell enzymopathies. Kidney metabolism, and dependence on fasting and acidosis. Metabolism of muscle and heart. Comparison of kidney and liver gluconeogenesis. Metabolic adaptation to physical effort. (BK)</td>
<td>P: Acute and chronic liver disease</td>
</tr>
<tr>
<td>6</td>
<td>The starvation-feeding cycle and its regulation. Regulation of hepatocyte metabolism in starvation. (TB)</td>
<td>P: Acute and chronic liver disease</td>
</tr>
<tr>
<td>7</td>
<td>General overview of blood clot formation and elimination. Fibrinogen and fibrin. Prothrombin activation and regulation of thrombin activity. Triggers of blood clotting, amplification of the initiation. (TB)</td>
<td>P: Tumor metabolism</td>
</tr>
<tr>
<td>8</td>
<td>Fibrinolysis. Activation of plasmin. Inhibitors of plasmin. (TB)</td>
<td>P: Tumor metabolism</td>
</tr>
<tr>
<td>9</td>
<td>Inhibitors of blood coagulation and negative feedback mechanisms. (KE)</td>
<td>P: Prothrombin time and activated partial thromboplastin time. Molecular background of inherited thrombophilia</td>
</tr>
<tr>
<td>14</td>
<td>Glutamatergic and GABA-ergic neurotransmission. (TB)</td>
<td>The relationship between metabolism and the functions of the nervous system</td>
</tr>
</tbody>
</table>

Potential overlap(s) with other topics: none

Requirement for special study: not applicable

Policy regarding attending practices; policy regarding absences:
Practices are mandatory. It is not possible to make up for missed practices. In case of absences amounting to more than 2 practices, the semester is not acknowledged. Arriving to a practice with a delay of more than 10 minutes is considered an absence. Practice/seminar participation performance will be evaluated by the tutor: as such, maximum 10 points per semester can be obtained that may count towards the final grade, see under “Grading system” for further details.
Lectures: At the end of each lecture, there will be a Kahoot on the topic of the lecture, consisting of 5 questions; 20 secs are allocated per question. Points can be earned by correctly responding to at least 4 out of 5 Kahoot questions. Maximum 1 point can be earned per lecture, as outlined by the lecturer. Through the Kahoots, students may obtain points that will be added to the points earned at the final exam, as detailed in “Grading system”, see below.

Means of assessing the students’ progress during the semester:
A midterm will take place in the 6th and another in the 11th week, during the practice/seminar (allocated time per midterm: 20 minutes). Midterms may only be taken in person and not through Zoom, unless otherwise indicated. Each midterm will consist of multiple choice questions (MCQs) from which max 20 points can be obtained (10 points per midterm). It is obligatory to gather ≥10 points from both midterms in order to be allowed to sit for the final exam. For those students who fail to amass ≥10 points from both midterms, one or both midterms can be retaken in the last week during the practice/seminar (allocated time per midterm: 20 minutes). The midterm points will be added as “points” to the result of the final exam, as detailed in “Grading system”, see below.

Requirement for acknowledging the semester, and for allowing the student to take the final exam: Attendance of at least 75% of the practical classes and at least 10 points from both midterms.

Competition: The competition is held on the last week during the practice/seminar (allocated time: 35 minutes) and consists of 70 multiple choice questions (MCQs). The competition may only be taken in person and not through Zoom, unless otherwise indicated. Only students who amass 14 or more points from the midterms (not the retakes) can participate in the competition. Top 10% scorers (from those students enrolled in the Dental Biochemistry II course that participated in the competition) will be invited for an oral exam on the last day of that week. Points obtained from midterms, Kahoot quizzes, or practice/seminar performance (see below), do not count in the competition. Winners will be announced later in the same day, and will be exempted from the final exam.

Exam Type: Final. Form: written test and oral exam, based on material of the official textbook, lectures and practices published at the department’s Moodle e-learning system (https://itc.semmelweis.hu/moodle/).

Exam Requirements: The material for the written test exam is the material of the lectures and practices in the subject, with the corresponding textbook chapters.

Types and modes of grading:
The competition is held on week 13, and the structure of the competition is the same as that of the final.

Grading system: The grade of the final exam is based on the points obtained i) in Kahoot quizzes at the lectures, ii) during the seminars/practices, iii) at the two midterms, iv) at the written MCQ semifinal exam, v) during an oral exam. The written MCQ exam and the oral exam will take place in the same day of the examination period.

The grading system is as follows:
(i) **Kahoot:** maximum 1 point per lecture.
(ii) **Seminar/practice points:** maximum 10 points.

Total points from (i) and (ii) cannot exceed 20 points.
(iii) **Two midterms:** maximum 20 points.
(iv) **Written MCQ exam:** This test consists of multiple choice questions (MCQs) from which max 100 points can be obtained (allocated time: 100 minutes).

If the score of the MCQ exam is 49 or below, then the grade of the final exam is ‘fail’.
If students reach 50 points on the MCQ exam, the midterm points, practice/seminar performance points and lecture Kahoot points (total max. 40 points) will be added to the MCQ score.

Grade calculation of the final exam from the total points (MCQ+semester):
95- 140: grade 5 (excellent)
86- 94: grade 4 (good)
71- 85: grade 3 (satisfactory)
50- 70: grade 2 (pass)
(v) Oral exam: Only those students who obtained at least 50 points at the semifinal MCQ test will be invited for an oral exam. For those who scored 49 and below, a final mark of “1” will be registered in the Neptun, and points obtained during the semester will not count. During the oral exam, the examiner will pick five questions from those MCQs that were correctly answered by the student. If the student will not elaborate properly on 2 or 3 MCQs, his/her MCQ mark will be decreased by one grade (i.e. if MCQ Moodle exam is 3 and the student does not elaborate adequately on 2 or 3 MCQs picked by the examiner, the MCQ grade will be 3–1 = 2). If the student will not elaborate properly on 4 or 5 oral MCQs, his/her MCQ mark will be decreased by two grades (i.e. if MCQ Moodle exam was 3 and the student does not elaborate adequately on 4 or 5 oral MCQs picked by the examiner, the MCQ mark will be 3–2 = 1, i.e. “fail”). If MCQ Moodle exam is 2 and the student does not elaborate adequately on 3 or more MCQs picked by the examiner, the MCQ mark will be “fail”. The points from Kahoot and midterms will be added only if the student obtained from MCQ+oral exam a grade of ≥2.

How to apply for the exam: The exam dates are announced on the 12th week of the semester. We provide at least one exam date each week. Applications are made in the Neptun system in accordance with the University Study and Exam Rules.

Opportunities to repeat the exam: A retake is possible on the closest announced exam date at least one day after an unsuccessful exam.

Printed, electronic and online notes, textbooks, tutorials, and literature for online learning (html for online material):
Harper's Biochemistry (30th edition, or latest)
Online material published in the department’s Moodle e-learning system (https://itc.semmelweis.hu/moodle/).

MOLECULAR CELL BIOLOGY I–II.

Department of Medical Chemistry, Molecularbiology and Pathobiochemistry
Detailed information on the subject is available on our website under https://semmelweis.hu/molekularis-biologia/en/students/
MEDICAL AND DENTAL PHYSIOLOGY

Department of Physiology
Credit Points: 8 (I. semester) + 8 (II. semester)
Head of the Department: Dr. László Hunyady, Full Professor
Course Director: Dr. Péter Várnai, Full Professor
Tutor: Dr. András Balla

Aim of Medical and Dental Physiology course:
The goal of Medical and Dental Physiology course is to give the students the understanding of the concepts and principles of medical and dental physiology. The lectures provide the information base while the seminars and practices provide the student with an opportunity to assimilate and integrate the material. Appropriate clinical perspectives are presented throughout the course.

First semester

1. Introduction, body fluids. Functions of cellular membranes, transport across membranes. Transepithelial transports.
3. Ion channels and resting membrane potential. Action potential. Physiology of nerve cells, synaptic transmission in the central nervous system.
5. Physiology of the blood.
6. Physiology of the heart I.: origin and spread of cardiac excitation-Cardiac cycle. Regulation of cardiac output.

Second semester

2. Secretory functions of the gastrointestinal tract. Digestion and absorption of food.
3. Endocrine regulations. The hypothalamo-adenohypophyseal system; growth hormone, somatomedins.
5. Hormonal regulation of intermedier metabolism.
7. Function of the reproductive system: male sexual function; female sexual function; endocrinology of pregnancy, parturition, and lactation.
8. Introduction to neurophysiology. Physiology of nerve & glia cells.
9. Sensory functions.
10. Physiology of hearing and equilibrium.
11. Physiology of vision.
12. Motor functions.
13. Integration of autonomic responses.
14. Electroencephalogram (EEG); sleep phenomena. Learning and memory. Regulation of behavioral mechanisms, motivation; emotion.
Practices, I. semester:
- Typing of Blood Groups, Blood Coagulation Test
- Blood cell counting, determination of hemoglobin concentration and hematocrit.
- Leukocyte differential count on peripheral blood smear
- Recording and analyzing the human ECG
- Blood pressure measurement in humans
- Computer simulation: Skeletal and smooth muscle
- Evaluation of acid-base parameters with the Siggaard-Andersen nomogram

Practices, II. semester:
- Human pulmonary function tests
- Smooth muscle of rabbit small intestine
- Oral glucose tolerance test (OGTT)
- Electrooculography (EOG) and investigation of the vestibular system
- Reflex function
- Computer simulation: Studies on circulatory reactions of a virtual rat
- Computer simulation: Neuromuscular junction

Attendance on practices and lectures, replacement in case of missed sessions:
The lecture hours per week are 5; the practice hours per week are 3.5. The attendance of a minimum of 75% of practices (including “seminars”) is necessary for the end-term signature. Students must write a lab report for each practice using the Practical Book. The Practical Book should be signed by the teacher not later than one week after the practice. Participation in the practices is compulsory. No more than three absences from practices are allowed for any reason; otherwise the semester will not be credited. There are no extra practices and missed practices cannot be retaken. Absence from the exam must be certified at the Head of the Department or Course Director within 3 working days.

Consequences of absence from sessions and exams:
No more than three absences from practices are allowed for any reason; otherwise the semester will not be credited. There are no extra practices and missed practices cannot be retaken. Failing to certify absence from an exam causes registering “absence” = “nem jelent meg” in the NEPTUN system.

Method of checking acquired knowledge during the study period:
The knowledge of the students is tested in a written form on a weekly base. The written short tests cover the material of lectures of the previous week.

Semi-final and final exams:
In the examination period the students have to give semi-final exam in the first semester and final exam in the second semester.

Requirements of the exam:
Semi-final exam: material of the Medical and Dental Physiology I.
Final exam: material of the Medical and Dental Physiology I. and Medical and Dental Physiology II.
The semi-final exam is oral exam. The oral exam consists of two theoretical questions (I-II). The overall result of the oral exam is based on the two theoretical grades; a failed (1) theoretical question results in an overall failed (1) exam.
Lists of the theoretical questions can be found in the webpage of the Department of Physiology. The following rules will be enforced during the exams: electronic devices must be kept in the baggage; baggage and coats should be placed next to the wall of the exam place; any form of communication is disallowed; students not complying with these rules will be disqualified immediately.

Grading of courses:

Semi-final exam: The students need to bring ID card and the laboratory report book to participate in the exam. The oral exam consists of two theoretical questions (I-II). Grouping of questions, the topics of the semi-final exam can be found in the webpage of the Department of Physiology.
I: 1 and 2 topics of the semifinal exam
II: 3, 4 and 5 topics of the semifinal exam
The overall result of the oral exam is based on the two theoretical grades but a failed (1) theoretical question results in an overall failed (1) exam. The mathematical average of two oral exam grades gives the grade of the semi-final exam:
- Excellent (5): 4.51 - 5.00
- Good (4): 3.51 - 4.50
- Satisfactory (3): 2.51 - 3.50
- Pass (2): 2.00 - 2.50
- Fail (1): below 2.00 or in case of failed (1) theoretical question.
The following rules will be enforced during the exam: electronic devices must be kept in the baggage; baggage and coats should be placed next to the wall of the lecture halls or the practice rooms; any form of communication is disallowed; students not complying with these rules will be disqualified immediately.

Failing to certify absence causes registering “absence” = “nem jelent meg” in the NEPTUN system.

Final exam: The final exam consists of a written and an oral part. The written and oral part of the final exam starts at 8:45 by showing up in the selected exam place. Your exam place and examiners are announced in written form at 8:30 (attached to the front door of the corridor of the Physiology Practice Rooms). The students need to bring ID card and the laboratory report book to participate in the exam. The written part consists of 30 questions and takes 45 minutes. Grading of the written part:

<table>
<thead>
<tr>
<th>Correct Answers</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-14</td>
<td>1</td>
</tr>
<tr>
<td>15-18</td>
<td>2</td>
</tr>
<tr>
<td>19-22</td>
<td>3</td>
</tr>
<tr>
<td>23-26</td>
<td>4</td>
</tr>
<tr>
<td>27-30</td>
<td>5</td>
</tr>
</tbody>
</table>

The oral exam starts at 9:45 and consists of two theoretical questions (I-II). Grouping of questions, the topics of the final exam can be found in http://semmelweis.hu/elettan/teaching/second-semester.

I: 1, 2, 3, 4 and 5 topics of the final exam

II: 6, 7 and 8 topics of the final exam

The overall grade of the final exam is the mean of three (written exam grade, two oral exam grades), but a failed (1) theoretical question results in an overall failed (1) exam.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent (5):</td>
<td>4.51 - 5.00</td>
</tr>
<tr>
<td>Good (4):</td>
<td>3.51 - 4.50</td>
</tr>
<tr>
<td>Satisfactory (3):</td>
<td>2.51 - 3.50</td>
</tr>
<tr>
<td>Pass (2):</td>
<td>2.00 - 2.50</td>
</tr>
<tr>
<td>Fail (1):</td>
<td>below 2.00 or in case of failed (1) theoretical question</td>
</tr>
</tbody>
</table>

The following rules will be enforced during the exam: electronic devices must be kept in the baggage; baggage and coats should be placed next to the wall of the lecture halls or the practice rooms; any form of communication is disallowed; students not complying with these rules will be disqualified immediately.

Failing to certify absence causes registering “absence” = “nem jelent meg” in the NEPTUN system.

Exam registration:
Registration for the exam must be recorded through the NEPTUN system.

Rules of repeating exams:
Repetition of the exam is possible at least three days after the unsuccessful trial.

Requirements of the exams:
Semi-final exam: material of the Medical and Dental Physiology I.
Final exam: material of the Medical and Dental Physiology I. and Medical and Dental Physiology II.

List of textbooks:

CONSERVATIVE DENTISTRY AND ENDODONTICS, PRE-CLINICAL I.

Department of Conservative Dentistry
Head of Department: Dr. Zsuzsanna Tóth D.M.D., Ph.D.

Second Semester

Phantom-course (Pre-clinical laboratory course)

Lecture (1 hour/week)
Introduction to operative dentistry

Manual training (3 hours per week)
Introduction to practice: general
Department’s policy. Rules of the house.
Distribution of instruments.
Handing over of instruments.

Discussion of drilling methods
Drilling practice I.
Drilling practice II.

Drilling practice III. Practical exam
Grinding of extracted carious human teeth
Black’s class I. and V. cavity preparation for plastic restoration.

Preparation of class II. Cavities (I.)
Preparation of class II. cavities (II.)
Preparation of class III. and IV. cavities
Cavity preparation by modified Black’s principles. Practical exam
Class I. and V. cavity preparation for inlay

Class II. cavity preparation for metal inlay
Class II. inlay cavity preparation.
Practical exam
Complete of the works.

Class II. Cavity preparations for Gold (metal) inlay and gold onlay restorations.
Class I, IV, V, VI. Cavity preparation for gold inlay restorations
Cavity preparations for Composit resin and porcelain inlay restorations.
Pin-retained restorations (type of pins, Indications and contraindications).
Preparation for Porcelain Veneers.

Note: The maximum number of absences in a semester is 3.
During the semester 3 midterm examinations should be passed.
Practical course grade.
GENERAL DENTAL PRECLINICAL PRACTICE

Department of General Dental Preclinical Practice
Head: Prof. Dr. Krisztina Márton D.M.D., Ph.D.

Second Semester

Lectures (1 hour/week) Practices (3 hours/week)

The Department of General Dental Preclinical Practice is responsible for the preparation of dental students for the practical stages of the clinical practice requiring high precision and excellent manual skills. The aim of this special education is to provide the students with a professional preclinical conservative dentistry, prosthodontics, periodontology, oral surgery and orthodontics manual and theoretical training, which will be used in the clinical treatment procedures. It consists of the simulation of the clinical stages on phantom heads, but furthermore students also have the opportunity to study the basics of minimal- and micro invasive dentistry and the most important rules of infection control.

Theoretical lessons:

1. Oral diseases.
2. Establishment of the Dental Clinic. Instrumentation of the Dental Office.
3. Dentistry in the Field of the Life Sciences. Role of Dental Science in Human Medicine. The Dental Team.
5. Infection Control. Disinfection and Sterilization in Dentistry.
6. Organization of the Dental Team. Fluid Control, Four-handed Dental Treatment.

Recommended textbook:

INTRODUCTION TO ODONTO TECHNOLOGY AND PROSTHODONTICS
PRE-CLINICAL COURSE I-II.

Department of Prosthodontics
Head of Department: Prof. Dr. Péter Hermann
Lecturer: Dr. Ida Barbara Kispélyi

Since the creation of an independent training, the Stomatological curriculum has put great emphasis on a preclinical foundation course, the Prosthodontics Propaedeutic course, the syllabus of which has also included mastery of dental techniques, indispensable for a dentist. Until the visit of the EU Committee in the late 90s, the course was structured in such a manner that in the first and second semester of the second academic year students had 3 hours of practices and one hour of lecture per week; during the first semester treatment of complete edentulousness was simulated through fabrication of complete dentures, while in the second semester students prepared 3-unit bridges and single crowns on partial edentulous moulages. During both semesters, medical and dental laboratory steps followed each other just like in real life, and students performed alternatively medical work phases and dental laboratory tasks, for one week each. After the proposal of the EU Committee on the amendment of several courses (including the Prosthodontics Preclinical course), dental laboratory and medical work phases had to be separated sharply, while an independent Odontotechnology course had to be included in the curriculum. According to the request, this Odontotechnology course was built into the theoretical module in order to provide the earliest possible recognition and consolidation of the chosen profession.

Taken more than ten years of experience into account, while maintaining the values that undoubtedly resulted from these changes, we wish to modify those controversial points that in our opinion can be still improved. A sharp separation of the two disciplines (dental techniques and dentistry) rather confuses students, thus they fail to get a grip of the process, and it is the essence that is lost, since these processes are based each on the other. The essence of the new syllabus is the integration of the two courses that are currently taught separately, and thus new and crucial areas (not taught so far) can be emphasized, with concomitant reduction of teaching hours and credit points.

The curriculum of the course concludes with a comprehensive examination at the end of the first semester of the third academic year.

Timing of the Odontotechnology and Prosthodontics Preclinical course:
3rd, 4th and 5th Semester

Preliminary studies requested for the course of Odontotechnology and Prosthodontics Preclinical course module I:
General Dental Material Science, Macroscopic Anatomy II.

Preliminary studies requested for the course of Odontotechnology and Prosthodontics Preclinical course module II:
Odontotechnology and Prosthodontics Preclinical course module I, Macroscopic Anatomy II.

Preliminary studies requested for the course of Odontotechnology and Prosthodontics Preclinical course module III:
Odontotechnology and Prosthodontics Preclinical course module II, Conservative Dentistry and Endodontics, Preclinical I, Molecular Cell Biology II.
Odontotechnology and Prosthodontics preclinical course I.

Topics of the lectures:

1. Primary impression, primary cast
2. Special trays
3. Labside and chairside steps of making complete denture
4. Types of casts, casting as a kind of information transfer
5. Secondary impression
6. The occlusal rim, centric occlusion
7. Articulators, jaw registration
8. Fabrication of the trial denture, and the try in procedure
9. Fitting of dentures, Short time and long time recall procedures.
10. Types of the prosthetic appliances
11. Gnatological aspects in making complete denture
12. Partial edentulousness, and partial dentures (RPD)
13. Labside and chairside steps of making partial and complex denture
14. Consultation

Topics of the Practices:

1. Introduction, Instrument Delivery
2. Impression Taking for Maxillary and Mandibular Complete Dentures
3. Impression Taking for Maxillary and Mandibular Complete Dentures
4. Outlining The Borders of The Special Trays,
5. Fabrication of Special Trays
7. Fabrication of Maxillary and Mandibular Occlusal Rims
8. Jaw Registration
9. Mounting of Articulators
10. Setting Up Teeth
11. Setting Up Teeth
12. Setting Up Teeth
13. Processing Dentures, Insertion
14. Consultation

Odontotechnology and Prosthodontics Preclinical II.

Topic of the lectures (weekly, numbered):

1. Types of the fixed dental restaurations
2. Labside and chairside steps of making fixed appliances
3. Fundamentals of tooth preparation, periodontal aspects
4. Impression taking for fix appliances, sectional models, and dies
5. Fabrication of wax pattern, casting of fix appliances, trial of the metal framework of the fix appliances
6. Dowel core restorations
7. Tooth Shade Determination
8. Temporary Dental Restauration
9. Veneering of fixed appliances
10. Metal free fixed restoration, CAD/CAM technology
11. History of implant dentures, labside and chairside steps
12. Explanation of different kind of implant systems. Impression methods of implant cases
13. Dental cements
14. Consultation

Practical sessions

1. Handing out of the instruments introduction
2. Tooth preparation 24 and 27 for fixed partial denture
3. Tooth preparation 24 and 27 for fixed partial denture
4. Tooth preparation 24 and 27 for fixed partial denture
5. Tooth preparation 24 and 27 for fixed partial denture
6. Two-phase impression
7. Antagonistic impression, bite-registration
8. Preparation of the sectional model, mounting of the average value articulator
9. Waxing up of the four-unit bridge: Adapta deep drawing
10. Wax pattern fabrication of the four-unit bridge: outlining and shaping of the occlusal surface
11. Wax pattern fabrication of the four-unit bridge
12. Spruing of the wax pattern, preparation for investing
13. Wax pattern fabrication for a four unit porcelain fused to metal four unit bridge
ELECTIVE SUBJECT for Dentistry 2nd year

Title: CULTURE IN MEDICINE, CULTURE OF MEDICINE – Popular Themes of Current Clinically Applied Medical Anthropology

Institute of Behavioral Sciences
Course Director: Prof. Dr. Ferenc Túry
Lecturer: Dr. László Lajtai

Prerequisite: Dental Psychology

Second Semester

Weekly topics of the seminars:
1. „We have never been modern?” – An initiation to critical approaches to evidence base in medicine – How to respond? - / - Discussion of the semester: Requirements and timescale.
2. Alternatives 1: Narratives and explanatory models – Confusions and the lay perspective
3. Alternatives 2: Complementary medicine – Competition at our doorstep
4. Alternatives 3: Healing and folk medicine – Wisdom or beliefs?
5. Alternatives 4: Biomedicine for anthropology, or the twist of perspectives
6. Challenges 1: Migrants, refugees and minorities
7. Challenges 2: Reproduction, sex, age, death and other trends in „western” medicalization
8. Challenges 3: Nutrition and taboos - biopower and social body
9. Challenges 4: Placebo, pharmaceuticals and the rule of pharmaceutical industry
10. Challenges 5: Public medicine, private medicine and the reproduction of inequities
11. Favourite themes 1: Alcohol, drug, and AIDS at crossroads of culture and law
12. Favourite themes 2: Shrinks and madness – CBS and the mirage of the normal
Recapitulation, feedback and evaluation.
LANGUAGE COURSE

Department of Languages for specific purposes

Term 3 Hungarian for Dental Medical Purposes II.

Hungarian for Dental Medical Purposes II. is a course for students who completed the course Hungarian for Dental Medical Purposes I. Course objectives are to extend the range of basic knowledge and skills, as well as to improve the ability to use what has been learnt so far. Students are introduced to dental language to ensure that they use it correctly in practice.

Attendance and absence:
Attendance of lessons is obligatory. Students are allowed to have maximum 7 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. two times a semester).

Certifying absence:
A medical certificate is required if the student has been absent more than 7 times.

Requirements:
midterms (week 7 and 13), oral test (week 14)
Topics of midterms: see detailed course description
Students who fail a midterm or the oral test have to retake it.

Semester signature:
Attendance of lessons is obligatory. Students are allowed to have maximum 3 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. two times times a semester). Students have to pass the two midterms and the oral test.

Evaluation:
The evaluation of student performance is based on the marks for the 2 written midterms, the oral test as well as the active participation in classes. Tests under 50% must be retaken. In the latter case, the mark fail will also be calculated towards the final mark. For the oral examination two teachers evaluate separately the grade of the student.

\[
\begin{align*}
0\text{–}50\% & = 1 \\
51\text{–}60\% & = 2 \\
61\text{–}75\% & = 3 \\
76\text{–}89\% & = 4 \\
90\text{–}100\% & = 5
\end{align*}
\]
Detailed course/lecture description:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Revision: Medical record (Internal Medicine)</td>
</tr>
<tr>
<td>2.</td>
<td>Revision: complaint, pain (location, time, type, …)</td>
</tr>
<tr>
<td>3.</td>
<td>The tooth. Parts and material of the tooth Terms for teeth What does DMF mean?</td>
</tr>
<tr>
<td>4.</td>
<td>Number of decayed, missing and filled teeth (based on listening or reading tasks); Dialogues</td>
</tr>
<tr>
<td>5.</td>
<td>Tooth decay 1.</td>
</tr>
<tr>
<td>6.</td>
<td>Brushing teeth</td>
</tr>
<tr>
<td>7.</td>
<td>Summary, 1st written test</td>
</tr>
<tr>
<td>8.</td>
<td>Basics of dentist-patient dialogues 1. Introducing oneself, short case history-taking</td>
</tr>
<tr>
<td>9.</td>
<td>Basics of dentist-patient dialogues 2. Instructions during examination, diagnosis</td>
</tr>
<tr>
<td>11.</td>
<td>Exercises on the topics above (eg. reading comprehension) Revision: types of teeth, caries, tooth cleaning</td>
</tr>
<tr>
<td>12.</td>
<td>Listening exercises on the topics above Improvised dialogues, vocabulary expansion based on possible responses, strategies for improving speech understanding</td>
</tr>
<tr>
<td>13.</td>
<td>Summary, 2nd test</td>
</tr>
<tr>
<td>14.</td>
<td>Oral test</td>
</tr>
</tbody>
</table>

Textbooks

1. I. Gera: Angol-magyar fogorvosi szótár
2. M. Putz: Magyar fogorvosi szaknyelv I.
3. A. Weidinger: Nyelvtan

Term 4 Hungarian for Dental Medical Purposes III.

Hungarian for Dental Medical Purposes III. is a course for students who completed the course Hungarian for Dental Medical Purposes II. Course objectives are to extend the range of basic knowledge and skills, as well as to apply creatively what has been learnt so far. Students focus on professional communication and learn expressions of dental documentation.

Attendance and absence:
Attendance of lessons is obligatory. Students are allowed to have maximum 7 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. two times a semester).

Certifying absence:
A medical certificate is required if the student has been absent more than 7 times.

Requirements:
midterms (week 7 and 13), oral test (week 14)
Topics of midterms: see detailed course description
Students who fail a midterm or the oral test have to retake it.

Semester signature:
Attendance of lessons is obligatory. Students are allowed to have maximum 3 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. two times times a semester). Students have to pass the two midterms and the oral test.

Evaluation:
The evaluation of student performance is based on the marks for the 2 written midterms, the oral test as well as the active participation in classes. Tests under 50% must be retaken. In the latter case, the mark fail will also be calculated towards the final mark. For the oral examination two teachers evaluate separately the grade of the student.

<table>
<thead>
<tr>
<th>Percentage Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–50%</td>
<td>1</td>
</tr>
<tr>
<td>51–60%</td>
<td>2</td>
</tr>
<tr>
<td>61–75%</td>
<td>3</td>
</tr>
<tr>
<td>76–89%</td>
<td>4</td>
</tr>
<tr>
<td>90–100%</td>
<td>5</td>
</tr>
</tbody>
</table>

Detailed course/lecture description:
1. week Revision: case history-taking, topics of the 3rd semester, dialogues
2. week Fillings (descriptive text, basic vocabulary; dialogues)
3. week Gingivitis (descriptive text, basic vocabulary; dialogues)
4. week Tooth decay 2. (descriptive text, basic vocabulary; dialogues)
5. week Initial steps in differential diagnosis, use of important verbs
6. week „General Health Questionnaire” (discussion, translation, practical use: based on listening and hearing tasks)
7. week Summary, 1st written test
8. week Sentences required by the Faculty of Dentistry 1. (symptoms, medications, medical treatment, heart murmur, hospital, …)

Weeks 8-12: translating sentences and discussing them using grammatical explanations; searching for similar words, other terms, and making learning easier with vocabulary cards, dialogues, games and associations.
9. week Sentences required by the Faculty of Dentistry 2. (health, heart disease, haemorrhage, …)
10. week Sentences required by the Faculty of Dentistry 3. (operations, blood pressure, fainting, hereditary diseases, …)
11. week Sentences required by the Faculty of Dentistry 4. (pregnancy, lactation, infectious diseases, …)
12. week Sentences required by the Faculty of Dentistry 5. (sensitive teeth, dental calculus, brushing, floss, smoking, alcohol …)
13. week Summary, 2nd written test
14. week Oral test

Textbooks
1. M. Győrffy: Mi a panasz?
2. R. Halász: Anamnézis magyarul
3. Á. Silló: Szituációk
4. A. Marthy – Á. Végh: Egészségére!
5. J. Kovács: A fogászati szaknyelv alapjai
6. I. Gera: Doctor – Patient, Doctor – Assistant Communication, compiled by Prof. Dr. I. Gera
7. M. Putz: Magyar fogorvosi szaknyelv I.
8. I. Gera: Angol-magyar fogorvosi szótár
9. A. Weidinger: Nyelvtan
Introduction to English Dental Terminology I-II – elective course

Library Informatics – AOVKPK088_1A

Lecturer: Dr. Lívia Vasas PhD. – Central Library
Institute: Semmelweis University Central Library, 1088 Budapest
Duration: One semester, 30×45 minutes (10×3 lessons)

SUGGESTED SEMESTER 5-10.

Exam-form: Practical mark
Credit-value: 3 credit-points
Minimum/maximum group-size: 8/200

The aim of the subject: Teaching students how to use/search in literature sources of medicine, analyse the result of their work supporting the proper competencies.

Thematic: Medical e-catalogues, e-books, e-libraries, databases, scientific resources of internet

Assistant lecturer: Anna Berhidi, Edit Csajbók, Skultéti Attila, Szluka Péter

Student records officer: Application deadline: September 4-8, 2019
Precondition: There isn’t.

Introduction, technical details, VPN access, technical details, about the history of the Central Library’s Homepage: www.lib.semmelweis.hu and its facilities,

UpToDate, ClinicalKey, HS talks: Biomedical & Lifesciences Collections, EBSCOhost, ProQuest, Pharmacopoeia, Turnitin
Dissertations: Dart Europe, Open dissertations, OATD,

Catalogs: books, online books
Semmelweis University catalog Hunteka: http://hunteka.lib.semmelweis.hu/search
Online book catalog: https://lib.semmelweis.hu/nav/ekonyvek
National Library of Medicine (Bethesda, USA)
Worldcat: https://www.worldcat.org/
Copac: https://copac.jisc.ac.uk/
Books PPT

Scientific publishers and periodicals: printed/electronic/open access

Browser and matching searching, archive and the newest editions Characterization of periodicals/reviews/journals, ISSN, DOI, Crossmark, Article metrics - Online attention
Publishers: Springer, LWW, Wiley, video journal: JOVE
Nature: https://www.nature.com/
BMC https://www.biomedcentral.com/
PLOS https://www.plos.org/, DOAJ https://doaj.org/, etc.
New routes: Open Science, Open Access
The dangers of publishing on Open Access https://lib.semmelweis.hu/nav/open_access_general_information Support for Open Access
Communication at Semmelweis University https://lib.semmelweis.hu/nav/open_access_tamogatas
The Semmelweis repository https://repo.lib.semmelweis.hu/
The concept of plagiarism, its forms of appearance, Plagiarism Search: Turnitin, Copyright questions

NLM databases: history, Openln: https://openi.nlm.nih.gov/
value added services: registration, advances search.
MeSH, PMC, etc.
Dictionary: https://www.merriam-webster.com/

OVID databases, online books, electronic periodicals, Evidence Based Medicine databases: the role of the EBM in research, full text journals in Ovid databases MEDLINE, PsycINFO, subject heading systems, value-added services, access to the full text version, WHO https://www.who.int/

Bibliographic and citation databases, search engine: Web of Science platform, Google Scholar; citations, general searching in the databases, bibliographic and citation searching on keywords, using Boolean operators, value-added services
Scientometrics: quality of journals: Clarivate Analytics InCites JCR (Science Edition and Social Science Edition), IF: calculating Impact factor; SCImago: SJR

Reference Manager: EndNote, EndNote Online; the role of reference softwares in modern publishing, Literature searching: Importing and exporting records (from Web of Science, OVID Medline, PubMed) creating own records search facilities within our records and from PubMed; data handling: creating groups, filtering duplicates
Semmelweis Knowledgebase, Scientific Discovery of the Internet: find medical information you can trust, Building search strategies, Google Scholar, Medworm

Summary of the course, Test writing

Consultation, Retake the 1st/2nd test OR Renewal opportunity for each tests
Syllabus of Physical Education

Department of Physical Education
Subject: Physical Education III.
Type of Subject: Compulsory
Code of Subject: FOKOTS007_3A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

The objectives of Physical Education:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life. The syllabus reduced to bi-weekly scheduled double-classes (90 minutes).

The syllabus (preferably a week and numbered):
Reduced to bi-weekly scheduled double-classes (90min.).

II. St. year 1. semester:

1 – 2 weeks: General information
 Accident, fire and environmental knowledge. Requirement for acceptance of the semester system, the structure of the classes and the presentation of the university recreational sports opportunities for extra-curricular activities. Theory and practical application of the warm-up as a sports injury risk significantly reducing factor. Common to the bench. Free exercises.

3 – 4 weeks: Stamina Development
 Long-term (at least 45 – 60 minutes) running and skipping exercises.

5 – 6 weeks: Balls skill development
 Practicing the fundamentals of volleyball (serves, over – and underhand touches, movements, etc.)

7 – 8 week: Strength development
 Overall strength development using the circle-training method-setting up different stations working on different muscle groups.

9 – 10 weeks: Coordination enhancing exercises
 Jumping rope exercises in place and in motion.

11 – 12 weeks: Posture correction
 Stick exercises, in various position and motion.

13 – 14 weeks: Stretching – relaxation exercises
 Stretching exercises using large medicine-balls in sitting, standing, kneeling and recumbent positions.

Requirements to participate in the sessions and the potential for absences:
Active participation in sport classes.

The method of proof for the workshops and the exam absence:
The absence can not be proved, should make up for the lost lessons.

Requirements for signature at the end of semester (including the number of tasks to be solved learning outcomes and type):
Active participation in six classes approved by the staff.

How to prove absence regarding the exam:
Absence must be retaken!
Subject: Physical Education IV.
Type of Subject: Compulsory
Code of Subject: FOKOTSI007_4A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

The objectives of Physical Education:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life. The syllabus reduced to bi-weekly scheduled double-classes (90 minutes).

The syllabus (preferably a week and numbered):
Reduced to bi-weekly scheduled double-classes (90min.).

II. St. year II. semester:

1 – 2 weeks: General information
Accident, fire and environmental knowledge. Requirement for acceptance of the semester system, the structure of the classes and the presentation of the university recreational sports opportunities for extra-curricular activities. Theory and practical application of the warm-up as a sports injury risk significantly reducing factor. Common to the bench. Free exercises.

3 – 4 weeks: Cardio-vascular system development
The floorball: Using the basic elements of the game dribbling, passing, shooting, etc. Playing against each other in the interval system on high intensity level.

5 – 6 weeks: Posture corrective exercises
Exercises on floor mats, focusing on the core muscles in various body-positions.

7 – 8 weeks: Coordination enhancing exercises
Special education and practice material for spatial vision, perception of body schema, right-left orientation, muscle development and perception of coordination at the technical skills of playing sports (tennis, badminton).

9 – 10 weeks: Strengthening exercises
Using manual and other exercises equipment (dumbbells, boxes, bench, wall bars, etc.)

11 – 12 weeks: Balls skill development
Exercise of basic technical elements of football. Learning and practicing tactical elements. During locomotion ball control exercises, skill development.

13 – 14 weeks: Stretching – relaxation exercises
Various stretching relaxing exercises after the meditative practices and knowledge (yoga, tai chi, etc.)

Requirements to participate in the sessions and the potential for absences:
Active participation in sport classes.

The method of proof for the workshops and the exam absence:
The absence can not be proved, should make up for the lost lessons.

Requirements for signature at the end of semester (including the number of tasks to be solved learning outcomes and type):
Active participation in six classes approved by the staff.

How to prove absence regarding the exam:
Absence must be retaken!

IMPORTANT NOTE: You can only register to any third year subject after completing the Basic Module!
PRE-CLINICAL MODULE

New curriculum to be introduced
Please, follow the updated version on the home page
STUDY PROGRAMME

PRE-CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
</table>
| compulsory | Conservative Dentistry and Endodontics, Pre-clinical II. | C4L1P3 | final# | Anatomy (Maxillofacial Anatomy) IV.
Conservative Dentistry and Endodontics, Pre-clinical I.
General Dental Preclinical Practice |
| compulsory | General and Oral Microbiology | C4L2P2 | final# | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | General and Oral Pathophysiology | C4L2P2 | final# | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Basic Immunology | C3L2P1 | semi-final | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Hungarian Dental Terminology III. | C2L0P4 | practice mark | Hungarian Medical Terminology II. |
| compulsory | Oral and Maxillofacial Surgery, Pre-clinical course | C2L0P2 | practice mark | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Pathology | C4L3P2 | final# | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Preventive Dentistry I. | C3L1P2 | practice mark | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Odontotechnology and Prosthodontics Preclinical Course III. | C3L0P3 | final# | Odontotechnology and Prosthodontics Preclinical Course II.
General Dental Preclinical Practice |
| compulsory | Medical Aspects of Disaster Preparedness and Response I. | C0L2 | hours/sem | signature |
| compulsory | Physical Education V. | C0L0P14 | signature | |

Total Credit 30

Explanation

15 credits should be gained from the elective subjects during the 5-year

The grade influences the qualification of the diploma

C = Credit point

L = Lecture (hours/week)

P = Practice (hours/week)
PRE-CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical Course II., Odontotechnology and Prosthodontics Preclinical Course III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery, Pre-clinical course, Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Biology</td>
<td>C5L3P2</td>
<td>final#</td>
<td>General and Oral Pathophysiology, General and Oral Microbiology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Genetics and Genomics</td>
<td>C2L2P1</td>
<td>final#</td>
<td>Biochemistry, Molecular and Cellbiology III., Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Pathology</td>
<td>C3L2P2</td>
<td>final#</td>
<td>Pathology, General and Oral Microbiology, General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Preventive Dentistry II.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Preventive Dentistry I., Odontotechnology and Prosthodontics Preclinical Course III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics I.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course III., Conservative Dentistry and Endodontics, Pre-clinical II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Radiation protection</td>
<td>C2L1.5P1</td>
<td>semi-final</td>
<td>Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian Dental Terminology IV.</td>
<td>C2L0P4</td>
<td>final</td>
<td>Hungarian Dental Terminology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics I.</td>
<td>C2L1P1</td>
<td>semi-final</td>
<td>Pathology, General and Oral Pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Aspects of Disaster Preparedness and Response II.</td>
<td>C0L2 P1</td>
<td>signature</td>
<td>Medical Aspects of Disaster Preparedness and Response I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education VI.</td>
<td>C0L0P14</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Dento-Alveolar practice (summer, minimum 1 week)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>prerequisite of registering to the 7th semester</td>
</tr>
</tbody>
</table>

Total Credit: 33

The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)

IMPORTANT NOTE: Signing up for Physical Education (PE) V. in the 1st semester and for PE VI. in the 2nd semester is compulsory.
LIST OF TEXTBOOKS (The list may change!)
20. Medical Genetics and Genomics (e-book)
21. KUBY Immunology • W. H. Freeman and Company • New York • 2013
22. Immunology seminars (e-book)

Recommended textbooks:
23. Hermann Péter, Szentpétery András: Gnatológia (Semmelweis Kiadó, 2018)
GENERAL AND ORAL PATHOPHYSIOLOGY

Department of Oral Biology
Lecturer: Prof. Dr. Gábor Varga
Tutor: Dr. Kristóf Kádár M.D.

First Semester

Lectures (2 hours per week):

1. Pathophysiology of liver
2. Gastric secretion and exocrine pancreas function
3. Cardiac insufficiency
4. Hypertension
5. Shock
6. Pathophysiology of the kidney
7. Pathophysiology of acid base regulation
8. Impairment in fluid an electrolyte balance
9. Pathophysiology of respiration
10. Impaired glucose homeostasis
11. Disturbances of hypothalamus and pituitary gland
12. Effects of peripheral endocrine gland disorders
13. Atherosclerosis
14. Midterm (1-12 lectures)
15. Disorders of lipid metabolism

Practicals (2 hours per week):

1. Liver – Laboratory diagnosis of hepatobiliary diseases
2. ECG – Normal ECG
3. ECG – Disorders impulse formation
4. ECG – Disorders of conductance
5. ECG – Myocardial infarction
6. ECG – Repolarisation abnormalities, hypertrophy, electrolyte abnormalities
7. ECG – Midterm
8. Salt and water metabolism, Acid base analysis
9. Laboratory tests in diabetes mellitus
10. Gastric function and exocrine pancreas
11. Clinico-chemical assays for endocrine disorders I.
12. Clinico-chemical assays for endocrine disorders II.
13. Urine analysis, renal function tests
14. Molecular laboratory diagnostic

Note: The maximum number of absences in a semester is 3 (practices)
More than 3 absences invalidate the semester
Theoretical demonstration from the material of the lectures in the 13th week (1-12 lectures material)
ECG demonstration at week 7 (from ECG material)

During the semester all midterms (one theoretical midterm – from the lectures, one ECG midterm – on ECG practice) should be passed. In case of an unsatisfactory final grade (1), the semester will not be accepted.
PATHOLOGY

1st Department of Pathology
Course director and tutor: Dr. Attila Zalatnai

First Semester

Lectures
(3 hours per week)

Lecture
Introduction. Historical backgrounds.
Acute inflammation. Vascular and cellular events.
Acute inflammation. Morphological patterns.
Chronic inflammation.
Extracellular matrix. Repair. Wound healing.
Transplantation. Immunodeficiency. Autoimmune diseases.
Neoplasia. Classification. Histological diagnosis. Invasion and metastasis.
Growth patterns.
Carcinogenesis.
Epidemiology of malignancies. Preblastomatosis. Screening.
Tumor therapy. Tumor immunology.
Benign and malignant tumors of epithelial and mesenchymal origin.
Developmental and genetic diseases.
Environmental and nutritional pathology
Hemodynamic diseases. Water and electrolyte disturbances.
Edema. Shock.
Embolism. Infarct.
Infectious and parasitic diseases. Viral and bacterial diseases.
Tuberculosis. Syphilis. Leprosy. Diseases caused by fungi, nematodes, cestodes.
Aneurysms. Tumors.
Heart diseases. Congenital, ischemic, hypertensive heart diseases.
Respiratory system. Pathology of larynx and trachea. Lung cancer.
Lesions affecting lung parenchyma.
Small and large intestine. Peritoneum.
Acute and chronic hepatitis.
Liver cirrhosis. Toxic injury. Tumors
Urinary tract and male reproductive system
Gestational throphoblastic disease.
Pathology of the breast.
Practices
(2 hours per week)

Laboratory
AUTOPSY
Schemical meditors.
AUTOPSY
HISTOLOGY
AUTOPSY
HISTOLOGY
AUTOPSY
HISTOLOGY
AUTOPSY
HISTOLOGY
AUTOPSY
HISTOLOGY
CONSULTATION
AUTOPSY
AUTOPSY
AUTOPSY

EXAMINATION (FINAL)

The semifinal examination at the end of the first semester will be a written test. Three different times for the test writing can be chosen. Students are requested to announce the time they have chosen to the tutor of the 1st Institute of Pathology and Experimental Cancer Research until mid-December. Students who have failed the exam on one occasion can retake the exam on the next test-writing day, at least one week from the first trial.

Note: Lectures will be held in the lecture hall of the 1st Institute of Pathology and Experimental Cancer Research.

Autopsy and Histopathology practices will be held in the 1st Institute of Pathology and Experimental Cancer Research. During the histopathology exercises 100 slides will be studied. The list of slides will be available at the beginning of the semester.

The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester two midterm examinations should be passed.
ORAL PATHOLOGY

1st Department of Oral, Dental and Maxillofacial Surgery
Lecturer: Dr. Attila Zalatnai

Second Semester

Lectures (2 hours/week) Practices (2 hours/week)

Developmental disturbances in number of teeth. Developmental dis-
turbances in shape and size of teeth.
Developmental disturbances in structure of the teeth.
Growth disturbances of teeth. Premature eruption, delayed eruption.
Disturbances of situation of the teeth. Impacted and embedded
teeth. Lobodontia.
Developmental disturbances of the jaws and the temporomandibular
joint.
Developmental anomalies of the face and soft oral tissue.
Developmental disturbances of the salivary glands. Etiology of mal-
formations.
Discoloration of the teeth. Dental plaque. Dental calculus.
Dental caries. Etiology and epidemiology. Contributing factors in
dental caries.
Microbiology and immunobiology of caries. Attrition. Abrasion. Ero-
sion.
Hypercementosis. Resorption of the teeth.
Diseases of the pulp. Periapical lesions.
Homoiotransplantation.
Inflammation of the oral mucosa and tongue. Halitosis (Stink of the
mouth.)
Cysts of jaws.
Cysts of the oral floor, neck and salivary glands.
Focal infection. Diseases of the jaws.
Physical, heat, chemical and electrical injuries of oral and paraoral
structures.

Diseases of microbial origin of oral and paraoral structures.
Diseases of the blood and blood forming organs.
Injury from inorganic chemicals and disturbances of metabolism of
oral and paraoral structures.
Avitaminosis. Mucocutaneous disorders.
Diseases of accessory nasal sinuses. Diseases of the temporomandib-
ular joint.
Diseases of the nerves and muscles, facial hemihyperplasia and
hemihypoplasia.
Premalignant lesions
Benign oral epithelial tumors. Benign oral mesenchymal tumors.
Odontogenic tumors. Benign tumors of the jaws.
Malignant tumors of epithelial origin.
Malignant tumors of mesenchymal origin.
Malignant lymphomas.
Malignant odontogenic and non-odontogenic tumors of the jaws.
Metastatic tumors of the jaws. Biopsy technique. Healing of oral
wounds.
Staging and grading of oral tumors. Spread of oral and paraoral tu-
mors.
Regional and general metastases of oral and paraoral tumors.
Etiology of paraoral tumors.
Diseases of oral and paraoral lymphoid tissue. Joining of diseases.
Diseases of salivary glands.
Benign tumors of salivary glands.
Malignant tumors of salivary glands.
Oral and paraoral syndromes.
General manifestations of oral diseases.
Forensic oral pathology.

Note: The maximum number of absences in a semester is 3. More than 3 absences
invalidate the semester.
GENERAL AND ORAL MICROBIOLOGY

Department of Medical Microbiology
Program Director: Dr. Dóra Szabó
Tutor: Dr. Ágoston Ghidán

First Semester

<table>
<thead>
<tr>
<th>Lectures (2 hours per week)</th>
<th>Practices (2 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to microbiology. General bacteriology (morphology, physiology and cultivation of bacteria) Bacterial genetics.</td>
<td>Introduction to basic microbiology. Microscopic examination of bacteria (staining procedures).</td>
</tr>
<tr>
<td>Infections and diseases (pathogenesis of bacterial infection, virulence, importance of biofilm formation). Specific and non-specific host defences. Active and passive immunization.</td>
<td>Cultivation of aerobic and anaerobic bacteria (culture media, colony morphology of bacteria).</td>
</tr>
<tr>
<td>Sterilization and disinfection. Antibacterial chemotherapy (mode of actions, resistance, side effects).</td>
<td>Methods used for sterilization and disinfections (physical and chemical possibilities).</td>
</tr>
<tr>
<td>Gram-positive facultative and obligate anaerobic cocci. Gram-negative facultative anaerobic, microaerophilic and obligate anaerobic cocci and coccobacilli.</td>
<td>Antibiotic susceptibility of bacteria</td>
</tr>
<tr>
<td>Gram-negative facultative anaerobic rods. Gram-negative anaerobic rods.</td>
<td>Gram-positive and -negative cocci and coccobacilli</td>
</tr>
<tr>
<td>Medical importance of fungi (general mycology, chemotherapy of fungal infections). Importance of fungal infections involving the oral and perioral tissues.</td>
<td>Gram-negative rods (Enterobacteriaceae)</td>
</tr>
<tr>
<td>Important respiratory pathogen viruses. Important enterally transmitted viruses.</td>
<td>Medically important protozoa. Medically important helminths.</td>
</tr>
<tr>
<td>Hepatitis viruses. Retroviruses (AIDS). Viruses and cancer.</td>
<td>General virology (cultivation of viruses, cell-virus interactions, serological tests and molecular techniques used in laboratory diagnosis of viral diseases)</td>
</tr>
</tbody>
</table>

More than 3 semester absences invalidate the semester.
BASIC IMMUNOLOGY

Department of Genetics, Cell and Immunobiology
Course director: Prof. Dr. Edit Buzás
Tutor: Dr. Marianna Csilla Holub
Subject code: FOKGEN037_1A
Prerequisite subject: Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cell Biology III.; Medical and Dental Physiology II
Credits: 3

<table>
<thead>
<tr>
<th>Lectures (2 hr / week)</th>
<th>Practicals / Seminars (1 hr / week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The role, processes, organs and cells of the immune system</td>
<td>Basic terms, the immune system in the lab</td>
</tr>
<tr>
<td>2. Principles of natural immunity</td>
<td>Methods based on antigen-antibody interactions I. Immunoserology</td>
</tr>
<tr>
<td>3. The complement system; inflammation and acute phase reaction</td>
<td>Methods based on antigen-antibody interactions II.</td>
</tr>
<tr>
<td>4. Antigen, antigen presentation and MHCs</td>
<td>Methods based on antigen-antibody interactions III.: Flow cytometry</td>
</tr>
<tr>
<td>5. Antigen receptors and their formation</td>
<td>Complement assays</td>
</tr>
<tr>
<td>6. T lymphocytes and cell-mediated immune response</td>
<td>HLA typing</td>
</tr>
<tr>
<td>7. B lymphocytes and humoral immune response</td>
<td>Vaccination I.</td>
</tr>
<tr>
<td>8. Mucosal immunity</td>
<td>Vaccination II.</td>
</tr>
<tr>
<td>9. Immune response in infections</td>
<td>Biological therapies I.</td>
</tr>
<tr>
<td>10. Immunodeficiencies</td>
<td>Biological therapies II.</td>
</tr>
<tr>
<td>11. Hypersensitivity</td>
<td>Hypersensitivity I</td>
</tr>
<tr>
<td>12. Tolerance and autoimmunity</td>
<td>Hypersensitivity II-IV.</td>
</tr>
<tr>
<td>12. Antitumor immunity</td>
<td>Screening methods for autoantibodies</td>
</tr>
<tr>
<td>13. Immunology of transplantation</td>
<td>Case studies</td>
</tr>
<tr>
<td>14. Immunology of transplantation</td>
<td>Case studies II.</td>
</tr>
</tbody>
</table>

The sequence of lessons may change.

75% minimum attendance of both the lectures and practical lessons is necessary for the end-term signature. Retake for the midterm will be organized for those student, how miss the midterm because an acute disease, but they have to show up the medical record.

Midterm: written test once in the semester. The midterm is not a requirement for the validity of the semester. Retake (one make up day) will be organized for those student, who miss the midterm because an acute disease, but they have to show up the medical record.

Exam: written test in the exam period. The exam grade will be calculated from the sum of midterm scores and exam scores. For passing you have to reach more than 50 % of both the exam scores and total scores.

Literature:
KUBY Immunology W. H. Freeman and Company New York 2013
Immunology seminars (e-book): http://gsi.semmelweis.hu (The user name and password is on the course datasheet of the Neptun.)
CONSERVATIVE DENTISTRY AND ENDODONTICS

Department of Conservative Dentistry
Head of Department: Dr. Zsuzsanna Tóth D.M.D., Ph.D.

CONSERVATIVE DENTISTRY AND ENDODONTICS, PRECLINICAL II.

First semester

1. Indirect restorations (inlay, onlay),
5. Pathosis in consequence of caries. Pathology and therapy of the periapical region.
6. Indications, contraindications of endodontic therapy, urgency.
8. Preoperative-working length determination (needle-control) and control x-ray. Using of electronic apex-locators.
9. Cleaning and shaping, chemical adjuncts, medication.
10. Midterm
14. Equipments of the dentist’s office, orders of the clinical practical courses.

Manual training (3 hours/week):
Indirect restorations: inlays, onlays (metal and esthetic); preparation in artificial teeth.
Root canal treatment in extracted teeth (front, bicuspid, molar).

List of textbooks:

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester a midterm exam must be passed. Practical exam and practical course grade. Final oral exam: questions from two topic groups and identification of an extracted tooth.
CONSERVATIVE DENTISTRY AND ENDODONTICS I.

Second semester

Lectures (1 hour per week):

1. Guidelines to case reports
2. Dental photography
3. Four-handed dental treatment
4. Cariesdiagnostic methods
5. Dental anaesthesia
6. Isolation in conservative dentistry and endodontic treatments
7. Dental materials: composites
8. Adhesive systems
9. Class I and II restorations and matrix systems
10. Demonstration (Midterm)
11. Therapy of caries: Class III and IV restorations
12. Lesions in the cervical area of the tooth
13. Glassionomer cements, compomer materials
14. Infection control, patients requiring special care

Clinical practice (3 hours per week).

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester a midterm exam must be passed. Practical grade: consists of midterm, „small tests”, and evaluation of work and knowledge presented at clinical practice.
PREVENTIVE DENTISTRY I.

Department of Conservative Dentistry
Tutor: *Dr. Károly Bartha*

First Semester

Lectures 1 (hour/week)

Detailed course/lecture description[i]: *(to facilitate credit recognition in other institutions)*

Lectures:

<table>
<thead>
<tr>
<th>No.</th>
<th>Topic</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preventive dentistry- introduction</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>2</td>
<td>Dental caries, Etiology of caries. Dental plaque</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>3</td>
<td>Caries Epidemiology. Caries indices. Risk factors</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>4</td>
<td>Caries incipient and remineralization</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>5</td>
<td>Cervical sensitivity, dentinal hypersensitivity and erosion</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>6</td>
<td>The Role of diet in the caries prevention</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>7</td>
<td>Oral hygiene - Toothpaste</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>8</td>
<td>Oral hygiene - Toothbrush</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>9</td>
<td>Fluorides</td>
<td>Zs. Tóth</td>
</tr>
<tr>
<td>10</td>
<td>Systemic and local fluoride-prevention</td>
<td>Zs. Tóth</td>
</tr>
<tr>
<td>11</td>
<td>Fissure-sealing</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>12</td>
<td>The role of dental hygienists in the dental practice</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>13</td>
<td>Dental treatment and prevention in case of elderly patients</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>14</td>
<td>Dental prevention by patients with systemic disease</td>
<td>D. Végh</td>
</tr>
</tbody>
</table>

Practices/Seminars:

<table>
<thead>
<tr>
<th>No.</th>
<th>Topic</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clinical workplace (Seminar, dr. Árendás)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Dental status, medical/dental history (Seminar, dr. Árendás)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Clinical workplace (113,111)</td>
<td>Practice</td>
</tr>
<tr>
<td>4</td>
<td>Medical history, Dental status (113,111)</td>
<td>Practice</td>
</tr>
<tr>
<td>5</td>
<td>Caries diagnostics (Seminar, dr. Árendás)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Cariesdiagn. (113,111)</td>
<td>Practice</td>
</tr>
<tr>
<td>7</td>
<td>Cariesdiagn. (113,111)</td>
<td>Practice</td>
</tr>
<tr>
<td>8</td>
<td>Oral hygiene indices (Seminar, dr. Árendás)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Plaque staining (113,111)</td>
<td>Practice</td>
</tr>
<tr>
<td>10</td>
<td>Scaling (Seminar, dr. Árendás)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Periodontal Indexes, Scaling (113,111)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Caries risk determination (Seminar, dr. Árendás)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Caries Risk Tests</td>
<td>Practice</td>
</tr>
<tr>
<td>14</td>
<td>Remineralisation (Seminar, dr. Bartha)</td>
<td></td>
</tr>
</tbody>
</table>
PREVENTIVE DENTISTRY II.

Second Semester

Lectures 1 (hour/week)

Detailed course/lecture description[i]: *(to facilitate credit recognition in other institutions)*

Lectures:

<table>
<thead>
<tr>
<th></th>
<th>Lecture</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group-prophylaxis, Design, Organization</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>2</td>
<td>Prophylaxis in the school</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>3</td>
<td>Prevention in pregnancy and from the intrauterine life to the age of three</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>4</td>
<td>Gingivitis and periodontal disease. Epidemiological characteristics. Pathogenesis and diagnosis</td>
<td>I. Gera</td>
</tr>
<tr>
<td>5</td>
<td>Strategy for prevention of periodontal diseases</td>
<td>P. Nagy</td>
</tr>
<tr>
<td>6</td>
<td>Integrated preventive dentistry – prosthodontics</td>
<td>P. Kivovics</td>
</tr>
<tr>
<td>7</td>
<td>TDK conference</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Integrated preventive dentistry – gnathology</td>
<td>M. Jász</td>
</tr>
<tr>
<td>9</td>
<td>Possibilities in prevention of orthodontic anomalies</td>
<td>J. Horváth</td>
</tr>
<tr>
<td>10</td>
<td>Oral cancer</td>
<td>Zs. Németh</td>
</tr>
<tr>
<td>11</td>
<td>Integrated preventive dentistry – conservative dentistry</td>
<td>Zs. Lohinai</td>
</tr>
<tr>
<td>12</td>
<td>Catastrophe medicine and the preventive dentistry. Environmental protection.</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>13</td>
<td>Infection control</td>
<td>K. Bartha</td>
</tr>
<tr>
<td>14</td>
<td>Environmental and iatrogenic damaging factors in dentistry</td>
<td>K. Bartha</td>
</tr>
</tbody>
</table>
PROSTHODONTICS I.

Second Semester

1. The reasons and the consequences of tooth loss
2. Complains, medical history, extra-oral and intra-oral examination, treatment plans and prognosis at edentulous patient
3. Infection control in dentistry. The upper and the lower denture bearing area
4. First impression, casting, outline of the special tray
5. Second (working) impression, mucostatic and mucodisplacive techniques. Beading and boxing, casting of working impression
6. Basic gnathology (OVD, RVD, freeway space, RCP, ICP, Posselt diagram)
7. Basic gnathology (canine guidance, unilateral and bilateral balanced occlusion)
8. Jaw registration (type of articulators, face bow registration)
9. Mounting in articulator, setting up the teeth
10. Try-in procedure, flasking and packing (processing) at complete denture
11. Fitting and advice to the patient. Short time and long time recall procedures
12. Complex functional approach. Implant techniques
14. Relining, rebasing, repairing of complete denture

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester two midterm examinations should be passed Practical course grade.
INTRODUCTION TO ODONTOTECHNOLOGY AND PROSTHODONTICS PRE-CLINICAL COURSE III.

Department of Prosthodontics
Head of Department: Prof. Dr. Péter Hermann
Lecturer: Dr. Ida Barbara Kispélyi

Since the creation of an independent training, the Stomatological curriculum has put great emphasis on a preclinical foundation course, the Prosthodontics Propaedeutic course, the syllabus of which has also included mastery of dental techniques, indispensable for a dentist. Until the visit of the EU Committee in the late 90s, the course was structured in such a manner that in the first and second semester of the second academic year students had 3 hours of practices and one hour of lecture per week; during the first semester treatment of complete edentulousness was simulated through fabrication of complete dentures, while in the second semester students prepared 3-unit bridges and single crowns on partial edentulous moulages. During both semesters, medical and dental laboratory steps followed each other just like in real life, and students performed alternatively medical work phases and dental laboratory tasks, for one week each. After the proposal of the EU Committee on the amendment of several courses (including the Prosthodontics Preclinical course), dental laboratory and medical work phases had to be separated sharply, while an independent Odontotechnology course had to be included in the curriculum. According to the request, this Odontotechnology course was built into the theoretical module in order to provide the earliest possible recognition and consolidation of the chosen profession.

Taken more than ten years of experience into account, while maintaining the values that undoubtedly resulted from these changes, we wish to modify those controversial points that in our opinion can be still improved. A sharp separation of the two disciplines (dental techniques and dentistry) rather confuses students, thus they fail to get a grip of the process, and it is the essence that is lost, since these processes are based each on the other. The essence of the new syllabus is the integration of the two courses that are currently taught separately, and thus new and crucial areas (not taught so far) can be emphasized, with concomitant reduction of teaching hours and credit points.

The curriculum of the course concludes with a comprehensive examination at the end of the first semester of the third academic year.

Timing of the Odontotechnology and Prosthodontics Preclinical course:
3rd, 4th and 5th Semester

Preliminary studies requested for the course of Odontotechnology and Prosthodontics Preclinical course module I:
General Dental Material Science

Preliminary studies requested for the course of Odontotechnology and Prosthodontics preclinical course module II:
Odontotechnology and Prosthodontics preclinical course module I

Preliminary studies requested for the course of Odontotechnology and Prosthodontics Preclinical course module III:
Odontotechnology and Prosthodontics Preclinical course module II
First Semester

Odontotechnology and Prosthodontics Preclinical III.

Topics of the practices:
1. Delivering of the instruments
2. Tooth preparation for solo crown, tooth 13
4. Tooth preparation for porcelain veneer, tooth 21
5. Midterm. Tooth preparation for porcelain veneer, tooth 21, Grading
6. Wax pattern fabrication for acrylic crown, tooth 21.
7. Fabrication of light cured acrylic solo crown, tooth 13
8. Finishing and polishing of the acrylic crown, made for tooth 21
9. Grading
10. Midterm. Finishing and polishing of the light cured crown made for the 13 tooth. steps of constructing metal based removable partial dentures. Wax pattern fabrication a mandibular metal base plate.
11. Wax pattern fabrication for a maxillary metal base plate. Grading
12. Steps of making an implant retained dental prosthesis. Impression taking for an implant retained prosthesis (open special tray method)
14. Practical final examination
ORAL AND MAXILLOFACIAL SURGERY, PRE-CLINICAL COURSE

Tutor: Dr. Kinga Körmöczi

First Semester

Practices (2 hours per week)

Oral surgery as a part of general surgery, Anamnesis, patient examination
The surgical anatomy of the teeth
The splanchnocranium. The Maxillary Nerve
The mandible, the Mandibular Nerve
The injection (instrumentation, rules, techniques)
Midterm (written)
Surgical hygiene. The principle of antisepsis and asepsis
The operation theater
Oral surgical instrumentation
The removal of teeth/ practice on phantom
Semester closing midterm (oral + practical)
Practicing, repetition
ORAL AND MAXILLOFACIAL SURGERY I.

Second Semester

Lectures (1 hour per week)

- The history of oral surgery
- Clinical examination and diagnostics
- Pain control. The physiologic and psychologic aspects of pain
- The mode of action of local anaesthetics.
- The pharmacological properties of local anaesthetic drugs
- The technique of local anaesthesia Part I. (anaesthesia of teeth)
- The technique of local anaesthesia Part II. (Matas, block of n. alv. sup. ant., anaesthesia of the tongue, the lip, the bucca)
- The technique of local anaesthesia Part III. (Inflamed tissues, trismus)
- Summerising clinical implications /video/
- Complications of local anaesthesia.
- Conscious sedation in dentistry
- Indication and contraindication of tooth removal
- Operation technique of dentoalveolar surgery Part I. (surg. tools, flaps, suturing)
- Operation technique of dentoalveolar surgery Part II. (complications of tooth removal, surgical root removal) (video)
- Problems with the eruption of teeth.
- The removal of the impacted teeth
- Guest speaker
- Midterm exam
- Consultation

Practices (3 hours per week)

- Surgical anatomy of the jaws and teeth
- Local anesthesia
- Oral and maxillofacial surgical instruments
- Clinical diagnosis, medical examination of the patients
- Midterm demonstration
- Practicing simple tooth extraction
- Practicing simple tooth extraction
- Practicing tooth extraction
- Minor oral surgery
- Minor oral surgery
- Midterm Demonstration
- Minor oral surgery
- Minor oral surgery
- Midterm Demonstration

Note: Lectures will be held in the lecture hall of the Department of Maxillofacial Surgery and Dentistry. The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester three midterm examinations should be passed. Practical course grade (five-scale).
ORAL BIOLOGY

Lecturer: Prof. Dr. Gábor Varga
Tutor: Dr. Beáta Kerémi D.M.D.

Second Semester

Lectures (3 hours per week):

Hard tissues
1. Ca homeostasis
3. Development of tooth germ
4. Fibres and extracellular matrix of hard tissues
5. Formation of primary-, secondary- and tertiary dentine, dentinogenesis and dentine permeability
6. Amelogenesis
7. Osteogenesis
8. Bone resorption and the osteoclasts
9. Nutrition and oral health, characterization of oral tissues and functions in elderly
10. Radiation, oral symptoms associated with radiotherapy
11. Cementogenesis

The oral cavity
12. Pathomechanism of bleeding and its relation to dentistry
13. The morphology and function of the salivary glands
14. Hypo-, and hypersecretory states, xerostomia
15. Saliva as a diagnostic fluid
16. Pathophysiology of chewing and deglutition
17. Dental stem cells
18. Gene therapy and gene polymorphisms in dentistry
19. Pathomechanisms in oral cancer
20. Metabolism of fluoride, hard tissues and fluoride, dental fluorosis
21. Tooth eruption and tooth movement
22. Pathophysiology of inflammation
23. Structural and functional characteristic of dental pulp, blood supply to the oral tissues, pulpal pain and inflammation
24. Periodontitis and systemic disorders
25. Caries, the dental plaque and saliva

Midterm (1-24 lectures)
26. Gingival sulcus and crevicular fluid
27. Oral sensation
28. Wound healing

Practices (2 hours per week):

1. Oral clearance
2. Haematology Part 1 – Normal blood
3. Haematology Part 2 – Reaktive blood smears
4. Haematology Part 3 – Chronic Leukemias
5. Haematology Part 4 – Acute Leukemias
6. Haematology Part 5 – Haemostasis
7. Haematology Part 6 – Anemias
8. Haematology MIDTERM
9. Chewing
10. Mineralized tissues + fluorid
11. Analysis of dental plaque
12. Salivary secretion
13. PCR technique in dental research
14. Oral defense mechanisms

The maximum number of absences from practice in a semester is 3!
More than 3 absences invalidate the semester.

Theoretical demonstration from the material of the lectures in the 13th week (1-12 lectures material)
ECG demonstration at week 7 (from ECG material)
During the semester all midterms (one theoretical midterm – from the lectures, one ECG midterm – on ECG practice) should be passed. In case of an unsatisfactory final grade (1), the semester will not be accepted.
RADIATION PROTECTION

Department: Independent Division of Radiology
Lecturer: Prof. Dr. Csaba Dobó Nagy
prerequisites: basic module

Third year second semester

Lectures (1.5 hours per week)
Atomic structure, radioactivity
Ionization, Dosimetry
Health physics
Protection against external exposure
Measurement of exposure at work
General rules of application of ionization
Types and levels of exposure
Radiation protection legislation
Regulation of accident prevention at work
Controlling system of the radiation supervisory authority
Protection of patients
Dose limits
X-ray equipments
Consultation
Written exam

Practices (1 hour per week)
Measurement and calculation effective dose of the patient receiving intraoral x-ray
Importance of collimation, receptors
Operating the equipment

Notes: maximum number of absences in a semester is 3.
more than 3 absences invalidate the semester.
closing semi-final
ORAL DIAGNOSTICS I.

Department of Oral Diagnostics
Address: Bp. VIII., Szentkirályi u. 47. 1088
Phone: 459-1500/59161, 317-1044
Tutor: Prof. Dr. Csaba Dobó Nagy
E-mail: oral@fok.usn.hu

Third year 2nd semester

Week Lecture (1 hour/week) Practice (1 hour/week)
1. Introduction to Oral Diagnostics. Importance and rules of dental diagnostics and document.
3. Examination of oral mucosa. Stomato-oncological screening.
6. Fábián and Fejérdi Classification of partially edentulous arches.
7. Orthodontic Diagnostics and treatment plan.
9. Endodontic Diagnostics and emergency interventions
12. Role of diagnostics in Esthetic Dentistry. Optical and formal characteristics of the teeth. Diagnostics and rehabilitation with the harmony of dentures and the face.
13. Diagnostic failures in general praxis.
14. Early diagnosis and preventive approach

Rules of practices
Activity of the students:
1. Clinical evaluation and registration of medical and dental conditions, extraoral and intraoral examination of the patients, stomato-oncological cheque-up. Registration of medical and dental history.
2. Documentation of the above, taking oral photos, and preparing diagnostic casts.
3. Making decisions about additional diagnostic methods, X-ray examinations, referrals and consultations.
4. Making diagnosis and complete preliminary treatment planning.
5. Preparing written case-demonstrations including history, clinical finding, diagnosis, preliminary treatment plan and conclusions.
6. Written case demonstrations should be made at home, with the use of the students notes in the practice. Students are responsible for and should take great care about the patients personal rights. No personal data, medical certificate, x-ray pictures or other relevant findings can be brought home, for preparation of the case demonstrations! (only the notes made by the student during the practice, containing no personal data, no official documentation.)

Written theoretical evaluation will be organized in one of the practices in this semester.

SEMMELE WEIS UNIVERSITY / FACULTY OF DENTISTRY Faculty of Dentistry Exam:
Practical hours should be visited during 2 days. The time of practices is between 8.00 a.m – 1.00 p.m. Semifinal exam will be organized at the end of third year, second semester.
Minimal expectations: reaching the minimum level of the written theoretical evaluation (mark 2) presentation of three written case-demonstrations reaching the minimum quality level (mark 2) Non-performance of the minimal expectations invalidate the semester!
Textbook:

Recommended books:

3. “hand-outs” will be prepared and presented for the students by the lecturers

GENETICS AND GENOMICS

Department of Genetics, Cell- and Immunobiology

Course director: *Prof. Dr. Edit Buzás*

Course coordinator: *Dr. F. Ágnes Sensei*

Subject code: FOKGEN181_1A

Prerequisite subject: Medical Biochemistry, Molecular and Cell Biology III., Medical and Dental Physiology II

Credit: 2

Lectures (2 hours per week):
1. Introduction to human genetics, the human genome
2. Monogenic inheritance (Autosomal inheritance)
3. Role of sex in inheritance
4. Genetic variations
5. Chromosomal aberrations I.
6. Chromosomal aberrations II.
7. Epigenetics
8. Introduction to genomics. Methods in genomics
9. Genomic approach of complex inheritance
10. Pharmacogenetics
11. Midterm
12. Gene and genome manipulation
13. Genetics of biological processes
14. Population genetics and genomics; Genome and environment

Practices (1 hour per week):
1. Cytogenetics I.
2. Cytogenetics II.
3. Molecular genetic methods and applications in human genetics I.
4. Molecular genetic methods and applications in human genetics II.
5. Pedigree analysis: autosomal inheritance I. (AD)
6. Autosomal inheritance II. (AR)
7. Sex-linked inheritance I. (XR)
8. Sex-linked inheritance II. (XD, mitochondrial)
9. Complex inheritance
10. Consultation
11. Case studies
12. Genetic aspects of cell cycle and cell division disorders
13. Meiosis, gametogenesis; pre-implantation genetic testing
14. From genes to bedside

Important notes:
Students must visit at least 75% of the lessons. More than three absences from the practice or more than three absences from the lecture invalidate the semester, no signature is given. There are no extra practices.

There is one midterm during the semester. Spare midterm is organized for those students, who miss the midterm because an acute illness, but they have to show up the medical record to the tutor in one week. There is no opportunity to improve the midterm scores.

After the course there is a written exam (single choice and essay questions, family tree, karyogram, evaluation of molecular genetic studies etc.). The exam grade is calculated from the sum of midterm scores (maximum 40) and exam scores (maximum 60). Students have to reach more than 50 % of both the exam scores and total scores to pass the exam. In the third exam midterm scores are not calculated.

Core text: Medical Genetics and genomics (e-book)

Lecture and practice presentations and additional texts are available on the homepage: http://gsi.semmelweis.hu (The user name and password is on course datasheet of the Neptun)
MEDICAL ASPECTS OF DISASTER PREPAREDNESS
AND RESPONSE I-II.

Directorate for Safety Technology
Department for Disaster Management and Education

Supervisor: Pál Kocsik
Lecturer: Csaba Csendes
Type of Course: indispensable
Credit value: 0

First and Second Semester

Purpose of the lecture:
The goal of the subject is to provide basic knowledge of the definition, mission, reasons and circumstances of establishment of civil protection/disaster management, on its place and role in the country’s defense/protection system; to provide information on the types of disasters and their features. Based on experience gained in real incidents, to provide information on the peculiarities of disaster management and the tasks of medical authorities in this context.

The syllabus:

5th semester, 2 teaching hours: (M1) Concept, mission, tasks and establishment of civil protection and disaster management in Hungary. Types and features of disasters, the disaster vulnerability of Hungary, the organizational system of the protection against disasters, command and control of protection, the role of medical authorities.

6th semester, 2 teaching hours: (M2) The early warning system and signals of disaster management. The elimination of the consequences of disasters, the staff work applied during protection. Features and activities of Hungarian disaster management organizations and authorities, international possibilities of disaster management and the lessons learnt, demonstrated by examples.

Requirements and the potential for absences to participate in the sessions:
The subject consists of 4 modules. Module 1 does not have any prerequisites; module 2 anticipates the fulfillment of module 1. Students must register to attend the course announced as required. Those who are unable to fulfill module 1 or 2 (do not attend), may participate in a supplementary lesson in the 1st semester of the following year.

The method of certificate for the workshops and the exam absences:
Certificate of absence: medical, official – court of justice, local government, Students’ Union, etc.

The mid-term controls’ (reports, midterm) number, topic and date, replacements and repairs:
Method of making up for the absence justified by certificate: participation in a supplementary lesson.

Requirements for the signature:
Students must participate in the lesson announced to acquire signature, or in case of absence justified by certificate, in a supplementary lesson. Only registered students may participate in a supplementary lesson announced.

The method of grading: signature

Type of examination: none

Requirements: none, students must fulfill the obligation to attend the lessons.

Application for exam: none

Changing procedure for exam application: none

Absence from the examination: none

Notes, textbooks, study aids and literature list:
László Major PhD, Ronald Barham PhD, Dr. György Orgován PhD: Medical Aspects of Disaster Preparedness & Response
ELECTIVE SUBJECTS

Modern research methods in dentistry

Leader of the course: **Prof. Gábor Varga**
1st semester – 2 credits
Wednesdays at 17.00-18.30 (2x45minutes)

Topics to be covered:
1. Stem cells and scaffolds
2. Gingival blood circulation and inflammation – Laser Doppler Flowmetry
3. Isolation, maintenance, differentiation and in vitro functional assays of oral stem cells and progenitors
4. CAD/CAM techniques and LASCA
5. Care for children having cleft lip and palate
6. Patch clamp electrophysiology technique
7. Investigation of epithelial transport
8. Investigation methods of implant stability
9. Psychosomatics - examination of saliva samples
10. Clinical periodontal research
11. Dental epidemiological studies, saliva as a diagnostic factor
12. Structural studies of non-decalcified hard tissues
13. Micro CT investigations
14. Real time 3D rendering of oral tissues

Requirements:
1. Participation in the course compulsory, absences do not exceed 25% of the total number of hours.
2. The tasks to be fulfilled during the semester:
3. create a professional interview (3-5 pages, word doc) with one of the lecturer on the course

Challenges in modern dental research

Leader of the course: **Prof. Gábor Varga**
2nd semester – 2 credits
Wednesdays at 17.00-18.30 (2x45minutes)

Topics to be covered:
1. Artificial organs and tissues; artificial salivary glands - biological regeneration of the human glands
2. Anesthesia in dentistry
3. Saliva as diagnostic factor
5. Gene therapy in dentistry
6. Laboratory animals for dental research - possible alternative methods; animal studies - pros and cons
7. Homeopathy in dentistry
8. Medical and dental use of stem cells; isolation and possible use of tooth-derived stem cells in craniofacial regeneration
11. Smile design – aesthetics and dental/medical ethics
12. GERD and dental erosion
13. Implantology
14. Biodentin and alternatives in dentistry

Requirements:
1. Participation in the course compulsory, absences do not exceed 25% of the total number of hours.
2. PowerPoint presentation, lecture and leading related discussion
3. critical written review of one Researcher Student Conference presentation

INTERDISCIPLINAR ASPECTS OF ORTHODONTICS

Department of Oral diagnostics
LANGUAGE COURSE

Language Communication Center

Term 5 Hungarian Dental Terminology III

Hungarian Dental Terminology III is a course for dental students who completed the course Hungarian Dental Terminology II and passed the examination. Students see and treat patients in the fifth term.

Topic

Students will be introduced to the most important topics of dentistry in Hungarian to help them with professional communication. Special emphasis is placed on communication. Grammar which has been acquired is practiced with dental vocabulary and in situations orally.

Vocabulary: teeth (name and structure), dental equipment, dental history (drugs and diseases), dental care, dental examination, etc.

The course consists of 56 hours (4 hours per week). Students receive 2 credit points for the course. Evaluation is based on two written tests and active participation in classes.

Textbooks

J. Kovács: *A fogázsati szaknyelv alapjai*
I. Gera: *Doctor – Patient, Doctor – Assistant Communication*, compiled by Prof. Dr. I. Gera,
M. Putz: *Magyar fogorvosi szaknyelv I.*
Supplementary Materials, compiled by staff members of the Centre for Languages and Communication.

Term 6 Hungarian Dental Terminology IV

Hungarian Dental Terminology IV is a course for students who completed the course Hungarian Dental Terminology III. The course concludes with a final examination at the end of the term.

Topic

Students will be introduced to further dental topics and situations to help professional communication in practical classes. In addition, they prepare for their final examination. Special emphasis is placed on communication with patients. Grammar which has been acquired is practiced with dental vocabulary and in situations orally.

Vocabulary: dental treatment (dental caries, root canal treatment, gingivitis and tartar), prosthodontics (tooth extraction and tooth replacement), oral hygiene, tooth whitening and orthodontic treatment.

The course consists of 56 hours (4 hours per week). Students receive 2 credit points for the course. Evaluation is based on two written tests and active participation in classes.

Textbooks

J. Kovács: *A fogázsati szaknyelv alapjai*
I. Gera: *Doctor – Patient, Doctor – Assistant Communication*, compiled by Prof. Dr. I. Gera
M. Putz: *Magyar fogorvosi szaknyelv I.*
Supplementary Materials, compiled by staff members of the Centre for Languages and Communication.
COMPULSORY SUMMER PRACTICE

MINIMUM 1-WEEK (30 hours) – MAXIMUM 4-WEEK PROGRAM IN DENTO-ALVEOLAR SURGERY

Practicing tooth extractions
Practicing local anesthesia
Assisting at minor oral surgical procedures
Practicing post-surgical patients’ management
Carrying out surgical tooth extraction under supervision
Carrying out minor dento-alveolar surgical procedures under supervision
Students should work at the assigned hospital or dental clinic 6 hours a day, five days a week.

Important note: Document certifying the completion of the practice must be handed in at registration! Registration to the next year is not allowed without it!
Physical Education V.

Lessons (in hours): 14 lectures: 0 practicals: 14 seminars: 0

Lecturer of the course: Várszegi, Kornélia
Contact: Testnevelési és Sportközpont
Phone: +36-1/ 264-1408

Detailed course/lecture description*: (to facilitate credit recognition in other institutions)

Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-fi-
nanced student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical
Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:
60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations.
1107 Bp, Zágrábi utca 14.

1x60 min./week sessions:
Aerobics, BlessYou Gym, boulder, functional circuit training, golf, beginner Yoga, advanced Yoga, male football, salsa, step aerobics, bad-
minton, beginner ultimate frisbee, advanced ultimate frisbee, zumba

1x90 mins./week sessions:
women’s football, ice hockey, beginner tennis, beginner tennis 2,

4×3 hrs. and 1×2 hrs. session packages:
Hiking 1, Hiking 2.

2×90 mins./week sport training (competitive sport, for qualified only):
cheerdance, cheerleader, men’s football, handball, basketball, volleyball

Fee-based:
m at the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes!

Important note: Document certifying the completion of the practice must be handed in at registration! Registration to the next year is not allowed without it!

*Detailed and numbered for each week of theoretical and practical lessons one by one, indicating the names of lecturers and instructors
Physical Education VI.

Lessons (in hours): 14 lectures: 0 practicals: 14 seminars: 0

Lecturer of the course: Várszegi, Kornélia
Contact: Testnevelési és Sportközpont
Phone: +36-1/ 264-1408

Detailed course/lecture description: *(to facilitate credit recognition in other institutions)*

Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:

60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations.
1107 Bp, Zágrábi utca 14.

1x60 min./week sessions:
Aerobics, BlessYou Gym, boulder, functional circuit training, golf, beginner Yoga, advanced Yoga, male football, salsa, step aerobics, badminton, beginner ultimate frisbee, advanced ultimate frisbee, zumba

1x90 mins./week sessions:
women's football, ice hockey, beginner tennis, beginner tennis 2,

4x3 hrs. and 1x2 hrs. session packages:
Hiking 1, Hiking 2.

2x90 mins./week sport training (competitive sport, for qualified only):
cheerdance, cheerleader, men’s football, handball, basketball, volleyball

Fee-based:

mat the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes!

Important note: Document certifying the completion of the practice must be handed in at registration! Registration to the next year is not allowed without it!

Detailed and numbered for each week of theoretical and practical lessons one by one, indicating the names of lecturers and instructors
CLINICAL MODULE

New curriculum to be introduced
Please, follow the updated version on the home page
STUDY PROGRAMME

CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>General and Dental Radiology</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Radiation protection, Pathology, General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics I., Prosthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine I</td>
<td>C3L2P1</td>
<td>practice mark</td>
<td>General and oral pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery II.</td>
<td>C4L1P3</td>
<td>semi-final</td>
<td>Oral and Maxillofacial Surgery I., Oral Pathology Radiation protection</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology I.</td>
<td>C2L1,5P0,5</td>
<td>semi-final</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology I.</td>
<td>C4L2P2</td>
<td>semi-final</td>
<td>Pathology, Biochemistry, Molecular and Cellbiology III., Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics II.</td>
<td>C6L1P6</td>
<td>semi-final</td>
<td>Prosthodontics I., Conservative Dentistry and Endodontics I., Radiation protection</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Neurorology</td>
<td>C1L1P0</td>
<td>semi-final</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Psychiatry</td>
<td>C1L1P0</td>
<td>semi-final</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Ethics</td>
<td>C2L2P0</td>
<td>semi-final</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Gnathology</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Prosthodontics I., Conservative Dentistry and Endodontics I., Oral Diagnostics</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Public Health</td>
<td>C3L1,5P2</td>
<td>final#</td>
<td>General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Emergency Dentistry I.</td>
<td>C0L0P1</td>
<td>signature</td>
<td>Oral Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education VII.</td>
<td>C0L0P14</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Pediatrics</td>
<td>C1L1P0,5</td>
<td>semi-final</td>
<td>Internal Medicine I., Pathology</td>
</tr>
</tbody>
</table>

Total Credit: 38

The grade influences the qualification of the diploma

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

8th semester

<table>
<thead>
<tr>
<th>Subjects code</th>
<th>Subjects</th>
<th>Credit code</th>
<th>Examination</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics II., Prosthodontics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics Pre-Clinical</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine II.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery II., Pharmacology, Toxicology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology II.</td>
<td>C4L1P3</td>
<td>semi-final</td>
<td>Periodontology I., Internal Medicine II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology II.</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Pharmacology, Internal medicine I</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics III.</td>
<td>C4L1P4</td>
<td>practice mark</td>
<td>Prosthodontics II., Conservative Dentistry and Endodontics II., General and Dental Radiology I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Surgery</td>
<td>C3L2P1</td>
<td>final#</td>
<td>Internal Medicine I., Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology I.</td>
<td>C1L1P0</td>
<td>semi-final</td>
<td>Oral and Maxillofacial Surgery II., Periodontology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Emergency Dentistry II.</td>
<td>C0L1P1,5</td>
<td>signature</td>
<td>General and Dental Radiology I., Emergency Dentistry I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Ophthalmology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Otorhinolaryngology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dentistry practice (summer, 4 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>prerequisite of registering to the 9th semester</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education VIII.</td>
<td>C0L0P14</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit: 26

Explanation

- 15 credits should be gained from the elective subjects during the 5-year studies – see the elective list after the 3rd year study program.
- # The grade influences the qualification of the diploma
- C = Credit point
- L = Lecture (hours/week)
- P = Practice (hours/week)

IMPORTANT NOTE: Signing up for Physical Education (PE) VI. in the 1st semester and for PE VIII. in the 2nd semester is compulsory.

LIST OF TEXTBOOKS (The list may change!)

7. Rajna Péter: Ideg- és elmegyógyászati szakkifejezések
Recommended textbooks:

PHARMACOLOGY, TOXICOLOGY I-II.

Department of Pharmacology and Pharmacotherapy

Obligatory
Credit: 4 (7th semester), 4 (8th semester)
Lecturer: László Köles, MD, PhD, Associate Professor

Pharmacology deals with the effects, mechanisms of actions, adverse effects, interactions and clinical administration of drugs used in the clinical practice as well as with their fate in the body. It also specifies the rules of prescription writing. It is based on and synthesizes the knowledge of basic, pre-clinical and clinical subjects such as physiology, biochemistry, oral pathology and internal medicine.

Thematic

First Semester

1. Introduction to pharmacology. Pharmacodynamics I.
2. Pharmacokinetics. Pharmacodynamics II.
5. Skeletal muscle relaxants. Pharmacology of the smooth muscles.
6. Drugs used in coagulation disorders, drugs against bleeding. Agents used in anemias.

2nd semester

1. Immunosuppressive drugs (cytotoxic agents, inhibitors of cytokine gene expression, antibodies and fusion proteins) Retinoids.
2. Local anesthetics. NSAIDs. Drugs for gout. Antimigraine drugs.
5. Sedatives, hypnotics and anxiolytics. Antidepressants and anxiolytics.
8. Antiviral drugs. Antibacterial drugs inhibiting cell wall biosynthesis.
10. Antihelmintic and antiprotozoal and antiparasitic drugs. Antibiotics inhibiting bacterial nucleic acid synthesis. Miscellaneous other antibiotics.
12. Cancer chemotherapy: Small molecule signal transduction inhibitors, large molecule signal transduction inhibitors, drugs activating the immune system.

Prescription writing continuously during the whole semester.
The attendance of a minimum of 75% of lectures and practices is necessary for the end term signature of the semester (according to Examination and Studies Regulations). Replacement of classes is not offered by the department automatically. Nevertheless, if the number of absences exceeds the critical limit due to health problems (in this case medical certification is necessary), the student can ask for consultation once in a semester. If this request is accepted, this consultation can replace one not-attended regular class in a semester. The students exceptionally also can attend the classes of other seminar groups in the same week.

With the exception of ask for consultation in case of exceeding the critical number of absences (see above) no certification of the reason being absent from the practices and lectures is needed. In case of not attending the exam we act according to the Examination and Studies Regulations.

Two midterm tests will be organized during both semesters. The results of the midterms may influence the final grade of the semifinal or final exam (± half grade). The participation is not obligatory, and so we do not offer the possibility to repeat or rewrite it. The students are informed about the detailed schedule and topics of the midterms at the beginning of the semester.

The attendance of a minimum of 75% of lectures and practices is necessary for the end term signature.

The exam grade is determined by exam performance. The oral semi-final exam is conducted by the lecturer of the practice. The final examination is conducted by leading instructors (Associate Professors and Professors), but the department chair may allow (by recommendation of the dean) the participation of senior lecturers. In both exams one question from each question list have to be drawn. A previous written prescription writing exam at the lecturer of the practice is the part of the final exam.

If the student fails at any parts of the exam, the evaluation (grade) of the whole exam is “failed”.

Only in case of semi-final exam there is a possibility to offer the semifinal mark: (please, refer to The Study and Examination Policy Faculty of Medicine, Dentistry and Pharmacy (shortly Study Policy) Section 17 point 12): If the results of the first two midterms (written tests) reach minimum 80%, the student receives the possibility to take the third midterm (oral exam) during the last week of the study period. The topics of the third midterm cover the whole material of the semester. In case the result of this midterm is four or five the Head of Department may offer this mark as the acknowledgment of the student’s performance during the semester.

Exam:

Oral **semi-final exam**, at the end of the 7th university semester (from the topics of Pharmacology I).

Oral **final exam** (from the topics of the whole subject – Pharmacology I-II) at the end of the 8th university semester. A previous written prescription writing exam at the lecturer of the practice is the part of the final exam.

Semi-final exam (7th semester): testing of the student in a subject of the 1st Pharmacology semester.

Final exam (8th semester): testing of the student in a subject of both semesters – the entire subject of Pharmacology, including a previous written prescription writing exam.

Registration:

In the NEPTUN system.

Modifying:

In the NEPTUN system, according to the Examination and Studies Regulations.

A vizsgáról való távolmaradás igazolásának módja:

According to the Examination and Studies Regulations.

Textbook:

Further study material:

On the homepage of the department: http://semmelweis.hu/pharmacology/graduate-education/faculty-of-dentistry/
INTERNAL MEDICINE I.

Department of Internal Medicine and Oncology, 2/a Korányi S. u., Budapest, H-1083
Course director: prof. István Takács
Course coordinator: dr. Péter Studinger
Credits: 3
Lectures: 1 hour / week
Practices: 2 hours / week

Exam: No formal exam, signature and evaluation based on activity during practices: excellent (kiválóan megfelelt), pass (megfelelt) or fail (nem felelt meg).

Objective of the course: Primary objective of the course is to have the student to acquire the basic skills of obtaining a proper medical history, learn the bases of physical examination and other methods of patient evaluation, establishing diagnosis and treatment plan. Diseases of the endocrine, gastrointestinal and urogenital system will be reviewed, with special emphasis on their dental significance.

Lectures:

- Medical patient interview, comprehensive health history, techniques of physical examination. Alterations of the skin.
- Assessment of vital signs. Role of physical examination in emergency situations. Examination of a patient in shock, sudden dyspnea.
- Examination of the chest, common abnormal findings.
- Examination of the abdomen, common abnormal findings.
- Diagnosis treatment of thyroid diseases and their relevance to dentistry.
- Types, diagnosis and treatment of diabetes mellitus, relevance to dentistry.
- Diseases of the calcium metabolism, diseases with altered bone composition.
- Diseases of the upper gastrointestinal tract, malabsorption and their relevance to dentistry.
- Diseases of the lower gastrointestinal tract, gastrointestinal neoplasms.
- Diseases of the liver and biliary tract, their relation to dental diseases.
- Acute diseases of the urogenital system, electrolyte disturbances.
- Causes and management of chronic kidney disease.
- Diagnosis and management of the most common intoxications.
INTERNAL MEDICINE II.

1st Department of Internal Medicine

First Semester

Lectures (2 hours per week) Practices (1 hour per week)

Immunologic principles. Lymphocytic system.
Immunoglobulins. Types of immunologic reactions.
Polycythemia. Agranulocytosis. The leukemias.
Introduction to anemia and approach to patients with anemia. Iron
deficiency anemia. Megaloblastic anemia. Aplastic anemia.
Hemolytic anemias.
Plasma cell disorders. Multiple myeloma.
Waldenström’s macroglobulinemia.
Heavy-chain disease. Amyloidosis.
Hemostatic disorders. Thrombocytopenia.
Thrombocytosis. Vascular purpuras. Disorders of the coagulation mechanism.
Autoimmunity. Systemic lupus erythematosus.
Sjögren’s syndrome.
Atopic diseases. Allergic rhinitis. Asthma of allergic etiology. Urti-
caria and angioedema. Serum sickness.
Drug allergy. Contact dermatitis.

Immunodeficiency diseases.
Rheumatoid arthritis. Juvenile rheumatoid arthritis.
Reiter’s syndrome. Bechet’s syndrome.
Systemic sclerosis. Polymyositis and dermatomyositis. Wegener’s granulomatosis.
Hypothalamic and pituitary disorders. Hyperpituitary syndromes.
Anterior pituitary insufficiency.
Diabetes insipidus. The adrenal cortex.
Cushing’s syndrome. Addison’s disease.
Diabetes mellitus. Diagnosis and classification of diabetes mellitus.
Complication and treatment of diabetes mellitus. Gout.
Diabetes mellitus. Diagnosis and classification of diabetes mellitus.
Complication and treatment of diabetes mellitus. Gout.
Cytomegalovirus. Epstein-Barr virus. Influenza. AIDS.

Note: The maximum number of absences in a semester is 3
More than 3 absences invalidate the semester
Semi-final examination
CONSERVATIVE DENTISTRY AND ENDODONTICS II.

Department of Conservative Dentistry
Head of Department: Dr. Zsuzsanna Tóth D.M.D., Ph.D.

First semester

Detailed curriculum of lectures:
1. Preventive endodontics: significance of pulp protection. Diagnostics in endodontics
2. Endodontic microbiology
3. Endodontics: Access preparation and length determination
4. Endodontics: cleaning and shaping of root canals
5. Shaping of the Root Canal System: hand and rotary instrumentation techniques
6. Obturation techniques (cold and warm gutta-percha techniques)
7. Evaluation of Endodontic Outcomes. Revision
8. Radiology in Conservative Dentistry
9. Endodontic management of traumatic dental injuries
10. Definitive restorations of root canal treated teeth, post and core build-up, single crowns
11. Surgical treatments related to Endodontics. Methods and indications.
13. Planning complex dental treatment
14. Interactive treatment planning

Clinical practice (3 hours per week).

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester a midterm exam must be passed and one documented clinical case must be presented to validate the semester by earning the signature. Practical grade: consists of midterm, „small tests“, and evaluation of work and knowledge presented at clinical practice.
CONSERVATIVE DENTISTRY AND ENDODONTICS III.

Second semester

Detailed curriculum of lectures:
1. Evidence based dentistry
2. Microscope in endodontic treatments
3. Special cavity preparations
4. Post restorations
5. Preparing esthetic inlays and their cementation
6. Chairside CAD/CAM
7. Esthetics in dentistry and bleaching of teeth
8. Thesis defense
9. Indications and preparations for veneers
10. Spring break
11. Treatment of non-carious cervical lesions: surgical and restorative approach
12. Difficulties during root canal treatment and their management
13. Endodontic and periodontal interrelationships
14. Surgical interventions in conservative dentistry (resection, crownlengthening)
15. Interactive endodontics: diagnosis, treatment planning. Removing separated instruments from the root canal

Clinical practice (3 hours per week).

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester a midterm exam must be passed and one documented clinical case must be presented to validate the semester by earning the signature. Practical grade: consists of midterm, „small tests”, and evaluation of work and knowledge presented at clinical practice.

PROSTHODONTICS II.

First Semester

Topic of the lectures (weekly, numbered):
1. The reasons and the consequences of tooth loss
2. Infection control in prosthodontics
3. Preparation for fixed restorations
4. Fixed temporary restorations
5. Impression for fix restorations
6. Minimal invasive prosthodontic treatment
7. Removable partial dentures
8. Major connectors of upper and lower RPD
9. Indirect and direct retainers of RPD
10. Gnathological aspect of fix and removable partial dentures
11. Clinical and laboratorial steps of fixed partial dentures
12. Fix appliances, types of crown and bridges
13. Prosthetic aspects of implantology
14. Consultation
PROSTHODONTICS III.

Second Semester

Topic of the lectures (weekly, numbered):

1. Diagnosis and treatment planning
2. Classification of the partially edentulous dental arches
3. Tooth sade determination
4. Treatment planning for the class 0. dental arch
5. Treatment planning for the class 1A. and 1B. dental arches
6. Treatment planning for the class 2A. dental arches
7. Treatment planning for the class 2B. dental arches
8. Treatment planning for the class 2A/I. and 3. dental arches
9. Maxillo – facial prosthetics
10. Implants in prosthodontics
11. Parodontologic aspects of Prosthodontic Treatments
12. Construction of Complex Dentures
13. Consultation

BASIC RESTORATIVE DIGITAL DENTISTRY

Second Semester

Department of Prosthodontics
Head of Department: Prof. Dr. Péter Hermann
Lecturer: Dr. Judit Borbély

Lectures

1. Introduction to digital dentistry
2. Direct and indirect CAD CAM workflow
3. Standard Tessellation Language
4. Intraoral scanning systems with lab connection
5. Cad/Cam materials
6. Digital communication, shade selection
7. Virtual articulators

Practices

8. Intraoral scanning in vitro
9. Intraoral scanning in vivo
10. Prostho planning for navigated implant surgery
11. 3 D printing
12. Dental system Lab CAD fixed
13. Dental system Lab CAD removable
14. Summarizing Digital Course/Test
SURGERY

1. Department of Surgery Department Section of Surgery

Second Semester

<table>
<thead>
<tr>
<th>Lectures (2 hours per week)</th>
<th>Practices (1 hour per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery of the neck. Thyroid and parathyroid</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Surgical treatment of the chest wall, breast, pleura, lung and mediastinum</td>
<td>Visiting operating theater</td>
</tr>
<tr>
<td>Oesophagal surgery (injuries, diverticula, malignant diseases)</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Gastric and duodenal surgery (benign diseases)</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Gastric and duodenal surgery (malignant diseases)</td>
<td>Visiting operating theater</td>
</tr>
<tr>
<td>Surgery of gall-bladder and extrahepatic biliary system</td>
<td>Visiting operating theater</td>
</tr>
<tr>
<td>Surgery of the small intestines and colorectum (benign and malignant diseases)</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Appendicitis</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Surgery of the liver, pancreas and spleen. (injuries, inflammatory diseases and tumors)</td>
<td>Visiting operating theater</td>
</tr>
<tr>
<td>Bowel obstructions</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Hernias</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Basic principles in vascular surgery</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Shock. Cardiopulmonary resuscitation. intensive therapy</td>
<td>Visiting operating theater</td>
</tr>
<tr>
<td>General principles of traumatology. First aid. Traumatological management of catastrophes.</td>
<td>Visiting operating theater</td>
</tr>
<tr>
<td>Burned patients.</td>
<td></td>
</tr>
<tr>
<td>Urology Consultation</td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td></td>
</tr>
<tr>
<td>The maximum number of absences in a semester is 3.</td>
<td></td>
</tr>
<tr>
<td>More than 3 absences invalidate the semester</td>
<td></td>
</tr>
<tr>
<td>Practical course grade</td>
<td></td>
</tr>
<tr>
<td>Final examination</td>
<td></td>
</tr>
</tbody>
</table>
ORAL AND MAXILLOFACIAL SURGERY II.

Department of Oro-Maxillofacial Surgery and Stomatology
Tutor: Dr. Kinga Körmöczi

First Semester

Lectures (1 hour per week)

- Odontogenic inflammation I.
- Pathology, pathophysiology and microbiology of pyogenic inflammation
- Work safety protection training.
- Odontogenic inflammation II.
- Clinical features, diagnostics, therapy. The question of dental foci.
- Odontogenic inflammation III.
- Maxillofacial inflammation
- Odontogenic cysts I.
- Clinical classification of odontogenic cysts, the pathogenesis of their formation. Diagnosis, differential diagnosis
- Odontogenic cysts II.
- The surgery of odontogenic cysts. Cystectomy, cystostomy, decompression methods
- Endodontic surgery
- Indications and operative technique of apicectomy.
- Retrograde root filling. The hemisection of teeth
- Oral surgical aspects of the maxillary sinus I.
 (Pathology, diagnostics)
- Oral surgical aspects of the maxillary sinus II.
 (Sinus apertus)
- Written midterm
- The surgery of impacted teeth I.
- Disorders of the eruption of third molars. Clinical aspects of the prognosis of third molars. Diagnostics of mandibular third molars
- The surgery of impacted teeth II.
- Surgical technique of the removal of mandibular third molars. Post operative follow-up treatment of mandibular third molars, complications of their removal.
- Clinical features of maxillary third molars
- The surgery of impacted teeth III.
- Disorders of the eruption of upper canines. Prognosis, diagnosis and surgical treatment. Clinical features of other impacted and supernumerary teeth.
- Special need dentistry

Practices (3 hours per week) Practising minor oral surgery

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester three midterm examinations should be passed.
Semi-final examination
ORAL AND MAXILLOFACIAL SURGERY III.

Department of Oro-Maxillofacial Surgery and Stomatology

Second Semester

Lectures (1 hour per week)
1. Developmental anomalies I.
3. Developmental anomalies II.
4. Surgical management of dysgnathia.
5. Dentoalveolar trauma.
6. Injuries of neighbouring soft tissues, principles of management.
8. Maxillofacial surgical aspects of peripheral nerve disorders.
 (Diagnosis and management)
10. Non-odontogenic cysts.
12. Preprosthetic surgery I.
14. Preprosthetic surgery II.
16. Written midterm
18. Salivary gland diseases. Diagnostics and therapy
20. Consultation

Practices (3 hours per week)
Practising minor oral surgery

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester three midterm examinations should be passed.
ORTHODONTICS PRE-CLINICAL

Department of Orthodontics and Pediatric Dentistry
Head of Department: Dr. Noémi Katinka Rózsa D.M.D., Ph.D.
tel: (1)-4591500/ 59268
E-mail: noemirozsa65@gmail.com
Tutor: Dr. László Miklós Kaán D.M.D., PhD.
Phone: (1)-4591500 / 59270
E-mail: kaanm@dent.semmelweis-univ.hu

First semester

The aim of training
Preparing the dental students for the practical education of orthodontic health care, focusing primarily on the development of the manual skills.

Training form and time frame
Practical education: 1 hour/week
Form of examination: practical mark based on the practical performance
Comment: The practical education takes place in 7x2 hours. Training starts in the spring semesters only.

The minimal conditions of participation
Successful final examination of oral biology subject

The used method
According to the detailed syllabus, presentation of the current appliance types on a sample, and/or with multimedia methods. The activation of the appliances, wire- and arch bending practiced individually. Individual practice of bracket bonding with the help of typodonts and phantoms. The students are working under the supervision and management of the instructor.

Detailed syllabus
1. The categorization of appliances, the basic principles of their functions, basics of the orthodontic biomechanics
2. The function of the discernible appliances, their activation, elements, wire bending practice
3. The characteristics of metallic alloys used in orthodontics, their usability, wire bending practice
4. The activation of the appliances, their elements, accessories, bracket bonding systems
5. The operation principle of the typodont, its application, the use of the ligatures
6. Arch bending on a model, using typodont
7. Friction-proof systems, loop bending methods
GENERAL AND DENTAL RADIOLOGY

Department of Prosthodontics
Lecturer: *Prof. Dr. Csaba Dobó Nagy*

First Semester

<table>
<thead>
<tr>
<th>Lectures (2 hours per week)</th>
<th>Practices (2 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation physics</td>
<td>Normal radiographic anatomy: Tooth anatomy (lecture)</td>
</tr>
<tr>
<td>Dental caries</td>
<td>Normal radiographic anatomy: Anatomic</td>
</tr>
<tr>
<td>Pulp cavity</td>
<td>Normal radiographic anatomy: Anatomic landmarks of the maxilla (lectures)</td>
</tr>
<tr>
<td>Extraction of the teeth</td>
<td>Normal radiographic anatomy: Anatomic landmarks of the mandible (lecture)</td>
</tr>
<tr>
<td>Root canal therapy</td>
<td>Development of the teeth, Deciduous teeth (lect.)</td>
</tr>
<tr>
<td>Periapical lesions</td>
<td>Recognition of the teeth, anatomic landmarks and caries</td>
</tr>
<tr>
<td>Periodontal disease</td>
<td>Development of the teeth, deciduous teeth, extraction of the teeth</td>
</tr>
<tr>
<td>Cysts of the jaws</td>
<td>Periapical lesions</td>
</tr>
<tr>
<td>Hypercementosis</td>
<td>Periodontal disease</td>
</tr>
<tr>
<td>Excessive bone formation</td>
<td>Cysts of the jaws</td>
</tr>
<tr>
<td>Injuries to teeth</td>
<td>1st midterm</td>
</tr>
<tr>
<td>Osteomyelitis</td>
<td>2nd midterm</td>
</tr>
<tr>
<td>Tumors</td>
<td>3rd midterm</td>
</tr>
<tr>
<td>Apicoectomy</td>
<td>Hypercementosis</td>
</tr>
<tr>
<td>Anomalies</td>
<td>Excessive bone formation</td>
</tr>
<tr>
<td>Salivary gland diseases</td>
<td>Injuries to teeth</td>
</tr>
<tr>
<td>Resorption of the teeth</td>
<td>Osteomyelitis</td>
</tr>
<tr>
<td>Radiation biology</td>
<td>Review</td>
</tr>
<tr>
<td>Health physics</td>
<td>Review</td>
</tr>
<tr>
<td>Long-cone paralleling technique</td>
<td>Review</td>
</tr>
<tr>
<td>Traditional extraoral radiographic examinations</td>
<td>Review</td>
</tr>
<tr>
<td>Panoramic technique I.</td>
<td>Viewing of the examination radiographs I.</td>
</tr>
<tr>
<td>Panoramic technique II.</td>
<td>Viewing of the examination radiographs II.</td>
</tr>
</tbody>
</table>

Note: The maximum number of absences in a semester is 3.
More than 3 absences invalidate the semester.
During the semester three midterm examinations should be passed.
Final exam
PSYCHIATRY

Tutor: Dr. János Réthelyi
Department of Psychiatry and Psychotherapy

Lectures: 1/week

Examination: Semi-final

Textbook:

Schedule
Subject of psychiatry, classification of disorders, diagnostic methods
Case demonstration (psychiatric interview, signs and symptoms)
Affective disorders
Case demonstration (depression)
Anxiety, anxiety disorders, somatoform disorders
Case demonstration (anxiety disorder)
Organic psychiatry
Case demonstration (dementia)
Substance related disorders
Case demonstration (alcohol abuse)
Schizophrenia and associated disorders
Case demonstration (schizophrenia)
Emergency in psychiatry, legal aspects
Case demonstration, consultation

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. Semi-final exam: written exam (multiple choice)
NEUROLOGY

Tutor: Dr. Sándor Ilniczky

First Semester

Classroom lectures:

Cranial nerves and the brainstem
The motor system
The sensory system, pain syndromes
Altered consciousness. Emergency in neurology
Diagnosis and treatment of cerebrovascular disorders
Epilepsy and sudden loss of consciousness
Movement disorders
Inflammatory disorders and tumors of the nervous system

Bedside practice, patient demonstration
Recognition of neurological symptoms – examination of cranial nerves
Examination of the motor system
Evaluation of neurological symptoms
Emergency in neurology
Demonstration of cerebrovascular patients
Diagnosis of epilepsies
Special investigation of patients with movement disorders

Requirements:
Attendence of the lectures
Participation on the patient demonstration (maximum 1 absence from 7 practices)
Semifinal exam: the written exam consists of 50 simple choice questions, including the topics of the lectures and the basic literature listed below. For those who are not able to be present at the written exam, or fail, we provide a date for oral exam.

Basic reading:

Suggested reading:
PERIODONTOLOGY I, II.

Department of Periodontology

First Semester

Lectures (1.5 hours per week)
Practices (0.5 hour per week)
Credit 2

Exam: semi-final

Second Semester

Lectures (1 hour per week)
Practices (3 hours per week)

Introduction to Periodontology
Clinical practice
The morphology of the periodontium,
Clinical practice
histology and embryology of the periodontium
Clinical practice
The dental plaque. Its origin and role in the periodontal
Clinical practice
diseases. Periodontal microbiology
Clinical practice
Oral immunobiology
Clinical practice
Oral immunopathology
Clinical practice
Drugs and chemicals used in the periodontology
Clinical practice
Pathomechanism of the periodontal disease
Clinical practice
Clinical forms of periodontal diseases
Clinical practice
Acute necrotizing ulcerative gingivitis
Clinical practice
Pregnant gingitis, Periodontal diseases
Midterm Demonstration
with endocrine background.
Clinical practice
Non-plaque related periodontal conditions
Clinical practice
Oral mucous membrane diseases located on the gingiva
Clinical practice
Periodontal diseases of the child and adolescents
Clinical practice
Epidemiology of the periodontal diseases
Clinical practice
Periodontal diseases and the patients’ behavior
Clinical practice
Periodontitis as a behavioral disease
Clinical practice
Oral prophylaxis and prevention of periodontal diseases
Midterm Demonstration
Measures of individual and group education and motivation
Clinical practice
Periodontal charting, periodontal indices
Clinical practice
Medical and dental history of the periodontal patients
Clinical practice
General appraisal of the etiology of periodontal disease
Clinical practice
Rational for therapy.
Clinical practice
Consultation
Clinical practice

Note: The maximum number of absences in a semester is 3.
More than 3 absences invalidate the semester.
During the semester two midterm demonstrations should be passed.
Semi-final
PUBLIC HEALTH

Tutor: *Dr. András Terebessy*

English Dental

<table>
<thead>
<tr>
<th>Lectures (1.5 hours per week)</th>
<th>Practicals (2 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition of Public Health; Past, present and future of Public Health</td>
<td>Introduction Basic demographical data</td>
</tr>
<tr>
<td>Demography: International and Hungarian situation</td>
<td>Public Health Program of EU</td>
</tr>
<tr>
<td>General epidemiology Analytical and intervention methods on field of chronic non-communicable diseases</td>
<td>Visit into the Central Kitchen of the University</td>
</tr>
<tr>
<td>Lifestyle: smoking, alcohol consumption, drug-abuse</td>
<td>Practical aspects of epidemiological investigations: study-planning and analysis</td>
</tr>
<tr>
<td>Epidemiology and prevention of non-communicable diseases I</td>
<td>Dentist’s task on prevention of non-communicable diseases I: smoking, alcohol consumption and drug-prevention</td>
</tr>
<tr>
<td>Epidemiology and prevention of non-communicable diseases II</td>
<td>Dentist’s task on prevention of non-communicable diseases II: HBP-prevention</td>
</tr>
<tr>
<td>Epidemiology and prevention of Cancer</td>
<td>Dentist’s task on prevention of non-communicable diseases III: cancer-prevention Screening-screening programs</td>
</tr>
<tr>
<td>Environmental health: water, soil, air</td>
<td>Dentist’s task on environmental health problems</td>
</tr>
<tr>
<td>Occupational health</td>
<td>Dentist’s task on occupation diseases prevention</td>
</tr>
<tr>
<td>Basics of healthy diet; Nutrition disorders</td>
<td>Assessment of nutritional status; nutritional disorders;</td>
</tr>
<tr>
<td>Mother-, child and youth health care</td>
<td>Basics of healthy diet; Computer planning and controlling diet in public catering</td>
</tr>
<tr>
<td>General Epidemiology of communicable diseases – International and Hungarian aspects</td>
<td>Family planning, Youth health</td>
</tr>
<tr>
<td>Nosocomial Infections Reemerging, emerging and deliberately emerging infections</td>
<td>General epidemiology of communicable diseases Immunization, Vaccination programs</td>
</tr>
<tr>
<td>Ethic of Public Health</td>
<td>Sterilization, disinfection Laboratory investigations in case of communicable diseases Nosocomial infections</td>
</tr>
<tr>
<td>Structure and financing of Health Care Systems</td>
<td>Food-hygiene; food-borne diseases</td>
</tr>
</tbody>
</table>
DENTAL ETHICS

First Semester

Bioethics
Course Syllabus.

Institute of Behavioral Sciences
Course Director: Prof. Dr. József Kovács
(28 hours)

Course objectives:
1. To enable students to recognize ethical issues when encountered in everyday clinical practice and research
2. To provide students with a conceptual-logical system, which helps them to address ethical questions and to resolve ethical dilemmas in an efficient way
3. To introduce students to a body of knowledge, which helps them to understand, respect and protect the rights of patient research subjects and fellow health care professionals
4. To help the would be health care professional to understand the responsibility of the individual, of the health care system and of the society as a whole in maintaining health

Lectures

1. week
Basic concepts of ethics.
Descriptive ethics, normative ethics, metaethics.
General ethics and applied ethics.
Bioethics, medical ethics, health care ethics. Similarities and differences.
The role of bioethics in a pluralistic society.
The relationship between law and ethics.
Reasoning in ethics. The most common mistakes.

2. week
Normative theories of ethics.
Deontological theories of ethics. (The Golden Rule, Kant and the categorical imperative, the principle of double effect, W.D. Ross and the prima facie duties,)
Teleological theories of ethics. (Act and rule utilitarianism.)
Theories of natural law.
Contractarian theories of ethics. (The theory of justice of John Rawls)

3. week
The basic principles of dental ethics.
The principle of respect for autonomy.
The principle of non-maleficence.
The principle of beneficience.
The principle of justice.
Arguments against „principalism”.

4. week
The concept of health and disease.
Naturalistic definitions of health.
The medical model of defining health.
Normativist definitions of health.
Some questions of psychiatric ethics.

5. week
Informed consent.
Simple consent and paternalism in medicine.
The emergence of the doctrine of informed consent.
Standards for information disclosure for patients.
When is informed consent not necessary?
Standards of competence and incompetence.
The right to refuse medical treatment.
Some psychological and communicational aspects of informed consent.

6. week
Information disclosure to terminally ill patients. Telling the truth to patients.
The history of information disclosure to terminally ill patients.
Pros and cons for lying to terminally ill patients.
The weaknesses of the arguments in favour of lying.
The dying process according to E. Kübler-Ross.
How to communicate the bad news to terminally ill patients.
The physician’s relationship with the relatives of the deceased patient.
7. week
Justice in Health Care I. Ethical questions of macroallocation.
Higher and lower level macroallocational problems.
The role of personal responsibility in maintaining health.
The principles and practice of rationing in contemporary health care systems. (Soft and hard rationing.)
Medical ethics and medical economics. Ethical questions of cost-benefit and cost effectiveness analysis. The QALY.
The problem of right to health care. (The libertarian, the liberal and the socialist views about the right to health care.)
The role of the market and that of the state in the health care system.
Ethical problems of financing health care. (Fee-for-service, capitation, fixed salary, DRG-system, etc.)
Setting health care priorities in Oregon.
Attempts to define a just health care system.

8. week
Ethical questions of reproductive medicine.
Abortion.
Artificial insemination from donor.
In vitro fertilization, surrogate motherhood.
Ethical questions of genetic counseling.
Ethical questions of embryo experimentation.

9. week
Justice in Health Care II. Ethical questions of microallocation. Moral dilemmas in the allocation of scarce medical resources.
The concept of microallocation.
Ethical analysis of various selection criteria. (Medical benefit, psychological ability, supportive environment, social value criterion, resources required criterion, age, ability to pay, random selection, personal responsibility for the illness, etc.)

10. week
Ethical questions of animal experimentation.
History of the thinking about the moral status of animals.
The philosophical significance of the Darwinian conception of nature.
The views of Peter Singer: antisppeciesism.
The views of Tom Regan: animal rights.
Ethical questions of experimentation on animals on the basis of a moderate animal protectionist’s view.
Critical anthropomorphism.
Alternatives to animal experimentation.

11. week
Euthanasia and the withholding of life-sustaining treatment
Definitions.
The sanctity of life versus the quality of life doctrine.
Is there any difference between active and passive euthanasia?
Refusal of life sustaining treatment by competent and incompetent patients.
Possibilities to extend the autonomy of patients: living will, durable power of attorney, substituted judgement, etc.
The concept of medically futile treatment.
Ethical problems of the treatment of handicapped newborns. (The debate about the treatment of spina bifida babies, the Baby Doe case, the legal situation, etc.)

12. week
Ethical questions of human experimentation.
Possible forms of experimentation on humans.
Contradiction between the two roles of the physician. (Healer and scientist.)
The ethics of Randomized Controlled Clinical Trials. (RCT)
Randomization and prerandomization.

13. week
Ethical questions of organ- and tissue transplantation.
Some problems of justice concerning kidney transplantation and chronic haemodialysis.
Ethical questions of transplantation from living kidney donors.
The concept of death.
Ethical questions of organ harvesting from the dead.
The debate about the market of organs.
Ethical questions of using embryo- or foetal tissue in human therapy.
Ethical problems of using anencephal newborns as organ donors.

14. week
The rights of patients.
The role of patient’s rights in the transformation of the paternalistic physician-patient relationship.
Moral versus legal rights.
A list of basic rights of patients.
Mechanisms to ensure the realizations of patient’s rights. (Patient’s rights advocates, ombudsman, hospital ethics committees, institutional review boards, arbitration, etc.)
Course Faculty:
Prof. József Kovács, MD, PhD, (Head of the Department of Bioethics), 210-2930/56350;
e-mail: kovjozs@net.sote.hu
Ágnes Dósa, MD, JD, PhD e-mail: dosaagi@yahoo.com
Imre Szebik, MD, PhD e-mail: szebimre@net.sote.hu
Jeno Lorincz, MD, JD e-mail: lorjen@net.sote.hu

Department:
Institute of Behavioral Sciences
Department of Bioethics
NET Building, 19th, 20th floor
Tel: 210-2953
Secretary: NET Building, 20th floor, Room-2005

List of questions
1. Deontological theories of ethics.
2. Utilitarian theories of ethics.
3. The principles of dental ethics
4. Justice and dental ethics: the allocation of scarce medical resources.
5. Paternalism in dental practice
6. Informed consent
7. Information disclosure for terminally ill patients
8. Advance Directives
9. Experimentation on human subjects
10. Objection to Transplantation of Organs and Counterarguments
11. Ethical problems of live organ donation
13. Organ donation from brain-dead donors: presumed consent
14. Active and Passive Euthanasia
15. Withdrawing and withholding life sustaining treatment.
16. Models of the dentist-patient relationship
17. Ethical issues related to treating patients with partially compromised capacity
18. Professional norms and bad outcomes
19. Ethical questions raised by HIV and AIDS in dental practice
20. Confidentiality issues in dental practice
21. Moral issues related to the HIV positive dentist
22. Possible criteria for distributing the society’s resources
23. Social justice – the free market view of justice
24. Ethical issues in advertising dental services
25. Professional obligations in dentistry

Textbook:
Conrad Fischer—Caterina Oneto (2009): USMLE Medical Ethics: The 100 cases you are most likely to see on the exam (Second edition) New York: Kaplan Publishing ISBN: 9781419553141

Important:
To participate on at least 75% of the total number of lessons is a prerequisite of getting the signature. Doctor’s certificate is required to justify absence from the lessons and the exam.
Exam type: semi-final
Sign up for the exam: through the Neptun system.
GNATHOLOGY – lectures and practices

Department of Prosthodontics
Lecturer: Prof. Dr. Péter Hermann

First Semester

Lecture (1 hour/week)
Practice (2 hours/week)

Topic of the lectures (weekly, numbered):

1. Introduction To The Physiology Of The Stomatognathic System
2. Morphology Of The Stomatognathic System
3. Jaw Positions
4. Intercuspal Position, Retruded Contact Position, Occlusal Alterations
5. Mandibular Movements
6. Occlusal Concepts
7. Articulators
8. Face-bow Transfer, Mounting Of Articulators
9. Periodontal Considerations Of Occlusion, Occlusal Trauma
10. Gothic Arch Tracing, Ultrasonic Registration And Examination Of The TMJ
11. Examinations And Differential Diagnosis Of Occlusal Problems
12. Role Of Occlusion In The Clinical Practice, Parafunctions
13. Temporomandibular Disorders
14. Test
IMPLANTOLOGY I. – lecture

Department of Oro-Maxillofacial Surgery and Stomatology

Lecture: 1 hour/week

Course Syllabus:
Introduction. History of oral implantology. The classification of oral implants, according to the anatomic site. Endosteal implants.
The indications, contraindications of implant treatment.
Diagnostics and treatment planning.
General considerations of implant surgery.
Special considerations of implant surgery. The time of implant placement.
The fundamental biomechanics of oral implants.
The role of surface chemistry and topography in the osseointegration
The factors influencing the masticatory load transmission through implants.
The fundamentals of implant prosthodontics: Implant abutments, impression techniques. Prosthetic options on implants.
Implant failures. Biological, mechanical complications and their management.

Practice: 1 hour/week

Practice of Implantology complements and deepens the knowledge obtained during the theoretical course

- Diagnostics – X-ray diagnostics, CBCT analysis, introduction of X-ray and surgical template
- Introduction of the implant surgery through the system of the Straumann – emphasize on the unique properties of the system (surface, comparison of 1-stage / 2-stage surgical method
- Introduction of the implant prosthodontics through the SIC system – emphasize on the unique properties of the system, prothetics of the SIC system. Practicing the steps of the prosthetics on a model, cad-cam based prosthetic abutment, safe on four concept, platform switching, Balance healing screws and and abutments
- Guided bone regeneration through the products of Geisthich company – introduction of the methods of bone augmentation techniques, sinus-lifting, lateral bone augmentation practicing on models
- Introduction of the guided implant surgery Nobel Biocare Guide System overview – emphasize on the unique properties of the system
- Introduction of the failures of implantology and their solutions through the Osstem system – emphasize on the unique properties of the system, practicing on models

Semi-final examination
EMERGENCY DENTISTRY

Department of Community Dentistry
Head of department and lecturer: Dr. Orsolya Németh

1st semester: only practice
2nd semester: lecture and practice

lecture: 1 hour/week
practice: 1,5 hour/week

The purpose of the subject is that the dental student would be able to recognize and cope with the possible daily emergency cases at the dental practice.
In the 21st century dental emergency does not mean extractions. It also includes Conservative Dentistry, Prosthetics, Pedodontics, Orthodontics as well as Peridodontics aspects.
The curriculum of the Community Dentistry is an integral part of the other subjects.
It is necessary to teach this special field of dentistry separately. Introduction of individual cases in community dentistry helps with understanding other fields of dentistry as well.
This subject is especially important for graduates as they do not posses enough theoretical and practical knowledge yet. It would make them capable to solve any emergency case with ease.
Department of Community Dentistry is responsible for all Budapest and Pest region dental care, therefore is able to provide sufficient number of patients for practical education.

COMPULSORY SUMMER PRACTICE

4-weeks (120 hours) at a Dental Office
(Conservative Dentistry of Periodontology)

The student has to practice whole-scale comprehensive dental treatment including: Oral Prophylaxis, Restorations, Root Canal Therapy and Minor Prosthodontics as well as Er. Management.

Important note: Document certifying the completion of the practice must be handed in at registration! Registration to the next year is not allowed without it!
Physical Education VII-VIII.

Lessons (in hours): 14 lectures: 0 practicals: 14 seminars: 0

Lecturer of the course: Várszegi, Kornélia
Contact: Testnevelési és Sportközpont
Phone: +36-1/ 264-1408

Detailed course/lecture description*: (to facilitate credit recognition in other institutions)

Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:
60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations. 1107 Bp, Zágrábi utca 14.

1×60 min./week sessions:
Aerobics, BlessYou Gym, boulder, functional circuit training, golf, beginner Yoga, advanced Yoga, male football, salsa, step aerobics, badminton, beginner ultimate frisbee, advanced ultimate frisbee, zumba

1×90 mins./week sessions:
women’s football, ice hockey, beginner tennis, beginner tennis 2,

4×3 hrs. and 1×2 hrs. session packages:
Hiking 1, Hiking 2.

2×90 mins./week sport training (competitive sport, for qualified only):
cheerdance, cheerleader, men’s football, handball, basketball, volleyball

Fee-based:
mat the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes!

Important note: Document certifying the completion of the practice must be handed in at registration! Registration to the next year is not allowed without it!

* Detailed and numbered for each week of theoretical and practical lessons one by one, indicating the names of lecturers and instructors
CLINICAL MODULE

New curriculum to be introduced
Please, follow the updated version on the home page
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry I.*</td>
<td>C2L0P6</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prosthodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics IV</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prosthodontics III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Forensic Dentistry</td>
<td>C1L1P0</td>
<td>semi-final</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery IV.</td>
<td>C5L1P5</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology II.</td>
<td>C2L1P1</td>
<td>final#</td>
<td>Implantology I.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics I.</td>
<td>C5L1P4</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics I.</td>
<td>C5L1P4</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology III.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Periodontology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Prehospital Emergency Medicine</td>
<td>C1L1P0</td>
<td>semi-final</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics IV.</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Prosthodontics III., Conservative Dentistry and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Diagnostics II.</td>
<td>C1L0P1</td>
<td>semi-final</td>
<td>Oral Diagnostics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Medicine</td>
<td>C1L1P0</td>
<td>semi-final</td>
<td>Pharmacology and Toxicology II.</td>
</tr>
</tbody>
</table>

Total Credit 32

*at the Dept. of Prosthodontics or at the Dept. of Conservative Dentistry

#The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point

L = Lecture (hours/week)

P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>prerequisites code</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry II.*</td>
<td>C3L0P6</td>
<td>practice mark</td>
<td>Clinical Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics V</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Conservative Dentistry and Endodontics IV., Prosthodontics IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dermatology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Gerostomatology</td>
<td>C2L1P1</td>
<td>semi-final</td>
<td>Gnathology, Prosthodontics IV., Oral medicine II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Obstetrics and Family Planning</td>
<td>C1L1P0</td>
<td>semi-final</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery V.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Oral and Maxillofacial Surgery IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics II</td>
<td>C6L1P5</td>
<td>final#</td>
<td>Orthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics II</td>
<td>C6L1P5</td>
<td>final#</td>
<td>Pedodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology IV.</td>
<td>C3L1.5P2</td>
<td>final#</td>
<td>Periodontology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics V.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Prosthodontics IV., Conservative Dentistry and Endodontics IV.</td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Diploma work</td>
<td></td>
<td></td>
<td></td>
<td>C20</td>
</tr>
</tbody>
</table>

Important note: Signing up for Physical Education (PE) IX. in the 1st semester and for PE X. in the 2nd semester is compulsory.

Explanation

15 credits should be gained from the elective subjects during the 5-year studies – see the elective list after the 3rd year study program

The grade influences the qualification of the diploma

C = Credit point

L = Lecture (hours/week)

P = Practice (hours/week)
LIST OF TEXTBOOKS (The list may change!)

Recommended textbooks:

8. Online: www.lib.sote.hu – Adatbázisok, adattárak – OVID – Books@OVID – Dermatology – Fitzpatrick’s Dermatology in General Medicine
10. European federation of Preiodontology – efp.org
11. International Team for Implantology – iti.org
12. ITI Treatment Guide – iti.org/ITI-Treatment-Guide
GEROSTOMATOLOGY

Department of Community Dentistry
Head of department: Dr. Orsolya Németh
Lecturer: Dr. Péter Kivovics

lecture: 1 hour/week
practice: 1 hour/week

In developed industrialized countries, the number of older people is increasing year by year. This is largely due to disease control, adequate nutrition, widespread basic health care and relatively long periods without war. The majority of patients appearing in the dental office are considered elderly. Our course aims to provide an opportunity to gain a deeper understanding of the theoretical and practical knowledge of dental and oral surgery for elderly patients.

CLINICAL DENTISTRY I.-II.

There is no lecture on the subject of Clinical Dentistry, at the beginning of the practices the previously acquired theoretical curriculum from conservative dentistry and prostho[dontics will be repeated in the form of a mandatory consultation, in weekly shifts.

OTORHINOLARYNGOLOGY AND HEAD AND NECK SURGERY

Lecturer: Prof. Dr. László Tamás
Tutor: Dr. Beáta Bencsik

First Semester

<table>
<thead>
<tr>
<th>Lectures (1 hour per week)</th>
<th>Practices (0,5 hour week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The role of otorhinolaryngology in dentistry and medicine. Clinical anatomy of the ear. Diseases of the external ear.</td>
<td>Routine clinical examinations in practice.</td>
</tr>
<tr>
<td>Diseases of the salivary glands. Emergency management of suffocation. Conicotomy and tracheotomy. Foreign bodies in the trachea and oesophagus</td>
<td></td>
</tr>
</tbody>
</table>
PEDIATRICS

2nd Department of Pediatrics
Tutor: Dr. Judit Müller

First Semester

Lectures (1 hour per week) Practices (0,5 hour week)
Development and Growth
Childhood Nutrition and its Disorders
Fluid and Electrolyte Disorders
Newborn Infant: Diseases and Disorders
Genetic Disorders
Congenital Heart Diseases
Respiratory Diseases
Neurologic and Muscular Disorders
Endocrine Disorders
Infectious Diseases, Immunization
Gastrointestinal Tract Disorders
Hematologic Disorders
Malignant Diseases in Childhood
Kidney and Urinary Tract Diseases
Allergic Diseases

PROSTHODONTICS IV-V.

First Semester

Clinical practices, Integrated practices
Treatment of partial edentoulossness, fixed and removable dentures.
No lectures.

Second Semester

Clinical practices integrated with the conservative dentistry. Complex treatment of different cases.
No lectures.
CONSERVATIVE DENTISTRY AND ENDODONTICS IV.

First semester

The subject is taught with four practical hours per week, there is no lecture.

During the exercises the students deal with root canal treatments and revisions within the framework of clinical care under the supervision of practice leader.

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester a midterm exam must be passed and one documented clinical case must be presented to validate the semester by earning the signature. Practical grade: consists of midterm, „small tests”, and evaluation of work and knowledge presented at clinical practice.

CONSERVATIVE DENTISTRY AND ENDODONTICS V.

Second semester

Detailed course/lecture description[i]: (to facilitate credit recognition in other institutions)

Detailed weekly curriculum:

The subject is taught with three practical hours per week, there is no lecture.

During the exercises the students more independently and widely deal with the activities of the field of conservative dental care in the framework of clinical care under the supervision of the practice leader.

[i] Detailed and numbered for each week of theoretical and practical lessons one by one, indicating the names of lecturers and instructors

List of textbooks, lecture notes and recommended textbooks:

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester a midterm exam must be passed and one documented clinical case must be presented to validate the semester by earning the signature. Practical grade: consists of midterm, „small tests”, and evaluation of work and knowledge presented at clinical practice. Final oral exam: students (A) must present the best three well-documented clinical cases validated by the practice teacher done at conservative or clinical practice during the entire time of their gradual course, (B) choose one-one question from three topic groups (dental materials, conservative dentistry, endodontics) and (C) receive an intraoral X-ray from which they must recognize the teeth, set up diagnosis and suggest a therapy.
ORAL AND MAXILLOFACIAL SURGERY IV.

Tutor: Dr. Kinga Körmöczi

First Semester

Lectures (1 hour / week)
Precanceroses.
Benign tumors of the soft tissues in the head and neck region.
Benign tumors of the bone tissues in the head and neck region.
Malignant tumors of the head and neck region. I.
(Diagnostics, pathology, epidemiology)
Malignant tumors of the head and neck region. II.
(Surgical therapy)
Malignant tumors of the head and neck region. III.
(Complex therapy)
Secondary treatment of cleft lip and palate. Orthognatic Surgery
Biomaterials.
Esthetical consideration in maxillofacial surgery
Risk patient treatment in oral surgery I.
(internal diseases, fainting, antifebrile and painkiller treatment)
Ambulantory narcosis in head and neck surgery,
coagulopathies, anticoagulant treatment.
Sinus lifting.
Dentoalveolar deformities.
Guest speaker
Consultation

Practices (5 hours / week)
Practicing minor oral surgery

Note: The maximum number of absences in a semester is 3.
More than 3 absences invalidate the semester.
During the semester three midterm examinations should be passed.
Practical course grade
ORAL AND MAXILLOFACIAL SURGERY V.

Second Semester

Lectures (1 hour / week) **Practices** (3 hours / week)
Diseases of the temporomandibular joint Part I. (Pathology, diagnostics)
Diseases of the temporomandibular joint Part II. (Therapy)
Peripheral nerve disorders in the head and neck region. Rehabilitation after the paresis of the Facial nerve
Antibiotic treatment in dental surgery
Maxillofacial reconstructive surgery Part I. (Reconstruction of soft tissues and bone by local flaps)
(Reconstruction by microvascular grafts)
Modern diagnostic methods in oral and maxillofacial surgery
Systematic diseases in the head and neck region
The promotion of the osteogenesis by distraction methods
Biomaterials in the maxillofacial surgery
Guest speaker
Consultation

Practice
Two weeks’ clinical practice at the in-patient ward of the clinic
(1st week in the morning, 2nd week in the afternoon hours, every day)
Practical course grade and **final** examination

Note:
The maximum number of absences in a semester is 3.
More than 3 absences invalidate the semester.
During the semester three midterm examinations should be passed.
PEDODONTICS I.

Department of Orthodontics and Pediatric Dentistry

Head of Department: Dr. Noémi Katinka Rózsa D.M.D., Ph.D.
Phone: (1)-4591500/ 59268
E-mail: noemirozsa65@gmail.com

Tutor: Dr. László Miklós Kaán D.M.D., PhD.
Phone: (1)-4591500 / 59270
E-mail: kaanm@dent.semmelweis-univ.hu

First Semester

Lectures (1 hour/week)

1. The subject, signification and interactions of paediatric dentistry
2. Tooth development, anatomy and dentition of primary teeth
3. Developmental disturbances of permanent and primary teeth
4. Caries of primary teeth. Treatment possibilities
5. Consecutive illnesses of caries in primary dentition
6. Mechanism of second dentition. Physiological and pathological significance
7. Caries and treatment of permanent teeth
8. Consecutive illnesses of caries in permanent dentition
9. Psychological aspects of dental treatment during childhood
10. Filling materials in Paediatric Dentistry
11. Dental radiology in Paediatric dentistry
12. Dental anomalies in syndromes
13. Root-canal treatment of immature teeth, apexogenesis, apexification
14. Special aspects of prevention in paediatric dentistry and orthodontics

Practice (4 hours/week)

Treatment of patients.

Type of evaluation: Practical grade (1-5 grading system)
PEDODONTICS II.

Second Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures (1 hour/week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pain control and anaesthesia during childhood</td>
</tr>
<tr>
<td>2.</td>
<td>Traumatic injuries of primary teeth</td>
</tr>
<tr>
<td>3.</td>
<td>Traumatic injuries of permanent teeth, complex therapy solutions</td>
</tr>
<tr>
<td>4.</td>
<td>Non- and minimally invasive dentistry</td>
</tr>
<tr>
<td>5.</td>
<td>Prosthetics in Paediatric dentistry</td>
</tr>
<tr>
<td>6.</td>
<td>Periodontology and oral diseases during childhood</td>
</tr>
<tr>
<td>7.</td>
<td>Dental attendance of children suffering from general diseases</td>
</tr>
<tr>
<td>8.</td>
<td>The management of children with special needs</td>
</tr>
<tr>
<td>9.</td>
<td>Aetiology and treatment methods of hard tissue discoloration</td>
</tr>
<tr>
<td>10.</td>
<td>Administration of medicine in pedodontics</td>
</tr>
<tr>
<td>11.</td>
<td>Oral surgery during childhood</td>
</tr>
<tr>
<td>12.</td>
<td>Non- and minimal invasive interventions in paediatric dentistry</td>
</tr>
<tr>
<td>13.</td>
<td>Molar- Incisor- Hypomineralisation Syndrome (MIH)</td>
</tr>
<tr>
<td>14.</td>
<td>Consultation Courses (obligatory and elective) which in part or entirely overlap</td>
</tr>
</tbody>
</table>

Practice (5 hours/week)
- Treatment of patients.
- Types of evaluation:
 - Practical grade (1-5 grading system)
 - Final examination. Evaluation of the whole subject matter. (1-5 grading system).
ORTHODONTICS I.

Department of Orthodontics and Pediatric Dentistry

Head of Department: Dr. Noémi Katinka Rózsa D.M.D., Ph.D.
tel: (1)-4591500 / 59268
E-mail: noemirozsa65@gmail.com

Tutor: Dr. László Miklós Kaán D.M.D., PhD.
Phone: (1)-4591500 / 59270
E-mail: kaanm@dent.semmelweis-univ.hu

First Semester

Lectures (1 hour/week)

1. The subject, significance of orthodontics, its relation to caries and periodontal diseases
2. Historical survey of orthodontics. Classification and terminology of malocclusion
3. Diagnosis of malocclusions I.
4. Diagnosis of malocclusions II. X-ray diagnosis
5. Aetiology; hereditary and acquired anomalies. Functional anomalies.
6. The timing of the orthodontic treatment
9. Removable appliances II. Functional appliances
10. Space gaining in orthodontics. Arch expansion and molar distalization
12. Multibond techniques II. Orthodontic wires and the phases of orthodontic treatment
13. Modern techniques in orthodontics: splint appliances 1
14. Aesthetics in orthodontics

Practice (4 hours/week)

Treatment of patients.

Type of evaluation: Practical grade (1-5 grading system)
ORTHODONTICS II.

Second Semester

Week Lectures (1 hour/week)
2. Normocclusion. Local and general anomalies.
3. Treatment of distoocclusion.
4. Treatment of mesioocclusion
5. Extraction in orthodontics.
6. Complex treatment of orthodontic anomalies combined with missing teeth
7. Surgical-orthodontic treatments
8. Complex therapy of cleft lip and palate
9. Retention and relapse.
13. Digital techniques and workflow in orthodontics
14. Consultation

Practice (5 hours/week)
Treatment of patients.
Types of evaluation:
Practical grade (1-5 grading system)
Final examination. Evaluation of the whole subject matter (1-5 grading system).
PERIODONTOLOGY III.

Department of Periodontology

First Semester

Lectures (1 hour/week)
1. Correlation between periodontology and orthodontics
2. Periodontal aspects of prosthetic rehabilitation
3. Morphology of periodontal defects. Indications of periodontal surgery
4. Periodontal surgery I. General introduction
5. Periodontal surgery II. Surgical correction of gingival enlargement
6. Periodontal surgery III. Periodontal resective/reparative surgery
7. Biology of periodontal tissue. Basics of regenerative techniques
8. Clinical application of periodontal regenerative techniques I.
9. Clinical application of periodontal regenerative techniques II.
10. Treatments of furcation defects
11. Biological mediators in periodontal surgery
12. Mucogingival surgery I.
13. Mucogingival surgery II. / Written exam
 - Alveolar ridge preservation techniques

Practices (2 hours/week)
- Clinical practice

Midterm Demonstrations
- Clinical practice
- Clinical practice

Note:
The maximum number of absences in a semester is 3.
More than 3 absences invalidate the semester.
During the semester two midterm demonstrations should be passed.
Practical course grade
PERIODONTOLOGY IV.

Second Semester

Lectures (1.5 hours / week)

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures (Part One)</th>
<th>Seminar (2 hours/week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Biology of periodontal and periimplant tissues</td>
<td>Ambulatory patient care</td>
</tr>
<tr>
<td>2.</td>
<td>Periodontal aspects of implantology, augmentations I.</td>
<td>Ambulatory patient care</td>
</tr>
<tr>
<td>3.</td>
<td>Periodontal aspects of implantology, augmentations II.</td>
<td>Ambulatory patient care</td>
</tr>
<tr>
<td>4.</td>
<td>Is periodontitis a risk factor in implant dentistry?</td>
<td>Ambulatory patient care</td>
</tr>
<tr>
<td>5.</td>
<td>Periimplantitis. Background and management</td>
<td>Surgical assistance</td>
</tr>
<tr>
<td>6.</td>
<td>Comprehensive case presentations I. (perio-prot direct/indirect, surg)</td>
<td>Surgical assistance</td>
</tr>
<tr>
<td>7.</td>
<td>Comprehensive case presentations II. (perio/plastic surg - impl)</td>
<td>Surgical assistance</td>
</tr>
<tr>
<td>8.</td>
<td>Comprehensive case presentations III. (perio-non-surg/surg - impl)</td>
<td>Surgical assistance</td>
</tr>
<tr>
<td>9.</td>
<td>Comprehensive case presentations IV. (perio- (reg)/ortho/prosth)</td>
<td>Literature review</td>
</tr>
<tr>
<td>10.</td>
<td>Supportive therapy in periodontology and implant dentistry</td>
<td>Clinical case conference</td>
</tr>
<tr>
<td>11.</td>
<td>Periodontal diagnostic consultation</td>
<td>Differential diagnosis</td>
</tr>
<tr>
<td>12.</td>
<td>Written exam</td>
<td>Consultation</td>
</tr>
</tbody>
</table>

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester two midterm demonstrations should be passed. Practical course grade and **final** exam
ORAL MEDICINE

Department of Oral Diagnostics

Address: Bp. VIII., Szentkirályi u. 47. 1088
Phone: 459-1500/59161, 317-1044
Tutor: *Prof. Dr. Csaba Dobó Nagy*
E-mail: oral@fok.usn.hu

Lecturer: *Dr. Csaba Dombi*

First Semester

Lectures (1 hour/week)

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Vesiculo-bullous oral diseases</td>
</tr>
<tr>
<td>2.</td>
<td>Oral signs and symptoms of benign tumors</td>
</tr>
<tr>
<td>3.</td>
<td>Precancerous conditions in the oral cavity</td>
</tr>
<tr>
<td>4.</td>
<td>Leukoplakia</td>
</tr>
<tr>
<td>5.</td>
<td>Malignant tumors of the oral mucous membrane</td>
</tr>
<tr>
<td>6.</td>
<td>Oral signs and symptoms of hematological diseases</td>
</tr>
<tr>
<td>7.</td>
<td>Clinical differential diagnosis of gingival enlargements</td>
</tr>
<tr>
<td>8.</td>
<td>Lichen oris</td>
</tr>
<tr>
<td>9.</td>
<td>The diseases of the lip</td>
</tr>
<tr>
<td>10.</td>
<td>The diseases of the tongue</td>
</tr>
<tr>
<td>11.</td>
<td>The diseases of the salivary glands</td>
</tr>
<tr>
<td>12.</td>
<td>The oral considerations of HIV infection and viral hepatitis</td>
</tr>
<tr>
<td>13.</td>
<td>The role of the vitamins in the etiology of oral mucosal disorders</td>
</tr>
<tr>
<td>14.</td>
<td>Written final exam</td>
</tr>
</tbody>
</table>

Note: The maximum number of absences in a semester is 3.
More than 3 absences invalidate the semester.
During the semester two midterm demonstrations should be passed.
Practical course grade and *semi-final* exam
IMPLANTOLOGY II.

Department of Oro-Maxillofacial Surgery and Stomatology
Lecturer: Dr. Árpád Joób-Fancsaly

Lectures (1 hour/week)

Course Syllabus:

Bone replacement:
- Guided Bone Regeneration /GBR/. Bone grafting procedures in the outpatient surgery.
- Osteogenesis, bone transplantation. Distraction osteogenesis.
- The sinus-lift procedure. Indications, contraindications, surgical techniques.
- The periodontal aspects of implant therapy.
- Nobel-Biocare implant system.
- ITI- Straumann implant system.

Implant prosthodontics:
Crows on implants. Fixed dental prosthesis on implants. Mesio-structures, combined /fixed-removable/ prosthesis on implants.
Esthetic considerations in implant surgery. Surgical management of soft tissues.
Comprehensive lecture. Implant therapy in the practice. Planning and completing in different anatomical situations.

Guided surgery in oral implantology.

Implant failures. Biological, mechanical complications and their management.

Practice: No practice only lecture according to the new curriculum

Final exam

Practice of Implantology complements and deepens the knowledge obtained during the theoretical course

- Diagnostics – X-ray diagnostics, CBCT analysis, introduction of X-ray and surgical template
- Introduction of the Straumann system – emphasize on the unique properties of the system (surface, comparison of 1-stage / 2-stage surgical method, Implant Surgery overview through the system
- Introduction of the SIC system – emphasize on the unique properties of the system, Prothetics of the SIC system. Practicing the steps of the prosthetics on a model, cad-cam based prosthetic abutment, safe on four concept, platform switching, Balance healing screws and abutments
- Guided bone regeneration through the products of Geisthich company – introduction of the methods of bone augmentation techniques, sinus-liftig, lateral bone augmentation practicing on models
- Smart Guide System overview – emphasize on the unique properties of the system, introduction of the guided implant surgery
- Osstem system overview – emphasize the unique properties of the system, introduction of the failures of implantology and their solutions, practicing on models
ORAL DIAGNOSTICS II.

Department of Oral Diagnostics

Address: Bp. VIII., Szentkirályi u. 47. 1088
Phone: 459-1500/59161, 317-1044
Tutor: Prof. Dr. Csaba Dobó Nagy
E-mail: oral@fok.usn.hu

Fifth year 1st semester

Lecture -0 Practice (1 hour/week)

Rules of practices

Activity of the students:
1. Clinical evaluation and registration of medical and dental conditions, extraoral and intraoral examination of the patients, stomato-oncological cheque-up. Registration of medical and dental history.
2. Documentation of the above, taking oral photos, and preparing diagnostic casts.
3. Making decisions about additional diagnostic methods, X-ray examinations, referrals and consultations.
4. Making diagnosis and complete preliminary treatment planning.
5. Preparing written case-demonstrations including history, clinical finding, diagnosis, preliminary treatment plan and conclusions.
6. Written case demonstrations should be made at home, with the use of the students notes in the practice. Students are responsible for and should take great care about the patients personal rights. No personal data, medical certificate, x-ray pictures or other relevant findings can be brought home, for preparation of the case demonstrations! (only the notes made by the student during the practice, containing no personal data, no official documentation.)
7. Written theoretical evaluation will be organized in one of the practices in this semester.

Exam: Practical hours should be visited during 2 days. The time of practices is between 8.00 a.m – 1.00 p.m.
Semifinal exam will be organized at the end of fifth year, first semester.
Minimal expectations : reaching the minimum level of the written theoretical evaluation (mark 2) presentation of three written case-demonstrations reaching the minimum quality level (mark 2) Non-performance of the minimal expectations invalidate the semester!

Textbook:

Recommended books:
PREHOSPITAL EMERGENCY MEDICINE

National Ambulance Service
Program Director: Dr. Gábor Góbl
Tutor: Dr. László Gorove

First Semester

Topics
The principles of emergency medicine.
The field assessment.
Patient assessment.
Transportation trauma
BLS – AED, ACLS
Prehospital care of the injured patient
Analgesia, anesthesia in the emergency care
Unconsciousness, confused states
Acute chest syndromes. ACS
Acute cardiac failure. Arrhythmias in the emergency care
The shock process. Evaluation and in field management of shock conditions.
Stroke syndromes. Hypertensive emergencies.
Acute dyspnea. Artificial ventilation on the spot
Acute abdominal syndromes
Toxicology in the emergency care
Pediatric oxylogy
Obstetrical first aid
CPR revision

Note: participation at 75% of lessons is necessary. Compensation is possible using the notes of the lectures and the recommended book.
Mode of certifying absences: Oral in case of absence from lectures, written in case of absence from semi-final examination within 3 working days.
Requirement of the semester signature in the lecture book: Participation at the lectures in 75% of cases. Type of the examination: semi-final
It will be tested, whether the student is able to recognize and manage emergencies.
DERMATOLOGY

Lecturer: Dr. Bernadett Hídvégi
Tutor: Dr. Bernadett Hídvégi

Department of Dermatology, Venerology and Dermatooncology

Second Semester

Lectures (1 hour per week) Practices (0,5 hour week)

Lecture
Introduction to Dermatology.
Diagnostic procedures, anatomy, functions of skin comparing to oral mucosa.
Elementary lesions. Autoimmune bullous diseases.
Sexually transmitted diseases (syphilis, gonorrhoea, NGU, HPV).
AIDS, herpes virus infections.
Skin tumors. Malignant melanoma, basal cell carcinoma, squamous cell carcinoma.
Benign tumors, paraneoplastic syndromes.
Allergic skin diseases, drug allergy.
Dermatitis, eczema, implication for dentists.
Atopic dermatitis, urticaria, psoriasis.
Bacterial skin diseases.
Cutaneous and mucosal diseases caused by fungi.
Treatment modalities.
Dermatological treatment.
Seborrheic dermatitis, acne.
Cutaneous and oral manifestations of internal diseases.
Final examination
OBSTETRICS AND FAMILY PLANNING

Dept. of Obstetrics and Gynecology
Head of Department: Prof. Dr. Nándor Ács

Second Semester

Lectures (1 hour/week)

Anatomy and physiology of the genital organs. The menstrual cycle.
Conception.
Prenatal care, diagnosis of pregnancy.
Normal pregnancy and development of the fetus.
Changes in maternal anatomy and physiology during pregnancy.
Spontaneous abortion. Ectopic pregnancy.
EPHgestosis. Hyperemesis.
Medical complications during pregnancy. Gestational diabetes.
Infections in obstetrics and gynecology.
Normal labour and delivery.
Abnormalities of labour and delivery.
Normal and abnormal puerperium.
Neonatology.
Gyn. endocrinology. Family planning.
Sterility, infertility.
Genetic counseling, fetal anomalies.

Semi-final examination
OPHTHALMOLOGY

Dept. of Ophthalmology
Program director: Dr. Zsuzsa Récsán
Tutor: Dr. Zsófia Hargitai

First Semester

Lectures (1 hour/week)
Introduction. History of ophthalmology.
Conjunctivitis (“red eye”).
Keratitis (“red eye”).
Uveitis (“red eye”). Differential diagnostic approach of the “red eye”.
Basics of optics.
Glaucoma (pathomechanismus).
Glaucoma (conservative and surgical treatment).

Practical guide (0.5 hour/week)
Anatomy of the eye. Patient’s history.
Objective and subjective symptoms of eye-diseases.
Eyelids and lacrimal system.
Examination of the anterior segment of the eye (focal light, slit lamp).
Refractive errors. Checking of visual acuity.
Basics of orthoptics.
Examination of the refractive media and retina. (Ophthalmoscope)
Diagnosis of glaucoma (perimetry, checking of intraocular pressure, gonioscopy.
Treatment of glaucoma.
First aid in cases of ocular injuries.
First aid in sudden visual loss.
Differential diagnostic approach of the “red eye”.
Differential diagnostic approach of the “painful” eye.
Consultation.

Semi-final examination
FORENSIC DENTISTRY

Department of Forensic Medicine
Tutor: Dr. Zoltán Szőlősi

First Semester

Lectures (1 hour/week)

- The discipline of forensic medicine, relation to law, the legal aspects of dentistry
- Injuries
- Asphyxia
- Identification
- Toxicology I.
- Toxicology II.
- Alcohol and narcotics
- The legal aspects of clinical medicine I.

- The legal aspects of clinical medicine II.
- Facial and cranial injuries
- Sudden death, SIDS
- Risk and malpractice in dentistry
- Forensic psychiatry
- Autopsy demonstration
- Autopsy demonstration

Semi-final examination

Physical Education IX-X.

Lessons (in hours): 14 lectures: 0 practicals: 14 seminars: 0

Lecturer of the course: Várszegi, Kornélia
Contact: Testnevelési és Sportközpont
Phone: +36-1/ 264-1408

Detailed course/lecture description: (to facilitate credit recognition in other institutions)

Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations. During the academic year, students can also choose the “Other” course category, where they record their weekly physical activity independently.

Students who cannot choose anything from the sports offer or who are forced to fulfill the conditions of participation on their own due to a lack of space can register for the “independent sports activity” course as part of the Physical Education course in the Neptune system.

In cases, a questionnaire is sent to the students through the Neptune system:
- The questionnaire can be filled in from Monday to Sunday in a semester (no entries can be made in advance or afterwards).
- Students must assure themselves that they have completed the questionnaire truthfully.
- It is a minimum requirement for the signature that a training of 1x60 minutes per week is completed and this is recorded in the questionnaire.

Free of charge:
2×90 mins./week sport training (competitive sport, for qualified only): cheerleader, men’s football, handball, basketball, volleyball

Fee-based:
at the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.
ELECTIVE SUBJECTS FOR Dentistry 3rd, 4th and 5th year

PREVENTION AND CLINICAL SCREENING OF ORAL MALIGNANCIES

Department of Oral Diagnostics
(Orális Diagnosztikai Osztály, Bp. VIII., Szentkirályi u. 40. 1088
Phone: 317-6600; 317-0951; fax: 317-9199)
Tutor: Prof. Dr. Gábor Nagy D.M.D., Ph.D

I. Theoretical background

Incidence of intraoral tumours is very high, and Hungary has a leading position in Europe. Among men this is the third in ranking the causes of death, and regarding the whole population it has the seventh place.

The two main risk factors are smoking and alcohol consumption, the combination of these multiple the risk rate. Nowadays it is noteworthy that the frequency of oral cancers is increasing in younger age groups and among women lacking the before mentioned risk factors.

II. Methods of oral cancer screening

1. *Population based methods* – large number of people invited to take part in a cancer screening, which could be combined with a general dental health assessment.
2. *Opportunistic screening*

This mean the comprehensive dental examination of a particular patient attending a dental service. This screening is not only concentrating on detection of oral premalignacies oral malignancies, but also other developmental and inflammatory lesions.

Basic investigative methods of head and neck region
detailed case history (with special aspects on tumors, lifestyle, persistent, non-healing lesions)
Precise extra- and intraoral physical examination
Novel visual examination procedures (e.g. Veloscope)

Conclusion
Screening for oral malignancies is a very important part of dental examination. Lesions, persisting two weeks after eliminating any irritating factor a special clinical examination including histology is needed. In this way the survival possibilities of oral cancer patients could be enhanced largely.
This shows the extreme importance of this subject in dental and medical education as well.
THEMATICS

Contemporary diagnostics of oral premalignancies and cancers

1. Importance of oral malignancies
 Epidemiology, morbidity and mortality data
2. Etiological factor and pathomechanisms of oral tumors
3. Rate and efficacy of different screening methods (screen or not to screen)
4. Basic clinical signs and symptoms of oral malignancies and premalignancies I.
5. Basic clinical signs and symptoms of oral malignancies and premalignancies II.
6. Consultation
7. Possibilities of early detection and prevention
8. Diagnostic process of oral malignancies I. Traditional physical examination
9. Diagnostic process of oral malignancies II. Traditional physical examination
10. Diagnostic process of oral malignancies novel Procedures (e.g. lightning devices)
11. Contemporary diagnostic possibilities and a multidisciplinary cooperation
12. Social and dental rehabilitation after the treatment of oral cancer
13. Consultation / Examination

PEDODONTIC AND ORTHODONTIC PREVENTION – for the 4th year, 7th semester

ORTHODONTIC DIAGNOSIS I-II. – both for the 4th year, 7th and 8th semester

Department of Pedodontics and Orthodontics

1 lecture / week
1 credit point

DIGITAL ORTHODONTICS – for the 5th year, 9th semester

Department of Pedodontics and Orthodontics

1 lecture / week
1 credit point

PEDODONTIC AND ORTHODONTIC PREVENTION

ORTHODONTIC DIAGNOSIS I-II. – both for the 5th year

Department of Pedodontics and Orthodontics

1 lecture / week
1 credit point
DIRECT AESTHETIC DENTISTRY 4th year

Department of Conservative Dentistry
Head of the Department: Dr. Zsuzsanna Tóth
Tutor: Dr. Kamil Al-Katib, Dr. Zsolt Döbrentey

Durations: 1 lecture and 3 practice
Every class: 3h (4x45 min)
Credit value: 1 credit point
Maximum group size: 50

Direct Aesthetic Dentistry I. (basic course) – 1st semester (autumn)

This elective course is for dental students having finished successfully Conservative Dentistry III.

1st week: theory

2nd week: practice
Anterior wax-up. Proper design of cervico-oro–vestibular–incisal dimensions. Perikymata, grooves, character lines, and its effect on the visual dimension of the tooth.

3rd week: practice
Restorations in the front region. Preparation of a standardized full composite first incisor using the anatomical stratification technique.

4th week: practice
Medium size restoration in the molar region. Creation of appropriate cusps-fissure relation.

Direct Aesthetic Dentistry II. (advanced course) – 2nd semester (spring)

This elective course is for dental students having finished successfully Direct Aesthetic Dentistry I.

1st week: theory

2nd time: practice
Direct veneer for randomized middle-aged «patients

3rd time: practice
Rebuilding the veneer for elderly patient.

4th time: practice
Large restoration in the molar region. Creation of appropriate cusp-fissure relation, using stain technique for making the restoration more life-like.
POSTGRADUATE COURSES

Head of Secretariat: Dr. János Gerle
Address: Budapest, district 8., Szentkirályi u. 47.
(7th floor., room no. 751.)
E-mail: szkepz@dent.semmelweis-univ.hu
E-mail: gerle.janos@dent.semmelweis-univ.hu
Phone: 266-7006
Fax: 266-4715

Administrators:
Ms. Erika Sviderszky Blahó
Office hours: Monday, Tuesday 13.30-15.30, Wednesday, Thursday 9.00-12.00
Phone: 266-7006, fax: 266-4715, e-mail: szkepz@dent.semmelweis-univ.hu

Ms. Veronika Gecse
Office hours: Monday, Tuesday 13.30-15.30, Wednesday, Thursday 9.00-12.00
Phone: 266-7006, fax: 266-4715, e-mail: szkepz@dent.semmelweis-univ.hu

Postgraduate courses are available at the Faculty of Dentistry at Semmelweis University, ending with a specialty exam in the following fields:
1. Pedodontics
2. Orthodontics
3. Periodontology
4. Dentoalveolar Surgery
5. Prosthetic Dentistry
6. Endodontics

The language of the postgraduate courses and the specialty exams is Hungarian. The courses convey theoretical knowledge and practical skills.

If you wish to take a specialty exam you must meet the following requirements:
you can take a specialty exam after 36 months of professional practice fulfilled as an employee, according to Hungarian law. To complete this practice, therefore, you must obtain a work permission.
professional practice includes theory and treating patients. You will need a good command of the Hungarian language to understand theory, and be able to communicate with patients
Non-European citizens must have their degree nostrificated
FACULTY OF PHARMACEUTICAL SCIENCES
The curriculum of the credit-based system for student enrolled for the 5th year in the 2021-2022 academic year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SEMESTER 2017/2018/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Inorganic Chemistry I. (Practice)</td>
<td>–</td>
<td>5</td>
<td>5</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYASKASKG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Inorganic Chemistry I. (Theory)</td>
<td>4+1</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYASKASKE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Health Informatics I. (Pract.)</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>GYINFBEIG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Health Informatics I. (Theory)</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYINFBEIE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biophysics I. (Practice)</td>
<td>–</td>
<td>3</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYFIZBIFG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biophysics I. (Theory)</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYFIZBIFE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology I. (Practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYGENBILG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology I. (Theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYGENBILE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Terminology**</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYLEKOTRG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics I. (Practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYEGYMATG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics I. (Theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYEGYMATE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education I.</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>GYTSITSNG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Sciences, Propedeutics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYEGYTTPE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Medical Terminology I. *</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYLEKMSZG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>14</td>
<td>20</td>
<td>27+6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>General and Inorganic Chemistry II.</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>General and Inorganic Chemistry I.</td>
<td>final #</td>
</tr>
<tr>
<td>GYASKASKE2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Chemistry I. (qualitative)</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>General and Inorganic Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYASKANKG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomy</td>
<td>2</td>
<td>–</td>
<td>4</td>
<td>Biology I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYANTANAE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomy Practice</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Biology I.</td>
<td>signature</td>
</tr>
<tr>
<td>GYANTANAG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Health Informatics II. Practice GYINFBEIG2A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>Introduction to Health Informatics I.</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Health Informatics II. GYINFBEIE2A</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>Introduction to Health Informatics I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Biophysics II. Practice GYFIZBIFG2A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Biophysics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics II. GYFIZBIFE2A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Biophysics I.</td>
<td>final #</td>
</tr>
<tr>
<td>Biology II. Practice GYGENBILG2A</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biology II. GYGENBILE2A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology I.</td>
<td>final #</td>
</tr>
<tr>
<td>Pharmaceutical Botany I. GYNOVGYNG1A</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics II. Practice GYEGYMATE2A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Mathematics I. Introduction to Health Informatics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics II. GYEGYMATG2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education II. GYTSITSNG2A</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>First Aid GYTRAELSE1A</td>
<td>1</td>
<td>–</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology II.* GYLEKMSZG2A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>20</td>
<td>28+2**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. SEMESTER 2018/2019/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Chemistry (quantitative) I.</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>Analytical Chemistry (qualitative) Mathematics II. General and Inorganic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYASKAKVG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Chemistry I.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>General and Inorganic Chemistry II. Mathematics II. Biophysics II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYFKTFIKE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Botany II. Practice</td>
<td>–</td>
<td>3</td>
<td>2</td>
<td>Biology II. Pharmaceutical Botany I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYNOVGYNG2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Botany II. GYNOVGYNE2A</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>Biology II. Pharmaceutical Botany I.</td>
<td>final #</td>
</tr>
<tr>
<td>Organic Chemistry I. Practice</td>
<td>–</td>
<td>5.5</td>
<td>5</td>
<td>General and Inorganic Chemistry II. Analytical Chemistry (qualitative)</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYSZKSZKG1A</td>
<td></td>
<td></td>
<td></td>
<td>Introduction to Health Informatics II.</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry I. GYSZKSZKE1A</td>
<td>4</td>
<td>–</td>
<td>5</td>
<td>General and Inorganic Chemistry II. Analytical Chemistry (qualitative)</td>
<td>semi-final</td>
</tr>
<tr>
<td>Introduction to Health Informatics II.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education III.</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYTITSNSG3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Medical Terminology III. *</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYLEKMSZG3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>11</td>
<td>18.5</td>
<td>25+2**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. SEMESTER 2018/2019/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Chemistry (quantitative) II.</td>
<td>–</td>
<td>5</td>
<td>3</td>
<td>Organic Chemistry I. Analytical Chemistry (quantitative) I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYASKAKKG2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Chemistry (quantitative) II.</td>
<td>2</td>
<td>–</td>
<td>6</td>
<td>Organic Chemistry I. Analytical Chemistry (quantitative) I.</td>
<td>final #</td>
</tr>
<tr>
<td>GYASKAKKE2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Chemistry II.</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>Physical Chemistry I</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYFKTFIKG2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colloid Chemistry I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physical Chemistry I</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKOLKOLE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry II. Practice</td>
<td>–</td>
<td>5.5</td>
<td>4</td>
<td>Organic Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYSZKSZKG2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry II. GYSZKSZKE2A</td>
<td>4</td>
<td>–</td>
<td>5</td>
<td>Organic Chemistry I.</td>
<td>final #</td>
</tr>
<tr>
<td>Hungarian Medical Terminology IV.*</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYLEKMSZG4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education IV.</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYTITSNSG4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer Practice I.**</td>
<td>–</td>
<td>35</td>
<td>4</td>
<td>Analytical Chemistry II. Organic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYSZGNSZG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>12</td>
<td></td>
<td>28+4+4**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Lecture (hour/week)</td>
<td>Practice (hour/week)</td>
<td>Credit</td>
<td>Prerequisites</td>
<td>Exam type</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>----------------------</td>
<td>--------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>Biochemistry II. Practice</td>
<td>–</td>
<td>1.5</td>
<td>0</td>
<td>Organic Chemistry II. Biochemistry I.</td>
<td>signature</td>
</tr>
<tr>
<td>Biochemistry II.</td>
<td>2.5</td>
<td>–</td>
<td>3</td>
<td>Biochemistry I. Medical Terminology</td>
<td>final #</td>
</tr>
<tr>
<td>Physiology I. Practice</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>Biochemistry I. Medical Terminology</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Physiology I.</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td>Biochemistry I. Medical Terminology</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry I.</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>Analytical Chemistry (quantitative) II. Organic Chemistry II. Physical Chemistry II. Medical Terminology</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Pharmaceutical Technology I.</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>Organic Chemistry II. Colloid Chemistry I. Analytical Chemistry (quantitative) II. Medical Terminology</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Basic Immunology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology II. Medical Terminology Anatomy</td>
<td>semi-final</td>
</tr>
<tr>
<td>Colloid Chemistry II.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Colloid Chemistry I. Analytical Chemistry (quantitative) II. Organic Chemistry II.</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Hungarian Medical Terminology V.</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology IV.</td>
<td>final</td>
</tr>
<tr>
<td>Total:</td>
<td>15.5</td>
<td>16.5</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. SEMESTER 2019/2020/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology II. Practice GYKIKELTG2A</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>Biochemistry II. Physiology I.</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Physiology II. GYKIKELTE2A</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final #</td>
</tr>
<tr>
<td>Pharmacognosy I. Practice GYFMGGNDG1A</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Pharmaceutical Botany II. Biochemistry II. Pharmaceutical Chemistry I.</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Pharmacognosy I. GYFMGGNDE1A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry II. Practice GYGYKGYKG2A</td>
<td>–</td>
<td>5</td>
<td>4</td>
<td>Colloid Chemistry I. Biochemistry II. Pharmaceutical Chemistry I.</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry II. GYGYKGYKE2A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology GYMIGKGMIE1A</td>
<td>3</td>
<td>–</td>
<td>5</td>
<td>Biochemistry II. Physiology I. Basic Immunology</td>
<td>final #</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology Practice GYMIGKGMIG1A</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical Technology II. Practice GYGYIYGTYG2A</td>
<td>–</td>
<td>5</td>
<td>4</td>
<td>Pharmaceutical Chemistry I. Colloid Chemistry I. Pharmaceutical Technology I.</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Pharmaceutical Technology II. GYGYIYGYE2A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Summer Practice II.** GYSZGNSZG2A</td>
<td>–</td>
<td>35</td>
<td>4</td>
<td>Pharmaceutical Chemistry II. Pharmaceutical Technology II.</td>
<td>signature</td>
</tr>
<tr>
<td>Total:</td>
<td>16</td>
<td>17</td>
<td>32 + 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacognosy (practice) II.</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Pharmacognosy I. Pharm. Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacognosy (theory) II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (practice) III.</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Pharm. Chemistry II. Physiology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) III.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Physiology II. Pharm. Chemistry II. Pharmac. Microbiol. Basic Immunology</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) I.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) III.</td>
<td>–</td>
<td>9</td>
<td>5</td>
<td>Pharm. Chemistry II. Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) III.</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology (theory) I.</td>
<td>3</td>
<td>–</td>
<td>2</td>
<td>Pharmaceutical Chemistry II. Pharmaceutical Technology II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Basics of Clinical Chemistry and Laboratory Diagnostics</td>
<td>1</td>
<td>–</td>
<td>1**</td>
<td>Biochemistry I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology (theory) I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physiology II. Pharmac. Microbiol.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Principles of Professional Ethics I.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Total:</td>
<td>17</td>
<td>19</td>
<td>31 + 1**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
</table>
| Pharmacology and Toxicology (practice) II. GGYYHHATG2A | – | 3 | 2 | Pharm. and Tox. I.
Pharm. Techn. III.
Pharm. Chemistry III.
Basic Med. Pathop. I. | practical mark |
| Pharmacology and Toxicology (theory) II. GGYYHHATE2A | 4 | – | 4 | Pharm. Techn. III.
Pharm. Chemistry III.
Pharmacognosy II. | final* |
| Pharmaceutical Technology (practice) IV. GYKGYI126G4A | – | 9 | 6 | Pharm. Techn. III.
Pharm. Chemistry III. | practical mark |
| Pharmaceutical Technology (theory) IV. GYKGYI126E4A | 3 | – | 4 | Pharm. Techn. III.
Pharm. Chemistry III. | final* |
| Pharmacy Administration (theory+practice) I. GYEGYGI1MG1A | 2 | 2 | 3 | Intro. to Health Inf. II.
Hist. of Scienc.and Prop.
Pharm. Techn. III. | practical mark |
| Introduction to Pharmacoeconomics (pract.) GYTEBFOG1A | – | 1 | 1** | Pharm. and Tox. I.
Mathematics II. | practical mark |
| Basics of Phytotherapy (theory) GYFMGFTAE1A | 1 | – | 1** | Pharmacognosy II. | semi-final |
| Basics of Pharmaceutical Management (pra.) GYEGYGGMG1A | – | 1 | 1 | Pharm. and Tox. I.
Mathematics II. | practical mark |
| Industrial Pharmaceutical Technology (theory) II. GYUGYI185E2A | 2 | – | 2 | Industrial Pharmaceutical Technology I.
Pharmaceutical Technology III. | semi-final |
| Basic Medical Pathophysiology (theory) II. GGYHKKAE2A | 2 | – | 2 | Basic Med. Pathop. I.
Pharm. and Tox. I. | final* |
| Public Health (practice) GYNEINEGTG1A | – | 2 | 2 | Basic Medical Pathophysiology I. | practical mark |
| Public Health (theory) GYNEINEGE1A | 2 | – | 2 | Semi-final | |
| Diploma Work I. GYSZDSZDG1A | – | 4 | – | Passing all semi-finals and finals of the 7th semester | signature |
| Elective or obligatory elective subjects | – | – | – | Semi-final or practical mark | |
| **Total:** | **16** | **22** | **28 + 2** | | |

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice I.</td>
<td></td>
<td>40</td>
<td>8**</td>
<td>Passing all finals of the 8th semester</td>
<td>Practical mark</td>
</tr>
<tr>
<td>GYSZGSZVG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug Therapy (theory+practice)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Pharm. and Tox. II, Pharm. Techn. IV, Basic Medical Pathophysiology II.</td>
<td>Semi-final</td>
</tr>
<tr>
<td>GYGYHTPE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Care (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharm. and Tox. II, Pharm. Techn. IV, Basic Medical Pathophysiology II.</td>
<td>Semi-final</td>
</tr>
<tr>
<td>GYEGYGGDE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Pharmacokinetics and Biopharmacy (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Basic Medical Pathophysiology II.</td>
<td>Semi-final</td>
</tr>
<tr>
<td>GYGYIKFBE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Communication and Integrated Consulting (theory+practice)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>Pharm. and Tox. II, Pharmacy Administration I.</td>
<td>Practical mark</td>
</tr>
<tr>
<td>GYMAGGKG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacy Administration (theory) II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharm. Administr. I, Pharm. Techn. IV, Public Health</td>
<td>Final*</td>
</tr>
<tr>
<td>GYEYG1SE2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Informatics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmacy Administration I.</td>
<td>Practical mark</td>
</tr>
<tr>
<td>GYDEIG1F1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Pharmaceutics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. II, Pharm. Techn. IV.</td>
<td>Semi-final</td>
</tr>
<tr>
<td>GYEGYKLGE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Ethics and Sociology (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. II, Hist. of Scienc. and Prop.</td>
<td>Semi-final</td>
</tr>
<tr>
<td>GYMAGGESE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploma Work II.</td>
<td></td>
<td>5</td>
<td>–</td>
<td>Diploma Work I.</td>
<td>Signature</td>
</tr>
<tr>
<td>GYSZDSKG2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical industrial and regulatory affairs knowledge (teaching block)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug Licensing (theory+practice)</td>
<td>12</td>
<td>12</td>
<td>-</td>
<td>Pharmacy Administr. I, Pharmac. Techn. IV.</td>
<td>Signature</td>
</tr>
<tr>
<td>GYGYICGN1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacovigilance and pharmacoepidemiology (theory+practice)</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>Pharm. and Tox. II.</td>
<td></td>
</tr>
<tr>
<td>GYGYIGFP1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality Assurance (theory+practice)</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>Pharm. Techn. IV, Pharm. Administr. I.</td>
<td></td>
</tr>
<tr>
<td>GYGYIGMB1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug innovation and clinical studies (theory+practice)</td>
<td>8</td>
<td>8/</td>
<td>-</td>
<td>Pharm. Techn. IV, Pharmacology and Toxicology II.</td>
<td>Semi-final or practical mark</td>
</tr>
<tr>
<td>GYGYIGGV1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>28</td>
<td>28</td>
<td>18+8**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28/sem.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19/week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40/week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. SEMESTER 2021/2022/1

Drug Licensing (theory+practice) GYGYICGN1A
Pharmacovigilance and pharmacoepidemiology (theory+practice) GYGYIGFP1A
Quality Assurance (theory+practice) GYGYIGMB1A
Drug innovation and clinical studies (theory+practice) GYGYIGGV1A
Elective or obligatory elective subjects –
Obligatory elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian Medical Terminology (practice) II.</td>
<td>–</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) III.</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) IV.</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory Practice I. (9. semester)</td>
<td>–</td>
<td>40</td>
<td>8</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Compulsory Practice II. (10. semester)</td>
<td>–</td>
<td>40</td>
<td>16</td>
<td>Compulsory Practice. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense</td>
<td>1/sem.</td>
<td>–</td>
<td>10</td>
<td>Diploma Work II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basics of Clinical Chemistry and Laboratory Diagnostics</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Biochemistry I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Introduction to Pharmacoeconomics (pract)</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. I. Mathematics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basics of Phytotherapy (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Pharmacognosy II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum

Elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian Medical Terminology (practice) I.</td>
<td>–</td>
<td>4</td>
<td>6</td>
<td>Hungarian Medical Terminology (practice)</td>
<td>practical mark</td>
</tr>
<tr>
<td>Summer Practice I.</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Organic Chemistry II. Analytical Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Summer Practice II.</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Pharmaceutical Chemistry II. Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The curriculum of the credit-based system for students enrolled for the 4th year in the 2021/2022 academic year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SEMESTER 2018/2019/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Inorganic Chemistry I. (Practice) GYASKASKG1A</td>
<td>–</td>
<td>5</td>
<td>5</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>General and Inorganic Chemistry I. (Theory) GYASKASKE1A</td>
<td>4+1</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Introduction to Health Informatics I. (Pract.) GYINFBEIG1A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Health Informatics I. (Theory) GYINFBEIE1A</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Biophysics I. (Practice) GYFIZBIFG1A</td>
<td>–</td>
<td>3</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics I. (Theory) GYFIZBIFE1A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Biology I. (Practice) GYGENBILG1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biology I. (Theory) GYGENBI1E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Medical Terminology** GYLEKOTRG1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics I. (Practice) GYEGYMATG1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics I. (Theory) GYEGYMAT1E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Education I. GYTSITSNG1A</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>History of Sciences, Propedeutics GYEGYTPPE1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Hungarian Medical Terminology I. * GYLEKMSZG1A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>**</td>
<td>14</td>
<td>20</td>
<td>29+4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>General and Inorganic Chemistry II. GYASKASKE2A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>General and Inorganic Chemistry I.</td>
<td>final #</td>
</tr>
<tr>
<td>Analytical Chemistry I. (qualitative) GYASKANKG1A</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>General and Inorganic Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Anatomy GYANTANAE1A</td>
<td>2</td>
<td>–</td>
<td>4</td>
<td>Biology I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Anatomy Practice GYANTANAG1A</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Biology I.</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Health Informatics II. Practice GYINFBEIG2A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>Introduction to Health Informatics I.</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Health Informatics II. GYINFBEIE2A</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>Introduction to Health Informatics I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Biophysics II. Practice GYFIZBIFG2A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Biophysics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics II. GYFIZBIFE2A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Biophysics I.</td>
<td>final #</td>
</tr>
<tr>
<td>Biology II. Practice GYGENBILG2A</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biology II. GYGENBILE2A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology I.</td>
<td>final #</td>
</tr>
<tr>
<td>Pharmaceutical Botany I. GYNOVGYNG1A</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics II. Practice GYEGYMATG2A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Mathematics I. Introduction to Health Informatics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics II. GYEGYMAT2A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Mathematics I. Introduction to Health Informatics I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Education II. GYTSITSNG2A</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>First Aid GYTRAELSE1A</td>
<td>1</td>
<td>–</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology II.* GYLEKMSZG2A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology I.</td>
<td>practical mark</td>
</tr>
</tbody>
</table>

Total: 16 20 28+2

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Chemistry (quantitative) I. GYASKAKVG1A</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>Analytical Chemistry (qualitative) Mathematics II. General and Inorganic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Chemistry I. GYFKTFIKE1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>General and Inorganic Chemistry II. Mathematics II. Biophysics II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Botany II. Practice GYNOVGYNG2A</td>
<td>–</td>
<td>3</td>
<td>2</td>
<td>Biology II. Pharmaceutical Botany I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Botany II. GYNOVGYNE2A</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>Biology II. Pharmaceutical Botany I.</td>
<td>final #</td>
</tr>
<tr>
<td>Organic Chemistry I. Practice GYSZKSZKG1A</td>
<td>–</td>
<td>5.5</td>
<td>5</td>
<td>General and Inorganic Chemistry II. Analytical Chemistry (qualitative) Introduction to Health Informatics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry I. GYSZKSZKE1A</td>
<td>4</td>
<td>–</td>
<td>5</td>
<td>General and Inorganic Chemistry II. Analytical Chemistry (qualitative) Introduction to Health Informatics II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Education III. GYTSITSN3A</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology III. * GYLEKMSZG3A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>11</td>
<td>18.5</td>
<td>25+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Chemistry (quantitative) II. Practice GYASKAKKKG2A</td>
<td>–</td>
<td>5</td>
<td>3</td>
<td>Organic Chemistry I. Analytical Chemistry (quantitative) I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Analytical Chemistry (quantitative) II. GYASKAKKE2A</td>
<td>2</td>
<td>–</td>
<td>6</td>
<td>Organic Chemistry I. Analytical Chemistry (quantitative) I.</td>
<td>final #</td>
</tr>
<tr>
<td>Biochemistry I. GYOBIKE1A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>Biology II. Organic Chemistry I. Biophysics II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Chemistry II. GYFKTFIKG2A</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>Physical Chemistry I</td>
<td>practical mark</td>
</tr>
<tr>
<td>Colloid Chemistry I. GYKOLKOLE1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physical Chemistry I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Organic Chemistry II. Practice GYSZKSZKG2A</td>
<td>–</td>
<td>5,5</td>
<td>4</td>
<td>Organic Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry II. GYSZKSZKE2A</td>
<td>4</td>
<td>–</td>
<td>5</td>
<td>Organic Chemistry I.</td>
<td>final #</td>
</tr>
<tr>
<td>Hungarian Medical Terminology IV.* GYLEKMSZG4A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education IV. GYTSITSNG4A</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>Summer Practice I.** GYSZGNSZG1A</td>
<td>–</td>
<td>35</td>
<td>4</td>
<td>Analytical Chemistry II. Organic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>12</td>
<td>19.5</td>
<td>28+4+4**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry (practice) II.</td>
<td>–</td>
<td>1.5</td>
<td>–</td>
<td>Organic Chemistry II.</td>
<td>final*</td>
</tr>
<tr>
<td>Biochemistry (theory) II.</td>
<td>2.5</td>
<td>–</td>
<td>3</td>
<td>Biochemistry I.</td>
<td>signature</td>
</tr>
<tr>
<td>Physiology (practice) I.</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Biochemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (theory) I.</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td>Medical Terminology</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory+practice) I.</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>Analyt. Chem. (quant.) II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basic of Dietetics (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Biochemistry I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory+practice) I.</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>Organic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basics of Clinical Chemistry and Laboratory Diagnostics (theory)</td>
<td>1</td>
<td>–</td>
<td>1**</td>
<td>Biochemistry I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Basic Immunology (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Colloid Chemistry (practice) II.</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Colloid Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Principles of Professional Ethics I.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) V.</td>
<td>–</td>
<td>4</td>
<td>2**</td>
<td>Hungarian Medical Terminology (pract.) IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education V.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or</td>
</tr>
</tbody>
</table>

| **Total:** | **16.5** | **15.5** | **25 + 3** | | |

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology (practice) II. GYTLMELNG2A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Biochemistry II. Pharmacology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (theory) II. GYTLMELNE2A</td>
<td>5</td>
<td>–</td>
<td>6</td>
<td>Physiology I.</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmacognosy (theory+practice) I. GYFMGGGDIG1A</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>Pharmac. Botany I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (practice) II. GYGYKGYMG2A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Pharmaceutical Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) II. GYGYKGYKE2A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>Pharm. Chem. I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (practice) GYMIKGMIG1A</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Physiology I.</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (theory) GYMIKGMBE1A</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td>Basic Immunology</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) II. GYG1GYTG2A</td>
<td>–</td>
<td>5</td>
<td>4</td>
<td>Pharm. Techn. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) II. GYG1GYTE2A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Pharm. Chem. I. Pharm. Techn. II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Education VI. GYTSITSNSG6A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice II. GYSSZG239G4A</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Pharm. Chem. II. Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>16</td>
<td>17</td>
<td>31 + 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacognosy (practice) II. GYFMGGGNDG2A</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Pharmacognosy I. Pharm. Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacognosy (theory) II. GYFMGGNDE2A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (practice) III. GGYKGYKG3A</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Pharm. Chemistry II. Physiology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) III. GGYKGYKE3A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) I. GGYHYHATG1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Physiology II. Pharm. Chemistry II. Pharmac. Microbiol. Basic Immunology</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) I. GGYHYHATE1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Basics of Pharmacoeconomics (theory) GYETEFOAG1A</td>
<td>0</td>
<td>1</td>
<td>1**</td>
<td>Mathematics II. Passing in the same term with Pharmacology and Toxicology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) III. GGYIIGYTE3A</td>
<td>–</td>
<td>9</td>
<td>5</td>
<td>Pharm. Chemistry II. Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) III. GGYIIGYTE3A</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology (theory) I. GGYHYKKA1E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physiology II. Pharmac. Microbiol.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology I. GGYIIGTE1A</td>
<td>3</td>
<td>0</td>
<td>2**</td>
<td>Pharm. Technology II. Pharm. Chem. and Anal. I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Education VII. GYTSITSNG7A</td>
<td>-</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>16</td>
<td>21</td>
<td>29 +3**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Lecture (hour/week)</td>
<td>Practice (hour/week)</td>
<td>Credit</td>
<td>Prerequisites</td>
<td>Exam type</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>----------------------</td>
<td>--------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) II.</td>
<td>–</td>
<td>3</td>
<td>2</td>
<td>Pharm. and Tox. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYGYHHTATG2A</td>
<td></td>
<td></td>
<td></td>
<td>Pharm. Techn. III.</td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) II.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>Basic Med. Pathop. I.</td>
<td>final*</td>
</tr>
<tr>
<td>GYGYHHATE2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) IV.</td>
<td>–</td>
<td>9</td>
<td>6</td>
<td>Pharmaceutical Technology III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYGYYGTG4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) IV.</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>GYGYYTE4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacy Administration I. (theory+practice)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Basics of Pharmacoec. Hist. of Scienc.and Prop.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYGYGlMG1A</td>
<td></td>
<td></td>
<td></td>
<td>Pharm. Techn. III.</td>
<td></td>
</tr>
<tr>
<td>Basic Medical Pathphysiology (theory) II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Basic Med. Pathop. I.</td>
<td>final*</td>
</tr>
<tr>
<td>GYGYYHKA2A</td>
<td></td>
<td></td>
<td></td>
<td>Pharm. and Tox. I.</td>
<td></td>
</tr>
<tr>
<td>Basics of Phytotherapy (theory)</td>
<td>1</td>
<td>–</td>
<td>1**</td>
<td>Pharmacognosy II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYGFMGTAE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics of Pharmaceutical Management (practice)</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Basics of Pharmacoeconomics</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYGYYGGMG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Products of Veterinary Medicine (theory)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Ph. Technology III.</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYGYYAKE1A</td>
<td></td>
<td></td>
<td></td>
<td>Ph. Microbiology</td>
<td></td>
</tr>
<tr>
<td>Public Health (practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Basic Medical Pathphysiology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYNEINEGT1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Health (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>GYNEINEGE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education VIII.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYKTSI116G8A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploma Work I.</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>Passing all semi-finals and finals of the 7th</td>
<td>signature</td>
</tr>
<tr>
<td>GYSZDSZDG1A</td>
<td></td>
<td></td>
<td></td>
<td>semester</td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>practical mark</td>
</tr>
</tbody>
</table>

Total: 14 22 27 +1**

* Counts to the qualification of the diploma

** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. SEMESTER 2022/2023/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory Practice I.</td>
<td>–</td>
<td>40</td>
<td>8**</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Drug Therapy (theory+practice)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Pharm. and Tox. II, Pharm. Techn. IV, Basics of Phytother.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Care (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharm. and Tox. II, Pharm. Techn. IV.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Clinical Pharmacokinetics and Biopharmacy (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharm. and Tox. II, Pharm. Techn. IV.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Communication and Integrated Consulting (theory+practice)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>Pharm. and Tox. II, Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacy Administration (theory) II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharm. Administr. I, Pharm. Techn. IV, Public Health</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Informatics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Clinical Pharmaceutics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. II, Pharm. Techn. IV.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Ethics and Sociology (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. II, Hist. of Scienc. and Prop.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Diploma Work II.</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>Diploma Work I.</td>
<td>signature</td>
</tr>
<tr>
<td>Physical Education IX.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical industrial and regulatory affairs knowledge (teaching block)</td>
<td>28</td>
<td>28</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug Licensing (theory+practice)</td>
<td>12</td>
<td>12</td>
<td>–</td>
<td>Pharmacy Administr. I, Pharmac. Techn. IV.</td>
<td></td>
</tr>
<tr>
<td>Pharmacovigilance and pharmacoepidemiology (theory+practice)</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>Pharmac. and Tox. II.</td>
<td>signature</td>
</tr>
<tr>
<td>Quality Assurance (theory+practice)</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>Pharmac. Techn. IV, Pharmacy Administr. I.</td>
<td></td>
</tr>
<tr>
<td>Drug innovation and clinical studies (theory+practice)</td>
<td>8</td>
<td>8/</td>
<td>–</td>
<td>Pharmac. and Tox. II, Pharmac. Techn. IV.</td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>12/week 28/sem.</td>
<td>40/week 28/sem.</td>
<td>18 +8**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. SEMESTER 2022/2023/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory Practice II. GYSZGSZVG2A</td>
<td>–</td>
<td>40</td>
<td>16**</td>
<td>Compuls. Practice I. GYSZGSZVG1A</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense GYSZDDIVE1A</td>
<td>1/sem.</td>
<td>–</td>
<td>10**</td>
<td>Diploma Work II.</td>
<td>final*</td>
</tr>
<tr>
<td>Principles of Professional Ethics II.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum

Obligatory elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice I. (9. semester)</td>
<td>–</td>
<td>40</td>
<td>8</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Compulsory Practice II. (10. semester)</td>
<td>–</td>
<td>40</td>
<td>16</td>
<td>Compulsory Practice. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense</td>
<td>1/évé</td>
<td>–</td>
<td>10</td>
<td>Diploma Work II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) IV.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Hungarian Medical Terminology (practice) IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) V.</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology (practice) IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basics of Clinical Chemistry and Laboratory Diagnostics (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Biochemistry I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Basics of Pharmacoeconomics</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basics of Phytotherapy (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Pharmacognosy II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology I.</td>
<td>3</td>
<td>0</td>
<td>2**</td>
<td>Pharm. Technology II. Pharm.Chem.and Anal.I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian Medical Terminology (practice) I.</td>
<td>–</td>
<td>6</td>
<td>4</td>
<td>Hungarian Medical Terminology (practice) I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Summer Practice I.</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Organic Chemistry II, Analytical Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Summer Practice II.</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Pharmaceutical Chemistry and Analysis Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The curriculum of the credit-based system for students enrolled for 3rd year in the 2021/2022 academic year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SEMESTER 2019/2020/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Inorganic Chemistry I. (Practice) GYASKASKG1A</td>
<td>–</td>
<td>5</td>
<td>5</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>General and Inorganic Chemistry I. (Theory) GYASKASKE1A</td>
<td>4+1</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Introduction to Health Informatics I. (Pract.) GYINFBEIG1A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Health Informatics I. (Theory) GYINFBEIE1A</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Biophysics I. (Practice) GYFIZBIFG1A</td>
<td>–</td>
<td>3</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics I. (Theory) GYFIZBIFE1A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Biology I. (Practice) GYGENBILG1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biology I. (Theory) GYGENBILE1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Medical Terminology** GYLEKOTRG1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics I. (Practice) GYEGYMATG1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics I. (Theory) GYEGYMATE1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Education I. GYTSITSNG1A</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>History of Sciences, Propedeutics GYEGYTTPE1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Hungarian Medical Terminology I. * GYLEKMSZG1A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>14</td>
<td>20</td>
<td>29+4**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>General and Inorganic Chemistry II. GYASKASKE2A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>General and Inorganic Chemistry I.</td>
<td>final #</td>
</tr>
<tr>
<td>Analytical Chemistry I. (qualitative) GYASKANKG1A</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>General and Inorganic Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Anatomy GYANTANAE1A</td>
<td>2</td>
<td>–</td>
<td>4</td>
<td>Biology I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Anatomy Practice GYANTANAG1A</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Biology I.</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Health Informatics II. Practice GYINFBEIG2A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>Introduction to Health Informatics I.</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Health Informatics II. GYINFBEIE2A</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>Introduction to Health Informatics I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Biophysics II. Practice GYFIZBIFG2A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Biophysics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics II. GYFIZBIFE2A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Biophysics I.</td>
<td>final #</td>
</tr>
<tr>
<td>Biology II. Practice GYGENBILG2A</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biology II. GYGENBILE2A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology I.</td>
<td>final #</td>
</tr>
<tr>
<td>Pharmaceutical Botany I. GYNOVGYNG1A</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics II. Practice GYEGYMATG2A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Mathematics I. Introduction to Health Informatics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics II. GYEGYMATE2A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Mathematics I. Introduction to Health Informatics I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Education II. GYTSITSNG2A</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>First Aid GYTRAELSE1A</td>
<td>1</td>
<td>–</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology II.* GYLEKMSZG2A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>16</td>
<td>20</td>
<td>28+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Chemistry (quantitative) (practice) GYKASK066G1A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>General and Inorganic Chemistry II. Analytical Chemistry (qualitative)</td>
<td>practical mark</td>
</tr>
<tr>
<td>Analytical Chemistry (quantitative) (theory) GYKASK066E1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Physical Chemistry for Pharmacists (theory+practice) GYKGYI122G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Gen. and Inorg. Chem. II. Mathematics II. Biophysics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry (theory) I. GYKKSZK123E1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Physiology (practice) I. GYKTLM068G1A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Anatomy Biology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (theory) I. GYKTLM068E1A</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Biochemistry (theory+practice) I. GYKBM1069G1A</td>
<td>1.5</td>
<td>1.5</td>
<td>2</td>
<td>Gen. and Inorg. Chem. II. Biology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basic Immunology (theory) GYKGEN070E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Principles of Professional Ethics I. GYKANG071E1A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) III. GYLEKMSZG3A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology (practice) II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education III. GYKTSI116G3A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>18.5</td>
<td>17.5</td>
<td>29+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SEMESTER 2020/2021/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry (theory) II. GYKBMT069E2A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>Biochemistry I Organic Chemistry I.</td>
<td>final*</td>
</tr>
<tr>
<td>Colloid Chemistry (theory+practice) GYKGYI072G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Phys. Chem. for Pharm. Biophysics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry (practice) II. GYKSZK123G2A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Organic Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry (theory) II. GYKSZK123E2A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Physiology (practice) II. GYKTLM068G2A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Physiology I. Biochemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (theory) II. GYKTLM068E2A</td>
<td>5</td>
<td>–</td>
<td>6</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Physiological Pharmaceutics and Pharmaceutical dosage forms (theory+practice) GYKGYI073G1A</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Physiology I. Phys. Chem. for Pharm. Hist. of Scienc. and Prop.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biotechnology (theory) GYKGYI074E1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Biochemistry I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Education IV. GYKTSI116G4A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) IV. GYLEGKMSZG4A</td>
<td>–</td>
<td>4</td>
<td>2**</td>
<td>Hungarian Medical Terminol. (practice) III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacy Practice I. GYKANG238G1A</td>
<td>–</td>
<td>20/semester</td>
<td>–</td>
<td>Analytical Chem. (quant.) Medical Terminology</td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice I. GYSSZG234G4A</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Organic Chemistry II. Analytical Chem. (quant.)</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>17</td>
<td>14</td>
<td>26+2**+4</td>
<td>20/sem. 4x40/sem</td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Chemistry (practice) I. GYKGYK076G1A</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Analytical Chem. (quant.) Organic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) I. GYKGYK076E1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory+practice) I. GYKGYI126G1A</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Physiological Pharm. and Pharmaceutical dosage forms, Colloid Chem., Medical Terminology</td>
<td>practical mark</td>
</tr>
<tr>
<td>Nanotechnology (theory+practice) GYKGYI078G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Colloid Chemistry</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Botany (practice) II. GYKFMG079G2A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>Biology II, Biotechnology, Pharmaceutical Botany I.</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical Botany (theory) II. GYKFMG079E2A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Dietetics (theory) GYKGYI168E1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Physiology II, Biochemistry II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (practice) GYKMIK081G1A</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Basic Immunology</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (theory) GYKMIK081E1A</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Clinical Chemistry and Laboratory Diagnostics (theory) GYKLM1082E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physiology II, Biochemistry II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology I. (theory+practice) GYKGYH083G1A</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) V. GYLEKMSZG5A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology (practice) IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education V. GYKTISI116G5A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or practical mark</td>
</tr>
</tbody>
</table>

Total: 17 18 27

* Counts to the qualification of the diploma

** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacognosy (theory+practice) I.</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>Pharmaceutical Botany II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (practice) II.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Pharmaceutical Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) II.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) II.</td>
<td>–</td>
<td>6</td>
<td>3</td>
<td>Pharm. Techn. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Pharm. Chem. I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology II. (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Basic Med. Patho. I. Dietetics Pharm. Microbiology</td>
<td>final*</td>
</tr>
<tr>
<td>Veterinary Pharmaceuticals (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Pharm. Techn. I. Pharm. Microbiology</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Basic Med. Patho. II. Pharm. Techn. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharm. and Tox. I. Pharm. Techn. II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Education VI.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice II.</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Pharm. Chem. and Anal.; Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>13</td>
<td>20/semester 4x40/semester</td>
<td>26+4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. SEMESTER 2022/2023/1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacognosy (practice) II.</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Pharmacognosy I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacognosy (theory) II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Pharmacognosy I.</td>
<td>final*</td>
</tr>
<tr>
<td>Instrumental Pharmaceutical Analysis (practice)</td>
<td>–</td>
<td>5</td>
<td>4</td>
<td>Pharm. Chem. II. Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Instrumental Pharmaceutical Analysis (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) II.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Basic Med. Patho. II. Pharm. and Tox. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) II.</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) III.</td>
<td>–</td>
<td>8</td>
<td>5</td>
<td>Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) III.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Biological Drugs (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharm. Chem. II. Pharm. and Tox. I. Biotechnology</td>
<td>semi-final</td>
</tr>
<tr>
<td>Introduction to Pharmacoeconomics (practice)</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Mathematics II. Pharm. and Tox. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology I.</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Pharm. Techn. II; Pharm.Chem.and Anal.I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Education VII.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>Total:</td>
<td>14</td>
<td>21</td>
<td>26+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology and Toxicology (practice) III.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Pharmacology and Toxicology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) III.</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) IV.</td>
<td>–</td>
<td>8</td>
<td>4</td>
<td>Pharmaceutical Technology III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) IV.</td>
<td>2</td>
<td>–</td>
<td>5</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmacy Administration (theory+practice)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Pharmac. and Tox. II. Intr. to Pharmacoecono.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Public Health (practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Basic Medical Pathophysiology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Public Health (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Phytotherapy (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharmacognosy II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical management (practice)</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Introduction to Pharmacoeconomics</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical management (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Diploma Work I.</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>Passing all semi-finals and finals of the 7th semester</td>
<td>signature</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology II.</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Pharm. Technology III. Industrial Pharm.Tech. I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Education VII.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>15</td>
<td>20</td>
<td>27+2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Lecture (hour/week)</td>
<td>Practice (hour/week)</td>
<td>Credit</td>
<td>Prerequisites</td>
<td>Exam type</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>----------------------</td>
<td>--------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Compulsory Practice Before the Board Exam I.</td>
<td>–</td>
<td>40</td>
<td>8**</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Drug Therapy (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>Pharmac. and Tox.III. Pharm. Techn. IV. Phytotherapy</td>
<td>Semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Care (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharmac. and Tox.III. Pharm. Techn. IV.</td>
<td>Semi-final</td>
</tr>
<tr>
<td>Clinical Pharmacokinetics and Biopharmacy (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharmac. and Tox.III. Pharm. Techn. IV.</td>
<td>Semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Communication and Integrated Consulting (theory+practice)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>Pharmac. and Tox.III. Pharmacy Administ.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacy Administration (theory) II.</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>Pharmacy Admin. I. Pharm. Techn. IV. Public Health</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical informatics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmacy Admin. I. Pharm. Techn. IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Clinical Pharmaceutics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmac. and Tox.III. Pharm. Techn. IV.</td>
<td>Semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Ethics and Sociology (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmac. and Tox.III. Hist. of Scienc.and Prop.</td>
<td>Semi-final</td>
</tr>
<tr>
<td>Diploma Work II.</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>Diploma Work I.</td>
<td>signature</td>
</tr>
<tr>
<td>Physical Education IX.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>Diploma Work I.</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical industrial and regulatory affairs knowledge (teaching block)</td>
<td>28</td>
<td>28</td>
<td>4</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Drug Licensing (theory+practice)</td>
<td>12</td>
<td>12</td>
<td>1</td>
<td>Pharmacy Administr. I. Pharm. Techn. IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacovigilance and pharmacoepidemiology (theory+practice)</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>Pharmac. and Tox. III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Quality Assurance (theory+practice)</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>Pharmac. Techn. IV. Pharmacy Administr. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Drug innovation and clinical studies (theory+practice)</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>Pharmac. and Tox. III. Pharm. Techn. IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>12/week</td>
<td>40/week</td>
<td>24+8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma

** Obligatory electives built-in in the curriculum
10. SEMESTER 2023/2024/2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice II.</td>
<td>–</td>
<td>40</td>
<td>16**</td>
<td>Compulsory Practice Before the Board Exam I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense</td>
<td>1/sem.</td>
<td>–</td>
<td>10**</td>
<td>Diploma Work II.</td>
<td>final*</td>
</tr>
<tr>
<td>Principles of Professional Ethics II.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum

Obligatory elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice Before the Board Exam I.</td>
<td>–</td>
<td>40</td>
<td>8</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Compulsory Practice Before the Board Exam II.</td>
<td>–</td>
<td>40</td>
<td>16</td>
<td>Compulsory Practice Before the Board Exam I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense</td>
<td>1/sem.</td>
<td>–</td>
<td>10</td>
<td>Diploma Work II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) I.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Hungarian Medical Terminology (practice) III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) IV.</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology (practice) II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology I.</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Pharm. Techn. II.; Pharm. Chem. and Anal. I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology II.</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Pharm. Technology III.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian Medical Terminology (practice) II.</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology (practice) I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) III.</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology (practice) II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Summer Practice I.</td>
<td>--</td>
<td>40</td>
<td>4</td>
<td>Organic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Summer Practice II.</td>
<td>--</td>
<td>40</td>
<td>4</td>
<td>Pharmaceutical Chemistry and Analysis Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The curriculum of the credit-based system for students enrolled from 2020

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Inorganic Chemistry (practice) I.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKASK106G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Inorganic Chemistry (theory) I.</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>GYKASK106E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatics (practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKDEI107G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biophysics (practice) I.</td>
<td>–</td>
<td>2.5</td>
<td>2</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKFIZ108G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biophysics (theory) I.</td>
<td>1.5</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>GYKFIZ108E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGEN109G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology (theory) I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>GYKGEN109E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Aid (practice)</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKTRA110G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Terminology (practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKLEK154G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics for Pharmacists (practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKEGY112G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics for Pharmacists (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>GYKEGY112E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Pharmaceutical Studies (methodology, law) (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>GYKEGY113E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Pharmaceutics and Propedeutics (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>GYKF MG153E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Professional Ethics I.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYKGTO071E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education I.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYKTSI116G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYKLEK155G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>11.5</td>
<td>18.5</td>
<td>27</td>
</tr>
</tbody>
</table>

Counts to the qualification of the diploma
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Inorganic Chemistry (theory) II. GYKASK106E2A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>Gen. and Inorg. Chemistry I.</td>
<td>final*</td>
</tr>
<tr>
<td>Analytical Chemistry (theory+practice) I. GYKASK117G1A</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>Gen. and Inorg. Chemistry I., Introd. to Pharm. Studies, Mathematics for Pharm.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Anatomy (practice) GYKANT118G1A</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Biology I., Pharm. Terminology, First Aid</td>
<td>signature</td>
</tr>
<tr>
<td>Anatomy (theory) GYKANT118E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Biophysics (practice) II. GYKFIZ108G2A</td>
<td>–</td>
<td>2.5</td>
<td>2</td>
<td>Biophysics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics (theory) II. GYKFIZ108E2A</td>
<td>1.5</td>
<td>–</td>
<td>2</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Biology (practice) II. GYKGEN109G2A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biology (theory) II. GYKGEN109E2A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Communication and Information Networks (theory+practice) GYKMAG120G1A</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>Introd. to Pharm. Studies</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basics of Economics (theory) GYKEMK121E1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Mathematics for Pharm., Introd. to Pharm. Studies</td>
<td>semi–final</td>
</tr>
<tr>
<td>Physical Chemistry for Pharmacists (theory+practice) GYKGYI122G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Gen. and Inorg. Chemistry I., Biophysics I., Mathematics for Pharm.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) II. GYKLEK155G2A</td>
<td>–</td>
<td>2</td>
<td>0</td>
<td>Hungarian Pharmaceutical Terminology (practice) I.</td>
<td>signature</td>
</tr>
<tr>
<td>Physical Education II. GYKTSII16G2A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>14.5</td>
<td>16.5</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Counts to the qualification of the diploma
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Chemistry (theory) II. GYKASK117E2A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Colloid Chemistry (theory and practice) GYKGY1072G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Physic. Chem. for Pharm., Biophysics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry (practice) I. GYKKSZK123G1A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Gen. and Inorg. Chem. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry (theory) I. GYKKSZK123E1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Physiology (practice) I. GYKTLMI24G1A</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Anatomy, Biology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (theory) I. GYKTLMI24E1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Biochemistry (theory+practice) I. GYKBMT069G1A</td>
<td>1.5</td>
<td>1.5</td>
<td>2</td>
<td>Gen. and Inorg. Chem. II., Biology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basic Immunology (theory) GYKGEN070E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology II.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) III. GYKLEK155G3A</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Hungarian Pharmaceutical Terminology (practice) II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education III. GYKTSI116G3A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>17.5</td>
<td>16.5</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Counts to the qualification of the diploma
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry (theory) II. GYKBMT069E2A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>Biochemistry I., Organic Chemistry I.</td>
<td>final*</td>
</tr>
<tr>
<td>Organic Chemistry (practice) II. GYKSZK123G2A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Organic Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry (theory) II. GYKSZK123E2A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Physiological Pharmaceutics and Pharmaceutical dosage forms (theory+practice) GYKGYI073G1A</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Physiology I., Physic. Chem. for Pharm., History of Pharm. and Prop.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (practice) II. GYKTLM124G2A</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Physiology I., Biochemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (theory) II. GYKTLM124E2A</td>
<td>6</td>
<td>–</td>
<td>6</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Biotechnology (theory) GYKGYI074E1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Biochemistry I.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Nanotechnology (theory+practice) GYKGYI078G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Colloid Chemistry</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacy Practice I. GYKANG238G1A</td>
<td>–</td>
<td>20/semester</td>
<td>–</td>
<td>Analytical Chemistry II., Pharmaceutical Terminology</td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) IV. GYKLEK155G4A</td>
<td>–</td>
<td>2</td>
<td>3</td>
<td>Hungarian Pharmaceutical Terminology (practice) III.</td>
<td>final</td>
</tr>
<tr>
<td>Physical Education IV. GYKTSI116G4A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice I. GYSSZG234G1A (1 week)</td>
<td>–</td>
<td>40/week depending on the number of weeks</td>
<td></td>
<td>Organic Chemistry II., Analytical Chemistry II.</td>
<td>practical mark elective subject</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>18</td>
<td>13+20/semester+40/week</td>
<td>26+3+1/2/3/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Counts to the qualification of the diploma
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Botany (practice) GYKFMG125G1A</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Biology II., Biotechnology</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Botany (theory) GYKFMG125E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Dietetics (theory) GYKGY1168E1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Physiology II., Biochemistry II.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Pharmaceutical Technology I. (theory+practice) GYKGY1126G1A</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Physiological Pharmaceutics and Pharm. dosage forms, Pharmaceutical Terminology, Nanotechnology</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry and Analysis (practice) I. GYKGKY127G1A</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Analytical Chemistry II., Organic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry and Analysis (theory) I. GYKGKY127E1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (practice) GYKMIK081G1A</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Basic Immunology</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (theory) GYKMIK081E1A</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology I. (theory+practice) GYKGYH128G1A</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>Physiology II., Biochemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Clinical Chemistry and Laboratory Diagnostics (theory) GYKLM1002E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physiology II., Biochemistry II.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Statistics for Pharmacists (theory+practice) GYKEGY129G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Mathematics for Pharm., Physiological Pharmaceutics and Pharm. dosage forms, Informatics</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education V. GYKTSI116G5A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>18</td>
<td>15</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Counts to the qualification of the diploma
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Medical Pathophysiology II. (theory+practice)</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>Basic Med. Pathoph. I., Pharmac. Microbiology, Dietetics</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmacognosy (theory+practice) I.</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>Pharmaceutical Botany</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry and Analysis (practice) II.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Pharmaceutical Chemistry and Analysis I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry and Analysis (theory) II.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) II.</td>
<td>–</td>
<td>6</td>
<td>3</td>
<td>Pharm. Techn. I., Pharm. Chem. and Anal. I., Statistics for Pharmacists</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Veterinary Pharmaceuticals (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Pharmaceutical Techn. I., Pharmac. Microbiology</td>
<td>semi–final</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Basic Med. Pathoph. I., Physiological Pharmaceutics and Pharmaceutical dosage forms</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Physical Education VI.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice II.</td>
<td>–</td>
<td>40</td>
<td>–</td>
<td>1/2/3/4 depending on the number of the weeks</td>
<td>practical mark elective subject</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>13</td>
<td>18</td>
<td>27</td>
<td>1/2/3/4</td>
<td></td>
</tr>
</tbody>
</table>

*Counts to the qualification of the diploma
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacognosy (practice) II. GYKFMG130G2A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Pharmacognosy I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacognosy (theory) II. GYKFMG130E2A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Instrumental Pharmaceutical Analysis (practice)</td>
<td>–</td>
<td>5</td>
<td>4</td>
<td>Ph. Chem. and Analysis II., Pharm. Technology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGYK087G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumental Pharmaceutical Analysis (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>GYKGYK087E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) II. GYKGYH086G2A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Pharmacol. and Tox. I., Basic Med. Pathoph. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) II. GYKGYH086E2A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) III. GYKGYI126G3A</td>
<td>–</td>
<td>8</td>
<td>5</td>
<td>Pharm. Technology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) III. GYKGYI126E3A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology I. GYGYIIIGTE1A</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Pharm. Technology II., Ph. Chem. and Analysis I.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Biological Drugs (theory) GYKGYI088E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Ph. Chem. and Analysis II., Pharmac. and Tox. I., Biotechnology</td>
<td>semi–final</td>
</tr>
<tr>
<td>Pharmacoconomics (practice) GYKETE131G1A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Pharmac. and Tox. I., Basics of Economics, Statistics for Pharmacists</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education VII. GYKTSI116G7A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>14</td>
<td>21</td>
<td>26+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Counts to the qualification of the diploma
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) III. GYKGYH086G2A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Pharmacology and Toxicology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) III. GYKGYH086E3A</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td>Pharmacology and Toxicology II.</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) IV. GYKGYI126G4A</td>
<td>–</td>
<td>8</td>
<td>4</td>
<td>Pharmaceutical Technology III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) IV. GYKGYI126E4A</td>
<td>2</td>
<td>–</td>
<td>5</td>
<td>Pharmaceutical Technology III.</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmacy Administration (theory+practice) I. GYKEGY090G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Pharmac. and Tox. II., Pharmacoeconomics</td>
<td>practical mark</td>
</tr>
<tr>
<td>Public Health (practice) GYKNEI091G1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Basic Med. Pathoph. II., Dietetics</td>
<td>practical mark</td>
</tr>
<tr>
<td>Public Health (theory) GYKNEI091E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Basic Med. Pathoph. II., Dietetics</td>
<td>semi–final</td>
</tr>
<tr>
<td>Phytotherapy (theory) GYKFMG092E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharmacognosy II.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Pharmaceutical management (practice) GYKEGY093G1A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Pharmacoeconomics</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical management (theory) GYKEGY093E1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Pharmacoeconomics</td>
<td>semi–final</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology II. GYGYIIGTE2A</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Pharm. Technology III., Industrial Pharm.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Diploma Work I. GYKSZD132G1A</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Passing all final and semi–final of the 7th</td>
<td>signature</td>
</tr>
<tr>
<td>Physical Education VIII. GYKTSI116G8A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>15</td>
<td>18</td>
<td>27+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Counts to the qualification of the diploma
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice Before the Board Exam I. GYKANG133G1A</td>
<td>–</td>
<td>40</td>
<td>8</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Drug Therapy (theory+practice) GYKGYH095E1A</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>Pharmac. and Tox. III., Pharmac. Techn. IV., Phytotherapy</td>
<td>semi–final</td>
</tr>
<tr>
<td>Pharmaceutical Care (theory+practice) GYKEGY096E1A</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharmac. and Tox. III., Pharmac. Techn. IV.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Clinical Pharmacokinetics and Biopharmacy (theory+practice) GYKGYI097E1A</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharmac. and Tox. III., Pharmac. Techn. IV.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Pharmaceutical Communication and Integrated Consulting (theory+practice)GYKMG098G1A</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>Pharmac. and Tox. III., Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacy Administration (theory) II. GYKEGY090E2A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharmacy Administration I., Public Health, Pharmac. Techn. IV.</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Informatics (theory+practice) GYKDEI099G1A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmac. Techn. IV., Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Clinical Pharmacokinetics (theory+practice) GYKGYI100E1A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmac. and Tox. III., Pharmac. Techn. IV.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Pharmaceutical Ethics and Sociology (theory+practice) GYKMAG101E1A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmac. and Tox. III., History of Pharm. and Prop.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Diploma Work II. GYKSZD132G2A</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>Diploma Work I.</td>
<td>signature</td>
</tr>
<tr>
<td>Physical Education IX. GYKTSI116G9A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Pharmaceutical industrial and regulatory affairs knowledge (teaching block)</td>
<td>28</td>
<td>28</td>
<td>4</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Drug Licensing (theory+practice) GYKGYI102G1A</td>
<td>12</td>
<td>12</td>
<td>1</td>
<td>Pharmacy Administration I., Pharmac. Techn. IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacovigilance and pharmacoepidemiology (theory+practice) GYKGYI103G1A</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>Pharmac. and Tox. III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Quality Assurance (theory+practice) GYKGYI104G1A</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>Pharmac. Techn. IV., Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Drug innovation and clinical studies (theory+practice) GYKGYI105G1A</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>Pharmac. and Tox. III., Pharmac. Techn. IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>12 /week 28/sem.</td>
<td>20/week 40/week 28/sem.</td>
<td>24+8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Counts to the qualification of the diploma
10. SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice Before the Board Exam II. GYKANG133G2A</td>
<td>–</td>
<td>40</td>
<td>16</td>
<td>Compulsory Practice, Before the Board Exam I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense</td>
<td>1/sem.</td>
<td>–</td>
<td>10</td>
<td>Diploma Work II.</td>
<td>final*</td>
</tr>
<tr>
<td>Principles of Professional Ethics II. GYKANG071E2A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Total:</td>
<td>1/sem.</td>
<td>40/week</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Counts to the qualification of the diploma

Obligatory elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) IV. GYKLEK155G4A</td>
<td>–</td>
<td>2</td>
<td>3</td>
<td>Hungarian Pharmaceutical Terminology (practice) III.</td>
<td>final*</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology I. GYGYIIGTE1A</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Pharm. Technology II., Pharm. Chem. and Analysis I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology II. GYGYIIGTE2A</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Industrial Pharm. Tech. I., Pharm. Technology II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Compulsory Practice Before the Board Exam I. GYKANG133G1A</td>
<td>–</td>
<td>40</td>
<td>8</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Compulsory Practice Before the Board Exam II. GYKANG133G2A</td>
<td>–</td>
<td>40</td>
<td>16</td>
<td>Compulsory Practice Before the Board Exam I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense</td>
<td>1/sem.</td>
<td>–</td>
<td>10</td>
<td>Diploma Work II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Practice I. GYSSZG234G1A (1 week) GYSSZG234G2A (2 weeks) GYSSZG234G3A (3 weeks) GYSSZG234G4A (4 weeks)</td>
<td>--</td>
<td>40</td>
<td>1/2/3/4</td>
<td>Organic Chemistry II., Analytical Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Summer Practice II. GYSSZG239G1A (1 week) GYSSZG239G2A (2 weeks) GYSSZG239G3A (3 weeks) GYSSZG239G4A (4 weeks)</td>
<td>--</td>
<td>40</td>
<td>1/2/3/4</td>
<td>Ph. Chem. and Analysis I., Pharm. Technology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>2-8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Faculty of pharmaceutical sciences

Curriculum of the credit-based training for first year students in the 2021/2022 academic year
1. SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>General and Inorganic Chemistry (practice) I.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKASK106G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Inorganic Chemistry (theory) I.</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKASK106E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatics (practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKDEI107G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biophysics (practice) I.</td>
<td>–</td>
<td>2.5</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKFIZ108G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biophysics (theory) I.</td>
<td>1.5</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKFIZ108E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGEN109G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology (theory) I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKGEN109E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Aid (practice)</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKTRA110G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Terminology (practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKLEK154G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics for Pharmacists (practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKEGY112G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics for Pharmacists (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKEGY112E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Pharmaceutical Studies (methodology, law) (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKEGY113E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Pharmaceutics and Propedeutics (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKFMG153E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Professional Ethics I.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>GYKGTO071E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education I.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>GYKTSG1116G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>0</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>GYKLEK155G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>semi-final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>11.5</td>
<td>18.5</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General and Inorganic Chemistry (theory) I., General and Inorganic Chemistry (practice) I.

Complete name of the course: Általános és szervetlen kémia (elmélet) I., Általános és szervetlen kémia (gyakorlat) I.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Ált. és szerv. kémia (elm.) I., Ált. és szerv. kémia (gyak.) I.
English name of the course: General and Inorganic Chemistry (theory) I., General and Inorganic Chemistry (practice) I.

Neptun-Code: GYKASK106E1A, GYKASK106G1A
Type of registration: obligatory
Institute: Institute of Chemistry, Department of Analytical Chemistry, ELTE
Name of the tutor/lecturer: Szabolcs Béni associate professor
Phone: +36208250489
E-Mail: beni.szabolcs@pharma.semmelweis-univ.hu
István Szalai full professor
Phone: 3722500 / 1902
E-Mail: szalai.istvan@chem.elte.hu
Norbert Szoboszlai associate professor
Phone: 3722500 / 6430
E-Mail: szobosz@chem.elte.hu

Further tutors: Norbert Szoboszlai (head of laboratory) assistant professor
Gitta Vácziné Schlosser assistant professor
Anikó Zsigrainé Vasanits assistant professor
Edina Kiss assistant professor
István Molnár research assistant
Tamás Pálta teaching assistant
PhD students

Number of classes /week: 3+4
Credit points: 3+4

Course principles:
To provide a basic knowledge in chemistry from the pharmaceutical industry/pharmacy point of view and to establish a solid background for advanced (bio)chemistry courses.

Brief course summary:
Course data

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>42+56</td>
<td>autumn</td>
<td>–</td>
</tr>
</tbody>
</table>

Semester program

I. Lecture topics/week

1. week: States of matter, phase changes and the most common purification methods. Purification of water.
2. week: Chemical equilibria and the factors affecting the chemical equilibrium. Law of mass action. Acid–base theories.
3. week: Acid–base equilibria and the pH, pH calculations.
5. week: Redox reactions. Spontaneous redox processes.
6. week: Galvanic cell and electrolysis.
7. week: Colligative properties. Complex formation, characterization of complexes.
8. week: Heterogeneous equilibria.
10. week: Weak bonding forces. Dispersion, dipole forces and hydrogen bonding
11. week: Valence bond theory.
12. week: Molecular orbital theory
13. week: Thermochemistry and thermodynamics.
14. week: Reaction kinetics

II. Practice topics/week

1st week 9 Sept. Grading requirements. General instructions, safety in laboratory.
Opening inventory. Nomenclature of inorganic compounds.
Observation of osmosis (p. 159).
2nd week 16 Sept. Short test I.
Problem solving: concentrations, mixing and diluting of solutions.
Recrystallization of alum (p. 63). Sublimation of iodine (p. 71).
3rd week 23 Sept. Short test II.
Problem solving: basics of stoichiometry, acid–base reactions.
Purification of hydrochloric acid by distillation (p. 69).
4th week 30 Sept. Short test III
Problem solving: stoichiometry, gas laws.
Water purification using ion–exchange resins (p.72).
5th week 7 Oct. Short Test IV.
Hydrolysis, Observation of hydrolysis of some salts (p. 96).
Preparation of copper(II) sulfate (p. 93).
Experimental observation of redox reactions, direction of spontaneous change.
Observation of some oxidation–reduction reactions (p. 119).
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10th</td>
<td>11 Nov.</td>
<td>Short test VII. Problem solving: pH calculations, Part II. Buffer solutions and buffer action (p. 145).</td>
</tr>
<tr>
<td>11th</td>
<td>18 Nov.</td>
<td>Short test IX. Thermal decomposition, Observation of thermal decomposition of inorganic substances (p. 102) Theory: Preparation of precipitated sulfur.</td>
</tr>
<tr>
<td>12th</td>
<td>25 Nov.</td>
<td>Short test X. Preparation of a double salt, Mohr’s salt (p. 128)</td>
</tr>
<tr>
<td>13th</td>
<td>2 Dec.</td>
<td>Preparation of a coordination compound, [tetraammin copper(II)] sulfate (p. 139).</td>
</tr>
<tr>
<td>Final test</td>
<td>3 Dec</td>
<td>Theory: Reaction kinetics: Landolt reaction. Observation of reaction rates</td>
</tr>
<tr>
<td>Final test retake.</td>
<td></td>
<td>Short test retake and make–up labs. Closing inventory.</td>
</tr>
</tbody>
</table>

Course requirements
Order of consultations: upon request prior major tests
Prerequisites: –
Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.):
Students should pass the major test with an average of 2.0.

Knowledge testing during the semester:
Two major test (see schedule for the dates) with retake possibilities.

Requirements of the signature at the end of the semester: Successful completion of the laboratory requirements
Individual activity of the student during the semester (protocol, etc.) lab reports must be presented
Performance control in the examination period (final, semi-final): final exam
Performance control in the examination period (written, oral, written and oral): oral exam
Prescribed external practice: –

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.):course materials provided in the Moodle system
Kőrös: Inorganic Chemistry.

List of course materials: available in the moodle
Scientific, course related researches, publications/essays: –
Informatics (practice)

Complete name of the course: Informatika (gyakorlat)
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Informatics
English name of the course: Informatics (practice)

Neptun-Code: GYKDEI107G1A
Type of registration: obligatory
Institute: Semmelweis University, Faculty of Public Services, Institute of Digital Health Sciences

Name of the tutor/lecturer: Dr. Szócska Miklós PhD, associate professor
E-Mail: titkarsag.dei@semmelweis-univ.hu

Further tutors: Sándor Zoltán assistant lecturer
Tamus Ádám PhD, associate professor
Tóth Tamás assistant lecturer

Number of classes /week: Practice: 2
Credit points: 2

Course principles:
The goal of the course is to introduce the students to the applications of health information technology, especially the sources, organization, analysis and presentation of health information and knowledge. To improve the basic computer skills of students, including the use of office software tools, digital data storage and analysis methods. Acquisition and practical application of IT tools and methods required for later studies (e.g. preparation of a dissertation)

Brief course summary:
– Knowledge of basic MS Office tools
– Sources of health information and knowledge, online scientific databases and the basics of evidence-based medicine

<table>
<thead>
<tr>
<th>Course data</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>28</td>
<td>autumn</td>
<td>–</td>
</tr>
</tbody>
</table>
Semester program

Practice topics/week:
1. MS Excel – basics of data storage
2. MS Excel – processing of data
3. MS Excel – data representation, diagrams
4. MS Excel – advanced level exercises
5. Collection and processing of medical data
6. Practice, preparation for the test
7. 1. test (Excel exercises, computer test)
8. Theoretical basics of databases
9. Creation of a simple database with Ms Access
10. Data extraction from databases, performing queries
11. Online health information sources
12. Data protection, data security
13. The future of health informatics
14. 2. test (Access exercises and information searching, computer-based test)

Order of consultations: by agreement

Prerequisites: –

Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.):
Attendance of at least 75% of the practices, at least 50% result of both tests

Knowledge testing during the semester:
- Mid-term test on week 7 (topic: Excel)
- Mid-term test on week 14 (topics: Access, online information sources)
- Replacement test: 2 times in the first week of the exam period

Requirements of the signature at the end of the semester:
Attendance of at least 75% of the practices, at least 50% result of both tests
Individual activity of the student during the semester (protocol, etc.): none
Performance control in the examination period (final, semi-final): Practical grade
Performance control in the examination period (written, oral, written and oral): written (computer test)
Prescribed external practice: none

Recommended literature:
Microsoft Office Help and Training Center: https://support.office.com/

List of course materials:
The educational materials are available at http://dei-cloud.semmelweis.hu. Username and password are announced at the first practice. Scientific, course related researches, publications/essays: –
Biophysics (theory) I., Biophysics (practice) I.

Complete name of the course: Biofizika I.

Name of the Programme: Pharmacy Basic Education

Abbreviated name of the course: Biophysics I.

English name of the course: Biophysics (theory) I., Biophysics (practice) I.

<table>
<thead>
<tr>
<th>Neptun-Code:</th>
<th>GYKFIZ108E1A, GYKFIZ108G1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of registration:</td>
<td>obligatory</td>
</tr>
<tr>
<td>Institute:</td>
<td>Department of Biophysics and Radiation Biology</td>
</tr>
</tbody>
</table>

Name of the tutor/lecturer: Dr. Levente Herényi

Phone: +36 1 4591–500/60222
E-Mail: herenyi.levente@med.semmelweis-univ.hu

Further tutors:
- **Dr. Gergely Agócs** senior lecturer, PhD
- **Dr. Gabriella Csik** associate professor, PhD
- **Dr. Rita Galántai** teacher, PhD
- **Dr. Nikoletta Kósa** assistant lecturer
- **Dr. Ádám Orosz** assistant lecturer PhD
- **Dr. Gusztáv Schay** senior lecturer, PhD
- **Dr. László Smeller** professor DSc
- **Dr. István Voszka** associate professor, PhD
- **Dr. Ádám Zolcsák** PhD student

Number of classes /week:
1.5 hours lecture
2.5 hours practice

Credit points:
2 + 2

Course principles:
Biophysics plays a basic role in the education of pharmaceutical students. There are dual role of the subject: on one side it gives general knowledge of natural sciences, on the other side it gives theoretical and practical basis of application of physical principles and methods in pharmaceutical sciences.

Brief course summary:
In connection to the previous it helps the development of structured way of thinking. Through this one can find connection to the basic subjects and to the applied pharmaceutical subjects.

Course data

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>21</td>
<td>autumn</td>
<td>in the exam period</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>2.5</td>
<td>–</td>
<td>–</td>
<td>35</td>
<td>autumn</td>
<td>in the exam period</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week
1. week: Introduction.
2. week: Geometrical optics.
3. week: Fermat principle; Applications of geometrical optics.
4. week: Wave optics; Applications of wave optics;
 Photon concept.
5. week: Particle properties of electromagnetic radiations.
6. week: Radiations; Law of attenuation of intensity of radiation.
7. week: Structure of matter; atom, electron.
8. week: Atomic and molecular interactions.
9. week: Many atom systems; Boltzmann distribution; Gases; Solids.
10. week: Light emission, scattering, absorption; Thermal radiation.
11. week: Luminescence; Light sources; Lasers.
12. week: Liquid crystals; biological and artificial membranes.
13. week: Structural organization of living systems; water, nucleid acids, proteins.

II. Practice topics/week
1. week: Introduction. Laboratory safety rules. Graphical representation of data.
2. week: Optical lenses, light microscope:
3. week: Concentration determination with refractometer.
4. week: Optics of the eye: image formation in the eye.
5. week: Special light microscopes.
6. week: Hooke’s law, resonance, AFM principle.
7. week: Light emission. Medical and laboratory applications.
8. week: Identification of matter and concentration measurement with polarimeter.
9. week: Light absorption. Medical and laboratory applications.
12. week: Fields of application of ultrasound.
14. week: Repetition.

Order of consultations: Weekly in the exam period.
Prerequisites: –

Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.)
Participation on at least 75 % of the practices. Lab. report must be done about the measurements. The missed measurements can be made up within the 4 weeks cycle.

Knowledge testing during the semester: Midterm tests on the 6th and 11th weeks. Retake is possible on the 13th week.

Requirements of the signature at the end of the semester:
1. At least 50 points in the test in Physical bases of biophysics.
2. Participation on at least 75 % of the practices, (in case of more than 3 absences the signature for the semester is denied.)
3. Acceptance of lab. reports.
4. The practice grade should be at least 2.

Individual activity of the student during the semester (protocol, etc.): Lab. report should be made about all the measurements.

Performance control in the examination period (final, semi-final): Semifinal exam
Performance control in the examination period (written, oral, written and oral): Written and oral
Prescribed external practice: –

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.):
Medical biophysics practices (Semmelweis Publisher, 2015)
Biology (theory) I., Biology (practice) I.

Complete name of the course: Biológia I.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Biol I.
English name of the course: Biology (theory) I., Biology (practice) I.

Neptun-Code: GYKGEN109E1A and GYKGEN109G1A
Institute: Department of Genetics, Cell- and Immunobiology Semmelweis University, Faculty of Medicine

Name of the tutor/lecturer: Prof. Dr. Edit Buzás DSc
coordinator: Dr. Orsolya Láng PhD
Phone: 2102940/56251
E-Mail: lang.orsolya@med.semmelweis-univ.hu

Further tutors: Dr. Sára Tóth Associate Professor
Dr. Valéria László Associate Professor
Dr. András Kristóf Fülöp Associate Professor
Dr. Hargita Hegyesi Associate Professor
Dr. László Köhidaí Associate Professor
Dr. Viola Tamásí Associate Professor
Dr. Eszter Lajkó Research Fellow
Dr. Marianna Csilla Holub Associate Professor
Dr. Zoltán Wiener Associate Professor
Dr. Tamás Visnovitz Assistant Professor

Number of lectures/week: 2 (lecture) + 2 (practice)
Credit points: 2+2

Course principles:
Basics of classical and molecular cell biology and techniques applied in the field of modern cell biology are discussed. The subject provides theoretical background for Physiology, Biochemistry and Anatomy.

Brief course summary:
The subject Biology I. discusses the close relation of the function and structure of the eukaryotic cells. It discusses the most significant phenomena of cell compartmentalization, function, aging and cell death. In practices the following topics are studied: light- and electron-microscopy and histotechniques, relevant techniques of cell biology applied to detect basic cell physiological activities.
First Aid (practice)

Complete name of the course: Elsősegélynyújtás
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: First Aid (practice)
English name of the course: First Aid

Neptun-Code: GYKTRA110G1A
Type of registration: obligatory
Institute: Department of Traumatology

Name of the tutor/lecturer: Prof. Dr. Hangody László Professor
Head of Department
Phone: +36 1 467 3851
E-Mail: trauma_office@med.semmelweis-univ.hu

Number of classes/week: 1 practice/week
Credit points: 1

Course principles:
The aim of the course is to acquire the theoretical knowledge of first aid and the practical aspects of resuscitation.

Brief course summary:
First aid is the initial care for an illness or injury. It generally consists of a series of simple and, in some cases, potentially life-saving techniques that an individual can be trained to perform with minimal equipment. All students who graduate from Semmelweis University, including pharmacists should have a knowledge of how to provide basic first aid to an injured or ill person.
This curriculum is delivered to the students through e-learning material and practical training in resuscitation.

| Course data |
|--------------------------|-----------------|----------------|-----------------|-------------------------|-----------------|-----------------|
| Recommended semester of completing the course | Lecture (contact hrs/week) | Practice (contact hrs/week) | Seminar (contact hrs/week) | Individual lecture | Total number of contact hours/semester | Semester | Consultation |
| 1 | – | 1 | – | – | 14 | autumn | – |

Semester program

I. Lecture topics/week:
E-learning material: (Semmelweis University’s E-learning portal – moodle)
1. Program and goal of first aid
2. Cardio-pulmonary resuscitation (CPR)
3. Bleeding and its control, bandaging methods
4. Mechanical injuries – open and closed
5. Thermal injuries
6. Sport injuries
7. Internal bleeding
8. Respiratory diseases
9. First aid in internal medicine
10. Shock
11. Unconscious patient
12. Multiple casualty accident: organization and transport

II. Practice topics/week
Each student must complete one CPR exercise per semester. Only after completing the 12 topics and completing the test series, the students will have the opportunity to apply for one of the CPR exercises, and they can register for each exercise in the Moodle system.
Order of consultations:
One practice at Uzsoki Hospital to learn how to perform CPR on CPR manikins. Students have the opportunity for consultation of the e-learning materials during the practices.
Prerequisites: –

Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.):
Completion of CPR practice is obligatory, without that (only by listening to the electronic curriculum and completing the short tests afterwards) the student will not receive a signature.
In case the student fails to attend CPR practice due to illness, a medical certificate has to be presented and the student has to attend another CPR practice on a date announced by the department.

Knowledge testing during the semester:
The students are required to listen to the e-learning material and complete the tests after each lecture. In case of failing to do so, the student cannot take part in the CPR practice.

Requirements of the signature at the end of the semester:
Studying the entire e-learning material at Semmelweis University’s e-learning portal (moodle), and completing the short tests related to each lecture afterwards. At least 90% outcome of each test is required. In addition, during the semester, one CPR practice is obligatory for all students on one of the CPR practices organized by the Department of Traumatology.

Individual activity of the student during the semester (protocol, etc.):
Studying the entire e-learning material at Semmelweis University’s e-learning portal (moodle), and completing the short tests related to each lecture afterwards.
Performance control in the examination period (final, semi-final): –
Performance control in the examination period (written, oral, written and oral): –
Prescribed external practice: –

List of course materials:
E-learning material and practical training in resuscitation
Semmelweis University’s E-learning portal (moodle)
Scientific, course related researches, publications/essays: –
Pharmaceutical Terminology (practice)

Complete name of the course: Gyógyszerészi terminológia (gyakorlat)
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Pharmaceutical Terminology
English name of the course: Pharmaceutical Terminology (practice)

Neptun-Code: GYKLEK154G1A
Type of registration: obligatory
Institute: Division of Foreign Languages and Communication, Faculty of Health Sciences

Name of the tutor/lecturer: Alexandra Bakó language teacher
Phone: (1) 48–64962
E-Mail: bako.alexandra@se–etk.hu

Further tutors: Lili Szőllősi language teacher

Number of classes /week: 2
Credit points: 2

Course principles:
The course is to prepare students for understanding Latin and Greek medical and pharmaceutical terminology, including the language of anatomy, diagnostics, pathophysiology, and prescriptions.

Brief course summary:
Students get familiarised with the basics of Latin grammar, such as forming plural forms of Latin nouns, adjective agreement, the use of numbers, and prepositional phrases (accusative and ablative cases). Furthermore, they develop an extensive Latin and Greek vocabulary that enables them to understand and formulate medical terms in the fields of medicine and pharmaceutics.
Mathematics for Pharmacists

Complete name of the course: Matematika gyógyszerészeknek
Name of the Program: Pharmacy Basic Education
Abbreviated name of the course: Math
English name of the course: Mathematics for Pharmacists

Neptun-Code: GYKEGY112E1A, GYKEGY112G1A
Type of registration: obligatory
Institute: University Pharmacy Department Of Pharmacy Administration

Name of the tutor/lecturer: László Tóthfalusi Ph.D.
Phone: (+36–1) 476–3600
E-Mail: tolasz@net.sote.hu

Further tutors: Dr. Andrea Meskó Ph.D.
Phone: +36–1–476–3600/ 53053
E-Mail: mesko.attilane@pharma.semmelweis-univ.hu
Lajos Gergó Ph.D.
Gillemotné Dr. Orbán Katalin Ph.D.

Number of classes /week: 2 (Lecture), 2 (Practice)
Credit points: 2+2

Course principles:
Acquisition of basic pharmacological numeracy skills, review of mathematical apparatus used in other subjects, introduction of computer bases of modeling techniques useful in scientific research

Brief course summary:
The course aims to provide a comprehensive overview of the mathematical tools used in the pharmaceutical sciences. From a mathematical point of view, it covers the following subjects: Elementary and linear algebra, mathematical analysis and numerical methods. The aim of the exercises is to develop the numerical skills used in basic pharmaceutical practice, to get acquainted with the computer possibilities used for mathematical calculations.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester of completing the course</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week
Topics of theoretical lessons (broken down by week):
Week 1: Mathematics in pharmacy: calculation, measurement, modeling
Week 2: Functions
Week 3: Series, Lines
Week 4: Continuity, Limit
Week 5: Differentiation
Week 6: Applications of differentiation
Week 7: Integration
8. week: Differential equations
Week 9: Using a computer to solve numerical problems 1
Week 10: Matrices, linear systems of equations
Week 11: Bivariate functions, concept of partial derivation
Week 12: Determinant, eigenvalue, linear mappings
Week 13: Differential systems of equations
Week 14: Using a computer to solve numerical problems 2

II. Practice topics/week
Topics of practical classes (broken down by week):
Week 1: Pharmacological calculations I. Algebraic problems
Week 2: Pharmacist Calculations 2. Log and Exp Functions, Summary of Measurement Data
Week 3: Pharmacological calculations 3. Representation and transformation of functions
Week 4: Application of sequences
Week 5: Differentiation examples
Week 6: Quiz 1
Week 7: Integration examples 1
Week 8: Integration examples 2
Week 9: Differential equations 1
Week 10: Differential equations 2
Week 11: Solving linear equations
Week 12: Quiz 2
Week 13: Solving linear equations 2
Week 14: Quiz (retake)

Course requirements
Order of consultations: Consultation is possible during the seminars
Prerequisites: –

Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.):
Participation in at least 75% of the practice sessions is mandatory. The retake quiz on the last week of the semester is needed if one of the quiz opportunities are missed or if the quiz result is below the acceptable minimum.

Knowledge testing during the semester: Two quizzes
Requirements of the signature at the end of the semester: Two accepted quiz results
Individual activity of the student during the semester (protocol, etc.): Solving practice exercises
Performance control in the examination period (final, semi-final): Semi-final
Performance control in the examination period (written, oral, written and oral): Written
Prescribed external practice: None

List of teaching materials: (List of textbooks, hand-outs, scripts, etc.):
Mateking: https://www.mathxplain.com/
https://www.khanacademy.org/math/ap-calculus-abath for Science
http://www.cse.salford.ac.uk/physics/gsmcdonald/pp/PPLATOResources/maths%20for%20science/mathsfor science.pdf
Calculus volume 1 from https://openstax.org/subjects/math

List of course materials:
Handouts on the course website (Moodle)
Scientific, course related researches, publications/essays: –
Introduction to Pharmaceutical Studies

Complete name of the course: Bevezetés a gyógyszerészeti tanulmányokba
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course:
English name of the course: Introduction to pharmaceutical studies

- Neptun-Code: GYKEGY113E1A
- Type of registration: obligatory
- Institute: University Pharmacy Department of Pharmacy Administration
- Name of the tutor/lecturer: Dr. Romána Zelkó professor, Ph.D., D.Sc
 Phone: 2170–927
 E-mail: zelko.romana@pharma.semmelweis-univ.hu

Further tutors:
Dr Palcsó Barnabás PharmD

- Number of classes /week: 1
- Credit points: 1

Course principles:
Introducing the purpose, content elements, structure and system of requirements of pharmacist training, which provides orientation for further university studies.

Brief course summary:
The aim of the course is to get acquainted with the content and structural elements of the university training program, the starting point of which is the knowledge of the training and output requirements of a pharmacist, based on the relevant Hungarian EU–compliant regulations. This will be followed by a presentation of the organizational structure and training structure of Semmelweis University and the Faculty of Pharmacy. Particular emphasis is placed on the use of the Unified Higher Education Study System (Neptune) and the concepts of university education, the practical significance and application of university regulations that primarily affect students, the rights and obligations of university citizens, and the system of student requirements.
The course describes the way of using student services, the possibilities of catching up, the operation of the talent management and mentoring program, the possibility of participating in research, scientific student work and demonstration work. The different forms of education, the tools that help students prepare, and the ways to use them are also presented.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester of completing the course</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week
1. The aim and characteristics of pharmacist training, disciplines, structure of pharmacist training
2. Training and output requirements – Purpose of pharmacist training, general and professional competencies (Knowledge, Ability, Attitude, Autonomy and Responsibility), EU–compliant degree in pharmacy
3. Characteristics of the master’s program – Structure of the training – Undergraduate training (Basic subjects, Professional subjects, Internships – before summer and final exam), Postgraduate training (Residency training (3 disciplines), Doctoral training (Ph.D.), Compulsory further training –
4. "Pharmacy as a profession, lifelong learning ”
5. Training places, structure of Semmelweis University, organizational units, Faculty of Pharmacy and its organizational units, standing committees of the Faculty, university citizens, teaching and research positions at the university
6. Unified Higher Education Study System (Neptun) and its management: entry into the system, enrolment (registration) process, subject enrolment process (subject application, course application), exam application process, viewing of results, messaging. Study administration
7. Important training–related concepts: active semester, passive semester, pre–study policy, waiver, recognition of previous studies, credit, credit transfer, subject requirements, examination period, study average, credit index, adjusted credit index, scholarship calculation, public scholarship
8. Rights and obligations of university citizens-SZMSz-Student Requirements System
9. Writing student applications, professional CV (structured and textual), digital communication at the university, student application opportunities (announced by university, professional organizations)
10. Student organizations (IPSF, HUPSA); Student mobility (scholarships – Erasmus, HUPSA SEP, Campus Mundi, institutional coordination
11. Learning and accountability forms, catch–up programs, talent management-mentoring program
12. The order and criteria of the students’ opinions of the teaching work
13. Involvement in the research work of the institute – Scientific students, student conference, demonstration work, rector’s application
14. E-learning (Moodle-Zoom), use of library services and databases, physical education and sports facilities, dormitory care, vocational dormitory system

II. Practice topics/week: –

Course requirements
Order of consultations: –
Prerequisites: –
Semester acceptation conditions: (successful course attendance, mid-term tests, absence, etc.):
successful course attendance

Knowledge testing during the semester:
a written structural professional CV

Requirements of the signature at the end of the semester:
Individual activity of the student during the semester (protocol, etc.)
Performance control in the examination period (final, semi-final): semifinal
Performance control in the examination period (written, oral, written and oral): written
Prescribed external practice: –

List of teaching materials (List of textbooks, hand–outs, scripts, etc.): lecture notes

List of course materials: lecture notes
Scientific, course related researches, publications/essays: –
History of Pharmaceutics and Propedeutics (theory)

Complete name of the course: Gyógyszerészettörténet és propedeutika
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: History and Propedeutics
English name of the course: History of Pharmaceutics and Propedeutics (theory)

Neptun-Code: GYKFMG153E1A
Type of registration: obligatory
Institute: Department of Pharmacognosy

Name of the tutor/lecturer: Dr. Eszter Riethmüller research fellow, Ph.D.
Phone: +361-459-1500/55404
E-Mail: riethmuller.eszter@pharma.semmelweis-univ.hu

Number of classes /week: 2
Credit points: 2

Course principles:
Understanding how the history of pharmaceutics is bond up with the development of many different sciences. General knowledge of drugs, international organizations, pharmacy practice and education.

Brief course summary:
The course aims to show how the history of pharmaceutics is bond up with the development of many different sciences. It gives and understanding of the way in which the notion of pharmaceutical science changes as its methods evolve and scientific knowledge progresses. Therefore, the subject can give students a new relation to the scientific knowledge they possess and that they will gain in the following years of their studies.
The purpose of Propedeutics is to impart general knowledge of drugs including classification, naming, doses, utilization, pharmacopoeias, preparation of drugs, organization of drug supply. It also puts special emphasis on current global health issues and the role of the pharmacist and the international organizations in overcoming them.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester of completing the course</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week
1. week: Introduction. The place of the subject in the curriculum. The multidisciplinary nature of pharmacy.
2. week: The role and importance of history of science in understanding the notion and development of science. The structure of scientific revolutions. Distinction between science and pseudoscience.
3. week: The endless evolution of medical science and medical technology: from prehistoric times to present day and beyond I.
4. week: The endless evolution of medical science and medical technology: from prehistoric times to present day and beyond II.
5. week: The impact of the development of natural sciences on drug therapy: what has changed over time and what has not.
6. week: Drugs on the market today: classification based on the origin, pharmaceutical action, way of application, and formulation.
7. week: Drugs and doses. Introduction to pharmacokinetics.
10. week: Pharmacies in Hungary: premises, personnel, ordering of drug preparations, pharmaceutical literature.
11. week: Pharmacy practice around the world.
12. week: Global health issues I.: The role of international organizations of healthcare: historical and current issues, future challenges.
14. week: The changing role of the pharmacist in healthcare and its effect on pharmaceutical education

II. Practice topics/week –

Course requirements
Order of consultations: as demanded
Prerequisites: –
Semester acceptation conditions: (successful course attendance, mid-term tests, absence, etc.): –

Knowledge testing during the semester: –

Requirements of the signature at the end of the semester: –
Individual activity of the student during the semester (protocol, etc.): –
Not obligatory assay and/or presentation.
Performance control in the examination period (final, semi-final): Semi-final examination
Performance control in the examination period (written, oral, written and oral): Written and oral examination
Prescribed external practice: –

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.):
Hand-outs of lectures
List of course materials: Lecture hall projection
Scientific, course related researches, publications/essays: –
Principles of Professional Ethics I.

Complete name of the course: Hivatásétikai alapok I.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Principles of Prof. Ethics
English name of the course: Principles of Professional Ethics I.

Neptun-Code: GYKGTO071E1A
Type of registration: obligatory

Number of classes /week: –

Credit points: –

Newly enrolled students have to take an oath at the Opening Ceremony.
Physical Education I.

Complete name of the course: Physical Education I.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: P. E. I.
English name of the course: Physical Education I.

Neptun Code: GYKTSI116G1A
Type of registration: obligatory
Institute: Semmelweis University’s Centre for Physical Education and Sports

Name of the tutor/lecturer: Várszegi, Kornélia director
Phone: –36–1/264–1408
E-Mail: varszegi.kornelia@semmelweis-univ.hu, sportkozpont@semmelweis-univ.hu

Further tutors: Dohárné Buczkó, Anikó P.E. teacher
Kalmus, Dániel P.E. teacher
Lehel, Zsolt P.E. teacher
Sótonyiné Hrehuss, Nóra P.E. teacher
Várszegi, Kornélia P.E. teacher
Weisz, Miklós P.E. teacher

Number of classes/week: 1 class (practice)/week
Credit points: 0 credit

Course principles:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

Brief course summary:
The short–term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long–term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice – so that they can represent those in their later practice, through their own health–promoting behavior.

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>–</td>
<td>14</td>
<td>autumn</td>
<td>–</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week:

II. Practice topics/week:

1st Week: General information
Health and Safety, Fire and Environmental protection. The mid-year adoption requirements, the construction of the classes and the presentation of the university recreational and sports opportunities for extra-curricular activities. Heart rate measurements, Ruffier test and evaluation of the results.

2nd Week: Athletic
Exercises to improve stamina. Preferably outdoors, on grass ground running, with the aim of developing good running and breathing techniques.

3rd Week: Flying disc
Introduction the basic of frisbee rules and practicing the basic technical elements in pairs and game situation.

4th Week: Tennis
Introducing the basis technical elements of tennis (forehand and backhand shot), improving hand–eye coordination.

5th Week: Agility ladder
Introducing different running, skipping techniques using agility ladder.

6th Week: Football
Introducing the basic technical elements of football. Single exercises and exercises in pairs to improve the ball skill development.

7th Week: Badminton
Introducing the basic technical and tactical elements of badminton. Introducing the basic rules and game.

8th Week: Circuit training
Bodyweight exercises and exercises with basic equipment to learn the correct functional movement pattern.

9th Week: Ruffier test and ball skill developing exercises
Compare the results with the previous test to bring the importance of the health of the cardiovascular system to the attention.

10th Week: Meta
Introducing the game and the basic rules. Aim to improve the ball skill development, improve reaction time, speed and explosiveness.

11th Week: Obsticle course
To complete a built up obsticle course using differend creepping-climbing,hovering, pulling, skipping, throwing techniques for general skill developement.

12th Week: Core traning
Postural correction exercises using the own bodyweight especially to strenghten the core muscles to prevent the health of the vertebrae.

13th Week: Skipping rope
Endurance and coordination developing exercises at different levels using skipping rope.

14th Week: Dumbbell exercises
Strengthening exercises with dumbbells.

Course requirements
Order of consultations: –
Prerequisites: –
Semester acceptation conditions: (successful course attendance, mid-term tests, absence, etc.):
The number of active participations for physical education classes is 9, regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Knowledge testing during the semester:
There is no mandatory control during the term.
Requirements of the signature at the end of the semester:
Active participation in practice classes 9 times under the conditions described above.
May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate to the TSK or
2. does sports regularly and submits a certificate of association and federation to the Foreign Students Secretariat until the last study day in the 4th week of the semester. On the basis of the submitted application and its annexes, the TVB decides on the exemption of both the Hungarian and foreign students.

Individual activity of the student during the semester (protocol, etc.): –
Performance control in the examination period (final, semi-final): –
Performance control in the examination period (written, oral, written and oral): –
Prescribed external practice: –

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.): –

List of course materials: –
Scientific, course related researches, publications/essays: –
Hungarian Pharmaceutical Terminology I.

Complete name of the course: Magyar gyógyszerészeti szaknyelv (gyakorlat) I.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Hungarian Pharmaceutical Terminology I.
English name of the course: Hungarian Pharmaceutical Terminology (practice) I.

Neptun-Code: GYKLEK155G1A
Type of registration: obligatory
Institute: Division of Foreign Languages and Communication, Faculty of Health Sciences

Name of the tutor/lecturer: Alexandra Bakó language teacher
Phone: (1) 48-64962
E-Mail: bako.alexandra@se-etk.hu

Further tutors:
Borda Szandra language teacher
Nagyné Górász Judit language teacher
Kovács Ildikó language teacher
Nagy Borbála language teacher
Tick Vera language teacher
Tóth Zsuzsanna language teacher

Number of classes /week: 2
Credit points: 0

Course principles:
The role of this subject is to help students acquire the basic vocabulary, grammar and language skills they need for the effective communication in the language they use during their field practice both in their everyday life /‘survival language’/ and in their academic studies.

Brief course summary:
The first semester is dedicated to learning basic general vocabulary and grammar. Students acquire basic structures and the vocabulary for everyday topics /e.g. shopping, food, housing etc./. The course places special emphasis on phrases essential for everyday communication, e.g. introductions, greetings, getting/giving information etc. and on phrases needed in basic communication at a pharmacy.

Course data

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>28</td>
<td>autumn</td>
<td>0</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week: –

II. Practice topics/week:
Week 1 The Hungarian alphabet
Week 2 Greetings
Week 3 Basic pharmacy vocabulary
Week 4 Number
Week 5 Descriptions (nouns and adjectives)
Week 6 Ordering foods and drinks (accusative case)
Week 7 Asking for medications (accusative case)
Week 8–9 Locatives
Week 10–11 Activities – verbs
Week 12 Explaining what can be found in a pharmacy
Week 13 Explaining what people do in a pharmacy
Week 14 Final test (written and oral)

Course requirements
Order of consultations: Individual consultations by email or in person on meeting formerly agreed upon with the teacher via email.
Prerequisites: –
Semester acceptation conditions: (successful course attendance, mid-term tests, absence, etc.):

An attendance of 75% minimum is required to get the signature.
The student must have a minimum average of 2.00 based on the tests in class to pass the subject.

Knowledge testing during the semester:
Beside the final test the teacher may evaluate the students’ performance with the help of short tests.

Requirements of the signature at the end of the semester:
An attendance of 75% minimum and taking the final test.

Individual activity of the student during the semester (protocol, etc.):
Homework in the forms of language practice tasks.

Performance control in the examination period (final, semi-final): –
Performance control in the examination period (written, oral, written and oral): –
Prescribed external practice: –

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.):

List of course materials: –
Scientific, course related researches, publications/essays: –
2. SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>General and Inorganic Chemistry (theory) II. GYKASK106E2A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>Gen. and Inorg. Chemistry I.</td>
<td>final*</td>
</tr>
<tr>
<td>Analytical Chemistry (theory+practice) I. GYKASK117G1A</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>Gen. and Inorg. Chemistry I., Introd. to Pharm. Studies, Mathematics for Pharm.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Anatomy (practice) GYKANT118G1A</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Biology I., Pharm. Terminology, First Aid</td>
<td>signature</td>
</tr>
<tr>
<td>Anatomy (theory) GYKANT118E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Biophysics (practice) II. GYKFIZ108G2A</td>
<td>–</td>
<td>2.5</td>
<td>2</td>
<td>Biophysics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics (theory) II. GYKFIZ108E2A</td>
<td>1.5</td>
<td>–</td>
<td>2</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Biology (practice) II. GYKGEN109G2A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biology (theory) II. GYKGEN109E2A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Communication and Information Networks (theory+practice) GYKMAG120G1A</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>Introd. to Pharm. Studies</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basics of Economics (theory) GYKEMK121E1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Mathematics for Pharm., Introd. to Pharm. Studies</td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Chemistry for Pharmacists (theory+practice) GYKGYI122G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Gen. and Inorg. Chemistry I., Biophysics I., Mathematics for Pharm.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) II. GYKLEK135G2A</td>
<td>–</td>
<td>2</td>
<td>0</td>
<td>Hungarian Pharmaceutical Terminology (practice) I.</td>
<td>signature</td>
</tr>
<tr>
<td>Physical Education II. GYKTSI116G2A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or practical mark</td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
General and Inorganic Chemistry (theory) II.

Complete name of the course: Általános és szervetlen kémia (elmélet) II.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Ált. és szerv. kémia (elm.) II.
English name of the course: General and Inorganic Chemistry (theory) II.

Neptun-Code: GYKASK106E2A
Type of registration: obligatory
Institute: Institute of Chemistry, Department of Analytical Chemistry, ELTE

Name of the tutor/lecturer: Szabolcs Béni associate professor
Phone: +36208250489
E-Mail: beni.szabolcs@pharma.semmelweis-univ.hu
Academic degree:

Number of classes /week: 3
Credit points: 3

Course principles:
This course aims to provide a solid background in inorganic chemistry in order to support organic, analytical and pharmaceutical chemistry studies and to lay down the basic chemical transformations to understand bio(inorganic) chemistry. The course will also provide fundamental knowledge in material science necessary for the understanding of modern pharmaceutical technology.

Brief course summary:
This course provides an introduction to inorganic chemistry through a descriptive chemistry point of view. The lectures provide the facts about the (biologically, pharmaceutically or environmentally) most important elements and their compounds. Through these facts: physical/chemical properties, composition, structure and reactivity etc.) we intend to build a solid chemical background to support both qualitative and quantitative analytical chemistry as well as bio—and pharmaceutical chemistry. Systematizing and rationalizing known chemical facts of various elements (stabilization, bonding, oxidation states, most important reactions with the most common inorganic elements such as hydrogen, oxygen, halogens, nitrogen, sulfur and carbon as well as metals and small inorganic molecules—acids/bases will broaden the students’ understanding in natural sciences. The occurrence, preparation, use, and pharmaceutical and/or biological role of these substances are highlighting the role of natural sciences (especially inorganic chemistry) from pharma industry to food sciences from medical research trough environmental chemistry.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester of completing the course</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week

4. Chemistry of other nonmetallic elements. The noble gases (He, Ne, Ar, Kr, Xe, Rn) and their compounds. The halogens (F, Cl, Br, I, At): occurrences, preparation, properties and uses. Oxyacids and oxyanions. The biological role of halogens.

7. Occurrence and distribution of metals. Metallurgy. The physical and chemical properties of metals and alloys. The alkali metals (Li, Na, K, Rb, Cs). General characteristics. Some important compounds of sodium and potassium.

8. The alkaline earth metals (Be, Mg, Ca, Sr, Ba). General characteristics. Some important compounds of magnesium and calcium. The zinc–group metals (Zn, Cd, Hg). Occurrences, chemical properties.

9. The transition metals. Physical properties, electron configurations and oxidation states. The chemistry of selected transition metals: chromium, manganese, iron, copper, molybdenum, platinum. Chemistry of coordination compounds

11. The dynamics of coordination compounds: Complex equilibria, ligand exchange rates. The coordination chemistry of alkali metal ions. (Host-guest complexation.) Metals in biology.

13. Metals in biominerization. Metal–induced toxicity. The biomedical use of metal complexes and metal complexation. The chemistry of the environment

14. A brief overview of the chemistry of the litosphere, hydrosphere and atmosphere.

II. Practice topics/week

Course requirements

Order of consultations: upon request
Prerequisites: General and Inorganic Chemistry I.
Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.): –
Knowledge testing during the semester: –
Requirements of the signature at the end of the semester: course attendance
Individual activity of the student during the semester (protocol, etc.): –
Performance control in the examination period (final, semi-final): final exam
Performance control in the examination period (written, oral, written and oral): oral exam
Prescribed external practice: –

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.):
Chemistry of the Elements, second edition by N. N. GREENWOOD and A. EARNSHAW
School of Chemistry University of Leeds, U.K. ELSEVIER, BUTTERWORTH, HEINEMANN
All the complete lecture slides are provided beforehand as PDF files. Some book chapters are also provided as further reading.

List of course materials: –
Scientific, course related researches, publications/essays: –
Analytical Chemistry (theory+practice) I.

Complete name of the course: Analitikai kémia (elmélet + gyakorlat) I.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Anal. Chem. I.
English name of the course: Analytical Chemistry (theory+practice) I.

Neptun-Code: GYKASK117G1A
Institute: Eötvös University, Institute of Chemistry, Department of Analytical Chemistry

Name of the tutor/lecturer: Dr. Krisztina Kurin–Csörgei head of department, associate professor, PhD, Dr. Habil
Phone: (+36)1-372-2500/1241
E-Mail: kurin@chem.elte.hu
Dr. Béni Szabolcs head of institute, associate professor, PhD, Dr. Habil
Phone: 476-3600 / 55304
E-mail: beni.szabolcs@pharma.semmelweis-univ.hu

Further tutors:
Norbert Szoboszlai (lecture and practice) assistant professor
Katalin Perényi–Zih (practice) assistant professor
Anikó Vasanits–Zsigrai assistant professor
István Molnár assistant professor
Edina Kiss assistant professor PhD students

Number of lectures /week: 2 hrs lecture + 4 hrs practice
Credit points: 6 (2+4)
Course principles: –

Brief course summary:
The aim of analytical chemistry is to obtain qualitative and quantitative information about the chemical composition and structure of materials. Quantitative Analytical Chemistry is based on the determination of quantity of the components using different chemical and instrumental methods.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>28 + 56 = 84</td>
<td>Spring semester</td>
<td>2–4/semester</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week

2. week: Theoretical basis of qualitative analytical ionic reactions. Qualitative analytical chemistry: definition, classification of the reactions (analytical parameters, group reagents, group reactions, Fresenius-system).
3. week: Group reagents for qualitative analysis of cations. Identifications reactions for cations.
4. week: Group reagents for qualitative analysis of anions. Identifications reactions for anions.
5. week: Qualitative analysis of complex solution and solid sample. Instrumental analytical methods in inorganic qualitative analysis.
6. week: Types of interactions in analytical chemistry, Quantitative analysis and its important methods. Steps of chemical analysis.
7. week: Preparation of sample for analysis (sampling, storage and dissolving of the sample, fusion).
10. week: Possibilities for end point detection (chemical and instrumental). Acid–base indicators.
11. week: Change of pH during the acid-base titration (calculation of titration curves for the reaction of strong acid/base with strong base/acid, weak acid/base with strong base/acid, polyprotic acid with strong base). Indicator error.
12. week: The main possibilities of determination in acidimetry and alkalimetry. (measurement of strong/weak acids, strong/weak bases, salts, „specific” determinations, with examples).
14. week: Nonaqueous titrations: standard solutions, end point detection, applications.

II. Practice topics/week

1. week: Laboratory inventory (bench and equipments); Safety and order in the laboratory; The schedule of the semester; Practical and theoretical requirements in the semester. Reactions of Group I of cations. Reactions of As(III). Analysis of simple unknown.
4. week: Reactions of the most important anions. Analysis of complex unknown.
5. week: Analysis of a solid sample (salt mixture).
6. week: Test I. Practicing of use the laboratory tools; Neutralization analysis: Determination of sulfuric acid.
7. week: Neutralization analysis: Determination of sulfuric acid.
8. week: Neutralization analysis: Standardization of \(\approx 0.1 \) hydrochloric acid.
9. week: Neutralization analysis: Continuation of previous week’s measurements; Determination of lactic acid.
10. week: Acidy–Alkalimetry: Determination of sodium tetraborate and boric acid in the presence of each other.
11. week: Neutralization analysis: Determination of NaOH and Na2CO3 in the presence of each other.
12. week: Acidy–Alkalimetry: Indirect determination of sodium thiosulfate; Determination of “Lidocaine” in nonaqueous solution.
13. week: Test II. Nonaqueous titration of a pharmaceutic.
14. week: Retake II. Supplements; Closing

Course requirements

Order of consultations: at the request of students (in the period prior to the tests; etc.)
Prerequisites: General and Inorganic Chemistry I., Introduction to Pharm. Studies, Mathematics for Pharmacists
Semester acceptation conditions: (successful course attendance, mid-term tests, absence, etc.):
The student should be present – at least – in 75% of the total number of laboratory practices scheduled during the semester.
All exercises or measurements must be performed according to the time table. In case of absences the measurements must be completed in an “extra lab”; or-in justified cases – at the end of the semester.
Knowledge testing during the semester:
The students should write 2 major test-papers in two different parts of the subject during the semester in a time announced in advance and scheduled during the time of the laboratory practices. The major test cover all measurements performed in the laboratory practices and/or discussed during the lecture, the theoretical background and numerical problem solving. After each test we provide the opportunity for correction in the form of “retake test” and the marks of the supplementary tests are taken into account when determining the final grade. Shorter oral or written questionings related to the laboratory training can occur during the entire semester. All written tests and oral answers will be evaluated according to a five-scale grading system. Minimum 50% of performance is required for passing the tests. A written report should be prepared about the completion of all laboratory exercises. The results of the analysis or measurements should be presented for evaluation to the supervising teacher within a week after completion of the exercises. In default of doing so the measurements are marked as “unsatisfactory”. At least 80% of the exercises must successfully be performed (it means – in most cases – to reach an accuracy of ±4% in the quantitative determinations). The unsuccessful identifications or measurements can be repeated once during the time available for measurements to be completed due to absences.

Requirements of the signature at the end of the semester:
The final grade of the laboratory training on analytical chemistry will be established from considering the accomplishments of both theoretical and practical requirements.
The theoretical requirement for passing the semester is that the average of two marks obtained to the tests which cover the two parts of the subject should reach a minimum value of 2.0 and the very last mark is not “unsatisfactory” (i.e. higher than 1.). The practical requirements are fulfilled if the average of all marks obtained for the individual identifications and measurements is higher than 2.51.

List of teaching materials:
Lásztity–Gyimesi: Qualitative Inorganic Analysis. Bp. (SE)
Materials of the lectures and practices can be downloaded from Moodle E-learning system and http://www.webkvanti.chem.elte.hu (web page).

List of course materials: –
Scientific, course related researches, publications/essays: –
Anatomy (theory), Anatomy (practice)

Complete name of the course: Anatómia
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Anatomy (theory), Anatomy (practice)
English name of the course: Anatomy (theory), Anatomy (practice)

Neptun-Code: GYKANT118E1A, GYKANT118G1A
Type of registration: obligatory
Institute: Department of Anatomy, Histology and Embryology

Name of the tutor/lecturer: **Dr. Csáki Ágnes** associated professor, Ph.D.
E-Mail: csaki.agnes@med.semmelweis-univ.hu

Further tutors:
- **Dr. Halász Vanda** assistant lecturer
- **Dr. Herberth–Minkó Krisztina** assistant professor, Ph.D.
- **Szászné Dr. Kocsis Katalin** assistant professor, Ph.D.
- **Dr. Kozsurek Mári** assistant professor, Ph.D.
- **Pecsenye–Fejszák Nóra** assistant lecturer
- **Dr. Puskár Zita** senior research fellow, Ph.D.
- **Dr. Tóth Zsuzsanna Emese** senior research fellow, Ph.D.

Number of classes /week: 2 lecture / week + 2 practice / week
Credit points: 2 (GYKANT118E1A) + 0 (GYKANT118G1A)

Course principles:
- to teach the terminology of the human anatomy to the future pharmacists
- to discuss those special anatomical and physiological conditions, which may influence the therapeutical considerations;
- to discuss those anatomical conditions, which are necessary for the understanding of the further medical subjects of the pharmacists’ studies;
- to teach the terminology (Latin and English) of human body parts (at a gross and microscopical anatomical level) necessary for the understanding of the medical language during the communication between the pharmacists and the doctors.

Special attention is required concerning the anatomy of the central nervous system and the digestive tract, the absorption of medicines and their mechanism of action.

Brief course summary:
The lectures include all topics of anatomy, histology and embryology. Locomotor system, internal organs, nervous system, general and detailed histology, general embryology and development of organs are the topics of the lectures. During the dissection room practices the tutors discuss and demonstrate some chapters of anatomy of the locomotor system, internal organs and nervous system. During the histology lab practices, after a short introduction, the students can examine the most important sections with an electronic histology system.

Course data

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2/week</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>28/semester</td>
<td>spring</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2/week</td>
<td>–</td>
<td>–</td>
<td>28/semester</td>
<td>spring</td>
<td>–</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week
1. week: 1. Introduction, Locomotor System
2. Skull, vertebral column, head, neck muscles
2. week: 3. Basic tissues I
4. Basic tissues II, Skin
3. week: 5. The Immune System, the Lymphoid Organs
6. Blood, hematopoiesis
4. week: 7. Heart, the Vascular System
8. The Respiratory System, the Mechanics of Breathing
5. week: 9. The Digestive System I, abdominal cavity
10. The Digestive System II
6. week: 11. The Liver, the Pancreas
12. The Kidneys and the Urinary tract
7. week: 13. The Female Reproductive Organs, cycle
14. The Male Reproductive Organs, Pelvis
8. week: 15.–16. Midterm
18. Central Nervous System, meninges, blood supply, CSF, Encephalon, Spinal cord, Spinal nerves
10. week: 19. Motor system, Sensory system, Limbic system
20. Cranial nerves, The Autonomic Nervous System
11. week: 21. The Eyeball and Visual system
22. The Organ of Hearing and Equilibrium.
12. week: 23. Hypothalamus, the Endocrine Organs I
24. The Endocrine Organs II
13. week: 25. Germ cells, Fertilization, Development of the fetus, Placenta,
26. Teratology
14. week: 27. Development of the Digestive System and Reproductive organs
28. Malformations

II. Practice topics/week
1. week: Introduction, upper and lower limbs
2. week: basic tissues, skin
3. week: skull, vertebral column, head, neck muscles
4. week: histology of the blood, vessels and the lymphoid organs
5. week: respiratory tract, thoracic cavity
6. week: respiratory tract histology, gastrointestinal tract histology I.
7. week: heart, large vessels
8. week: gastrointestinal tract histology II.; kidney and urinary tract histology
9. week: gastrointestinal tract, abdominal cavity
10. week: genital organs histology, spermatogenesis, oogenesis
11. week: urogenital system, pelvis
12. week: nervous system and sensory organs histology
13. week: nervous system: brain, spinal cord, cranial nerves, spinal nerves, main vessels and nerves on limbs, sensory organs
14. week: endocrine organs, placenta

Course requirements
Order of consultations: –
Prerequisites: Biology I., Medical Terminology, First Aid
Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.):
Attendance of a minimum of 75% of practices is necessary for the end–term signatures.
Knowledge testing during the semester: written (electronic) midterm test

Requirements of the signature at the end of the semester:
Attendance of a minimum of 75% practices is necessary for the end–term signatures.
Individual activity of the student during the semester (protocol, etc.): –
Performance control in the examination period (final, semi-final): semifinal exam
Performance control in the examination period (written, oral, written and oral): written (electronic) semifinal exam
Prescribed external practice: –

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.):

List of course materials:
Lecture hall for the lectures. For the practices dissection practical room and histology practical laboratory, with the appropriate devices.
Scientific, course related researches, publications/essays: –
Biophysics (theory) II., Biophysics (practice) II.

Complete name of the course: Biofizika II.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Biophysics II.
English name of the course: Biophysics II.

Neptun-Code: GYKFIZ108E2A, GYKFIZ108G2A
Type of registration: compulsory
Institute: Department of Biophysics and Radiation Biology

Name of the tutor/lecturer: Dr. Levente Herényi associate professor, PhD
Phone: +36 1 4591-500/60222
E-Mail: herenyi.levente@med.semmelweis-univ.hu

Further tutors:
- Dr. Gergely Agócs senior lecturer, PhD
- Dr. Gabriella Csik associate professor, PhD
- Dr. Rita Galántai teacher, PhD
- Dr. Nikoletta Kósa assistant lecturer
- Dr. Ádám Orosz assistant lecturer PhD
- Dr. Gusztáv Schay senior lecturer, PhD
- Dr. László Smeller professor DSc
- Dr. István Voszka associate professor, PhD
- Dr. Ádám Zolcsák PhD student

Number of classes /week: 1.5 hours lecture, 2.5 hours practice
Credit points: 2 + 2

Course principles:
Biophysics plays a basic role in the education of pharmaceutical students. There are dual role of the subject: on one side it gives general knowledge of natural sciences, on the other side it gives theoretical and practical basis of application of physical principles and methods in pharmaceutical sciences.

Brief course summary:
In connection to the previous it helps the development of structured way of thinking. Through this one can find connection to the basic subjects and to the applied pharmaceutical subjects.

Course data

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>21</td>
<td>spring</td>
<td>in the exam period</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>2.5</td>
<td>–</td>
<td>–</td>
<td>35</td>
<td>spring</td>
<td>in the exam period</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week
1. week X–radiation and its interaction with matter.
2. week Basic electronic units and circuits. Amplifier.
3. week Signal transduction, signal selection.
4. week Sound, Ultrasound.
5. week Bases of radiisotope diagnostic methods.
6. week Transport phenomena, flow of fluids and gases.
7. week Diffusion, osmosis.
8. week Thermodynamic aspects of transport processes.
9. week Membrane potential, Action potential.
10. week Sensory phenomena, Laws of sensation.
11. week Optical spectroscopic techniques.
12. week Mass spectroscopy methods.
13. week Radio spectroscopy methods.
14. week Sedimentation and electrophoretic methods.

II. Practice topics/week
1. week Dosimetry, dose measuring devices.
2. week Coulter–counter. Electric counting of blood cells.
4. week Amplifier, signal processing.
5. week Gamma energy determination. Dual isotope labeling.
6. week Physical basis of electrocardiography.
7. week Audiometry. Determination of auditory threshold.
8. week Pulse generator (pacemaker).
9. week Imaging with gamma radiation.
10. week Diffusion and its significance in human body.
12. week Sensory function.
14. week Repetition.

Course requirements
Order of consultations: Weekly in the exam period.
Prerequisites: Biophysics I.
Semester acceptation conditions: (successful course attendance, mid-term tests, absence, etc.):
Participation on at least 75 % of the practices. Lab. report must be done about the measurements. The missed measurements can be made up within the 4 weeks cycle.

Knowledge testing during the semester:
Midterm tests on the 6th and 11th weeks. Retake is possible on the 13th week.

Requirements of the signature at the end of the semester:
1. At least 50 points in the test in Physical bases of biophysics.
2. Participation on at least 75 % of the practices, (in case of more than 3 absences the signature for the semester is denied.)
3. Acceptance of lab. reports.
4. The practice grade should be at least 2.

Individual activity of the student during the semester (protocol, etc.): Lab. report should be made about all the measurements.
Performance control in the examination period (final, semi-final): Final exam
Performance control in the examination period (written, oral, written and oral): Written and oral
Prescribed external practice: –

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.):
Medical biophysics practices (Semmelweis Publisher, 2015)

List of course materials: –
Scientific, course related researches, publications/essays: –
Biology (theory) II., Biology (practice) II.

Complete name of the course: Biológia II.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Biol II.
English name of the course: Biology (theory) II., Biology (practice) II.

Neptun-Code: GYKGEN109E2A, GYKGEN109G2A
Institute: Department of Genetics, Cell- and Immunobiology Semmelweis University, Faculty of Medicine

Name of the tutor/lecturer: Prof. Dr. Edit Buzás DSc

coordinator: Dr. Orsolya Láng Phone: 2102940/56251
E-Mail: lang.orsolya@med.semmelweis-univ.hu
PhD

Further tutors: Dr. Sára Tóth Associate Professor
Dr. Valéria László Associate Professor
Dr. András Kristóf Fülöp Associate Professor
Dr. Hargita Hegyesi Associate Professor
Dr. László Köhidai Associate Professor
Dr. Viola Tamási Associate Professor
Dr. Zoltán Wiener Associate Professor
Dr. Tamás Visnovitz Assistant professor

Number of lectures/week: 2 (lecture) + 2 (practice) Credit points: 2 + 2

Course principles:
Beside the basics of Mendelian genetics and cytogenetics, pharmacogenetics and genomics are discussed as well as the main molecular genetic techniques are presented. The subject provides theoretical background for Microbiology and Immunology.

Brief course summary:
The subject Biology II. discusses Mendelian genetics, molecular genetics and genomics. The most significant characteristic of inheritance in human and the techniques applied in medical field are studied.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>Spring</td>
<td>6 (during exam period)</td>
</tr>
<tr>
<td>semester of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>completing the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>Spring</td>
<td>6 (during exam period)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>28</td>
<td>Spring</td>
<td>6 (during exam period)</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week
1. week Transmission of the genetic information. Meiosis
2. week Introduction to human genetics. The human genome.
3. week Genetic variation I.
4. week Genetic variation II.
5. week Epigenetics
6. week Citogenetics
7. week Autosomal inheritance I.
8. week Autosomal inheritance II.
9. week Role of sex in inheritance; Genetics of sex
10. week Genetics of biological processes (Genetics of stem cell and tumor biology)
11. week Introduction to genomics; Methods in genomics
12. week Genetics and genomics of complex trait and disorder
13. week Pharmacogenetics and nutrigenomics
14. week Gene and genome manipulation
(The order of lectures may vary.)

II. Practice topics/week
1. week Mitosis
2. week Meiosis and gametogenesis
3. week Cytogenetics I.
4. week Cytogenetics II.
5. week Study of monogenic inheritance; Pedigree analysis
6. week Factors effecting the expression of genotype
7. week Midterm I.
8. week Molecular genetics I.
9. week Molecular genetics II.
10. week Molecular genetics III.
11. week Medical applications of genetic methods I.
12. week Medical applications of genetic methods II.
13. week Midterm II.
14. week Complex inheritance
(The order of lectures may vary.)

Course requirements
Order of consultations: during exam period 1/week
Prerequisites: Biology I.
Semester acceptance conditions (successful course attendance, mid-term tests, absence, etc.): Student must visit 75% of the lessons. More than three absences from the practice or more than four absences from the lecture invalidate the semester, no signature is given. There are no extra practices. There are two midterms during the semester. To get practice grade and signature the average of the midterms has to be 2.0. Missed or failed midterms might be repeated two times. No improvement of midterm grade.

Knowledge testing during the semester:
The two midterm tests are written and contain questions from theoretical and practical part.

Requirements of the signature at the end of the semester:
Practice grade and not more than four absences from the lectures.
Individual activity of the student during the semester (protocol, etc.) –
Performance control in the examination period (final, semi-final): final
Performance control in the examination period (written, oral, written and oral): written
Prescribed external practice: –

List of teaching materials (List of textbooks, hand–outs, scripts, etc.):
PowerPoint presentations on our web site (http://gsi.semmelweis.hu)

List of course materials:
Genetics and genomics (e-book) – http://gsi.semmelweis.hu/ (The user name and password is on course datasheet of the Neptun)
Scientific, course related researches, publications/essays:
The activity of the Department of Genetics, Cell- and Immunobiology (DGCI) includes teaching, research and diagnostics. Our scientific work focuses on a broad scale in the fields of immunology, cell biology and genomics. The main research groups of the Department: National Heart Program, Extracellular Vesicle; Medical Genomics; Chemotaxis; Experimental Translational Immunomics and Molecular Cancer Biology. The applied methodologies include: cell- and molecular biological, immunological, genomic and bioinformatic techniques and procedures.
Communication and Information Networks

Complete name of the course: Kommunikáció és információs hálózatok
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Communication and Information Networks
English name of the course: Communication and Information Networks

Neptun-Code: GYKMAG120G1A
Type of registration: compulsory
Institute: Institute of Behavioural Sciences

Name of the tutor/lecturer: Dr. Pilling János PhD, Associate professor
Phone: +36 (1) 2102930/56457
E-Mail: pilling.janos@med.semmelweis-univ.hu
Dr. Hankó Balázs

Further tutors: Dr. Tóth Mónika Ditta PhD, assistant professor

Number of classes /week: 1 lecture, 1 seminar
Credit points: 2

Course principles:
Proper communication has an essential role in pharmaceutical practice. The main objectives of the course are the following:

– to teach basic skills to improve pharmacists’ communicational techniques of information gathering, active listening and patient education
– introduction of pharmaceutical communication with the usage of digital and social media

Brief course summary:
The education will be interactive and practical. In the first part of the semester students will get familiar with the basic concepts of pharmaceutical communication with a special focus on information delivery, patient education, active listening, and empathy. Shared decision making will be also covered, such as improving compliance and promoting lifestyle changes. In the second block of the course students will get familiar with online information sources, and the use of social media and infocommunication in pharmacy practice. In the third part of the semester students will participate on field practice to be able to observe patient–pharmacist interactions.

Course data

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>28</td>
<td>spring</td>
<td>–</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week
1. week Role of communication in pharmaceutical practice. Behavioural etiquette during pharmacist-patient interaction.
2. week Role of non-verbal communication and empathy in pharmacists’ work.
3. week Barriers of information delivery in patient education. Improving health literacy.
4. week Shared decision-making. Different ways of persuasion.
5. week Model of behavioural change. Promoting lifestyle changes in the pharmacy.
6. week Information search on the Internet: professional and layman information sources.
7. week Basic rules of social media usage.
8. week Pharmaceutical options of social media usage.
9. week Possibilities of modern infocommunication in the pharmacy.
10. week Social media, new ways and perspectives of infocommunication
11. week Field Practice
12. week Presentation about field practice
13. week Presentation about field practice
14. week Preparation for the written exam

II. Practice topics/week
1. week Role of communication in pharmaceutical practice. Behavioural etiquette during pharmacist-patient interaction.
2. week Role of non-verbal communication and empathy in pharmacists’ work.
3. week Barriers of information delivery in patient education. Improving health literacy.
4. week Shared decision-making. Different ways of persuasion.
5. week Model of behavioural change. Promoting lifestyle changes in the pharmacy.
6. week Information search on the Internet: professional and layman information sources.
7. week Basic rules of social media usage.
8. week Pharmaceutical options of social media usage.
9. week Possibilities of modern infocommunication in the pharmacy.
10. week Social media, new ways and perspectives of infocommunication
11. week Field Practice
12. week Presentation about field practice
13. week Presentation about field practice
14. week Written exam

Course requirements
Order of consultations: Seminars will ensure the possibility of ongoing consultation with the seminar leader.
Prerequisites: Introduction to Pharmaceutical Studies
Semester acceptance conditions (successful course attendance, mid-term tests, absence, etc.):
The participation at minimum 75% of the practice seminars is the prerequisite of the signature. Participation on field practice and short presentation about the experiences.
Knowledge testing during the semester: Written examination at the end of the semester, on the last practice.

Requirements of the signature at the end of the semester:
The participation at minimum 75% of the practice seminars is the prerequisite of the signature. Presentation about the field practice experiences.

Individual activity of the student during the semester (protocol, etc.):
Presentation about the experiences during field practice.
Performance control in the examination period (final, semi-final): semi-final
Performance control in the examination period (written, oral, written and oral): written examination
Below 50%: 1
50%–65%: 2
66%–75%: 3
76%–85%: 4
85%–100%: 5
Prescribed external practice: Students take part on field practice in a pharmacy. They will observe communicational aspects of pharmacist–patient interaction.

List of teaching materials: (List of textbooks, hand-outs, scripts, etc.)

List of course materials: –
Scientific, course related researches, publications/essays: –
Basics of Economics (theory)

Complete name of the course: Közgazdaságtani alapismeretek (elmélet)
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Közg. Alapism.
English name of the course: Basics of Economics (theory)

Neptun-Code: GYKEMK121E1A
Type of registration: obligatory
Institute: EKK Egészségügyi Menedzserképző Központ

Number of classes /week: 1
Credit points: 1

Course principles:
The general objective of the course is to present and describe the importance of the economic thoughts and principles in the everyday life. The focal point is to give support to the students to make good decisions and to be efficient at work.

Short description of the course:
Despite the lay opinion on the role of Economics, it is not mainly about money. Economics is about to assist decision making in situations, where resources are scarce compared to the needs. The aim of studying economics is to understand the decision–making process behind allocating the currently available resources, the unlimited needs confronts the limited resources. In simple words, seeking for the best decisions always comes with an unavoidable inevitable choice between alternative uses of the resources available. Using examples from the field of pharmacy brings students closer to the understanding of using economic principles during their future career. The consequences of economic actions can be evaluated from different perspectives. Students must learn how to use them when they are about to make decisions or just about to evaluate the possible alternatives.

The course includes for major parts as follows:
Part 1: Intends to present the goals and the content of the economic thoughts, including definitions of economic terms.
Part 2: Focuses on the use of Economics at macro level, the level of the national economy. The three major problems people face when organizing the economy are what, how and for whom to produce. Answering the three questions raises several concerns like economic growth, economic equilibrium, employment, inflation, state finance etc.
Part 3: This part is about microeconomics, which includes terms like demand, supply, corporate profit, calculating break–even point etc.
Part 4: Gives an introduction to applied economics at both macro and micro level. Using the fundamental principles of economics students get an insight into the basics of business decisions. Some methods will be presented as break even analysis and cash flow analysis. The relevance and the principle of using cost–benefit analysis in health care will also be discussed.

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>14</td>
<td>spring</td>
<td>–</td>
</tr>
</tbody>
</table>
Semester program

Lecture topics/week:
2. week: The justification of economics: Scarcity. Forms of scarcity and the ways of addressing them.
4. week: Evaluation of decisions. Did we make a good decision? What are the criterias for good decisions? Defining and evaluating benefits and costs.
5. week: Summary of economic principles. Video presentation. Comprehensive approach to costs and benefits in economics and beyond economics. Case study on the average speed of driving a car.
7. week: The role of market in economic organization. Will the invisible hand give a solution?
8. week: The role of the government in regulating the economy. What is the role of the government in the drug market?
10. week: Economics of operating private and public companies. Insight into the world of microeconomics. Determinants of the operational results.
11. week: Viewing and understanding management performance. The economic nature of revenues and costs. Types of costs.
13. week: Continuing the previous lecture, presentation and discussion of cases week
14. week: Summary, takeaways

II. Practice topics/week

Course requirements
Order of consultations: two occasions upon request prior to final tests
Prerequisites: –
Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.): result of mid-term tests, number of absences
Knowledge testing during the semester: mid-term tests
Requirements of the signature at the end of the semester: based on semester acceptance conditions

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.):
Hand–outs including the PPT slides of the lectures
Physical Chemistry for Pharmacists (theory+practice)

Complete name of the course: Fizikai kémia gyógyszerészeknek
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Physical Chemistry
English name of the course: Physical Chemistry for Pharmacists (theory+practice)

Neptun-Code: GYKGY1122G1A
Type of registration: obligatory
Institute: Department of Pharmaceutics
Complete name of the course: Physical Chemistry

Name of the tutor/lecturer: Dr. István Antal Professor, PhD, Dr. Habil
Phone: 36 1–2170914
E-mail: antal.istvan@pharma.semmelweis-univ.hu

Deputy: Dr. Krisztina Ludányi
E-mail: ludanyi.krisztina@pharma.semmelweis-univ.hu
associate professor

Further tutors: Dr. Miklós Zrínyi professor emeritus
Dr. Krisztina Ludányi associate professor
Dr. Angéla Jedlovszky-Hajdú associate professor
Dr. Nikolett Kállai-Szabó senior lecturer
Dr. Lívia Budai senior lecturer

Number of lectures /week: 2
Number of practices /week: 2
Credit points: 4

Course principles:
The aim of the course is to acquire the physicochemical basics necessary for pharmaceutical knowledge. Knowledge of physical chemistry provides a solid foundation for understanding drug manufacturing processes and drug control methods as well as the behavior of drugs in the body.

Brief course summary:
Physical chemistry deals with the internal structure of matter, the interactions dependent on the structure of matter, and the most common laws of influencing changes in the material system. Students will become familiar with basic physicochemical knowledge in the areas of thermodynamics, reaction kinetics, electrochemistry, rheology, interfacial phenomena, transport processes, and measurement data processing. The material of the lectures and exercises provides a basis for understanding the physical and physicochemical methods in the pharmacopoeia.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester of completing the course</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>56</td>
<td>Spring</td>
<td>When necessary</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week
1. Fundamentals of chemical thermodynamics I. (Typical thermodynamic quantities, internal energy, entropy I, II main theorem)
2. Fundamentals of chemical thermodynamics II. (Theorem III, statistical interpretation of entropy, environmental effects, enthalpy, free energy, free enthalpy, direction of processes)
3. Physical properties and state changes of gases, liquids, solids (phase rule, gas laws, amorphous and crystalline materials, morphology, polymorphism)
4. Solutions and mixtures (free enthalpy, chemical potential, activity, ideal and non–ideal mixtures, solubility, solvation, hydration, solubilization, colligative properties)
5. Synthetic and biopolymers (prim., sec., tert., and quaternary structures, elasticity, solubility, fractionation, gelation)
6. Physical equilibria (phase equilibria, distribution, dissociation, partition coefficient)
7. Kinetics of homogeneous reactions (order, molecularity, rate equation, catalysis, inhibition, autocatalysis, kinetics of enzyme reactions)
8. Chemical equilibrium (equilibrium constant, simple and complex equilibria, ligand equilibria, cooperative equilibria)
9. Properties of electrolyte solutions (dissociation, acidity, alkalinity, colligative properties)
10. Kinetics of heterogeneous chemical reactions, basics of electrochemistry
11. Interfacial phenomena (adhesion, surface tension, wetting, adsorption, isotherms)
12. Transport phenomena I. (diffusion, transfer transport, membrane diffusion, osmosis, permeability)
13. Transport phenomena II (rheology, viscosity, Newtonian and non–Newtonian fluids, flow profiles)
14. Heterogeneous processes (specific surface area, adsorption, desorption, dissolution kinetics, electrodes, kinetics of electrode reactions)

II. Practice topics/week
1. Introduction, methods. Aspects of evaluation of measurements, laboratory order.
2. Thermoanalytical and calorimetric tests. Melting point (eutectics), heat of fusion determination, DSC analysis.
3. Examination of crystalline and amorphous materials by powder X–ray, DSC, melting point measurement, morphological characterization.
5. Determination of partition coefficient
7. Reaction kinetics II. Effect of temperature on reaction rate (Arrhenius relation).
8. Reaction kinetics III. Secondary reaction (saponification at equal molar concentrations)
9. Reaction kinetics IV. Kinetics of enzyme reactions (hydrolysis of fats in the presence of lipase). Zero order reaction (hydrolysis in acetylsalicylic acid suspension or dissolution of the drug from a tablet)
10. Determination of weak acid dissociation constant (pH measurement, spectrophotometry)
11. Effect of surface tension on droplet formation (droplet number determination, Donnan–pipette)
12. Determination of specific surface area (activated carbon). Wetting angle measurement by image analysis.
13. Rheology, viscosity measurement (Ostwald, rotational), flow and viscosity curves, thixotropy, viscoelasticity.
14. Investigation of dissolution rate and diffusion rate (eg. benzoic acid, calcium acetylsalicylate), effect of surface/particle size

Course requirements
Order of consultations: Upon individually agreed appointments with the trainers at practical courses and the lecturers.
Prerequisites: Gen. and Inorg. Chem. I., Biophysics I., Mathematics for Pharm.

Semester acceptation conditions (successful course attendance, mid-term tests, absence, etc.):
Absences can be accepted according to the Examination and Studies Regulation.

Knowledge testing during the semester:
Completion of 2 written reports from the material of the lectures and practices with at least sufficient results. Replacement option is according to the Examination and Studies Regulation.

Requirements of the signature at the end of the semester:
The condition of acceptance is a valid practical course grade and completion of reports.

List of teaching materials:
Hungarian Pharmaceutical Terminology (practice) II.

Complete name of the course: Magyar gyógyszerészeti szaknyelv (gyakorlat) II.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Hungarian Pharmaceutical Terminology II.
English name of the course: Hungarian Pharmaceutical Terminology (practice) II.
Neptun-Code: GYKLEK155G2A
Type of registration: obligatory
Institute: Division of Foreign Languages and Communication, Faculty of Health Sciences
Name of the tutor/lecturer: Alexandra Bakó language teacher
Phone: (1) 48-64962
E-Mail: bako.alexandra@se-etk.hu

Further tutors: Borda Szandra language teacher
Nagyné Görász Judit language teacher
Kovács Ildikó language teacher
Nagy Borbála language teacher
Tick Vera language teacher
Tóth Zsuzsanna language teacher

Number of classes /week: 2
Credit points: 0

Course principles:
The role of this subject is to help students acquire the basic vocabulary, grammar and language skills they need for the effective communication in the language they use during their field practice both in their everyday life /survival language/ and in their academic studies.

Brief course summary:
The second semester is dedicated to learning basic general vocabulary and grammar. Students acquire basic structures and the vocabulary for everyday topics /e.g. shopping, food, housing etc./. The course places special emphasis on phrases essential for everyday communication, e.g. introductions, greetings, getting/giving information etc. and on phrases needed in basic communication at a pharmacy.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester of completing the course</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
Semester program

Practice topics/week:
Week 1 Giving directions
Week 2 Locatives
Week 3 Asking about time
Week 4 When to take the medicine
Week 5 Body parts
Week 6 Basic verbs – talking about diseases
Week 7 Basic verbs – asking about symptoms
Week 8–9 How to take the medicine
Week 10 Warning about side effects
Week 11 Plural forms of nouns
Week 12–13 Serving clients at the pharmacy
Week 14 Final test (written and oral)

Course requirements
Order of consultations: Individual consultations by email or in person on meeting formerly agreed upon with the teacher via email.
Prerequisites: Hungarian Pharmaceutical Terminology I.
Semester acceptance conditions (successful course attendance, mid-term tests, absence, etc.):
An attendance of 75% minimum is required to get the signature.
The student must have a minimum average of 2.00 based on the tests in class to pass the subject.

Knowledge testing during the semester:
Beside the final test the teacher may evaluate the students’ performance with the help of short tests.
Requirements of the signature at the end of the semester: An attendance of 75% minimum and taking the final test.
Individual activity of the student during the semester (protocol, etc.): homework in the forms of language practice tasks.

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.)
Physical Education II.

Complete name of the course: Testnevelés II.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: P. E. II.
English name of the course: Physical Education II.

Neptun-Code: GYKTSI116G2A
Type of registration: compulsory
Institute: Semmelweis University’s Centre for Physical Education and Sports

Name of the tutor/lecturer: Várszegi, Kornélia director
Phone: 06-1/264-14-08
E-Mail: varszegi.kornelia@semmelweis-univ.hu, sportkozpont@semmelweis-univ.hu

Further tutors: Doharné Buczkó, Anikó P.E. teacher
Kalms, Dániel P.E. teacher
Lehel, Zsolt P.E. teacher
Sótónyiné Hrehuss, Nóra P.E. teacher
Várszegi, Kornélia P.E. teacher
Weisz, Miklós P.E. teacher

Number of classes /week: 1 class (practice)/week
Credit points: 0 credit

Course principles:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

Brief course summary:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice – so that they can represent those in their later practice, through their own health-promoting behavior.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester of completing the course</td>
<td>2</td>
<td>1</td>
<td>14</td>
<td></td>
<td>spring</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Semester program

Practice topics/week
1st week: General information: Accident, fire and environmental knowledge. Requirement for acceptance of the semester system, the structure of the classes and the presentation of the university recreational sports opportunities for extra-curricular activities.
2nd week: Basketball: Dribbling, passing and shooting drills in order to improve fine motor skills.
3rd week: Bench exercises: Using the dimensions of the sport bench by running, skipping, jumping, lifting etc. exercises.
4th week: Rubber band exercises: Strength and coordination training by taking advantage of the elastic features of the object.
5th week: Floorball: Introducing the sport to the Students by exposing the major rules, proper technique of stick handling. Passing and shooting drills.
7th week: Volleyball: Introducing the fundamental elements of the game (serves, hits, digs etc.) Exposing the major rules and techniques.
8th week: Frisbee: Taking the next step into the game by applying tactical elements in match situations. Passing and catching drills in different moving forms.
9th week: Ruffier test and ball skill developing exercises
Compare the results with the previous test to bring the importance of the health of the cardiovascular system to the attention. Sport games on the side (Dodge-ball, King of the court etc.)
10th week: Circuit training: General strengthening drills at each station. Applying different intensity level, regarding the various conditions of the Students.
11th week: Tennis: Involving the new strokes into the learning process: form of serves, the volleys, the smash etc.
12th week: Badminton: Introducing the new technical and tactical elements of the game (drop shots, lobs, smash etc.) Exposing the rules of doubles.
13th week: Core exercises: Relative (own body) weight exercises applying different equipment (hand weights, rubber band etc.) with the aim of postural correction, by strengthening the core muscles in order to avoid spinal deformations.
14th week: Box exercises: Applying the sport box by jumping, lifting, slaloming, carrying (etc) it. By this enhance the level of strength and stamina.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! (2×90 mins./week sport training (competitive sport, for qualified only): cheerdance, cheerleader, men’s football, handball, basketball, volleyball)

Course requirements
Order of consultations: –
Prerequisites: –
Semester acceptance conditions (successful course attendance, mid-term tests, absence, etc.):
The number of active participations for physical education classes is 9 (for trainings 15 times!), regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Knowledge testing during the semester:
There is no mandatory control during the term.

Requirements of the signature at the end of the semester:
Active participation in practice classes 9 times under the conditions described above.
May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate to the TSK or
2. does sports regularly and submits a certificate of association and federation to the Foreign Students Secretariat until the last study day in the 4th week of the semester. On the basis of the submitted application and its annexes, the TVB decides on the exemption of both the Hungarian and foreign students.
FACULTY OF PHARMACEUTICAL SCIENCES

Curriculum of the credit-based training for second year students in the 2021/2022 academic year
3. SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Chemistry (practice) II.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Gen. and Inorg. Chem. II., Analytical Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKASK117G2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Chemistry (theory) II.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>GYKASK117E2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colloid Chemistry (theory and practice)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Physic. Chem. for Pharm., Biophysics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGYI072G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYKSKZK123G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (theory) I.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKSKZK123E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Anatomy, Biology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKTLM124G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology (theory) I.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKTLM124E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry (theory+practice) I.</td>
<td>1.5</td>
<td>1.5</td>
<td>2</td>
<td>Gen. and Inorg. Chem. II., Biology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKBMT069G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Immunology (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKGEN070E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) III.</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Hungarian Pharmaceutical Terminology (practice) II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKLEK155G3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education III.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYKTSI116G3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or practical mark</td>
</tr>
</tbody>
</table>

Total: 17.5 16.5 30

* Counts to the qualification of the diploma
Analytical Chemistry (theory) II. Analytical chemistry (practice) II.

Full name of the subject: Analitikai kémia (elmélet) II.
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Analytical Chemistry (theory) II., Analytical chemistry (practice) II.
German name of the subject: Analytische Chemie (Vorlesung) II, Analytische Chemie (Praktikum) II
Neptun code of the subject: GYKASK117E2A, GYKASK117G2A
Type of registration: obligatory
Responsible department: Department of Analytical Chemistry, Eötvös Loránd University

Dr. Krisztina Kurin-Csörgei
head of department, associate professor, PhD, Dr. Habil
Phone: (+36)1-372-2500/1241
E-Mail: kurin@chem.elte.hu

Dr. Béni Szabolcs
head of institute, associate professor, PhD, Dr. Habil
Phone: 476-3600 / 55304
E-mail: beni.szabolcs@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Katalin Perényi-Zih (practice) assistant professor
István Molnár (practice) associate professor
Edina Kiss (practice) associate professor
PhD students (practice)

Classes per week: 4 lectures, 4 practices
Credit point: 4+4

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Analytical Chemistry is a scientific discipline and the teaching material, that develops and applies methods, instruments and strategies to obtain information on the composition and the nature (structure) of matter in space and time. Analytical Chemistry is concerned with two main aspects: (1) determination of the composition of a sample of matter or of a system – this means the identification of the components (qualitative analysis) and (2) the determination of the quantity of the components (quantitative analysis).

Short description of the subject:
The aim of analytical chemistry is to obtain qualitative and quantitative information about the chemical composition and structure of materials. Quantitative Analytical Chemistry is based on the determination of quantity of the components using different chemical and instrumental methods.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>56</td>
<td>56</td>
<td>–</td>
<td>–</td>
<td>112 (56+56)</td>
<td>Autumn semester</td>
<td>–</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):

8. week: Possibilities of instrumental end point detections (summary). Conductometry (principle and applications for the titration of strong and weak acids with different titrants).

Topics of practical classes (pro week):
1. week: Taking over laboratory bench and equipments; Safety and order in the laboratory; The schedule of the semester; Practical and theoretical requirements in the semester; Chelatometry (introduction); Determination of bismuth ions.
2. week: Chelatometric determination of calcium and magnesium ions in the presence of each other (in mineral water).
3. week: Chelatometry: Determination of aluminum ions in “Aluminium aceticum tartaricum solutum; Determination of copper and zinc ions in the presence of each other.
4. week: Argentometry: Determination of bromide ions by Volhard’s and Fayans’ methods.
5. week: Redox titrations; Permanganometry: Standardization of ≈ 0.1N potassium permanganate solution; Determination of hydrogen peroxide content in tablet “Hyperol”; Determination of the total iron content by Zimmermann-Reinhardt method (1/2 group); Determination of bromide ions (Winkler’ method).
6. week: Chromatometry: Determination of Mohr salt; Cerimetry: Determination of amidazophene.
7. week: Test I. Bromatometry: Determination of ascorbic acid (Vitamin C) in tablets (e.g.VitC, Rutascorbin, Béres C); Determination of azophene.
8. week: Bromatometry/Iodometry: Determination of phenol in water / acetyl salicylic acid content in tablets (e.g. Aspirin, Kalmopyrin, Istopyrin) by Koppeschaar’s method. Iodometric determination of copper (II)-ions. Retake I.
9. week: Iodometry/Iodometry: Determination of iodide by Winkler’s method; Determination of mannitol by Malaprade’s reaction with periodate.
10. week: Potentiometric titration of acetic acid; Potentiometric titration of bromide content of “Elixirium thymi composita”; Direct potentiometric determination of fluoride content. in tooth paste.
11. week: Computer aided learning of modern instrumental analytical methods (HPLC); HPLC measurement (separation of medicine sample); Ion chromatographic measurement (theory and determination of anions in “Evian” water).
12. week: Spectrofluorencency: Determination of quinine in “Tonic”; Spectrophotometric determination of phosphate content in egg shell.
13. week: Test II. Conductometric determination of Betaine hydrochloride; Conductometric determination of acid contents in red wine; Water determination by Karl Fischer’ titration. (Extra lab: Supplements).
14. week: Retake II. Supplements; Closing

Schedule of consultations: at the request of students (in the period prior to the tests; etc.)

Course requirements
Prerequisites: Analytical chemistry I., General and Inorganic Chemistry II.
Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: The student should be present at least in 75% of the total number of laboratory practices scheduled during the semester. All exercises or measurements must be performed according to the time table. In case of absences the measurements must be completed in an “extra lab”; or-in justified cases – at the end of the semester.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
The students should write 2 major test-papers from two different parts of the subject during the semester in a time announced in advance and scheduled during the laboratory practices. The major tests cover all measurements performed in the laboratory practices and/or discussed during the lecture, the theoretical background and numerical problem solving. After each test we provide the opportunity for correction of the mark in the form of “retake test” and the marks of the supplementary tests are taken into account when determining the final grade. Shorter oral or written questionings related to the laboratory training can occur during the entire semester. All written tests and oral answers will be evaluated according to a five scale grading system. Minimum 50% of performance is required for passing the tests. The students are allowed to use their own non-programmable calculator. The use of mobile phone, smart watch, tablet, etc. is forbidden. If the students use any kind of illegal helps when he/she takes oral or written tests, his/her practical mark is automatically “unsatisfactory”.

Requirements of signature: (practice)
The final grade of the laboratory training on analytical chemistry will be established from considering the accomplishments of both theoretical and practical requirements. The theoretical requirement for passing the semester is that the average of two marks obtained by the two major tests (or retake tests) should reach a minimum value of 2.0 and the very last mark is not “unsatisfactory” (i.e. higher than 1.). The practical requirements are fulfilled if the final mark for the measurements is minimum 2. The final practical grade is determined by considering the grades obtained for the tests and the final mark of the measurements. Requirement for allowing to take final oral exam is to have a valid (min. 2) mark on the subject of laboratory practice.
Number and type of projects students have to perform independently during the semester and their deadlines:
A written report should be prepared about the completion of each laboratory exercise. The results of the measurements should be presented to the supervising teacher for evaluation within a week after completion of the exercises. In default of doing so the measurements are marked as “unsatisfactory” and it should be repeated during the time of “extra lab”.
Type of the semester-end examination: signature, practical grade, final
Form of the semester-end examination: final oral exam

List of teaching materials (List of textbooks, hand-outs, scripts, etc.):
Materials of the lectures and practices can be downloaded from Moodle E-learning system and http://www.webkvanti.chem.elte.hu (web page).
Organic Chemistry (theory) I., Organic Chemistry (practice) I.

Full name of the subject: Szerves kémia (elmélet) I., Szerves kémia (gyakorlat) I.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Org Chem
English name of the subject: Organic Chemistry (theory) I., Organic Chemistry (practice) I.
German name of the subject: Organische Chemie (Vorlesung+Praktikum) I

Neptun code of the subject: GYKSZK123E1A; GYKSZK123G1A
Type of registration: obligatory
Responsible Department: Semmelweis University, Department of Organic Chemistry

Responsible tutor: Dr. Petra Dunkel assistant professor, PhD
Phone: +36-1-476-3600/53006
E-mail: dunkel.petra@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Andrea Czompa assistant professor, PhD
Dr. Balázs Balogh assistant professor, PhD
Dr. Levente Kárpáti assistant professor, PhD
Dr. Ruth Deme assistant lecturer, PhD
Dr. Dóra Bogdán assistant lecturer, PhD
Dr. Róbert Ludmerczki assistant lecturer, PhD
Kata Antal assistant lecturer, PhD
Dr. Mártan Ivánczi PhD student
Nikolett Varró PhD student

Classes per week: 4 lectures, 4 practices
Credit point(s): 4+4

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The course includes and discusses the state-of-the-art knowledge of synthetic and structural organic chemistry subjects to develop problem-solving skills for organic chemistry and biomolecular sciences.

Short description of the subject:
To satisfy the requirements of the Faculty of Pharmacy, the course in Organic Chemistry has two main purposes:
a) The presentation of modern concepts and subject-matter concerning the structures, syntheses, physical and chemical properties, structure-property relationships, and practical applications of organic compounds, with special emphasis on bioactive molecules.
 The presentation and practical applications of the most important methods and tools of organic chemistry.
b) To provide a solid molecular, organic chemical basis for subsequent subjects in the curriculum of students at the Faculty of Pharmacy.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
2. week: Chirality, absolute configuration according to Cahn-Ingold-Prelog. Stereochemistry of organic compounds containing more than one center of chirality. Axial chirality, determination of absolute configuration. Prochiral compounds: alkenes, imines or carbonyl compounds. Tautomerism, Newman and Fischer-projection. Classification of reactions: ionic or radical reactions. Electron-egativity, reactivity of reagents: inductive, mesomeric and steric effects. Kinetic and thermodynamic control.
6. week: SNAr reactions of aromatic compounds. Linear free energy relationships. Structure of halogenated hydrocarbons, physical, biological properties, preparations. Nucleophilic substitution reactions: SN1, SN2, SNi, elimination reactions: E1, E2, E1cB-factors influencing ration of SN vs. E reactions: substrate, solvent, temperature effects, role of the base, of the leaving group, stereochemical consequences.
8. week: Organic sulfur compounds and amines: structure, preparation, physical and chemical properties, more important derivatives.
9. week: Aromatic diazonium and nitro compounds, organophosphorus compounds: structure, preparation, physical and chemical properties
10. week: Nomenclature of organic compounds II. Oxo compounds I: aldehydes and ketones-structure, preparation, physical and chemical properties. Addition to the carbonyl group. (Enolate chemistry I.)
11. week: Carboxylic acids and their derivatives: preparation, reactivity, nucleophilic reactions at the acyl carbon atom, physical, chemical and biological properties. (Enolate chemistry II.)
12. week: Substituted carboxylic acids, dicarboxylic acids and their derivatives. Synthetic applications of ethyl acetoacetate and diethyl malonate.
14. week: Carbohydrates II. Carbonic acid and derivatives.

Topics of practical classes (pro week):
1. week: —
3. week: Introduction into cheminformatics.
5. week: Recrystallization of 4-bromoacetanilide. Melting point determination (presentation).
6. week: Stereochemistry of SN2 and SE2 reactions and interpretation of the transition state. Aliphatic and aromatic hydroxyl and halogen compounds: basic properties of substitution and elimination reactions and their mechanism.
7. week: Preparation and recrystallization of 4-bromoacetanilide.
9. week: Benzocaine
10. week: Aldehydes and ketones. Addition to the carbonyl group.
 Reactions of α-hydrogen of aldehydes and ketones.
11. week: (E,E)-1,5-diphenylpent-1,4-diene-3-one
12. week: Reactivity of carboxylic acids and their derivatives (acylation), reactions involving α-hydrogen.
13. week: Chromatography (thin-layer chromatography, column chromatography)
14. week: Supplement. Inventory Amino acids, peptides, proteins.
 Carbohydrates, carbonic acid derivatives

Schedule of consultations: as many times as students ask for consultation, at least 1 week before the date of consultation

Course requirements
Prerequisites: GYASKASKE2A General and inorganic chemistry II.

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
At the mid-term tests (two/semester) students have to answer in a written form questions on the subject-matter of the main lectures, the practicals and the seminars, the dates of which are fixed at the beginning of the semesters. The value of the midterm test can be either ranging 2-5 or failed. If the test is failed or the student did not attend it, the student must attend the following makeup test. If the makeup test is failed, a second makeup test should be written. If any of the makeup tests reach the passmark, then the midterm test is accepted. If also the second makeup test is failed, the student does not get signature for the semester, they are not allowed to sit in the semi-final examination.
Grades for the main and makeup mid-term tests of the same topic are not averaged.
If necessary, students may make up for missed or unsuccessful experiments at a proper time after preliminary agreement with the leading instructor at the end of the semester. Without permission, the repetition of unsuccessful experiments is not allowed. Course material for the seminars (problem sets) are provided in advance to the students. Students are expected to consult these materials before the respective seminars. Attendance is mandatory at the seminars. Missed seminars could be attended at the same week (with another group) upon prior permission from the leading instructor. If anyone has 2 or more absences from the seminars, they must pass a report from the topics of missing seminars, and this report must be accepted. Attendance on at least 75% of the practical course necessary for the signature by the end of the semester.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Lecture: two written mid-terms tests at the 8th and 12th week of the semester, each followed by two makeup opportunities
Practice: At the beginning of each laboratory practical, students must write a short test on the theoretical and practical subject-matter of the experiment. These tests are immediately corrected by the leading instructor, and the practical work can be started only if the short test is accepted. If the test is not successful, the preparation in question can be performed only at the end of the semester. Two written mid-terms tests at the 8th and 12th week of the semester, each followed by two makeup opportunities.

Requirements of signature: at least grade 2 at each of the mid-term tests, passmark for the practical course
At the mid-term tests (two/semester) students have to answer in a written form questions on the subject-matter of the main lectures, the practicals and the seminars, the dates of which are fixed at the beginning of the semesters. The value of the midterm test can be either ranging 2-5 or failed. If the test is failed or the student did not attend it, the student must attend the following makeup test. If the makeup test is failed, a second makeup test should be written. If any of the makeup tests reach the passmark, then the midterm test is accepted. If also the second makeup test is failed, the student does not get signature for the semester, they are not allowed to sit in the semi-final examination. Grades for the main and makeup mid-term tests of the same topic are not averaged. On the basis of the attendance and the results described in the protocol, the performance of the practical tasks is validated by the signature of the leading instructor. At least 75% of the compounds or experiments must be graded as acceptable. Evaluation of the compounds is based on their yield and purity, and the average of the marks for each preparation gives the preparation mark. The appropriate parts of the laboratory note-book should be prepared in advance and after the completion of each practical, the note-book should be submitted to the leading instructor, together with the product of the experiment.
Number and type of projects students have to perform independently during the semester and their deadlines: mid-term tests, completing practicals
Type of the semester-end examination: Lecture: semi-final, Practice: practical grade
Form of the semester-end examination: written examination
Scientific, course related researches, publications, assays:

3. Experimental Organic Chemistry for students at the 2nd year of the Faculty of Pharmacy Compiled by teaching staff of Department of Organic Chemistry under the supervision of Péter Mátyus Department of Organic Chemistry, 2012
7. World of Molecules II Compiled by Péter Mátyus, contribution by Gábor Krajszovszky, formatted by Balázs Balogh, Department of Organic Chemistry, Semmelweis University, matyus.peter@pharma.semmelweis-univ.hu (2011) Pázmány Péter Katolikus Egyetem, Semmelweis Egyetem és a Dialóg Campus Kiadó-Nordex Kft. által alkotott konzorcium http://www.tankonyvtar.hu/hu/tartalom/tamop425/0006_Szerves_es_bikemia/adatok.html

Necessary equipment: laboratory glassware (students’ laboratory), reagents and further technical equipment for synthetic work
Physiology (theory) I., Physiology (practice) I.

Full name of the subject: Élettan (elmélet) I., Élettan (gyakorlat) I.

Program: undivided program (pharmaceutical)

Schedule: full-time

English name of the subject: Physiology (theory) I., Physiology (practice) I.

German name of the subject: Physiologie (Vorlesung) I., Physiologie (Praktikum) I.

Neptun code of the subject: GYKTLM124E1A, GYKTLM124G1A

Type of registration: obligatory

Responsible department: Semmelweis University, Department of Translational Medicine

Responsible tutor: Dr. Zoltán Benyó
Director, professor, PhD, DSc
E-Mail: benyo.zoltan@med.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
- Dr. Zoltán Benyó
 Professor, PhD, DSc
- Dr. Tamás Ivanics
 Associate professor, PhD
- Dr. Zsuzsanna Miklós
 Associate professor, PhD
- Dr. Margittai Éva
 Assistant professor, PhD
- Dr. Éva Ruisanchez
 Assistant professor, PhD
- Dr. Monori-Kiss Anna
 Assistant professor, PhD
- Dr. Éva Pál
 Assistant lecturer, PhD
- Dr. László Hricisák
 Assistant lecturer, PhD
- Dr. Ákos Zsembery
 Associate professor, PhD

Classes per week: 4 lectures, 2 practices

Credit point(s): 4 (theory) + 1 (practice)

Professional content, intent of acquirement and its function in order to implement the goals of the program:

The goal is to teach physiological processes from subcellular, cellular and tissue-level processes all the way to complex regulation on the organism level, including studies in humans. Special emphasis is laid on the presentation of complex adaptation processes playing an important role in health preservation, and on studying how physiological regulatory processes respond to changes in the external or internal environment.

Short description of the subject:

Theoretical lectures and practices are held every week. Seminars/Practices are for discussion of ongoing new lecture material and performing relevant physiological measurements in small groups. Also, the theoretical knowledge of the students is tested systematically in a written form on the seminars. Students are required to take 6 written exams in each semester, and a lab exam at the end of the semester. Based on the results of the tests and the lab exam students get a lab work grade at the end of the semester. Students take a written theoretical examination in the exam period.

| Course data |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| recommened term | Contact hours (lecture) | Contact hours (practice) | Contact hours (seminar) | Individual lectures | Total number of contact hours/semester | Normal course offer | Consultations |
| 3 | 56 | 28 | | | 84 | Autumn semester |
Program of semester

I. Lecture topics/week
2. week: Ionic equilibria and resting membrane potentials, ion channels and gates. Action potentials. Synaptic transmission.
4. week: Functional organization of the cardiovascular system. Dynamics of blood flow. Physiological functions of the blood vessels, their significance in the healthy functioning of the organism.
6. week: Biomechanical basis of cardiac functions. Cardiac pump. Signal transduction in the cardiomyocyte. Cardiac cycle. Electrical activity of the heart.
7. week: Conduction in cardiac fibers, cardiac excitability, cardiac rhythmicity, electrocardiography.
8. week: Cardiovascular control mechanisms. Local control mechanisms. Systemic control mechanisms.
11. week: Gas transport between the lungs and the tissues. Types of hypoxia. Regulation of respiration. Neural and chemical control of respiration. Adaptation of cardiorespiratory system and skeletal muscle to physical exercise.
14. week: Role of the kidneys in the control of blood pressure. Micturition. Physiological aspects of different forms of circulatory shock.

Topics of practical classes (pro week): II. Practice topics/week

Seminars are held every even week (1x45 min) and are for discussion of ongoing new lecture material. Also, the theoretical knowledge of the students is tested systematically in a written form on the seminars.
Practices are held every uneven week (3x45 min), and students are required to carry out relevant physiological measurements in small (2-3 persons) groups.
1. week: Introduction. Study of the electrical properties of the neurons in a simulatory setting (Sim Neuron)
2. week: Written test and consultation of the previous week’s theoretical material
3. week: Electroneurography, measurement of the impulse conduction velocity of a motor nerve.
4. week: Written test and consultation of the previous weeks’ theoretical material
5. week: Electromyography, study of the electrical properties of the skeletal muscle
6. week: Written test and consultation of the previous weeks’ theoretical material
7. week: Blood pressure measurement
8. week: Written test and consultation of the previous weeks’ theoretical material
9. week: ECG
10. week: Written test and consultation of the previous weeks’ theoretical material
11. week: Spirometry
12. week: Written test and consultation of the previous weeks’ theoretical material
13. week: Retake lab, exam consultation
14. week: Practical exam.

Schedule of consultations: Consultations take place on every even week
Course requirements
Prerequisites: Anatomy GYKANT118E1M, Biology II. GYKGEN109E2M

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Seminars are held every even week (1x45 min) and are for discussion of ongoing new lecture material. Also, the theoretical knowledge of the students is tested systematically in a written form on the seminars. Students are required to take 6 written exams in each semester. Passing level is 50% of the maximum points. Absence from a seminar yields grade 1 (fail) for that week. The worst grade of the 6 seminar tests is omitted from the calculation of the Lab Work Grade. Students are required to write at least 4 seminar tests, and achieve at least 2,0 average on these tests to become eligible for the semifinal or final exam.
Practices are held every uneven week (3x45 min), and students are required to carry out relevant physiological measurements in small (2-3 persons) groups. Practices are obligatory. Missing 25% of the practice time (7 hours practice time) results in denial of admission to the semifinal or final exam. A retake opportunity is provided for the students to make up for missed practices at the end of the semester. Students are required to take a lab exam at the end of the semester. Only those students can be admitted to the lab exam who completed at least 5 lab practices.
Based on the results of the seminar tests and the lab exam students get a Lab Work Grade at the end of the semester.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
The theoretical knowledge of the students is tested systematically in a written form on the seminars. The form of the test can be quiz or multiple-choice type questions. Students are required to take 6 written exams in each semester. Passing level is 50% of the maximum points. Absence from a seminar yields grade 1 (fail) for that week. The worst grade of the 6 seminar tests is omitted from the calculation of the Consultation Grade.

Requirements of signature:
The worst grade of the 6 seminar tests is omitted from the calculation of the Consultation Grade. The results of the remaining 5 tests are averaged to yield the Consultation Grade, which must be at least 2,0 to get the signature for the semester and become eligible for the semifinal or final exam.
Students are required to take a lab exam at the end of the semester. Only those students can be admitted to the lab exam who completed at least 5 lab practices.
Based on the Consultation Grade and the result of the lab exam students get a Lab Work Grade at the end of the semester. The Lab Work Grade is calculated by averaging the Consultation Grade and the result of the lab exam (50-50%).
Further requirements of the signature at the end of the semester is to participate on at least 75% of the practices.

Type of the semester-end examination: practical grade, semi-final
Form of the semester-end examination: written exam

Scientific, course related researches, publications, assays:
Biochemistry (theory+practice) I.

Full name of the subject: Biokémia I.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Biochemistry (theory+practice) I.
German name of the subject: Biochemie (Vorlesung+Praktikum)

Neptun code of the subject: GYKBMT069G1A
Type of registration: obligatory
Responsible department: Department of Biochemistry of Semmelweis University

Responsible tutor: Dr. Attila Ambrus Ph.D.
Phone: 459-1500/60050
E-mail: ambrus.attila@med.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
András Szöllősi Ph. D.
Zsófia Komáry Ph. D.
Olivér Ozohanics Ph. D.
Bálint Nagy Pharm. D.
Erzsébet Maróthy Tóth Pharm. D.

Classes per week: 1,5 lectures, 1,5 practices
Credit point(s): 2

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The main goal of this course is to introduce students to the mechanisms of human biochemical processes at the molecular level. The program is designed to also provide a broader insight into physiological processes that enables students to connect all their previous studies to metabolic processes, and also provides them with the basic knowledge to understand mechanisms of drug action discussed later in Pharmacology. The skills and knowledge acquired in this program is inevitable for modern rational drug design.

Short description of the subject:

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
Week 1: Protein composition and structure
Week 2: Protein purification, analysis
Week 3: Myoglobin and hemoglobin
Week 4: Basic concepts and kinetics of enzymes
Week 5: Enzyme kinetics
Week 6: Enzyme catalytic strategies
Week 7: Enzyme regulatory strategies,
Week 8: High group transfer potential compounds
Week 9: Glycolysis, gluconeogenesis: reactions, isoenzymes, enzyme deficiencies
Week 10: Glycolysis, gluconeogenesis regulation, Pasteur-effect, catabolic and anabolic significance
Week 11: PDHC, citric acid cycle: reactions, enzyme defects
Week 12: Citric acid cycle: regulation, catabolic and anabolic significance, anaplerotic reaction
Week 13: Respiratory chain: components, operation; ATP synthase
Week 14: Oxidative phosphorylation, shuttles, transporters

Topics of practical classes (pro week):
Week 1: ASAT and ALAT activity
Week 3: Purification of trypsin by affinity chromatography
Week 5: Lactate dehydrogenase polyacrylamide gel electrophoresis
Week 7: Determination of blood sugar level
Week 9: Hemostasis: prothrombin time, partial thromboplastin time, fibrin stability
Week 11: Determination of serum TAG and cholesterol
Week 13: Succinate dehydrogenase activity
Schedule of consultations: upon mutual agreement

Course requirements
Prerequisites: General and inorganic chemistry II. GYKASK106E2A, Biology II. GYKGEN109E2A
Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: Less than two absences from the practice. Justification of absence is not required.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
two obligatory written midterm examinations with retakes
Requirements of signature: both midterms to be successful
Type of the semester-end examination: signature/practical grade/semi-final/final

Scientific, course related researches, publications, assays:
Berg-Tymoczko-Stryer: Biochemistry 9th edition
lecture slides with personal lecture notes
Hungarian Pharmaceutical Terminology (practice) III.

Full name of the subject: Magyar gyógyszerészeti szaknyelv (gyakorlat) III.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Hung. Pharm. Term. III.
English name of the subject: Hungarian Pharmaceutical Terminology (practice) III.
German name of the subject: Pharmazeutische Fachsprache Ungarisch (Praktikum) III.

Neptun code of the subject: GYKLEK155G3A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Languages for Specific Purposes

Responsible tutor: Alexandra Bakó language teacher
E-mail: bako.alexandra@se-etk.hu

Name of the persons responsible for the teaching of the subject:
Borda Szandra language teacher
Nagyné Görász Judit language teacher
Kovács Ildikó language teacher
Nagy Borbála language teacher
Tick Vera language teacher
Tóth Zsuzsanna language teacher

Classes per week: 2 practices
Credit point: 1

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The role of this subject is to help students acquire the basic vocabulary, grammar and language skills they need for the effective communication in the language they use during their field practice both in their everyday life /'survival language'/ and in their academic studies.

Short description of the subject:
The third semester is dedicated to learning how to communicate with clients and colleagues at the pharmacy. Students acquire basic structures and the vocabulary for describing the characteristics of medicines. The course places special emphasis on functional language needed for obtaining and providing information, giving recommendations and instructions and on phrases needed in basic communication at a pharmacy. The semester also focuses on preparing students for the final exam (both written and oral) at the end of the 4th semester.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommen-ded term</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

770
Program of semester

Topics of practical classes (pro week):

Week 1 Types of medicines
Week 2 Effect of medicines
Week 3 General instructions
Week 4 Instructions about specific forms of medicines
Week 5 Possible side effects
Week 6 Symptoms and treatment of common UTIs
Week 7-8 Symptoms and treatment of common children’s diseases
Week 9-10 Symptoms and treatment of respiratory conditions
Week 11-12 Symptoms and treatment of cardiovascular conditions
Week 13 Revision
Week 14 Final test (written and oral)

Schedule of consultations: Individual consultations by email or in person on meeting formerly agreed upon with the teacher via email.

Course requirements

Prerequisites: GYKLEK155G2A Hungarian Pharmaceutical Terminology II.

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: An attendance of 75% minimum is required to get the signature.

The student must have a minimum average of 2.00 based on the tests in class to pass the subject.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:

Beside the final test the teacher may evaluate the students’ performance with the help of short tests.

Requirements of signature: An attendance of 75% minimum and taking the final test.

Number and type of projects students have to perform independently during the semester and their deadlines:

homework in the forms of language practice tasks
Type of the semester-end examination: signature
Form of the semester-end examination: written and oral

List of teaching materials (List of textbooks, hand-outs, scripts, etc.):

Physical Education III.

Full name of the subject: Testnevelés III.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: P. E. III.
English name of the subject: Physical Education III.
German name of the subject: Sport III

Neptun code of the subject: GYKTSI116G3A
Type of registration: obligatory
Responsible department: Semmelweis University, Physical Education and Sports Center

Responsible tutor: Várszegi, Kornélia director
Phone: +36-1/264-1408
E-Mail: varszegi.kornelia@semmelweis-univ.hu, sportkozpont@semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Doharné Buczkó, Anikó P.E. teacher
Farkas, Dominika P.E. teacher
Kalmus, Dániel P.E. teacher
Lehel, Zsolt P.E. teacher
Sótonyiné Hrehuss, Nóra P.E. teacher
Várszegi, Kornélia P.E. teacher
Weisz, Miklós P.E. teacher

Classes per week: 1 practice
Credit point: 0

Professional content, intent of acquirement and its function in order to implement the goals of the program:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

Short description of the subject:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice – so that they can represent those in their later practice, through their own health-promoting behavior.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>3. semester</td>
</tr>
</tbody>
</table>
Program of semester

Topics of practical classes (pro week):
1st week: General information
Health and Safety, Fire and Environmental protection. The mid-year adoption requirements, the construction of the classes and the presentation of the university recreational and sports opportunities for extra-curricular activities. Heart rate measurement exercises. Ruffier test and evaluation of the results.

2nd week: Athletic
Differend athletic exercises like throwing, shot put. Preferably outdoors with the aim of learn how to exetute the exercise with a proper form and breathing technique.

3rd week: Tennis
Introducing and learning advanced technical elements (serve, volley) and game.

4th week: Agility ladder
To perform different exercises to improve speed, balance and concentration. Preferably outdoors, on grass ground.

5th week: Relay race and competitive games
To improve explosiveness, skills and experience good team spirit.

6th week: Football
Practicing the technical elements of football in pairs and game situation.

7th week: Circuit training
Functional exercises with bodyweight and exercises with basic equipments to improve general coordination skills.

8th week: Badminton
Introducing the technical and tactical elements of doubles game. Game applying all the previously known rules.

9th week: Ruffier test
Comparing the results with the previously recorded one to bring the importance of the health of the cardiovascular system to the attention.

10th week: Meta
Reminders of the basic need to know about META. Learn tactical elements of the game and using them. Aim to improve ball skill development, reaction time, explosiveness and collective gaming experience.

11th week: Obstacle course
To complete a built up obsticle course using differend creepping- climbing,hovering, pulling,skipping, throwing techniques for general skill developement.

12th week: Mobilisation
Dinamic stretching exercises with and without equipment to prevent the health of the joints by maintaining and developing the mobility of it.

13th week: Skipping rope
Skill developing exercises with skipping rope individually and in pairs, in place and in motion at different levels.

14th week: Kettlebell
Different kind of strenghtening exercises with kettlebell.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! (2x90 mins./week sport training (competitive sport, for qualified only): cheerdance, cheerleader, men's football, handball, basketball, volleyball)

Course requirements
Prerequisites: –

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The number of active participations for physical education classes is 10 (for trainings 15 times!), regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Requirements of signature: Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate to the TSK or
2. does sports regularly and submits a certificate of association and federation to the Foreign Students Secretariat until the last study day in the 4th week of the semester. On the basis of the submitted application and its annexes, the TVB decides on the exemption of both the Hungarian and foreign students.
4. SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry (theory) II.</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>Biochemistry I., Organic Chemistry I.</td>
<td>final*</td>
</tr>
<tr>
<td>Organic Chemistry (practice) II.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Organic Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry (theory) II.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Physiological Pharmaceutics and Pharmaceutical dosage forms (theory+practice)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Physiology I., Physic. Chem. for Pharm., History of Pharm. and Prop.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (practice) II.</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Physiology I., Biochemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (theory) II.</td>
<td>6</td>
<td>–</td>
<td>6</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Biotechnology (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Biochemistry I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Nanotechnology (theory+practice)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Colloid Chemistry</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacy Practice I.</td>
<td>–</td>
<td>20/semester</td>
<td>–</td>
<td>Analytical Chemistry II., Pharmaceutical Terminology</td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) IV.</td>
<td>–</td>
<td>2</td>
<td>3</td>
<td>Hungarian Pharmaceutical Terminology (practice) III.</td>
<td>final</td>
</tr>
<tr>
<td>Physical Education IV.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice I.</td>
<td>–</td>
<td>40/week (1/2/3/4 weeks)</td>
<td>1/2/3/4 depending on the number of the weeks</td>
<td>Organic Chemistry II., Analytical Chemistry II.</td>
<td>practical mark elective subject</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>18</td>
<td>13</td>
<td>29</td>
<td>+20/semester +40/week</td>
<td></td>
</tr>
</tbody>
</table>
Biochemistry (theory) II.

Full name of the subject: Biokémiia II.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Biochemistry II.
English name of the subject: Biochemistry (theory) II.
German name of the subject: Biochemie (Vorlesung) II

Neptun code of the subject: GYKBMT069E2A
Type of registration: obligatory
Responsible department: Department of Biochemistry of Semmelweis University

Responsible tutor: Dr. Attila Ambrus Ph.D.
E-mail: ambrus.attila@med.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Iordan Iordanov Ph. D.
Dr. István Léránt Ph. D.
Dr. László Tretter Ph. D., D. Sc.
Dr. Krasimir Kolev
Dr. Erzsébet Maróthy Tóth Ph. D., D. Sc. Pharm. D.

Classes per week: 3 lectures
Credit point: 3

Professional content, intent of acquisition and its function in order to implement the goals of the program:
The main goal of this course is to introduce students to the mechanisms of human biochemical processes at the molecular level. The program is designed to also provide a broader insight into physiological processes that enables students to connect all their previous studies to metabolic processes, and also provides them with the basic knowledge to understand mechanisms of drug action discussed later in Pharmacology. The skills and knowledge acquired in this program is inevitable for modern rational drug design.

Short description of the subject:

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>42</td>
<td>0</td>
<td></td>
<td></td>
<td>42</td>
<td>Spring semester</td>
<td></td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):

Week 1: Digestion and absorption of carbohydrates. Metabolism of fructose and galactose, enzyme defects; Pentose phosphate pathway: reactions, regulation, significance

Week 2: Uronic acid pathway: significance; Metabolism of glycogen, reactions, regulation

Week 3: Degradation of saturated, unsaturated, even- and odd-chained fatty acids; Metabolism of ketone bodies; Synthesis of fatty acids, regulation

Week 4: Elongation and desaturation of fatty acids; Synthesis of eicosanoids; Digestion of lipids; Degradation of triglycerides and phospholipids; Fatty acid transporters; The role of lipids in signal transduction

Week 5: Synthesis of triglycerides and phospholipids; Metabolism of lipoproteins, hyperlipoproteinaemias

Week 6: Synthesis of cholesterol, its regulation; Transport of cholesterol; Pharmacological targets; Synthesis of bile acids, enterohepatic circulation

Week 7: Synthesis of steroid hormones; Digestion of proteins, amino acid transporters

Week 8: Urea cycle: reactions, regulation, enzyme defects; Degradation of amino acids; Glucoplastic and ketoplastic amino acids; Synthesis of amino acids; Molecules derived from amino acids

Week 9: Synthesis, degradation and salvage reactions of nucleotides; Pharmacological targets

Week 10: Metabolic integration: red blood cell, adipocyte, heart, skeletal muscle

Week 11: Metabolic integration: brain, kidney, liver in well-fed and fasting states

Week 12: Synthesis and degradation of neurotransmitters, receptor types

Week 13: Hemostasis: blood coagulation, role of thrombocytes, pharmacological targets

Week 14: Hemostasis: fibrinolysis; role of endothelium and liver. Pharmacological targets

Schedule of consultations: on demand

Course requirements

Prerequisites: Biochemistry I. GYKBMT069G1A, Organic chemistry I. GYKSZK123G1A, GYKSZK123E1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: two obligatory midterm tests

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:

Two midterm exams will be held in the Moodle system. The first midterm exam will take place on week 7, the material is Carbohydrates and Lipids discussed in the lectures before week 7. The second midterm will take place on week 13, the material is the remaining lipid metabolism, amino acid and nucleotide metabolism, metabolic integration. Retake may be written after each midterm exam for the students who missed the midterm.

Requirements of signature: writing of two midterm exams

Number and type of projects students have to perform independently during the semester and their deadlines: –

Type of the semester-end examination: final

Form of the semester-end examination: written test in the Moodle system (together with oral part in case of distance exam)

Scientific, course related researches, publications, assays:

Berg-Tymoczko-Stryer: Biochemistry 9th edition

lecture slides with personal lecture notes
Organic Chemistry (theory) II., Organic Chemistry (practice) II.

Full name of the subject: Szerves kémia (elmélet) II., Szerves kémia (gyakorlat) II.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Org Chem II.
English name of the subject: Organic Chemistry (theory) II., Organic Chemistry (practice) II.
German name of the subject: Organische Chemie (Vorlesung+Praktikum) II.

Neptun code of the subject: GYKSZK123E2A; GYKSZK123G2A
Type of registration: obligatory
Responsible Department: Semmelweis University, Department of Organic Chemistry

Responsible tutor: Dr. Petra Dunkel assistant professor, PhD
Phone: +36-1-476-3600/53006
E-mail: dunkel.petra@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Andrea Czompa assistant professor, PhD
Dr. Balázs Balogh assistant professor, PhD
Dr. Levente Kárpáti assistant professor, PhD
Dr. Ruth Deme assistant lecturer, PhD
Dr. Dóra Bogdán assistant lecturer, PhD
Dr. Róbert Ludmerczki assistant lecturer, PhD
Kata Antal assistant lecturer, PhD
Dr. Márton Ivánczi PhD student
Nikolett Varró PhD student

Classes per week: 4 lectures, 4 practices
Credit point(s): 4+4

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The course includes and discusses the state-of-the-art knowledge of synthetic and structural organic chemistry subjects to develop problem-solving skills for organic chemistry and biomolecular sciences.

Short description of the subject:
To satisfy the requirements of the Faculty of Pharmacy, the course in Organic Chemistry has two main purposes:
a) The presentation of modern concepts and subject-matter concerning the structures, syntheses, physical and chemical properties, structure-property relationships, and practical applications of organic compounds, with special emphasis on bioactive molecules. The presentation and practical applications of the most important methods and tools of organic chemistry.
b) To provide a solid molecular, organic chemical basis for subsequent subjects in the curriculum of students at the Faculty of Pharmacy.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):

1. week: Carbon-carbon bond forming reaction with palladium catalysis, organometallic compounds of zinc and magnesium. Inter- and intramolecular reactions.
2. week: Heterocyclic nomenclature. Heterocyclic and heteroaromatic compounds.
3. week: \(\pi \)-Excessive aromatic heterocyclic compounds I.
4. week: \(\pi \)-Excessive aromatic heterocyclic compounds II.
5. week: \(\pi \)-Excessive aromatic heterocyclic compounds III.
6. week: \(\pi \)-Excessive aromatic heterocyclic compounds IV.
7. week: \(\pi \)-Excessive aromatic heterocyclic compounds V. \(\pi \)-Deficient aromatic heterocyclic compounds I.
8. week: \(\pi \)-Deficient aromatic heterocyclic compounds II.
9. week: \(\pi \)-Deficient aromatic heterocyclic compounds III. Heterocyclic polyenes.
10. week: Nucleosides, nucleotides and nucleic acids. Natural compounds: alkaloids I.
11. week: Natural compounds: alkaloids II. Terpenes, steroids, representatives of the classes, further natural products.
12. week: Natural compounds. Stereochemistry.

Topics of practical classes (pro week):

1. week: –
2. week: Nomenclature examples from semester I-II, nomenclature of heterocyclic compounds.
3. week: Chemical bibliography and databases.
4. week: Heterocyclic compounds – advanced synthetic routes and reaction pathways. 3-, 4- and 5-membered heterocycles.
5. week: Diethyl-(3,5-dimethylpyrrole-2,4-dicarboxylate).
6. week: Heterocyclic compounds – advanced synthetic routes and reaction pathways. 6-, 7- and 8-membered heterocycles.
7. week: Cyclohexanone oxime and phthalimide.
8. week: Natural compounds: alkaloids.
9. week: 4-Nitrobenzoic acid.
10. week: Isoprenoids and steroids-structure and preparations.
11. week: Acetylsalicylic acid.
12. week: Solving of advanced organic chemistry problems, vitamins, citrate cycle.
13. week: Purification of ethyl acetate.
14. week: Supplement. Inventory. Sulfonamides, stereochemistry, Woodward-Hoffmann rules, solving of organic chemistry problems from semester I-II.

Schedule of consultations: as many times as students ask for consultation, at least 1 week before the date of consultation

Course requirements

Prerequisites: GYKSZK123E1A Organic chemistry (theory) I.

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:

At the mid-term tests (two/semester) students have to answer in a written form questions on the subject-matter of the main lectures, the practicals and the seminars, the dates of which are fixed at the beginning of the semesters. The value of the mid-term test can be either ranging 2-5 or failed. If the test is failed or the student did not attend it, the student must attend the following makeup test. If the makeup test is failed, the second makeup test should be written. If any of the makeup tests reach the passmark, then the mid-term test is accepted. If also the second makeup test is failed, the student does not get signature for the semester, they are not allowed to sit in the semi-final examination. Grades for the main and makeup mid-term tests of the same topic are not averaged.

If necessary, students may make up for missed or unsuccessful experiments at a proper time after preliminary agreement with the leading instructor at the end of the semester. Without permission, the repetition of unsuccessful experiments is not allowed. Course material for the seminars (problem sets) are provided in advance to the students. Students are expected to consult these materials before the respective seminars. Attendance is mandatory at the seminars. Missed seminars could be attended at the same week (with another group) upon prior permission from the leading instructor. If anyone has 2 or more absences from the seminars, they must pass a report from the topics of missing seminars, and this report must be accepted. Attendance on at least 75% of the practical course necessary for the signature by the end of the semester.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:

two written mid-term tests at the 8th and 12th week of the semester, each followed by two makeup opportunities

Practice: At the beginning of each laboratory practical, students must write a short test on the theoretical and practical subject-matter of the experiment. These tests are immediately corrected by the leading instructor, and the practical work can be started only if the short test is accepted. If the test is not successful, the preparation in question can be performed only at the end of the semester. Two written mid-terms tests at the 8th and 12th week of the semester, each followed by two makeup opportunities

Requirements of signature: at least grade 2 at each of the mid-term tests, passmark for the practical course
At the mid-term tests (two/semester) students have to answer in a written form questions on the subject-matter of the main lectures, the practicals and the seminars, the dates of which are fixed at the beginning of the semesters. The value of the midterm test can be either ranging 2-5 or failed. If the test is failed or the student did not attend it, the student must attend the following makeup test. If the makeup test is failed, a second makeup test should be written. If any of the makeup tests reach the passmark, then the midterm test is accepted. If also the second makeup test is failed, the student does not get signature for the semester, they are not allowed to sit in the semi-final examination. Grades for the main and makeup mid-term tests of the same topic are not averaged. On the basis of the attendance and the results described in the protocol, the performance of the practical tasks is validated by the signature of the leading instructor. At least 75% of the compounds or experiments must be graded as acceptable. Evaluation of the compounds is based on their yield and purity, and the average of the marks for each preparation gives the preparation mark. The appropriate parts of the laboratory note-book should be prepared in advance and after the completion of each practical, the note-book should be submitted to the leading instructor, together with the product of the experiment.

Number and type of projects students have to perform independently during the semester and their deadlines: mid-term tests, completing practicals

Type of the semester-end examination:
Lecture: final
Practice: practical grade
Form of the semester-end examination: written examination

Scientific, course related researches, publications, assays:
 ISBN 0073511218
 John Wiley & Sons, Inc., 2016
 ISBN 1118875761
 Norton Science Co., 2014
 978-0-393-91303-3
4. Experimental Organic Chemistry for students at the 2nd year of the Faculty of Pharmacy Compiled by teaching staff of Department of Organic Chemistry under the supervision of Péter Mátyus
 Department of Organic Chemistry, 2012
5. Gábor Krajosvzsky: Heterocyclic compounds
 Semmelweis University, Pharmaceutical Faculty, Department of Organic Chemistry
 Budapest, 2018
 http://mek.oszk.hu/19100/19197
 Semmelweis University, Pharmaceutical Faculty, Department of Organic Chemistry
 Budapest, 2017
 http://mek.oszk.hu/17200/17283/
7. Gábor Krajosvzsky: Collection of Organic chemical problems
 Semmelweis University, Pharmaceutical Faculty, Department of Organic Chemistry
 Budapest, 2017
 http://mek.oszk.hu/17200/17281/?from=rss
8. World of Molecules II
 Compiled by Péter Mátyus, contribution by Gábor Krajosvzsky, formated by Balázs Balogh, Department of Organic Chemistry, Semmelweis University, matyus.peter@pharma.semmelweis-univ.hu (2011)
9. Pázmány Péter Katolikus Egyetem, Semmelweis Egyetem és a Dialóg Campus Kiadó-Nordex Kft. által alkotott konzorcium
 http://www.tankonyvtar.hu/hu/tartalom/tamop425/0006_A_molekulak_vilaga_II/adatok.html
 Compiled by Péter Mátyus, contribution by Gábor Krajosvzsky, formated by Balázs Balogh, Department of Organic Chemistry, Semmelweis University, matyus.peter@pharma.semmelweis-univ.hu (2011)
 Oxford University Press, 2012
13. J. Clayden, S. Warren: Solutions manual to accompany organic chemistry (paperback)
 Oxford University Press, 2013
 ISBN 9780199663347
 Royal Society of Chemistry, 2011
 ISBN 978-1-118-08339-0
 Brooks Cole 2016, 7th Ed
 ISBN 1305577191
 Springer-Verlag, Berlin • Heidelberg, 2009
 ISBN 3540938095
18. Necessary equipment: laboratory glassware (students’ laboratory), reagents and further technical equipment for synthetic work
Physiology (theory) II., Physiology (practice) II.

Full name of the subject: Élettan (elmélet) II., Élettan (gyakorlat) II.
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Physiology (theory) II., Physiology (practice) II.
German name of the subject: Physiologie (Vorlesung) II., Physiologie (Praktikum) II.

Neptun code of the subject: GYKTLM124E2A, GYKTLM124G2A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Translational Medicine

Responsible tutor: Dr. Zoltán Benyó Director, professor, PhD, DSc
E-Mail: benyo.zoltan@med.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Zoltán Benyó Professor, PhD, DSc
Dr. Tamás Ivanics Associate professor, PhD
Dr. Zsuzsanna Miklós Associate professor, PhD
Dr. Margittai Éva Assistant professor, PhD
Dr. Éva Ruizsanchez Assistant professor, PhD
Dr. Monori-Kiss Anna Assistant professor, PhD
Dr. Éva Pál Assistant lecturer, PhD
Dr. László Hricisák Assistant lecturer, PhD
Dr. Ákos Zsembery Assistant professor, PhD

Classes per week: 6 lectures, 2 practices
Credit point(s): 6 (theory), 1 (practice)

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The goal is to teach physiological processes from subcellular, cellular and tissue-level processes all the way to complex regulation on the organism level, including studies in humans. Special emphasis is laid on the presentation of complex adaptation processes playing an important role in health preservation, and on studying how physiological regulatory processes respond to changes in the external or internal environment.

Short description of the subject:
Theoretical lectures and practices are held every week. Seminars/Practices are for discussion of ongoing new lecture material and performing relevant physiological measurements in small groups. Also, the theoretical knowledge of the students is tested systematically in a written form on the seminars. Students are required to take 6 written exams in each semester, and a lab exam at the end of the semester. Based on the results of the tests and the lab exam students get a lab work grade at the end of the semester. Students take a written theoretical examination in the exam period.

<table>
<thead>
<tr>
<th>Reccommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>84</td>
<td>28</td>
<td>–</td>
<td>–</td>
<td>112</td>
<td>Spring semester</td>
<td>–</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
I. Lecture topics/week
3. week: Gastrointestinal motility and secretions. Innervation of the GI tract. GI hormones. Regulation of GI motility. Regulation of GI secretion: Salivary secretion; Gastric secretion; Exocrine pancreas. Liver and biliary system.
10. week: Somatosensory functions. Cutaneous, deep and visceral sensation; sensory pathways. Inflammation and pain sensation.

Topics of practical classes (pro week):
II. Practice topics/week
Seminars are held every even week (1x45 min) and are for discussion of ongoing new lecture material. Also, the theoretical knowledge of the students is tested systematically in a written form on the seminars.
Practices are held every uneven week (3x45 min), and students are required to carry out relevant physiological measurements in small (2-3 persons) groups.
1. week: Studying the circulatory and respiratory adaptation responses during physical exercise
2. week: Written test and consultation of the previous week’s theoretical material
3. week: Acid-base disorders in the clinical practice
4. week: Written test and consultation of the previous weeks’ theoretical material
5. week: Measurement of pulse wave velocity
6. week: Written test and consultation of the previous weeks’ theoretical material
7. week: Clinical case studies
8. week: Written test and consultation of the previous weeks’ theoretical material
9. week: Blood glucose measurement and oral glucose tolerance test
10. week: Written test and consultation of the previous weeks’ theoretical material
11. week: Examination of motor reflexes and vestibular function, EOG.
12. week: Written test and consultation of the previous weeks’ theoretical material
13. week: Retake lab, exam consultation
14. week: Practical exam.

Schedule of consultations: Consultations take place on every even week
Course requirements
Prerequisites:
Physiology I. GYKTLM124E1A
Biochemistry I. GYKBMT069G1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Seminars are held every even week (1x45 min) and are for discussion of ongoing new lecture material. Also, the theoretical knowledge of the students is tested systematically in a written form on the seminars. Students are required to take 6 written exams in each semester. Passing level is 50% of the maximum points. Absence from a seminar yields grade 1 (fail) for that week. The worst grade of the 6 seminar tests is omitted from the calculation of the Lab Work Grade. Students are required to write at least 4 seminar tests, and achieve at least 2,0 average on these tests to become eligible for the semifinal or final exam.
Practices are held every uneven week (3x45 min), and students are required to carry out relevant physiological measurements in small (2-3 persons) groups. Practices are obligatory. Missing 25% of the practice time (7 hours practice time) results in denial of admission to the semifinal or final exam. A retake opportunity is provided for the students to make up for missed practices at the end of the semester. Students are required to take a lab exam at the end of the semester. Only those students can be admitted to the lab exam who completed at least 5 lab practices.
Based on the results of the seminar tests and the lab exam students get a Lab Work Grade at the end of the semester.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
The theoretical knowledge of the students is tested systematically in a written form on the seminars. The form of the test can be quiz or multiple-choice type questions. Students are required to take 6 written exams in each semester. Passing level is 50% of the maximum points. Absence from a seminar yields grade 1 (fail) for that week. The worst grade of the 6 seminar tests is omitted from the calculation of the Consultation Grade.

Requirements of signature:
The worst grade of the 6 seminar tests is omitted from the calculation of the Consultation Grade. The results of the remaining 5 tests are averaged to yield the Consultation Grade, which must be at least 2,0 to get the signature for the semester and become eligible for the semifinal or final exam.
Students are required to take a lab exam at the end of the semester. Only those students can be admitted to the lab exam who completed at least 5 lab practices.
Based on the Consultation Grade and the result of the lab exam students get a Lab Work Grade at the end of the semester. The Lab Work Grade is calculated by averaging the Consultation Grade and the result of the lab exam (50-50%).
Further requirements of the signature at the end of the semester is to participate on at least 75% of the practices.
Type of the semester-end examination: practical grade, final
Form of the semester-end examination: written exam

Scientific, course related researches, publications, assays:
Hungarian Pharmaceutical Terminology (practice) IV.

Full name of the subject: Magyar gyógyszerészeti szaknyelv (gyakorlat) IV.

Program: undivided program (pharmaceutical)

Schedule: full-time

Short name of the subject: Hung. Pharm. Term. IV.

English name of the subject: Hungarian Pharmaceutical Terminology (practice) IV.

German name of the subject: Pharmazeutische Fachsprache Ungarisch (Praktikum) IV

Neptun code of the subject: GYKLEK155G4A

Type of registration: obligatory elective

Responsible department: Semmelweis University, Department of Languages for Specific Purposes

Responsible tutor: Alexandra Bakó language teacher

bako.alexandra@se-etk.hu

Classes per week: 2 practices

Credit point: 3

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The role of this subject is to help students acquire the basic vocabulary, grammar and language skills they need for the effective communication in the language they use during their field practice both in their everyday life /'survival language'/ and in their academic studies.

Short description of the subject:
The fourth semester is dedicated to learning how to communicate with clients and colleagues at the pharmacy. Students acquire basic structures and the vocabulary for describing the characteristics of medicines. The course places special emphasis on functional language needed for obtaining and providing information, giving recommendations and instructions and on phrases needed in basic communication at a pharmacy. The semester also focuses on preparing students for the final exam (both written and oral) at the end of the semester.
Physical Education IV.

Full name of the subject: Testnevelés IV.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: PE IV.
English name of the subject: Physical Education IV.
German name of the subject: Sport IV

Neptun code of the subject: GYKTSI116G4A
Type of registration: obligatory
Responsible department: Semmelweis University, Physical Education and Sports Center

Responsible tutor: Várszegi, Kornélia director

Name of the persons responsible for the teaching of the subject:
Doharné Buczkó, Anikó P.E. teacher
Farkas, Domninika P.E. teacher
Kalmus, Dániel P.E. teacher
Lehel, Zsolt P.E. teacher
Sótonyiné Hrehuss, Nóra P.E. teacher
Várszegi, Kornélia P.E. teacher
Weisz, Miklós P.E. teacher

Classes per week: 1 practice(s)
Credit point(s): 0

Professional content, intent of acquirement and its function in order to implement the goals of the program:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

Short description of the subject:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice – so that they can represent those in their later practice, through their own health-promoting behavior.

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. semester</td>
<td>0</td>
<td>14</td>
<td></td>
<td></td>
<td>14</td>
<td>Spring semester</td>
<td></td>
</tr>
</tbody>
</table>
Program of semester

Topics of practical classes (pro week):

1st. week: General information
 Accident, fire and environmental knowledge.
 Requirement for acceptance of the semester system,
 the structure of the classes and the presentation of
 the university recreational sports opportunities for
 extra-curricular activities.

2nd. week: Basketball
 Dribbling and shooting skill improving drills. Games:
 1 on 1; 2 on 2; shooting contests, king of the court.
 Scrimmage.

3rd. week: Wall-bar exercises
 Enhance strength and balance by climbing, declining,
 hanging, skipping, pulling, pushing etc. exercises.

4th. week: Circuit training
 A chain of compete drills in a certain time period
 with and without equipment. The aim is to improve
 the general level of strength and stamina.

5th. week: Floorball
 Passing and receiving skill improving drills. Exposing
 shots on goal (wrist- slap- and snapshots). Scrimmage.

6th. week: Drills in pairs
 Strength, agility, coordination and battling skill im-
 proving exercises with a partner incorporated.

7th. week: Volleyball
 Introducing the defensive elements of the game
 (receiving serves, blocks). Exposing unknown rules.
 Games.

8th. week: Game-day
 Introducing and practicing different kind of cohesion
 enhancing games (Tick-Tac-Toe, etc.)

9th. week: Ruffier test
 Comparing the results with the previously recorded
 one to bring the importance of the health of the
 cardiovascular system to the attention.

10th. week: Circuit training
 Specialized chain of drills for strengthen the shoul-
 der, back, chest, arm and leg muscles, considering
 the fitness level of the Students.

11th. week: Tennis
 Introducing variations of ground strokes and grip
 types (lilce, topspin, lobs etc.) Exposing the rules
 of doubles. Games (all around the world, etc.)

12th. week: Badminton
 Exposing the rules and the basic tactical elements of
 the doubles game. Scrimmage.

13th. week: Core exercises
 Body-weight exercises targeting to strengthen the
 muscles of the trunk thus develop a strong fascia to
 protect it from the harmful effects of overdose sitting
 (studying)

14th week: Medicine-ball exercises
 Strength and coordination (complex) skill developing
 exercises by throwing, rolling, passing, lob, shot-put,
 etc. with a partner incorporated.

 Another way to complete the Physical Education
 course is to 15 times actively participate in the train-
 ings of university teams. As teams take part in cham-
 pionships during the school year, we only accept
 applications from professional athletes! (2x90 mins./
 week sport training (competitive sport, for qualified
 only): cheerdance, cheerleader, men's football, hand-
 ball, basketball, volleyball)

Course requirements

Prerequisites: –

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:

The number of active participations for physical education classes is 10 (for trainings 15 times!), regardless of the number of school breaks,
which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two
separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The
days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and
end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Requirements of signature: Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who

1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate to the TSK or
2. does sports regularly and submits a certificate of association and federation to the Foreign Students Secretariat
 until the last study day in the 4th week of the semester. On the basis of the submitted application and its annexes, the TVB
decides on the exemption of both the Hungarian and foreign students.
FACULTY OF PHARMACEUTICAL SCIENCES

Curriculum of the credit-based training for third year students in the 2021/2022 academic year
5. SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Chemistry (practice) I.</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Analytical Chem. (quant.)</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGYK076G1A</td>
<td></td>
<td></td>
<td></td>
<td>Organic Chemistry II.</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) I.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>Physiological Pharm. and Pharmaceutical dosage forms, Colloid Chem., Medical Terminology</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKGYK076E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory+practice) I.</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGYI126G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanotechnology (theory+practice)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Colloid Chemistry</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGYI078G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Botany (practice) II.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>Biology II. Biotechnology</td>
<td>signature</td>
</tr>
<tr>
<td>GYKFMG079G2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Botany (theory) II.</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Pharmacetical Botany I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKFMG079E2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dietetics (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Physiology II. Biochemistry II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKGYI168E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (practice)</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Basic Immunology</td>
<td>signature</td>
</tr>
<tr>
<td>GYKMIK081G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (theory)</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKMIK081E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Chemistry and Laboratory Diagnostics (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physiology II. Biochemistry II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYKLM082E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Medical Pathophysiology I. (theory+practice)</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>Physiology II. Biochemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGYH083G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) V.</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology (practice) IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYLEKMSZG5A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education V.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYKTSI116G5A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>17</td>
<td>18</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pharmaceutical Chemistry (theory) I., Pharmaceutical Chemistry (practice) I.

Full name of the subject: Gyógyszerészi kémia (elmélet) I., Gyógyszerészi kémia (gyakorlat) I.
Program: undivided program (pharmaceutical)
Schedule: full–time
Short name of the subject: Pharm. Chem. I.
English name of the subject: Pharmaceutical Chemistry (theory) I., Pharmaceutical Chemistry (practice) I.
German name of the subject: Pharmazeutische Chemie (Vorlesung) I., Pharmazeutische Chemie (Praktikum) I.

Neptun code of the subject: GYKGYK076E1A, GYKGYK076G1A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmaceutical Chemistry

Responsible tutor: Dr. Péter Horváth Head of the Department, Associate professor, Ph.D.
Phone: 06-1-217-0891
E-Mail: horvath.peter@pharma.semmelweis-univ.hu
Address: Semmelweis University, Department of Pharmaceutical Chemistry, H-1092 Budapest, Hőgyes Endre u. 9.

Name of the persons responsible for the teaching of the subject:
Dr. Péter Horváth associate professor, head of the department, Ph.D.
Dr. Krisztina Takács-Novák full professor, D.Sc.
Dr. László Örfi full professor, Ph.D.
Dr. Gergely Völgyi associate professor, Ph.D.
Dr. Károly Mazák associate professor, Ph.D.
Dr. Márta Mazák-Kraszni associate professor, Ph.D.
Dr. Gergő Tóth assistant professor, Ph.D.
Dr. Arash Mirzahosseini assistant lecturer, Ph.D.
Dr. Tamás Pália assistant lecturer, Ph.D.
Dr. István Köteles assistant lecturer
Dr. Dóra Csicsák assistant lecturer

Classes per week: 4 lectures, 4 practices
Credit point: 4 (theory), 3 (practice)

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Integration of the curriculum of various chemical and biological courses and extension with specific chemical knowledge regarding properties, mechanism of action and analytics of drug substances.

Short description of the subject:
theory: Teaching of synthesis, analytics, physico-chemical and chemical properties, structure-activity relationships, receptor-bindings and biochemical background of biological effects of drug substances.
Practice: Teaching of analytics, physico-chemical and chemical properties of drug substances.

<table>
<thead>
<tr>
<th>Course data</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
<td>Contact hours (lecture)</td>
<td>Contact hours (practice)</td>
<td>Contact hours (seminar)</td>
<td>Individual lectures</td>
<td>Total number of contact hours/semester</td>
<td>Normal course offer</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
<td>56</td>
<td></td>
<td></td>
<td>112</td>
<td>Autumn semester</td>
</tr>
</tbody>
</table>

789
Program of semester

Topics of theoretical classes (pro week):
1. week: Introduction. (Pharmaceutical Chemistry, Pharmacopoeias)
 Preliminary testing of inorganic and organic compounds, classification
 Identification of organic functional groups
2. week: General purity tests in Pharmacopoeia
 Structural and physical chemistry of drug action I.
3. week: Structural and physical chemistry of drug action II.
 Protonspeciation of drugs
 Determination of protonation constants, optimization of pH-dependent processes
4. week: Characterization of lipophilicity, determination of partition coefficient
 Application of UV-VIS spectrophotometry in the analysis of drugs
5. week: Separation techniques I. Thin-layer chromatography
 Separation techniques II. HPLC
6. week: Determination of organic acids and bases
 Major analgetics I.
7. week: Major analgetics II.
 Minor analgetics
8. week: Nonsteroidal anti-inflammatory drugs
 Local anaesthetics
9. week: Narcotics
 Sedato-hypnotics and anxiolytics
10. week: Psychopharmacons I.
 Psychopharmacons II.
11. week: Cholinergic and adrenergic agents I.
 Cholinergic and adrenergic agents II.
12. week: Cholinergic and adrenergic agents III.
 Identification of drug mixtures
13. week: Quantitative determination of drug mixtures
 Antiepileptics
14. week: Drugs acting on the digestive system
 Consultation

Topics of practical classes (pro week):
1. week: Equipping, revision of basic analytical tasks
2. week: Preliminary testing and classification of inorganic and organic compounds
3. week: General purity tests for inorganic ions
4. week: Determination of protonation macroconstants by potentiometry
5. week: Determination of protonation macro- and microconstants by UV/pH titration
6. week: Determination of logP
7. week: Major analgetics
8. week: Minor analgetics
9. week: Nonsteroidal anti-inflammatory agents
10. week: Local anaesthetics
11. week: Sedato-hypnotics and anxiolytics
12. week: Psychopharmacons
13. week: Cholinergic and adrenergic agents
14. week: Identification and quantitative determination of drug mixtures

Course requirements
Prerequisites:
Analytical Chemistry (quant.) GYKASK066E1A
Organic Chemistry II. GYKSK123E2A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: Based on the Study and Exam Regulations
Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Practice: Project reports on weeks 6, 10 and 13.

Requirements of signature:
Attendance on the lectures. (Extent of the absence is based on the Study and Exam Regulation)
Attendance on the practices. (Extent of the absence is based on the Study and Exam Regulation)
The average of the scheduled project reports is at least 2.
The required minimum amount of points during practices is accumulated.

Type of the semester-end examination:
threeory: signature/practical grade/semi-final/final
practice: signature/practical grade/semi-final/final
Form of the semester-end examination: written and oral
Necessary equipment: practice: drug substances, reagents, laboratory equipments, instruments

790
Pharmaceutical Botany (theory + practice) II.

Full name of the subject: Gyógyszerészi növénytan (elmélet + gyakorlat) II.

Program: undivided program (pharmaceutical)

Schedule: full-time

Short name of the subject: Botany

English name of the subject: Pharmaceutical Botany (theory + practice) II.

German name of the subject: Pharmazeutische Botanik (Vorlesung + Praktikum) II

Neptun code of the subject: GYKFMG079E2A; GYKFMG079G2A

Type of registration: obligatory

Responsible department: Semmelweis University, Department of Pharmacognosy

Responsible tutor: Szabolcs Béni head of department, associate professor, Ph.D.
E-mail: beni.szabolcs@pharma.semmelweis-univ.hu

Classes per week: 1 lecture, 1 practice

Credit point: 1

Professional content, intent of acquirement and its function in order to implement the goals of the program:

The main aims of the subject are as follows:

1) To get familiar with the botanical features of plants at the cytological, histological and organizational levels in order to gain basic knowledge essential for pharmacopoeial drug analyzes.

2) Understanding the general and specific metabolic processes and physiological phenomena of plants to understand the production and accumulation of biologically active substances (and their mode of storage).

3) To study the chemotaxonomy of plants in order to be able to recognize medicinal herbs (and poisonous plants) and to understand their kinship and chemism.

Short description of the subject:

The subject summarizes current knowledge on the structure and function of plant cells and their participation in biochemical processes. It presents the anatomical (histological) and macroscopic morphological characteristics of the plant organs, that also represent drugs, and their physiological processes, highlighting their role in the production and accumulation of biologically active substances. It describes the systematization of the flora most important from the pharmaceutical point of view: chemotaxonomy with special emphasis on chemism. In this context, it presents important medicinal herbs (and poisonous plants) and their morphological characteristics necessary for their recognition.

| Course data |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Recommended term** | **Contact hours (lecture)** | **Contact hours (practice)** | **Contact hours (seminar)** | **Individual lectures** | **Total number of contact hours/semester** | **Normal course offer** | **Consultations** |
| 5 | 14 | 14 | | | 28 | Autumn semester |
Program of semester

Topics of theoretical classes (pro week):
1. week: Introduction. The division of wildlife. The concepts of plant, herb and drug. The structure of the flower among gymnosperms and angiosperms: the diversity of the appearance of the flower parts as an opportunity to identify plant species and their kinship.
2. week: Presentation of inflorescences: characteristics of the cyme and clustering types in major plant families.
3. week: The pollination and fertilization process in gymnosperms and angiosperms, floral biological phenomena. The process of seed and fruit formation in the context of fertilization. Morphological examination of seeds and fruits.
5. week: Formation and structure of the cell wall. Vacuoles and their contents. The role of the cell walls and crystal forms in the microscopic examination of drugs.
6. week: The concepts of tissue-tissue system-organ. The meristems. Characteristics of the dermal tissue system (primary, secondary and tertiary dermal tissues) and the exogenous excretory systems: their appearance and role in drug identification. Demonstrating the diversity of ground tissues by highlighting the endogenous secretory systems Occurrence of endogenous secretory systems in herbs.
7. week: Characteristics of the conductive tissue system: organ- and system-specific manifestations.
8. week: Histological structure of root systems and various roots (demonstrated by examples of root drugs). Morphology and histology of the shoot axis (stem): young and old (thickened) forms and parts as drug forms.
9. week: Appearance and histological structure of leaves in the macroscopic and microscopic identification of plants. Water management and mineral nutrition of plants: water uptake, transport, and release in relation to the morphological and functional characteristics of the root, stem and leaf (also a summary of the microscopic morphological characteristics of the three organs).
11. week: Presentation and classification of gymnosperms with introduction to the species with medicinal importance. Chemotaxonomy of angiosperms I. Magnoliidae subclass of dicotyledons and the class of monocotyledons. Comparison of monocotyledons and dicotyledons and their evolutionary relationship.
12. week: Chemotaxonomy of angiosperms II. Description of the subclasses Caryophyllidae and Hamamelididae. Chemotaxonomy of angiosperms III. Rosidae subclass as the five-membered, free-petal among the dicotyledons.
13. week: Chemotaxonomy of angiosperms IV. Introduction of the Dilleniidae subclass by studying the heterogeneous groups belonging to it.
14. week: Chemotaxonomy of angiosperms V. Characterization of subclasses Conidae and Lamidae. Chemotaxonomy of angiosperms VI. Asteridae subclass as the top of progression.

Topics of practical classes (pro week):
1. week: Morphological knowledge: in ELTE Botanical Garden on plant examples or Characteristics of typical plants of Brassicaceae, Fabaceae families. Structure of flowers I.
2. week: Characteristics of typical plants of the families Apiaceae, Malvaceae, Lamiaceae. Structure of flowers II. Inflorescences I.
3. week: Study of typical plants of families Solanaceae, Asteraceae (Cichoriaceae). Inflorescences II. Structure of leaves (macroscopic characteristics).
4. week: Macroscopic characteristics of seeds and fruits. Structure of a young root.
5. week: Old root structure, types of root thickening. Structure of young stems and rhizomes.
6. week: Structure of old stems, types of stem thickening. 1st Midterm (herbal knowledge 1.) Examination of the xylem and the rhytidome I.
7. week: Structure of flower parts. 2nd Midterm (plant recognition from herbarium specimens and the material of the practices). Retake of missed practices. Structure of flower parts. Examination of the xylem and the rhytidome II.

Schedule of consultations: as demanded
Course requirements
Prerequisites:
GYGENBILE2A Biology II.
GYNOVGYNG1A Pharmaceutical botany I.
GYKGY1074E1A Biotechnology
Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: Absence from 25% of the practices is allowed.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Practice: written test on the 9th and 14th weeks, possibility of grade improvement at the practice following the test, and on the last week
Requirements of signature:
Practice: successful completion of the midterm tests (each separately with at least sufficient result)

Number and type of projects students have to perform independently during the semester and their deadlines:
Practice: preparation (and presentation) of a plant collection of at least 20 species composed of herbs included in the material of the semester, evaluated by one grade equivalent to the grade of one midterm (however, it does not replace any of the midterms)
Type of the semester-end examination: Lecture: semi-final, Practice: signature
Form of the semester-end examination: oral examination
Necessary equipment: Lecture hall, projection, wi-fi
Practice: A light microscope for each student; a stereomicroscope for each two students. A collection of microscopic preparations for each two students. Slides, coverslips. Manual microtome (e.g. MT.5503 Euromex). Projector, demonstration light microscope equipped with a digital camera that can be connected to a projector. A3 size laminator for “perpetuation” of herbarium sheets
Pharmaceutical Microbiology (theory+practice)

Full name of the subject: Gyógyszerészi mikrobiológia (elmélet+gyakorlat)
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Pharmaceutical Microbiology (theory+practice)
German name of the subject: Mikrobiologie für Pharmazeuten (Vorlesung+Praktikum)

Neptun code of the subject: GYKMIK081E1A; GYKMIK081G1A
Type of registration: obligatory
Responsible department: Institute of Medical Microbiology of Semmelweis University

Responsible tutor: Dr. Orsolya Dobay associate professor, PhD
Phone: 210-2959; 56287 ext.
E-Mail: dobay.orsolya@med.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Szabó Dóra full professor, DSc
Dr. Dobay Orsolya associate professor, PhD
Dr. Ghidán Ágoston assistant professor (lecturer), PhD
Dr. Andrea Horváth professor’s assistant

Classes per week: 3 lectures, 2 practices
Credit point(s): 4

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The importance of microbiology in the medical curriculum, including the education of students of Faculty of Pharmacy is permanently growing. The knowledge about new types of microbial agents - beside the well-known old ones -, new diseases caused by microbes, the more and more frequent nosocomial infections and the epidemics believed overcome, but recently emerging is necessary for the pharmacist, too. They have to be familiar with the continuously growing possibilities of methods used in diagnostic work, prevention and therapy of infectious diseases caused by microbes.
The goal of the training course is that the students of Faculty of Pharmacy learn about the nature of the most important human pathogenic agents, their appearance, the ways of their transmission, the possibilities of killing them inside as well as outside the human body. In addition to the basic knowledge of microbiology an increasing emphasis is placed on the topics connected with the utilization of microbes in pharmacy, in pharmacological research and industry.

Short description of the subject:
The students learn about the physiological and pathological effects of microbes in the organism, i.e. in the human body. Beside the general characterization of the most important pathogens (bacteria, viruses, fungi, and parasites), the students learn about the possibilities of sterilization and disinfections, mode of actions of antimicrobial agents, control of infectious diseases as well as the basic methods of laboratory diagnosis of infectious diseases. Because microorganisms have special importance in pharmaceutical industry, the most important new results, methods (i.e. recombinant technologies) are also summarized.

<table>
<thead>
<tr>
<th>Course data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
<td>5</td>
</tr>
<tr>
<td>Contact hours (lecture)</td>
<td>42</td>
</tr>
<tr>
<td>Contact hours (practice)</td>
<td>28</td>
</tr>
<tr>
<td>Contact hours (seminar)</td>
<td></td>
</tr>
<tr>
<td>Individual lectures</td>
<td></td>
</tr>
<tr>
<td>Total number of contact hours/semester</td>
<td>70</td>
</tr>
<tr>
<td>Normal course offer</td>
<td>Autumn semester</td>
</tr>
<tr>
<td>Consultations</td>
<td></td>
</tr>
</tbody>
</table>

794
Program of semester

Topics of theoretical classes (pro week):

Week 5. Cocci causing purulent diseases (Staphylococcus, Streptococcus, Neisseria)

Week 6. Normal flora of the intestinal tract and the importance of it. Bacteria causing enteral diseases.

Week 7. Causative agents of respiratory tract infections.

Week 9. Causative agents of human mycosis and their therapy.

Week 10. General virology. Antiviral chemotherapy. DNA viruses.

Week 11. Enteral viruses and diseases caused by them. Hepatitis viruses.

Week 13. Retroviruses. AIDS. Tumor viruses. The role of viruses in carcinogenesis.

Topics of practical classes (pro week):

Week 1. Introduction to basic microbiology, laboratory rules. Microscopic examination of microbes.

Week 2. Cultivation of bacteria.

Week 4. Determination of antibiotic susceptibility of bacteria.

Week 6. Gram-positive and Gram-negative cocci (Cultures, smears, biochemical reactions, serological tests, antibiotic susceptibility, vaccines).

Week 7. Enteral Gram-negative rods (Enterobacterales). Cultures, smears, biochemical reactions, serological tests, antibiotic susceptibility, vaccines); Vibrio, Helicobacter, Campylobacter.

Week 10. Endospore-forming Gram-positive aerobic and anaerobic bacteria (Cultures, smears, enzyme reactions, serological tests, antibiotic susceptibility, vaccines).

Week 11. Spirochetes. Rickettsiae, Chlamydiae, Mycoplasmas (Cultures, smears, enzyme reactions, serological tests, antibiotic susceptibility, vaccines).

Week 12. Medically important fungi (Cultures, smears).

Week 13. Medical parasitology (macroscopic and microscopic preparations).

Week 14. General virology (cultivation and morphology of viruses, cell-virus interactions, serological tests).

Schedule of consultations: in the exam period, personal appointments with the tutor

Course requirements

Prerequisites: GYGENIMME1A Basic immunology

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Lectures: presence on at least 75% of the total number of lectures.
Laboratory practice: maximum 3 absences. acceptable practice in microbiological laboratory methods
Requirements of signature: Active presence and no more than 3 absences on the practical classes.

Number and type of projects students have to perform independently during the semester and their deadlines:
Practice: two times in the semester, 10 questions (essay). The accepted result: at least 6 points/midterm.
Type of the semester-end examination: semi-final
Form of the semester-end examination: oral exam, with preceeding written minimum questions
Scientific, course related researches, publications, assays:
Studies on the antibiotic resistance of bacteria (cause of resistance, mechanisms of the development of resistance) Asymptomatic carriage of pneumococci, staphylococci, etc. Microbiom analysis. Studies on adenoviruses, herpes viruses, papillomaviruses, HIV (structure, pathomechanism, etc.).

Necessary equipment:
All materials required for the laboratory work is provided by the Institute.
Clinical Chemistry and Laboratory Diagnostics (theory)

Full name of the subject: Klinikai kémia és laboratóriumi diagnosztika
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: –
English name of the subject: Clinical Chemistry and Laboratory Diagnostics (theory)
German name of the subject: Klinische Chemie und Labordiagnostik (Vorlesung)

Neptun code of the subject: GYKLMI082E1A
Type of registration: obligatory
Responsible department: Department of Laboratory Medicine of Semmelweis University

Responsible tutor: Prof. Dr. Barna Vásárhelyi M.D., Ph.D., D. Sc.
Phone: 06-1-361-459/62098
E-mail: vasarhelyi.barna@med.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Adrienne Fehér M.D., Clinical laboratory specialist, hematology specialist, transfusion medicine specialist
Dr. Gellért Karvaly Pharm. D., Ph.D.
Dr. Ibolya Kocsis Pharm. D., Ph.D., clinical laboratory specialist
Dr. Györgyi Molnár-Világos Pharm. D., clinical laboratory specialist
Dr. Zsófia Szabó Pharm. D., clinical laboratory specialist
Dr. Zoltán Vajda M.D., hematology specialist

Classes per week: 2 lectures
Credit point(s): 2

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The aim of the course is to provide valuable knowledge on the principles and practice of laboratory diagnostics, as well as on the specialties of clinical chemistry, hematology and immunology in the field of interest of pharmacy students. By giving a systematic overview on the basics of these disciplines. In addition, the measures of the quality assurance of clinical laboratory assays are presented.

Short description of the subject:
Pharmacists are approached by patients with questions related to laboratory diagnostics on a daily basis. In pharmacies expertise in performing simple fingerprick tests (e.g. blood glucose and lipid measurement), as well as assistance with the interpretation of laboratory reports is often required. Concerning the latter, it is especially important that this assistance is adequate yet restrained.
In the clinical setting, the proper interpretation of laboratory tests which shed light on the efficacy and the biochemical adverse effects of medications is highly valuable. Pharmaceutical expertise has an important added value in this respect. Therapeutic drug monitoring is emerging as a special field of laboratory medicine where pharmacists play a unique role.
The clinical laboratory relies heavily on the knowledge of pharmacists, gained during the training of laboratory specialists. During the course, the main aspects of ordering clinical laboratory tests, the major analytical procedures, and the art of interpreting laboratory reports are presented.

There is a special emphasis on:
- laboratory tests performed by the bedside and in pharmacies,
- tests for diagnosing the lesions of the various organ systems,
- the evaluation of the pharmacodynamic effects of drugs using biochemical tests,
- therapeutic drug monitoring, and
- quality assurance in the clinical laboratory.
During the lectures theory is combined with case reports. 2 sessions are dedicated to visiting some of the clinical laboratories of Semmelweis University to provide a real-life experience.

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>28</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>28</td>
<td>Autumn semester</td>
<td>–</td>
</tr>
</tbody>
</table>

Program of semester

Topics of theoretical classes (pro week):

1. Preanalytical factors influencing the results of laboratory assays. (Dr. Barna Vásárhelyi)
2. Major analytical procedures employed in clinical laboratories. Quality assurance. (Dr. Györgyi Molnár-Világos)
3. Interpretation of assay results. (Dr. Barna Vásárhelyi)
4. Bedside laboratory tests (with demonstration). Urine testing. (Dr. Ibolya Kocsis)
5. Laboratory diagnostics of inflammation. Acute phase reactions. Testing for infections. (Dr. Zsófia Szabó)
6. Immunology tests I. Hypersensitivity reactions, allergy tests. (Dr. Zsófia Szabó)
7. Immunology tests II. Autoimmunity, immune system deficiencies. (Dr. Zsófia Szabó)
8. Diagnostics of tissue lesions (Dr. Barna Vásárhelyi)
9. Diagnostics of metabolic disorders (diabetes, hyperlipidemia). (Dr. Barna Vásárhelyi)
10. Therapeutic drug monitoring. (Dr. Gellért Karvály)
11. Tests for hemostasis. Monitoring of anticoagulants. (Dr. Adrienne Fehér)
13. Laboratory visit I.
14. Laboratory visit II.

Schedule of consultations: Online, by individual arrangement

Course requirements

Prerequisites: Biochemistry II. GYKBMT069E2A, Physiology II. GYKTL068E2A GYKTL068G2A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:

As required by the effective regulations of the Faculty of Pharmacy.

Requirements of signature: Attendance of lectures as required by the Faculty of Pharmacy

Type of the semester-end examination: semi-final

Form of the semester-end examination: Written test

Necessary equipment:

1. McPherson RA, Pincus MR: Henry’s Clinical Diagnosis and Management by Laboratory Methods 22nd Edition
2. Learning guide on the website (https://semmelweis.hu/laboratorium/english/), and in the Moodle-system under Laboratory Medicine course (itc.semmelweis.hu)
Hungarian Medical Terminology (practice) V.

Full name of the subject: Magyar orvosi szaknyelv (gyakorlat) V.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Hung. Med. Term. V.
English name of the subject: Hungarian Medical Terminology (practice) V.
German name of the subject: Ungarische medizinische Fachsprache (Praktikum) V

Neptun code of the subject: GYLEKMSZG5A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Languages for Specific Purposes

Responsible tutor: Alexandra Bakó language teacher
E-mail: bako.alexandra@se-etk.hu

Name of the persons responsible for the teaching of the subject:
- Borda Szandra language teacher
- Nagyné Görász Judit language teacher
- Kovács Ildikó language teacher
- Nagy Borbála language teacher
- Tick Vera language teacher
- Tóth Zsuzsanna language teacher

Classes per week: 4 practices
Credit point: 2

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The role of this subject is to help students acquire the basic vocabulary, grammar and language skills they need for the effective professional communication in the language they use during their field practice. With the help of this course they become able to communicate with the patients in the Hungarian hospitals and pharmacies.

Short description of the subject:
Students acquire basic structures and the vocabulary for everyday topics. The course places special emphasis on phrases essential for everyday communications.

Topics: Communication practice (family and social history); Communication practice (internal medicine -medical history); Communication practice (treatments, medication); Common illnesses - symptoms; The respiratory system; The cardiovascular system; The urinary system; The digestive system; The Endocrine system

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>56</td>
<td></td>
<td></td>
<td>56</td>
<td>Autumn semester</td>
<td></td>
</tr>
</tbody>
</table>
Program of semester

Topics of practical classes (pro week):
Lesson 1-4: Communication practice (family and social history)
Lesson 5-6: Communication practice (internal medicine – medical history)
Lesson 7-8: Communication practice (treatments, medication)
Lesson 9-10: Common illnesses – symptoms
Lesson 11-16: The respiratory system
Lesson 17-22: The cardiovascular system
Lesson 23-24: Consolidation
Lesson 25-26: Test 1 + situation
Lesson 27-32: The urinary system
Lesson 33-38: The digestive system
Lesson 39-44: The Endocrine system
Lesson 45-50: Consolidation
Lesson 51-52: Test – situation, communication practice
Lesson 53-56: Mock final exam (oral part), assessment

Schedule of consultations:
Individual consultations by email or in person on meeting formerly agreed upon with the teacher via email.

Course requirements
Prerequisites: GYLEKMSZG4A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
An attendance of 75% minimum is required to get the signature.
The student must have a minimum average of 2.00 based on the final exam to pass the subject.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Beside the final test the teacher may evaluate the students’ performance with the help of short tests.

Requirements of signature:
An attendance of 75% minimum and taking the final test.

Number and type of projects students have to perform independently during the semester and their deadlines:
homework in the forms of language practice tasks

Type of the semester-end examination: final
Form of the semester-end examination: written and oral

List of teaching materials (List of textbooks, hand-outs, scripts, etc.):
sample tests provided by the teacher
Physical Education V.

Full name of the subject: Testnevelés V.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: –
English name of the subject: Physical Education V.
German name of the subject: Sport V

Neptun code of the subject: GYKTSI116G5A
Type of registration: obligatory
Responsible department: Semmelweis University, Physical Education and Sports Center

Responsible tutor:
Várszegi, Kornélia director
Phone: +36-1/264-1408
E-Mail: varszegi.kornelia@semmelweis-univ.hu, sportkozpont@semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Fodor, Ákos tennis trainer
Kalmár, Jessica aerobics trainer
Kalmus, Dániel circuit training trainer
Katona, László hiking, badminton, boulder trainer
Lehel, Zsolt tennis, golf, icehockey trainer
Nagy-Kismarci, Bence cheerleading trainer
Rimay, István football trainer
Weisz, Miklós basketball trainer

Classes per week: 1 practice
Credit point(s): 0

Professional content, intent of acquisition and its function in order to implement the goals of the program:
Upon completion of the course the student will be able to carry out regular physical activity.
After completing the „beginner swimming” course, one will acquire water-confident swimming skills.

Short description of the subject:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a
better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal
is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and life-
style advice – so that they can represent those in their later practice, through their own health-promoting behavior

<table>
<thead>
<tr>
<th>Course data</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
<td>Contact hours (lecture)</td>
<td>Contact hours (practice)</td>
<td>Contact hours (seminar)</td>
<td>Individual lectures</td>
<td>Total number of contact hours/semester</td>
<td>Normal course offer</td>
</tr>
<tr>
<td>5. semester</td>
<td>0</td>
<td>14</td>
<td></td>
<td></td>
<td>14</td>
<td>Autumn semester</td>
</tr>
</tbody>
</table>
Program of semester

Topics of practical classes (pro week):
Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:
60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations.
1107 Bp, Zágrábi utca 14.

1×60 min./week sessions:
Aerobics, BlessYou Gym, boulder, functional circuit training, golf, beginner Yoga, advanced Yoga, male football, salsa, step aerobics, badminton, beginner ultimate frisbee, advanced ultimate frisbee, zumba
1x 90 mins./week sessions: women’s football, ice hockey, beginner tennis, beginner tennis 2,
4×3 hrs. and 1×2 hrs. session packages: Hiking 1, Hiking 2.
2×90 mins./week sport training (competitive sport, for qualified only): cheerdance, cheerleader, men’s football, handball, basketball, volleyball

Fee-based:
at the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.

Course requirements
Prerequisites: –

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The number of active participations for physical education classes is 10, regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams.
As teams take part in championships during the school year, we only accept applications from professional athletes!

Requirements of signature:
Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate to the TSK or
2. does sports regularly and submits a certificate of association and federation to the Foreign Students Secretariat
until the last study day in the 4th week of the semester. On the basis of the submitted application and its annexes, the TVB decides on the exemption of both the Hungarian and foreign students.
Type of the semester-end examination: signature/practical grade/semi-final/final
6. SEMESTER 2021/2022/2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacognosy (theory+practice) I.</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>Pharmaceutical Botany II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (practice) II.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Pharmaceutical Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) II.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>Pharm. Techn. I.</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) II.</td>
<td>–</td>
<td>6</td>
<td>3</td>
<td>Pharm. Techn. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Pharm. Techn. I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology II. (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Basic Med. Patho.I. Dietetics Pharm. Microbiology</td>
<td>final*</td>
</tr>
<tr>
<td>Veterinary Pharmaceuticals (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Pharm. Techn. I. Pharm. Microbiology</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Basic Med. Patho.I. Physiological Pharm. and Pharmaceutical dosage forms</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharm. Techn. I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Education VI.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Pharmacy Practice II.</td>
<td>–</td>
<td>20/semester</td>
<td>–</td>
<td>Pharm. Techn. I.</td>
<td>signature</td>
</tr>
<tr>
<td>GYKANG238G2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer Practice II.</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Pharm. Chem. and Anal.; Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>13</td>
<td>17 20/semester</td>
<td>26+4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x40/semester</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pharmacognosy (theory+practice) I.

Full name of the subject: Gyógynövény- és drogismeret (elmélet+gyakorlat) I.

Program: undivided program (pharmaceutical)

Schedule: full-time

Short name of the subject: Pharmacognosy I.

English name of the subject: Pharmacognosy (theory+practice) I.

German name of the subject: Pharmakognosie (Vorlesung+Praktikum) I

- Neptun code of the subject: GYKFMG130G1A
- Type of registration: obligatory
- Responsible Department: Semmelweis University, Department of Pharmacognosy

Responsible tutor: Szabolcs Béni head of department, associate professor, Ph.D.
E-mail: beni.szabolcs@pharma.semmelweis-univ.hu

- Name of the persons responsible for the teaching of the subject:
 - Szabolcs Béni associate professor, Ph.D.
 - Ágnes Alberti associate professor, Ph.D.
 - Andrea Bőszörményi assistant professor, Ph.D.
 - Orsolya Csernák assistant professor, Ph.D.
 - Ida Fejős assistant professor, Ph.D.
 - László Kursinszki associate professor, Ph.D.
 - Eszter Riethmüller assistant professor, Ph.D.
 - Attila Ványolós assistant professor, Ph.D.
 - Nóra Gampe professor’s assistant, Ph.D.

- Classes per week: 2 lectures, 4 practices
- Credit point: 5

Professional content, intent of acquirement and it’s function in order to implement the goals of the program:
The aim of the course is to acquaint pharmacy students with medicinal plants, herbal drugs and the analytical methods applied in their quality assurance. By doing so, it contributes to the education of pharmacy students to become key experts in herbal medicines. It contributes to the training of students with modern knowledge of pharmacognosy at a time when the knowledge about natural substances and herbs has come to the fore and has expanded with new aspects due to European harmonization.

Short description of the subject:
The topics of the classes follow the biogenetic system of plant materials. It represents a shift in proportion and, in part, selection in the curriculum that sufficiently emphasizes the importance of knowledge of herbal drugs and their active ingredients that are important in therapeutic practice. At the same time, it provides sufficient knowledge in the context of structure-activity relationships for the sufficient processing of newly emerging herbal drugs, possibly of foreign origin, based on their chemical groups. It also introduces the requirements of the European Pharmacopoeia (Ph. Eur.) regarding herbal drugs and preparations. It thus provides knowledge of all herbal drugs and active substances that serve as raw materials for phytopharmaceuticals (including those that will soon become traditional OTC medicines) and preventive products (dietary supplements).

Knowledge of plant material: drug recognition; macroscopic and microscopic examination (cross section, powder preparation, quantitative microscopy).

Detection of active ingredients and constituents of herbal drugs (preparation, extraction and purification techniques, general and specific chemical reactions, chromatographic methods), quantitative evaluations (pharmacopoeial and standard methods) and isolation of individual components or selective determination by complex chromatographic and spectroscopic methods. Application of herbal drugs based on their positive effects in prevention, phytotherapy and improving quality of life.
Program of semester

Topics of theoretical classes (pro week):

1. **week:** Introduction to Pharmacognosy
2. **week:** History of Pharmacognosy. Cultivation and processing of medicinal plants.
3. **week:** Biogenetic system of plant materials. Saccharides, carbohydrates.
4. **week:** Plant acids. Polyketides.
5. **week:** Classification of phenolic compounds. Hydroxycinnamic acid derivatives.
6. **week:** Coumarins.
8. **week:** Flavonoids.
10. **week:** Tannins.
11. **week:** Naphthoquinones. Anthraglycosides.
12. **week:** Naphthodianthrones. Terpenophenolics.
13. **week:** Obligatory test-exam
14. **week:** Fungi

Topics of practical classes (pro week):

1. **week:** Introduction, safety rules. Macroscopic and microscopic knowledge. European Pharmacopoeia.
2. **week:** General methods in Pharmacognosy.
3. **week:** Vegetable drugs containing carbohydrates (starches, mucilages, etc.).
4. **week:** Plant acids and their drugs.
5. **week:** Plant lipids and their drugs.
6. **week:** Phenolglycosides, lignans, coumarins and diarylheptanoids.
7. **week:** Flavonoids and chief drugs I.
8. **week:** Flavonoids and chief drugs II.
9. **week:** Tannins and chief tannin drugs.
10. **week:** Anthraglycoside containing crude drugs I. Chemical tests, quantitative determinations.
11. **week:** Anthraglycoside containing crude drugs II. Quantitative determination of sennosides.
12. **week:** Terpenophenolics and phloroglucine derivatives.
13. **week:** Individual task I.: Natural product development,
14. **week:** Individual task II.: Identification of crude drugs based on the methods prescribed in the Ph. Eur.

Schedule of consultations: as demanded

Course requirements

Prerequisites: GYKFMG079E2A – Pharmaceutical botany II.
Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: Three absences from the practices are allowed.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
During the term-time: three written or oral examinations based on the material of the practices and the lectures. Test of the knowledge of herbal drugs: examination of unknown drug mixtures, identification of unknown drug powders, recognition of microscopic preparations. The grade of the obligatory midterm test is given double weight, the marks obtained during the further examinations are taken into account with single weight when determining the practical mark.

Midterm examinations can be retaken twice. In the case of the improvement of the grade, the average of the correction mark (s) and the original grade (s) will be taken into account.

Requirements of signature:
Participation at the practices. Submission and acceptance of reports. The average of the grades of the midterm examinations is at least 2.0. Successful completion of the obligatory midterm test.
Number and type of projects students have to perform independently during the semester and their deadlines: Presentation of a chosen topic.
Type of the semester-end examination: practical grade

Necessary equipment: Lecture hall, projection, wi-fi.
**Laboratory equipped with microscopes, labwares, extractors, distillation equipment, instruments (UV-VIS, IR, HPLC, GC), chemicals.
Pharmaceutical Chemistry (theory) II., Pharmaceutical Chemistry (practice) II.

Full name of the subject: Gyógyszerészi kémia (elmélet) II., Gyógyszerészi kémia (gyakorlat) II.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Pharm. Chem. II.
English name of the subject: Pharmaceutical Chemistry (theory) II., Pharmaceutical Chemistry (practice) II.
German name of the subject: Pharmazeutische Chemie (Vorlesung) II., Pharmazeutische Chemie (Praktikum) II.

Neptun code of the subject: GYKGYK076E2A, GYKGYK076G2A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmaceutical Chemistry

Responsible tutor: Dr. Péter Horváth Head of the Department, Associate professor, Ph.D.
E-Mail: horvath.peter@pharma.semmelweis-univ.hu
Phone: 06-1-217-0891
Semmelweis University, Department of Pharmaceutical Chemistry, H-1092 Budapest, Hőgyes Endre u. 9.

Name of the persons responsible for the teaching of the subject:
Dr. Péter Horváth associate professor, head of the department, Ph.D.
Dr. Krisztina Takács-Novák full professor, D.Sc.
Dr. László Órfa full professor, Ph.D.
Dr. Gergely Völgyi associate professor, Ph.D.
Dr. Károly Mazák associate professor, Ph.D.
Dr. Márta Mazák-Kraszni associate professor, Ph.D.
Dr. Gergő Tóth assistant professor, Ph.D.
Dr. Arash Mirzahosseini assistant lecturer, Ph.D.
Dr. Tamás Pálta assistant lecturer, Ph.D.
Dr. István Köteles assistant lecturer
Dr. Dóra Csicsák assistant lecturer

Classes per week: 4 lectures, 4 practices
Credit point(s): 4 (theory), 4 (practice)

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Integration of the curriculum of various chemical and biological courses and extension with specific chemical knowledge regarding properties, mechanism of action and analytics of drug substances.

Short description of the subject:
theory: Teaching of synthesis, analytics, physico-chemical and chemical properties, structure-activity relationships, receptor-bindings and biochemical background of biological effects of drug substances.
practice: Teaching of analytics, physico-chemical and chemical properties of drug substances.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>56</td>
<td>56</td>
<td>–</td>
<td>–</td>
<td>112</td>
<td>Spring semester</td>
<td>–</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: Cardiac glycosides. Chemistry, analytics of cardiac glycosides, sugars
 Cardiovascular drugs: antiarrhythmic agents
2. week: Cardiovascular drugs: antianginal agents
 Cardiovascular drugs: antihypertensive agents
3. week: Cardiovascular drugs: antihyperlipidemic agents
 Cardiovascular drugs: anticoagulants
4. week: Antidiabetics
 Diuretics
5. week: Antihistamines
 Corticosteroids
6. week: Sexual hormones
 Vitamins I.
7. week: Vitamins II.
 Disinfectants
8. week: Chemotherapeutics: sulfonamides
 Chemotherapeutics: antimalarial drugs, fluoroquinolones
9. week: Chemotherapeutics: antituberculotics, antifungal agents
 Antibiotics: β-lactams, chloramphenicol
10. week: Antibiotics: tetracyclines, aminoglycosides
 Antiviral agents
11. week: Anticancer drugs
 Biological and biosimilar drugs
12. week: Drug research I.
 Drug research II.
13. week: Quality assurance, GLP, validation
 Drugs acting on the thyroid gland
14. week: Nootropics
 Consultation

Topics of practical classes (pro week):
1. week: Equipping, identification.
2. week: Cardiovascular drugs I. (digitalis glycosides and sugars)
3. week: Cardiovascular drugs II. (antiarrhythmic and antianginal agents)
4. week: Cardiovascular drugs III. (antihypertensive agents and anticoagulants)
5. week: Diuretics
6. week: Antihistamines
7. week: Steroid hormones
8. week: Vitamins
9. week: Disinfectants and chemotherapeutics I. (China alkaloids)
10. week: Chemotherapeutics II. (sulfonamides, fluoroquinolones)
11. week: Antibiotics
12. week: Validation of methods
13. week: Personal task: Complete pharmacopoeial qualification of an organic compound (Ph. Eur.)
14. week: Substitutional practice, desequeipping

Course requirements
Prerequisites: Pharmaceutical Chemistry I. GYKGYK076E1A
Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: Based on the Study and Exam Regulation
Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results: Project reports on weeks 6, 10 and 13.

Requirements of signature:
Attendance on the lectures. (Extent of the absence is based on the Study and Exam Regulation)
Attendance on the practices. (Extent of the absence is based on the Study and Exam Regulation)
The average of the scheduled project reports is at least 2.
The required minimum amount of points during practices is accumulated.
Fulfilment of the compulsory personal task practice.

Type of the semester-end examination:
theory: final
practice: practical grade
Form of the semester-end examination: written and oral
Necessary equipment: practice: drug substances, reagents, laboratory equipments, instruments
Pharmacology and Toxicology (theory) I., Pharmacology and Toxicology (practice) I.

Full name of the subject: Gyógyszerhatástan és toxikológia (elmélet) I., Gyógyszerhatástan és toxikológia (gyakorlat) I.
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Pharmacology and Toxicology (theory) I., Pharmacology and Toxicology (practice) I.
German name of the subject: Pharmakologie und Toxikologie (Vorlesung) I., Pharmakologie und Toxikologie (Praktikum) I.

Neptun code of the subject: GYKGYH086E1A, GYKGYH086G1A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmacodynamics

Responsible tutor: Dr. Tamás Tábi Associate Professor, PhD
Phone: +36 1 210-44-11
E-mail: tabi.tamas@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Éva Szökő Full Professor, DSc
Dr. György Bagdy Full Professor, DSc
Dr. László Tóthfalusi Associate Professor, DSc
Dr. Tamás Tábi Associate Professor, PhD
Dr. Rudolf Laufer Assistant lecturer

Classes per week: 2 lectures, 2 practices
Credit point(s): 2 (theory), 2 (practice)

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Understanding the mechanism and effect of drugs

Short description of the subject:
The course aims at teaching of the mechanism of action, side effects and interactions of drugs and the basics of their therapeutic use.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: General principles of drug action, receptor theory I
2. week: Pharmacokinetics
3. week: Factors influencing the drug effect. Basics of clinical pharmacology
4. week: Autonomic drugs. Striated muscle relaxants
5. week: Chemical neurotransmission in the CNS
6. week: General and local anesthetics. Opioids
7. week: Drugs used in affective disorders. Anxiolytic and hypnotic drugs
8. week: Antipsychotic drugs. Drugs of abuse
10. week: Immunopharmacology
11. week: Nonsteroidal anti-inflammatory drugs. Drugs of gout
12. week: Glucocorticoids. Pharmacology of the respiratory system
13. week: Drugs of inflammatory disorders.
14. week: Drug interactions and adverse drug reactions

Topics of practical classes (pro week):
1. week: Introduction to pharmacology
2. week: Drug targets, receptor-drug interaction
3. week: Dose-response curves
4. week: Administration routs
5. week: Blood level curves
6. week: Factors influencing the drug effect
7. week: Midterm exam: general pharmacology
8. week: Autonomic drugs
9. week: Drugs of heart
10. week: Drugs of circulation
11. week: Use of cardiovascular drugs
12. week: Midterm exam: autonomic and cardiovascular pharmacology
13. week: Drugs of coagulation and lipid lowering drugs
14. week: Review and summary

Course requirements

Prerequisites:
Basic Medical Pathophysiology I. GYKGYH083G1A
Physiological Pharmaceutics and Pharmaceutical dosage forms GYKGYI073G1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: The attendance to lectures is highly recommended.
The attendance to practices is mandatory. Presence on minimum 75% of practices is required to the acceptance of the semester.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Two written midterm exams (on weeks 7 and 12)

Requirements of signature:
Attendance to lectures.
Attendance to practices. Completion of both midterm tests with at least pass (50%) results.

Type of the semester-end examination: signature/practical grade/semi-final/final
Form of the semester-end examination: written

Scientific, course related researches, publications, assays:
Physical Education VI.

Full name of the subject: Testnevelés VI.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: P. E. VI.
English name of the subject: Physical Education VI.
German name of the subject: Sport VI

Neptun code of the subject: GYKTSI116G6A
Type of registration: obligatory
Responsible department: Semmelweis University, Physical Education and Sports Center

Responsible tutor: Várszegi, Kornélia director
Phone: +36-1/264-1408
E-Mail: varszegi.kornelia@semmelweis-univ.hu, sportkozpont@semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Fodor, Ákos tennis trainer
Kalmár, Jessica aerobics trainer
Kalmus, Dániel circuit training trainer
Katona, László hiking, badminton, boulder trainer
Lehel, Zsolt tennis, golf, icehockey trainer
Nagy-Kismarci, Bence cheerleading trainer
Rimay, István football trainer
Weisz, Miklós basketball trainer

Classes per week: 1 practice
Credit point(s): 0

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Upon completion of the course the student will be able to carry out regular physical activity.
After completing the “beginner swimming” course, one will acquire water-confident swimming skills.

Short description of the subject:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice – so that they can represent those in their later practice, through their own health-promoting behaviour.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>6. semester</td>
</tr>
</tbody>
</table>
Course requirements

Prerequisites: –

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The number of active participations for physical education classes is 10, regardless of the number of school breaks, which is to be com-
pleted during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after
registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks
do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons,
which can be individually tracked on semmelweis.hu/sportkozpont homepage.
Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take
part in championships during the school year, we only accept applications from professional athletes!

Requirements of signature:
Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate to the TSK or
2. does sports regularly and submits a certificate of association and federation to the Foreign Students Secretariat
 until the last study day in the 4th week of the semester. On the basis of the submitted application and its annexes, the TVB decides on
 the exemption of both the Hungarian and foreign students.

Type of the semester-end examination: signature
FACULTY OF PHARMACEUTICAL SCIENCES

Curriculum of the credit-based training for fourth year students in the 2021/2022 academic year
7. SEMESTER 2021/2022/1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacognosy (practice) II.</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Pharmacognosy I, Pharm. Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYFMGGGNDG2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacognosy (theory) II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>GYFMGGNDE2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (practice) III.</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Pharm. Chemistry II, Physiology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYGKYKVKG3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) III.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>GYGKYKE3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Physiology II, Pharm. Chemistry II, Pharmac. Microbiol.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYGYHHATG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) I.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>Pharmac. Microbiol., Basic Immunology</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYGYHAETE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics of Pharmacoconomics (practice)</td>
<td>0</td>
<td>1</td>
<td>1**</td>
<td>Mathematics II, Passing in the same term with Pharmacology and Toxicology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYETEFAG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) III.</td>
<td>–</td>
<td>9</td>
<td>5</td>
<td>Pharm. Chemistry II, Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYGIGTG3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) III.</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>GYGIGTE3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Medical Pathophysiology (theory) I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physiology II, Pharmac. Microbiol.</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYGYHKKE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology I.</td>
<td>3</td>
<td>0</td>
<td>2**</td>
<td>Pharm. Technology II, Pharm. Chem. and Anal.I.</td>
<td>semi-final</td>
</tr>
<tr>
<td>GYGIGTE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education VII.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYTSITSG7A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>16</td>
<td>21</td>
<td>29 +3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pharmacognosy (theory) II., Pharmacognosy (practice) II.

Full name of the subject: Gyógynövény és drogismeret (elmélet) II., Gyógynövény és drogismeret (gyakorlat) II.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Pharmacognosy II.
English name of the subject: Pharmacognosy (theory) II., Pharmacognosy (practice) II.
German name of the subject: –
Neptun code of the subject: GYFMGGNDE2A; GYFMGGNDG2A
Type of registration: obligatory
Responsible Department: Semmelweis University, Department of Pharmacognosy

Responsible tutor:

Szabolcs Béni head of department, associate professor, Ph.D.
E-mail: beni.szabolcs@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:

Szabolcs Béni associate professor, Ph.D.
Ágnes Alberti associate professor, Ph.D.
Andrea Bözörményi assistant professor, Ph.D.
Orsolya Csernák assistant professor, Ph.D.
Ida Fejős assistant professor, Ph.D.
László Kursinszki associate professor, Ph.D.
Eszter Riethmüller assistant professor, Ph.D.
Attila Ványolós assistant professor, Ph.D.
Nóra Gampe professor’s assistant, Ph.D.

Classes per week: 2 lectures, 4 practices,
Credit point: 3+3

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The aim of the course is to acquaint pharmacy students with medicinal plants, herbal drugs and the analytical methods applied in their quality assurance. By doing so, it contributes to the education of pharmacy students to become key experts in herbal medicines. It contributes to the training of students with modern knowledge of pharmacognosy at a time when the knowledge about natural substances and herbs has come to the fore and has expanded with new aspects due to European harmonization.

Short description of the subject:
The topics of the classes follow the biogenetic system of plant materials. It represents a shift in proportion and, in part, selection in the curriculum that sufficiently emphasizes the importance of knowledge of herbal drugs and their active ingredients that are important in therapeutic practice. At the same time, it provides sufficient knowledge in the context of structure-activity relationships for the sufficient processing of newly emerging herbal drugs, possibly of foreign origin, based on their chemical groups. It also introduces the requirements of the European Pharmacopoeia (Ph. Eur.) regarding herbal drugs and preparations. It thus provides knowledge of all herbal drugs and active substances that serve as raw materials for phytopharmaceuticals (including those that will soon become traditional OTC medicines) and preventive products (dietary supplements).
Knowledge of plant material: drug recognition; macroscopic and microscopic examination (cross section, powder preparation, quantitative microscopy).
Detection of active ingredients and constituents of herbal drugs (preparation, extraction and purification techniques, general and specific chemical reactions, chromatographic methods), quantitative evaluations (pharmacopoeial and standard methods) and isolation of individual components or selective determination by complex chromatographic and spectroscopic methods. Application of herbal drugs based on their positive effects in prevention, phytotherapy and improving quality of life.
Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>28</td>
<td>56</td>
<td>-</td>
<td>-</td>
<td>84</td>
<td>Autumn semester</td>
<td>-</td>
</tr>
</tbody>
</table>

Program of semester

Topics of theoretical classes (pro week):
2. week: Acyclic, monocyclic and bicyclic monoterpenes and their drugs.
3. week: Essential oil-rich drugs containing phenylpropane derivatives and aromatic monoterpenes. Sesquiterpenes and their drugs. Balms, resins and their drugs.
4. week: Valepotriate iroidoster-containing drugs. Iridoids and their drugs. Therapeutic significance of bitter substance-containing drugs and their preparations: secoriroid, sesquiterpene lactone, diterpene, seco-triterpene, cinnamic acid pregnane ester, curcurbitacin type bitter substances and their drugs.
6. week: Drugs containing sterane-based cardiac glycosides and their significance in medicine. Ecdysteroids and their drugs.
9. week: Phenylalanine (tyrosine, DOPA) derived alkaloids. Phenoloid-isoquinoline backbone, benzylisoquinoline, morphinan backbone, dimeric benzylisoquinoline backbone, phenylisoquinoline, phenanthridine backbone, monoterpenoid-isoquinoline backbone alkaloids and their drugs.
11. week: Terpene-derived alkaloids and their drugs. Mustard oil glycosides. Drugs containing other sulfur compounds.
12. week: Pharmaceutical biotechnology.
13. week: Obligatory written test.
14. week: Plant research and phytotherapy in the XXI. century.

Topics of practical classes (pro week):
1. week: Bitter substances of plants. Classification, reactions, bitterness value.
2. week: Essential oil containing drugs I.
3. week: Essential oil containing drugs II.
4. week: Saponins and chief saponin drugs. Methods used in the identification and quality control of saponins.
5. week: Cardioactive glycosides and chief drugs.
6. week: Methods used in the analyses of cardioactive glycosides.
7. week: Tropane alkaloid containing drugs.
8. week: Isoquinoline alkaloids, their chief drugs.
9. week: Quinoline and indole alkaloids, their chief drugs.
10. week: Pseudo- and protoalkaloids, their chief drugs I.
11. week: Pseudo- and protoalkaloids, their chief drugs II.
12. week: Plant biotechnology.
13. week: Individual task I: Natural product development.

Schedule of consultations: as demanded

Prerequisites:
GYKFMG130G1A Pharmacognosy I.
GYGYKGYKE2A Pharmaceutical chemistry II.

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Three absences from the practices are allowed.
Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
During the term-time: two written or oral examinations based on the material of the practices. Test of the knowledge of herbal drugs: examination of unknown drug mixtures, identification of unknown drug powders, recognition of microscopic preparations.
The grade of the obligatory midterm test is given double weight, the marks obtained during the further examinations are taken into account with single weight when determining the practical mark.
Midterm examinations can be retaken twice. In the case of the improvement of the grade, the average of the correction mark (s) and the original grade (s) will be taken into account.
Demonstration of that the student: a) has adequate knowledge of plant materials (recognition of herbal drugs), and b) is able to independently perform quality testing of herbal drugs based on the Ph. Eur. Academic competition.
Requirements of signature:
Participation at the practices. Submission and acceptance of reports. The average of the grades of the midterm examinations is at least 2.0. Successful completion of the obligatory midterm test.

Number and type of projects students have to perform independently during the semester and their deadlines:
Practice: Participation at the practices. Submission and acceptance of reports. The average of the grades of the midterm examinations is at least 2.0. Successful completion of the obligatory midterm test.

Type of the semester-end examination:
Lecture: final
Practice: practical grade

Form of the semester-end examination:
Lecture: oral examination

Necessary equipment:
Lecture hall, projection, wi-fi.
Practice: Laboratory equipped with microscopes, labwares, extractors, distillation equipment, instruments (UV-VIS, IR, HPLC, GC), chemicals
Pharmaceutical Chemistry (theory) III., Pharmaceutical Chemistry (practice) III.

Full name of the subject: Gyógyszerészi kémia (elmélet) III., Gyógyszerészi kémia (gyakorlat) III.

Program: undivided program (pharmaceutical)

Schedule: full-time

Short name of the subject: Pharm. Chem. III.

English name of the subject: Pharmaceutical Chemistry (theory) III., Pharmaceutical Chemistry (practice) III.

German name of the subject: Pharmazeutische Chemie (Vorlesung) III., Pharmazeutische Chemie (Praktikum) III.

Neptun code of the subject: GYGYKGYKE3A, GYGYKGYKG3A

Type of registration: obligatory

Responsible department: Semmelweis University, Department of Pharmaceutical Chemistry

Responsible tutor: Dr. Péter Horváth Head of the Department, Associate professor, Ph.D.
Phone: 06-1-217-0891
E-Mail: horvath.peter@pharma.semmelweis-univ.hu
Semmelweis University, Department of Pharmaceutical Chemistry, H-1092 Budapest, Hőgyes Endre u. 9.

Name of the persons responsible for the teaching of the subject:
- Dr. Péter Horváth associate professor, head of the department, Ph.D.
- Dr. Kriszina Takács-Novák full professor, D.Sc.
- Dr. László Örfi full professor, Ph.D.
- Dr. Gergely Völgyi associate professor, Ph.D.
- Dr. Károly Mazák associate professor, Ph.D.
- Dr. Márta Mazák-Kraszni associate professor, Ph.D.
- Dr. Gergő Tóth assistant professor, Ph.D.
- Dr. Arash Mirzahasseini assistant lecturer, Ph.D.
- Dr. Tamás Pália assistant lecturer, Ph.D.
- Dr. István Köteles assistant lecturer
- Dr. Dóra Csicsák assistant lecturer

Classes per week: 2 lectures, 4 practices

Credit point: 3 (theory), 3 (practice)

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Integration of the curriculum of various chemical and biological courses and extension with specific chemical knowledge regarding properties, mechanism of action and analytics of drug substances.

Short description of the subject:
Teaching of synthesis, analytics, physico-chemical and chemical properties, structure-activity relationships, receptor-bindings and biochemical background of biological effects of drug substances.

Teaching of analytics, physico-chemical and chemical properties of drug substances.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommend-ed term</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: Disinfectants
2. week: Chemotherapeutics: sulfonamides
3. week: Chemotherapeutics: antimalarial drugs, fluoroquinolones
4. week: Analysis of drug mixtures I.
5. week: Analysis of drug mixtures II.
6. week: Chemotherapeutics: antituberculotics, antifungal agents
7. week: Antibiotics: β-lactams, chloramphenicol
8. week: Antibiotics: tetracyclines, aminoglycosides
9. week: Antiviral agents
10. week: Anticancer drugs
11. week: Drug research I.
12. week: Drug research II.
13. week: Biological and biosimilar drugs
14. week: Consultation

Topics of practical classes (pro week):
1. week: Equipping, identification.
2. week: Disinfectants and chemotherapeutic drugs
3. week: Antibiotics
4. – 5. weeks: Identification of drug mixtures
6. – 13. weeks: Quantitative determination of drug mixtures
14. week: Substitutional practice, desequipping

Course requirements
Prerequisites:
Pharmaceutical Chemistry II. GGYKGYKE2A
Physiology II. GYKTLM124E2A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Based on the Study and Exam Regulation
Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
practice: Project reports on weeks 4, 9 and 12.

Requirements of signature:
Attendance on the lectures. (Extent of the absence is based on the Study and Exam Regulation)
Attendance on the practices. (Extent of the absence is based on the Study and Exam Regulation)
The average of the scheduled project reports is at least 2.
The required minimum amount of points during practices is accumulated.

Type of the semester-end examination:
theory: final
practice: practical grade
Form of the semester-end examination: written and oral

Necessary equipment:
practice: drug substances, reagents, laboratory equipments, instruments
Pharmacology and Toxicology (theory) I., Pharmacology and Toxicology (practice) I.

Full name of the subject: Gyógyszerhatástan- toxikológia (elmélet) I., Gyógyszerhatástan- toxikológia (gyakorlat) I.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Pharmacology and Toxicology (theory) I., Pharmacology and Toxicology (practice) I.
German name of the subject: Pharmakologie und Toxikologie (Vorlesung) I., Pharmakologie und Toxikologie (Praktikum) I.

Neptun code of the subject: GYGYHHATE1A, GYGYHHATG1A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmacodynamics

Responsible tutor:
Dr. Tamás Tábi Associate Professor, PhD
Phone: +36 1 210-44-11
E-mail: tabi.tamas@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Éva Szökő Full Professor, DSc
Dr. György Bagdy Full Professor, DSc
Dr. László Tóthfalusi Associate Professor, DSc
Dr. Tamás Tábi Associate Professor, PhD
Dr. Rudolf Laufer Assistant lecturer

Classes per week: 4 lectures, 2 practices
Credit point: 4 (theory), 2 (practice)

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Understanding the mechanism and effect of drugs

Short description of the subject:
The course aims at teaching of the mechanism of action, side effects and interactions of drugs and the basics of their therapeutic use.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommen-ded term</td>
</tr>
<tr>
<td>Contact hours (lecture)</td>
</tr>
<tr>
<td>Contact hours (practice)</td>
</tr>
<tr>
<td>Contact hours (seminar)</td>
</tr>
<tr>
<td>Individual lectures</td>
</tr>
<tr>
<td>Total number of contact hours/semester</td>
</tr>
<tr>
<td>Normal course offer</td>
</tr>
<tr>
<td>Consultations</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: General principles of drug action, receptor theory
2. week: Dose-response curves. Agonist and antagonist ligands
3. week: Fate of drugs in the body
4. week: Pharmacokinetics
5. week: Cholinergic drugs. Striated muscle relaxants
6. week: Adrenergic drugs
7. week: Antiadrenergic drugs. Drugs of Glaucoma
8. week: Drugs affecting the heart
9. week: Drugs of circulation
10. week: Diuretics
11. week: Drugs affecting blood coagulation
12. week: Lipid lowering drugs
13. week: Basics of clinical pharmacology
14. week: Factors influencing the drug effect.

Topics of practical classes (pro week):
1. week: Introduction to pharmacology
2. week: General principles of drug action, receptor theory
3. week: Pharmacokinetics
4. week: Factors influencing the drug effect. Basics of clinical pharmacology
5. week: Cholinergic drugs. Striated muscle relaxants
6. week: Adrenergic drugs
7. week: Midterm exam: general and autonomic pharmacology
8. week: General and local anesthetics. Opioids
9. week: Psychopharmacology 1
10. week: Psychopharmacology 2
11. week: Neuropharmacology Nonsteroidal anti-inflammatory drugs. Drugs of gout
12. week: Midterm exam: pharmacology of CNS
13. week: Immunopharmacology
14. week: Anti-inflammatory drugs

Course requirements
Prerequisites:
- Physiology II. GYTLME2A
- Pharmaceutical Chemistry II. GGYKYE2A
- Pharmaceutical Microbiology GYMIGMBE1A
- Basic Immunology GYGENIMUE1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The attendance to lectures is highly recommended.
The attendance to practices is mandatory. Presence on minimum 75% of practices is required to the acceptance of the semester.
Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Two written midterm exams (on weeks 7 and 12)

Requirements of signature:
- Attendance to lectures.
- Attendance to practices. Completion of both midterm tests with at least pass (50%) results.

Type of the semester-end examination:
- theory: semi-final
- practice: practical grade
Form of the semester-end examination: written

Scientific, course related researches, publications, assays:
Basics of Pharmacoeconomics (practice)

Full name of the subject: Farmakoökonomia alapjai (gyakorlat)
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Basics of Pharmacoeconomics (practice)
German name of the subject: Einführung in die Pharmakoökonomie (Praktikum)
Neptun code of the subject: GYETEOAG1A
Type of registration: obligatory elective
Responsible department: Semmelweis University, Center for Health Technology Assessment

Responsible tutor: **Assoc. Prof. András Inotai** PhD, DrHabil
Phone: +36 70 430 4645
E-Mail: inotai.andras@semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Prof. Zoltán Kaló PhD, DrHabil
Assoc. Prof. Balázs Nagy PhD, DrHabil
Zsuzsanna Petykó PhD candidate

Classes per week: 1 practice (2×45 mins bi-weekly)
Credit point: 1

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0</td>
<td>14</td>
<td>–</td>
<td>–</td>
<td>14</td>
<td>Autumn semester*</td>
<td>-</td>
</tr>
</tbody>
</table>

Professional content, intent of acquisition and its function in order to implement the goals of the program:
Practice-oriented teaching of basic health- and pharmacoeconomic knowledge for pharmacy students to enable them interpreting and determining the cost-effectiveness of pharmaceuticals, and understanding the principles of pharmaceutical pricing and reimbursement.
Program of semester

Topics of practical classes (pro week):

<table>
<thead>
<tr>
<th>Class</th>
<th>Topic</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1 90 min</td>
<td>Health care market and market failures</td>
<td>Zoltán Kaló</td>
</tr>
<tr>
<td></td>
<td>Elements of health care system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Financing health care</td>
<td></td>
</tr>
<tr>
<td>Week 3 90 min</td>
<td>Pharmacoeconomics, Health Technology Assessment, Classification of economic evaluations</td>
<td>Zoltán Kaló</td>
</tr>
<tr>
<td>Week 5 90 min</td>
<td>Steps of health economic evaluation I - Evidence synthesis, health outcome measurement (quality of life, utility, quality adjusted life years)</td>
<td>Zsuzsanna Petykó, András Inotai</td>
</tr>
<tr>
<td>Week 7 90 min</td>
<td>Steps of health economic evaluation II – Measuring costs, decision rule (threshold, multicriteria decision analysis)</td>
<td>Balázs Nagy</td>
</tr>
<tr>
<td>Week 9 90 min</td>
<td>Health economic modelling (classification, applicability)</td>
<td>Balázs Nagy</td>
</tr>
<tr>
<td>Week 11 90 min</td>
<td>Pricing of original and generic medicines</td>
<td>András Inotai</td>
</tr>
<tr>
<td>Week 13 90 min</td>
<td>Pharmaceutical reimbursement system, cost control techniques</td>
<td>András Inotai</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Test type exam</td>
<td></td>
</tr>
</tbody>
</table>

Schedule of consultations: 90 mins bi-weekly (contact hours)

Course requirements
Prerequisites: Mathematics II. GYEGYMATE2A, GYEGYMATG2A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
1 unjustified absence is permitted.
Requirements of signature: successful test at the end of the semester (week 14, classroom exam)

Type of the semester-end examination:
signature/practical grade/semi-final/final
Form of the semester-end examination: test type classroom exam of the entire semester curricula at week 14, opportunity for correction: week 1 of exam period

Scientific, course related researches, publications, assays:
education material include slide deck, compulsory and recommended reading materials

Necessary equipment:
NA, personal laptop is recommended for interactive health economic modeling
Physical Education VII.

Full name of the subject: Testnevelés VII.
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Physical Education VII.
German name of the subject: Sport VII
Neptun code of the subject: GYKTSI116G7A
Type of registration: obligatory
Responsible department: Semmelweis University, Physical Education and Sports Center

Responsible tutor: Várszegi, Kornélia director
E-Mail: varszegi.kornelia@semmelweis-univ.hu, sportkozpont@semmelweis-univ.hu
Phone: +36-1/264-1408

Name of the persons responsible for the teaching of the subject:
Fodor, Ákos tennis trainer
Kalmár, Jessica aerobics trainer
Kalmus, Dániel circuit training trainer
Katona, László hiking, badminton, boulder trainer
Lehel, Zsolt tennis, golf, icehockey trainer
Nagy-Kismarci, Bence cheerleading trainer
Rimay, István football trainer
Weisz, Miklós basketball trainer

Classes per week: 1 practice
Credit point: 0

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Upon completion of the course the student will be able to carry out regular physical activity.
After completing the “beginner swimming” course, one will acquire water-confident swimming skills.

Short description of the subject:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice - so that they can represent those in their later practice, through their own health-promoting behaviour.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommen-ded term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semes-ter</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. semester</td>
<td>0</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>Autumn semester</td>
<td></td>
</tr>
</tbody>
</table>
Program of semester

Topics of practical classes (pro week):
Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:
60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations.
1107 Bp, Zágrábi utca 14.

1 x 60 min./week sessions:
Aerobics, BlessYou Gym, boulder, functional circuit training, golf, beginner Yoga, advanced Yoga, male football, salsa, step aerobics, badminton, beginner ultimate frisbee, advanced ultimate frisbee, zumba
1 x 90 mins./week sessions: women’s football, ice hockey, beginner tennis, beginner tennis 2,
4 x 3 hrs. and 1 x 2 hrs. session packages: Hiking 1, Hiking 2.
2 x 90 mins./week sport training (competitive sport, for qualified only): cheerdance, cheerleader, men’s football, handball, basketball, volleyball

Fee-based:
at the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.

Course requirements

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The number of active participations for physical education classes is 10, regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.
Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes!

Requirements of signature:
Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate to the TSK or
2. does sports regularly and submits a certificate of association and federation to the Foreign Students Secretariat until the last study day in the 4th week of the semester. On the basis of the submitted application and its annexes, the TVB decides on the exemption of both the Hungarian and foreign students.

Type of the semester-end examination: signature
8. SEMESTER 2021/2022/2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology and Toxicology (practice) II.</td>
<td>–</td>
<td>3</td>
<td>2</td>
<td>Pharm. and Tox. I. Pharm. Techn. III. Basic Med. Pathop. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) II.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) IV.</td>
<td>–</td>
<td>9</td>
<td>6</td>
<td>Pharmaceutical Technology III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) IV.</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology (theory) II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Basic Med. Pathop. I. Pharm. and Tox. I.</td>
<td>final*</td>
</tr>
<tr>
<td>Basics of Phytotherapy (theory)</td>
<td>1</td>
<td>–</td>
<td>1**</td>
<td>Pharmacognosy II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Basics of Pharmaceutical Management (practice)</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Basics of Pharmacoecnomics</td>
<td>practical mark</td>
</tr>
<tr>
<td>Products of Veterinary Medicine (theory)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Ph. Technology III. Ph. Microbiology</td>
<td>semi-final</td>
</tr>
<tr>
<td>Public Health (practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Basic Medical Pathophysiology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Public Health (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi-final</td>
</tr>
<tr>
<td>Physical Education VIII.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Diploma Work I.</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>Passing all semi-finals and finals of the 7th semester</td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi-final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>14</td>
<td>22</td>
<td>27 +1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pharmacology and Toxicology (theory) II., Pharmacology and Toxicology (practice) II.

Full name of the subject: Gyógyszerhatástan- toxikológia (elmélet) II., Gyógyszerhatástan- toxikológia (gyakorlat) II.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Pharmacology and Toxicology (theory) II., Pharmacology and Toxicology (practice) II.
German name of the subject: Pharmakologie und Toxikologie (Vorlesung) II., Pharmakologie und Toxikologie (Praktikum) II.

Neptun code of the subject: GYGYHHATE2A, GYGYHHATG2A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmacodynamics

Name of the persons responsible for the teaching of the subject:
Dr. Éva Szökő Full Professor, DSc
Dr. György Bagdy Full Professor, DSc
Dr. László Tóthfalusi Associate Professor, DSc
Dr. Tamás Tábi Associate Professor, PhD
Dr. Rudolf Laufer Assistant lecturer

Classes per week: 4 lectures, 3 practices
Credit point: 4 (theory), 2 (practice)

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Understanding the mechanism and effect of drugs

Short description of the subject:
The course aims at teaching of the mechanism of action, side effects and interactions of drugs and the basics of their therapeutic use.
Program of semester

Topics of theoretical classes (pro week):
1. week: Drugs affecting circulation
2. week: Drugs affecting heart. Diuretics
3. week: Lipid lowering drugs. Drugs affecting coagulation.
4. week: Drugs affecting carbohydrate metabolism
5. week: Reproductive pharmacology
6. week: Drugs affecting calcium and bone metabolism. Drugs affecting the pituitary and thyroid
7. week: Drugs affecting GI tract function
8. week: Principles of antimicrobial chemotherapy
9. week: Antibacterial drugs
10. week: Antimycobacterial, antifungal, antiparasitic and antiviral drugs
11. week: Anticancer drugs
12. week: Drugs affecting the hemopoietic system. Vitamins and retinoids
13. week: Toxicology
14. week: Toxicology

Topics of practical classes (pro week):
1. week: Repetition
2. week: Drugs affecting the circulation
3. week: Drugs affecting the heart, diuretics. Use of cardiovascular drugs
4. week: Drugs affecting lipid levels and blood coagulation
5. week: Antidiabetics
6. week: Endocrine pharmacology
7. week: Midterm exam: cardiovascular and endocrine pharmacology
8. week: Gastrointestinal pharmacology
9. week: Antibacterial drugs
10. week: Antimycobacterial, antifungal, antiviral and antiparasitic drugs
11. week: Anticancer drugs
12. week: Midterm exam: gastrointestinal pharmacology, chemotherapy
13. week: Hemopoietic drugs. Vitamins. Understanding SmPC
14. week: Toxicology

Course requirements
Prerequisites:
- Pharmacology and Toxicology I. GYGHHATE1A
- Pharmaceutical Technology III. GGYGYTE3A
- Basic Medical Pathophysiology I. GGYHKAE1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The attendance to lectures is highly recommended.
The attendance to practices is mandatory. Presence on minimum 75% of practices is required to the acceptance of the semester.
Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results: Two written midterm exams (on weeks 7 and 12)

Requirements of signature:
Attendance to lectures.
Attendance to practices. Completion of both midterm tests with at least pass (50%) results.

Type of the semester-end examination:
- theory: semi-final
- practice: practical grade

Form of the semester-end examination: written

Scientific, course related researches, publications, assays:
Pharmacy Administration (theory+practice) I.

Full name of the subject: Gyógyszerügyi ismeretek (elmélet+gyakorlat) I.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Pharmacy Administration (theory+practice) I.
German name of the subject: Pharmazeutische Administration (Vorlesung+Praktikum) I.

Neptun code of the subject: GYEGYIMG1A
Type of registration: obligatory
Responsible Department: Semmelweis University, University Pharmacy Department of Pharmacy Administration

Responsible tutor: Dr. Romána Zelkó professor, Ph.D., D.Sc.
Phone: 2170-927
E-mail: zelko.romana@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Ágnes Mészáros associate professor, Ph.D., Dr. Habil

Classes per week: 2 lectures, 2 practices
Credit point: 3

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The course seeks to introduce students with main fields of pharmacy, the responsibilities of the pharmacist: To teach about competencies and professional skills required in relation to drug dispensing, hospital-clinical pharmacy, and industrial pharmacy, as well as on economics and management, quality management.

| Course data |
|---|---|---|---|---|---|---|---|
| Recommen-ded | Contact hours (lecture) | Contact hours (practice) | Contact hours (seminar) | Individual lectures | Total number of contact hours/semester | Normal course offer | Consultations |
| term | | | | | | | |
| 8 | 28 | 28 | – | – | 56 | Spring semester | – |

Program of semester

Topics of theoretical classes (pro week):
1. Introduction to Pharmacy Administration
2. Pharmaceutical research, Pharmaceutical Industry
3. Good Laboratory Practice (GLP)
4. Quality Management and GMP I
5. GMP II.
7. European Marketing Authorization II.
8. Marketing of pharmaceuticals
9. Risk assessment in relation to magisterial preparation
10. Pharmacovigilance in daily practice
11. Good Pharmacy Practice
12. Hospital Pharmacy Practice
13. Good Distribution Practice (GDP)
14. Drug tenders and applied health economics

Topics of practical classes (pro week):
1. Pharmacy education (Good Pharmacy Education Practice)
2. Importance of health promotion and patient education
3. Publication strategies
4. EBM and systematic literature reviews
5. The importance of Medline and UpToDate databases
6. GCP and the role of the hospital pharmacist
7. Drug Utilization Studies (Lecture)
8. Personal carrier management, CV
9. Professional life after graduation
10. ADR Website
11. Health literacy and “Healthy websites”
12. Student’s Presentation on health promotion I
13. Student’s Presentation on health promotion II.
14. Consultation and written practical exam (multiple choice)
Course requirements

Prerequisites:
Pharmaceutical Technology III. GYGYIGYTE3A GYGYIGYTG3A,
Basics of Pharmacoeconomics GYTETOAG1A,
History of Sciences, Propereutics GYEGYTTPE1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
according to the University’s Study and Examination Regulations

Requirements of signature: attendance at 75% of the parctices

Number and type of projects students have to perform independently during the semester and their deadlines:
one presentation on health promotion topic

Type of the semester-end examination:
practical grade

Form of the semester-end examination:
written
Basics of Phytotherapy (theory)

Full name of the subject: Fitoterápia alapjai (elmélet)
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Basics of Phytotherapy (theory)
German name of the subject: Grundlagen der Phytotherapie (Vorlesung)

Neptun code of the subject: GYFMGFTAE1A
Type of registration: obligatory elective
Responsible Department: Semmelweis University, Department of Pharmacognosy

Responsible tutor: Ágnes Alberti associate professor, Ph.D.
alberti.agnes@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Ágnes Alberti associate professor, Ph.D.
Eszter Riethmüller assistant professor, Ph.D.
Orsolya Csernák assistant professor, Ph.D.
Ida Fejős assistant professor, Ph.D.
Nóra Gampe professor’s assistant, Ph.D.

Classes per week: 1 lecture(s)
Credit point(s): 1

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The aim of the course is to acquaint pharmacy students with herbal drugs and medicines, dietary supplements and other preparations that can be used in rational phytotherapy: focusing on their composition, effects, methods of administration, indications for therapy, relevant pharmacological and clinical data, major side effects and interactions. It provides a basis for the selection of herbal medicines with traditional and well-established use in stand-alone or complementary therapy. It contributes to the assessment of herbs according to their real values, to the recognition of their importance in prevention and therapy.

Short description of the subject:
In the context of the subject, lecturers describe the relevant areas of indication in rational phytotherapy and the medicinal plants and plant-based preparations that can be used in them, including their active ingredients. The subject describes industrial / galenic preparations, tea blends and recipes containing medicinal plants. It presents the mechanisms of action revealed so far, the most significant synergistic effects, the possible side effects and interactions. It deals with the data of clinical studies, recommendations for use and dosing, and presents examples for herbal medicines and phytotherapeutic preparations from Hungary and other countries.

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>14</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>14</td>
<td>Spring semester</td>
<td>–</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
2. week: Activity, safety and quality of herbal medicines.
3. week: Plants and the respiratory system.
4. week: Plants and the immune system
5. week: Plants and the digestive system.
6. week: Plants and the liver and biliary system.
7. week: Plants and the urogenital system.
8. week: Plants and the musculoskeletal system
9. week: Anti-inflammatory plants.
10. week: Plants and the cardiovascular system.
11. week: Plants and metabolic diseases.
12. week: Plants and the nervous system.
13. week: Adaptogenic plants.
14. week: Plants and the cutaneous system.

Schedule of consultations: as demanded

Course requirements
Prerequisites: GYFMGGNDE2A - Pharmacognosy II.

Type of the semester-end examination: semi-final

Form of the semester-end examination: oral examination
Basics of Pharmaceutical Management (practice)

Full name of the subject: Gyógyszerészi gazdálkodás és menedzsment alapjai (gyakorlat)
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Basics of Pharmaceutical Management (practice)
German name of the subject: Grundlagen der pharmazeutischen Management (Praktikum)

Neptun code of the subject: GYEGYGGMG1A
Type of registration: obligatory
Responsible Department: Semmelweis University, University Pharmacy Department Of Pharmacy Administration

Responsible tutor: Dr. Ágnes Mészáros associate professor, Ph.D., Dr. Habil
Phone: 06-20663-2460
E-Mail: meszaros.agnes@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Romána Zelkó associate professor, Ph.D., Dr. Habil

Classes per week: 1 practice
Credit point: 1

Professionel content, intent of acquirement and its function in order to implement the goals of the program:
To provide the students with essentials about how management issues of a Pharmacy (community and hospital).
The aim of the course is to make students acquainted with the basic, theoretical and practical tasks of public/hospital pharmacies related to their management activities.

Program of semester
Topics of practical classes (pro week):
1-2: Responsibilities and duties of the Pharmacist in the community pharmacy
3-4: The Medical Prescription
5-6: Handling of Drug shortages
7-8: Logistics and stock control; inventory models in pharmacy practice, IT possibilities: dispensing robots in the community pharmacy
9-10: Financing Healthcare, the DRG based payment system
11-12: Hospital pharmacy management: The Drug Formulary
13-14: Hospital Pharmacists: The Drug and therapeutic committee

Course requirements
Prerequisite: Basics of Pharmacoconomics GYETEFOAG1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
According to the University’s Study and Examination Regulations

Requirements of signature: attending 75% of the practices
Form of the semester-end examination: written
Public Health (theory + practice)

Full name of the subject: Népegészségtan (elmélet+gyakorlat)
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Public Health (theory + practice)
German name of the subject: Gesundheitslehre (Vorlesung + Praktikum)

Neptun code of the subject: GYNEINEGE1A, GYNEINETG1A
Type of registration: obligatory
Responsible department: Department of Public Health of Semmelweis University
Responsible tutor: Zoltán Ungvári director, PhD
Contact information:
1089 Budapest, Nagyvárad tér 4. 13. em.
phone: 210-2954
e-mail: ungvari.zoltan@med.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
 Melinda Pénzes senior lecturer, PhD
 András Terebessy senior lecturer, PhD
 Péter Csépe senior research fellow, PhD
 Ferenc Horváth assistant lecturer
 Vince Pongor assistant lecturer

Classes per week: 2 lectures, 2 practices
Credit point: 2+2

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Acquire skills in qualitative assessment of different epidemiological studies, comprehensive and comprehensible reading of the scientific evidence-based literature. Acquire basic statistical skills. Design and conduct research, choosing the most appropriate epidemiological methods. Conducting individual health promotion based on key lifestyle factors and learning the basics of community health promotion. Apply practical knowledge of epidemiology and infection control.

Short description of the subject:
Public health deals with issues affecting human health at the population level. As an applied science, its basic aim is to preserve and improve health and prevent disease. To achieve these objectives, public health integrates several disciplines. Epidemiology introduces students to the prevention of communicable diseases, with a particular focus on infection control. Classical public health describes the role of environmental factors in the development of disease, the clinical aspects of which are nowadays dealt with in environmental medicine. The main aim of occupational medicine is to protect the health of employees by preventing occupational diseases. Our professional background is strengthened by the fact that our Institute merged with the Department of Occupational and Environmental Medicine of the University in 2010. In addition to disease prevention, the idea of health promotion was pioneered in the second half of the 20th century with the formulation of the “new public health”. Our aim is to enable future pharmacists to carry out individual health promotion and to be familiar with the concept of community health promotion. For all these activities, the acquisition and use of epidemiology as a methodology of public health is essential. Our aim is to familiarise students with the application of health promotion and prevention at the population and individual level, preparing them for practice.

| Course data |
|---|---|---|---|---|---|---|
| Recommended term | Contact hours (lecture) | Contact hours (practice) | Contact hours (seminar) | Individual lectures | Total number of contact hours/semester | Normal course offer |
| 8 | 28 | 28 | - | - | 56 | Spring semester |
| Consultations | - |
Program of semester

Topics of theoretical classes (pro week):
- Week 1: History of Hungarian medicine/public health. Definition of health, levels of prevention. Theoretical foundations of health promotion. The concept and functioning of public health
- Week 3: Epidemiology and prevention of smoking and smoking-related diseases
- Week 4: Epidemiology and prevention of cardiovascular diseases. Epidemiology and prevention of cancer
- Week 5: Epidemiology and prevention of respiratory diseases. Thyroid diseases. Vulnerable groups
- Week 6: Mental health. Ageing
- Week 7: Obesitas/Diabetes. Physical activity
- Week 8: Epidemiology of communicable diseases. Vaccinations
- Week 9: Infection control. Nosocomial infections
- Week 10: Nutritional status and dietary habits of the Hungarian population. Food safety
- Week 11: Environmental health: climate change, environmental health effects of air. Environmental health: soil, water
- Week 12: Chemical safety and toxicology. Ionising radiation, types, effects, limits
- Week 13: Occupational health. Maternal, infant, child and adolescent health, health inspector network and school health
- Week 14: Structure, financing and administration of health and public health in Hungary. Health policy. Quality assurance and quality improvement in health care

Topics of practical classes (pro week):
- Week 1: Introduction. Demography
- Week 2: Epidemiology. Morbidity measurement (incidence, prevalence). Risk and causality (risk indicators). Epidemiological study types (descriptive studies, analytical studies: cross-sectional, cohort, case-control)
- Week 3: Screening tests (population) for public health purposes. Evaluation of screening tests (sensitivity, specificity, predictive values, ROC curve)
- Week 4: Interventional studies (RCTs). Meta-analyses. Critical reading
- Week 5: Design, organisation and evaluation of health promotion programmes.
- Week 6: Smoking and minimal intervention
- Week 7: Alcohol SBI (screening and brief intervention)
- Week 8: Physical activity/movement recommendations.
- Week 9: Mental health, mental hygiene. Prevention of illicit drug use
- Week 10: Preparing an individual health plan
- Week 11: Epidemiological concepts. Epidemiology system. Epidemiological investigation
- Week 12: Practical knowledge of vaccination
- Week 13: Case studies in environmental and occupational health
- Week 14: Practical exam

Schedule of consultations: if necessary, in agreement with the teacher

Course requirements
Prerequisites: GYGYHKKA1A Basic Medical Pathophysiology (theory) I.

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
In order to obtain a signature, the student must meet at least 75% of the attendance in the practical sessions and seminars. This means 11 completed practicals for 14 practicals (the 3 ‘allowed’ absences do not need to be certified). Make-ups can be made on another practice in the same week.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Week 14, a practical exam on the practical material. Failed practical examinations can be made up until the end of the first week of the examination period, in agreement with the trainer, up to a maximum of 2 times.

Requirements of signature: The condition for obtaining a signature is that the student meets the attendance and participation requirement of at least 75% in practical sessions and seminars.

Type of the semester-end examination:
Practice: practical grade
Lecture: semi-final

Form of the semester-end examination: oral practical exam and written test exam

Scientific, course related researches, publications, assays:
Public health e-learning material (https://itc.semmelweis.hu/moodle/)
Physical Education VIII.

<table>
<thead>
<tr>
<th>Full name of the subject:</th>
<th>Testnevelés VIII.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program:</td>
<td>undivided program (pharmaceutical)</td>
</tr>
<tr>
<td>Schedule:</td>
<td>full-time</td>
</tr>
<tr>
<td>Short name of the subject:</td>
<td>PE VIII.</td>
</tr>
<tr>
<td>English name of the subject:</td>
<td>Physical Education VIII.</td>
</tr>
<tr>
<td>German name of the subject:</td>
<td>Körpererziehung VIII</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neptun code of the subject:</th>
<th>GYTSITSNG8A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of registration:</td>
<td>obligatory</td>
</tr>
<tr>
<td>Responsible department:</td>
<td>Semmelweis University, Physical Education and Sports Center</td>
</tr>
</tbody>
</table>

Responsible tutor:
Várszegi, Kornélia
Contact information:
Phone: +36-1/264-1408
E-Mail: varszegi.kornelia@semmelweis-univ.hu
sportkozpont@semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Lehel, Zsolt
Nagy-Kismarci, Bence
Rimay, István
Várszegi, Kornélia
Weisz, Miklós

Classes per week: 1 practice
Credit point: 0

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Upon completion of the course the student will be able to carry out regular physical activity.
After completing the “beginner swimming” course, one will acquire water-confident swimming skills.

Short description of the subject:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice – so that they can represent those in their later practice, through their own health-promoting behavior.
FACULTY OF PHARMACEUTICAL SCIENCES

Curriculum of the credit-based training for fifth year students in the 2021/2022 academic year
9. SEMESTER 2021/2022/1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice I.</td>
<td>–</td>
<td>40</td>
<td>8**</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Drug Therapy (theory+practice)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Pharm. and Tox. II. Pharm. Techn. IV. Basic Medical Pathophysiology II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Care (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharm. and Tox. II. Pharm. Techn. IV. Basic Medical Pathophysiology II.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Clinical Pharmacokinetics and Biopharmacy (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>B. Med. Pathoph. II., Pharmac. and Tox.II., Pharm. Techn. IV., Public Health</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Communication and Integrated Consulting (theory+practice)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>Pharm. and Tox. II. Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacy Administration (theory) II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharm. Administr. I. Pharm. Techn. IV. Public Health</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Informatics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Clinical Pharmaceutics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. II. Pharm. Techn. IV.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Pharmaceutical Ethics and Sociology (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. II. Hist. of Scienc. and Prop.</td>
<td>semi-final</td>
</tr>
<tr>
<td>Diploma Work II.</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>Diploma Work I.</td>
<td>signature</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/sem.)</th>
<th>Practice (hour/sem.)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical industrial and regulatory affairs knowledge (teaching block)</td>
<td>28</td>
<td>28</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug Licensing (theory+practice)</td>
<td>12</td>
<td>12</td>
<td>–</td>
<td>Pharmacy Administr. I. Pharm. Techn. IV.</td>
<td></td>
</tr>
<tr>
<td>Pharmacovigilance and pharmacoepidemiology (theory+practice)</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>Pharmac. and Tox. II.</td>
<td>signature</td>
</tr>
<tr>
<td>Drug innovation and clinical studies (theory+practice)</td>
<td>8</td>
<td>8/</td>
<td>–</td>
<td>Pharmac. Techn. IV. Pharmacology and Toxicology II.</td>
<td>semi-final or</td>
</tr>
<tr>
<td>elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>practical mark</td>
</tr>
</tbody>
</table>

836
Drug Therapy (theory+practice)

Full name of the subject: Gyógyszeres terápia (elmélet+gyakorlat)
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Drug Therapy (theory+practice)
German name of the subject: –

Neptun code of the subject: GYGYHGTP1A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmacodynamics

Responsible tutor: Dr. Éva Szökő Full Professor, DSc

Name of the persons responsible for the teaching of the subject:
Dr. Éva Szökő Professor, DSc
Dr. Tamás Tábi Associate Professor, PhD
Dr. László Tóthfalusi Associate Professor, DSc
Gabriella Juhász Associate Professor, DSc

Invited physicians:
Andras Telekes, PhD
Bernadette Rojkovich, PhD
Irén Szalay, PhD
Miklós Sipos, PhD

Classes per week: 2 lectures, 2 practices
Credit point: 4

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The course aims at teaching the principles of evidence-based drug use and the treatment of common disorders according to the recent guidelines. Discussion of the frequent and severe adverse effects and clinically important drug interactions are important.

Short description of the subject:
Selected topics of the subject comprise drug therapy of chronic diseases, pain managements and diseases where self-medication for symptom relief are common.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>20</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>40</td>
<td>Autumn semester</td>
<td>–</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: Strategies of drug therapy. Evidence-based medicine
2. week: Drug therapy of chronic cardiac failure and hypertension
3. week: Therapy of acute and chronic joint disorders
4. week: Pharmacotherapy of neuropathic pain and some neurological diseases
5. week: Pain management in cancer
6. week: Therapy of dermatologic inflammations
7. week: Therapy of gastroenterological diseases
8. week: Therapy of eye disorders
9. week: Therapy of urological disorders
10. week: Contraception. Treatment of common gynecological disorders

Topics of practical classes (pro week):
1. week: Therapy of venous disorders
2. week: Therapy of ischemic heart disease, myocardial infarction
3. week: Therapy of diabetes mellitus
4. week: Drug therapy of Parkinson's disease and schizophrenia
5. week: Pharmacotherapy of anxiety and sleep disorders
6. week: Pharmacotherapy of asthma and COPD
7. week: Therapy of allergic rhinitis
8. week: Drug therapy of osteoporosis. Pain management Drug therapy of common respiratory and urinary tract infections
9. week: Therapy of disorders of the gastrointestinal tract
10. week: Therapy of skin disorders: acne, fungal infections

Course requirements
Prerequisites:
Basic Medical Pathophysiology (theory) II. GYGYHKKA2A
Pharmacology and Toxicology II. GYGYHHTK2A
Pharmaceutical Technology IV. GYKGYI126E4A, GYKGYI126G4A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
practice: maximum 2 absences are allowed.

Requirements of signature: attending at least 75% of the practice classes.

Type of the semester-end examination:
lecture: semi-final practice: signature
Pharmaceutical Communication and Integrated Consulting (theory+practice)

Complete name of the course: Gyógyszerészi kommunikáció és integrált tanácsadás
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Pharmaceutical Communication
English name of the course: Pharmaceutical Communication and Integrated Consulting (theory+practice)

Neptun-Code: GYMAGGKTG1A
Type of registration: obligatory
Institute: Institute of Behavioural Sciences

Name of the tutor/lecturer:
Dr. Pilling János PhD, Associate professor
Phone: +36 (1) 2102930/56457
E-Mail: pilling.janos@med.semmelweis-univ.hu
Dr. Hankó Balázs

Further tutors:
Dr. Tóth Mónika Ditta PhD, assistant professor

Number of classes /week: 3
Credit points: 2

Course principles:
Proper communication has an essential role in pharmaceutical practice. The main objectives of the course are the following:
- to teach basic skills to improve pharmacists’ communicational techniques of information gathering, active listening and patient education
- improving skills, which can help to handle difficult communicational situations, such as coping with angry, aggressive patients, intimate questions etc.
- to teach and practice communication techniques that can improve the success of pharmaceutical work, i.e. team, marketing and assertive communication

Brief course summary:
The education will be interactive and practical. In the first part of the semester students will get familiar with the basic concepts of pharmaceutical communication with a special focus on information delivery, patient education, active listening, and empathy. Risk communication and shared decision making will be also covered, such as improving compliance and promoting lifestyle changes. The second part of the semester will cover the possible coping strategies with communicational challenges in pharmaceutical practice such as handling tense, hostile patients, communication about intimate topics (menstruation, sexuality, stigmatizing disorders etc.), communication with patients from different age-groups. Students will learn communicational techniques to handle patients with mental health disorders such as anxiety, depression, suicidal ideation, alcohol/drug addiction, and psychosis. At the end of the semester marketing communication skills and team communication techniques will be the main focus of the seminars.

Course data

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>30</td>
<td>autumn</td>
<td>–</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week
1. week: Role of communication in pharmaceutical practice. Active listening and empathy.
2. week: Communication difficulties and possible solutions of patient education. Possibilities of improving health literacy.
4. week: Improving patient’s adherence and promoting lifestyle changes in the pharmacy.
5. week: The specialities of age and gender in pharmaceutical communication. Communication about intimate questions.
6. week: Team communication. Assertive communication
7. week: Communication with tense, hostile patients, strategies to prevent violence. Handling complaints and patient’s claims.
8. week: Communication with patients with mental health disorders I: anxiety, depression, crisis
9. week: Communication with patients with mental health disorder II: addiction, psychosis
10. week: Marketing communication in pharmaceutical practice.

II. Practice topics/week
1. week: Role of communication in pharmaceutical practice. Active listening and empathy. Verbal and non-verbal communication.
2. week: Communication difficulties and possible solutions of patient education. Possibilities of improving health literacy.
4. week: Improving patient’s adherence and promoting lifestyle changes in the pharmacy.
5. week: The specialities of age and gender in pharmaceutical communication. Communication about intimate questions.
6. week: Team communication. Assertive communication
7. week: Communication with tense, hostile patients, strategies to prevent violence. Handling complaints and patient’s claims.
8. week: Communication with patients with mental health disorders I: anxiety, depression, crisis
9. week: Communication with patients with mental health disorder II: addiction, psychosis
10. week: Written exam

Course requirements
Order of consultations: Seminars will ensure the possibility of ongoing consultation with the seminar leader.

Prerequisites:
Pharmacology and Toxicology II. GGYHHCATE2A GGYHHCATG2A
Pharmacy Administration I. GYEYGIGM1A

Semester acceptance conditions (successful course attendance, mid-term tests, absence, etc.):
The participation at minimum 75% of the practice seminars is the prerequisite of the signature.

Knowledge testing during the semester:
Written examination at the end of the semester, on the last practice.

Requirements of the signature at the end of the semester:
The participation at minimum 75% of the practice seminars is the prerequisite of the signature.
Performance control in the examination period: final
Performance control in the examination period (written, oral, written and oral)

Written examination.
Below 50%: 1
50%-65%: 2
66%-75%: 3
76%-85%: 4
85%-100%: 5

List of teaching materials (List of textbooks, hand-outs, scripts, etc.):
Pharmacy Administration (theory) II.

Full name of the subject: Gyógyszerügyi szervezéstan (elmélet) II.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Pharmacy Administration (theory) II.
German name of the subject: –
Neptun code of the subject: GYEGYGSGZE2A
Type of registration: obligatory
Responsible Department: Semmelweis University, University Pharmacy Department Of Pharmacy Administration

Responsible tutor: Dr. Romána Zelkó professor, Ph.D., D.Sc
Contact:
- telephone: 2170-927
- e-mail: zelko.romana@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Mészáros Ágnes associate professor, Ph.D., Dr. Habil

Classes per week: 2 lectures
Credit point: 2

Professional content, intent of acquisition and its function in order to implement the goals of the program:
The course seeks to introduce students with main fields of pharmacy, the responsibilities of the pharmacist: To teach about competencies and professional skills required in relation to drug dispensing, hospital-clinical pharmacy, and industrial pharmacy, as well as on economics and management, quality management.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>Contact hours (lecture)</td>
</tr>
<tr>
<td>Contact hours (practice)</td>
</tr>
<tr>
<td>Contact hours (seminar)</td>
</tr>
<tr>
<td>Individual lectures</td>
</tr>
<tr>
<td>Total number of contact hours/semester</td>
</tr>
<tr>
<td>Normal course offer</td>
</tr>
<tr>
<td>Consultations</td>
</tr>
</tbody>
</table>

| 9 | 20 | 0 | – | – | 20 | Autumn semester | – |

Program of semester

Topics of theoretical classes (pro week):
1. Quality management within the lifecycle of drugs
2. Fight against counterfeit Medicine
3. The European Pharmacopoea
4. Financial pressures; Managing health care
5. Information need, managing quality in health care
6. Human resource management, leadership
7. Good Documentation systems
8. Elements of decision making, pharmacist prescribing
9. Questionnaire Design
10. The EU institutional system

Course requirements
Prerequisites:
Pharmacy Administration I. GYEGYG1MG1A, Pharmaceutical Technology IV. GYKGYI126E4A GYKGYI126G4A,
Public Health GYNEINEGE1A GYNEINETG1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
according to the University’s Study and Examination Regulations

Requirements of signature: successful exam
Type of the semester-end examination: final
Pharmaceutical informatics (theory+practice)

Full name of the subject: Gyógyszerészi informatika (elmélet+gyakorlat)
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Pharmaceutical Informatics
English name of the subject: Pharmaceutical informatics (theory+practice)
German name of the subject: Pharmazeutische Informatik (Vorlesung+Praktikum)
Neptun code of the subject: GYDEIGIFG1A
Type of registration: obligatory
Responsible department: Institute of Digital Health Sciences of the Faculty of Health and Public Services of Semmelweis University
Responsible tutor: Dr. Szócska Miklós PhD, associate professor
titkarsag.dei@semmelweis-univ.hu
Name of the persons responsible for the teaching of the subject:
Dr. Zajzon Gergely assistant lecturer
Dr. Tamus Zoltán Ádám PhD, associate professor
Tóth Tamás assistant lecturer
Iváncsy Tamás guest lecturer
Classes per week: 1 lecture, 1 practice
Credit point: 1

Professional content, intent of acquirement and its function in order to implement the goals of the program:
To acquaint students with the IT systems and applications used in pharmacy. The subject reviews the life cycle of medicines and related legislation, and then presents in detail the IT tools that can be used during each step, from drug development and official licensing to drug distribution.

Short description of the subject:
Successful completion of the subject will result in the acquisition of the following competencies: Knowledge of the processes of drug development, authorization and distribution. Getting to know the IT methods, tools, code systems and databases used in these.

| Course data |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Recommended term | Contact hours (lecture) | Contact hours (practice) | Contact hours (seminar) | Individual lectures | Total number of contact hours/semester | Normal course offer |
| 9 | 10 | 10 | – | – | 20 | Autumn semester |
| Consultations | – | – | – | – | – | – |
Program of semester

Topics of theoretical classes (pro week):
1. week: Lifecycle of pharmaceutical products, Introduction to the relevant legal hierarchy
2. week: Methods of computer molecular design
3. week: Drug development process, approval of clinical trials
4. week: Introduction to Drug authorization (Regulatory Affairs): CTD (Common Technical Document), eCTD standards
5. week: Pharmacovigilance, related IT systems, databases (EudraVigilance, E2B, PSUR)
6. week: Drug Reimbursement system and relevant databases
7. week: Pharmacy IT systems, Serialisation
8. week: Mobile devices, portable devices, sensors, smart devices in healthcare
9. week: IT tools for evidence-based medicine and personalized medicine
10. week: Prescription software, electronic prescription

Topics of practical classes (pro week):
1. week: Clinical trial related IT systems – EudraCT, clinicaltrials.gov, clinicaltrialsregister.eu
2. week: National and international pharmaceutical databases (OGYÉI database, basics of pharmaceutical electronic register system, EudraPharm, EudraGMP, EudraNET)
3. week: CTD, eCTD
4. week: IT background of pharmaceutical reimbursement: Pupha, OWL, fix reimbursement
5. week: Pharmaceutical code systems and standards (ATC, DDD)
6. week: Pharmaceutical code systems and standards (Active ingredients register, INN, BNO, MedDRA)
7. week: QRD, Readability, structure of product information files (SmPC, PIL)
8. week: Pharmaceutical promotion and marketing
9. week: IT systems for pharmaceutical sales information – OSAP1913 – P@NKA, IMS
10. week: ORKA prescription software

Schedule of consultations: by agreement

Course requirements

Prerequisites: Pharmacy Administration I. GYEGYGIMG1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Attendance of at least 75% of the classes. Max. 3 absences are allowed

Requirements of signature:
Attendance of at least 75% of the classes

Type of the semester-end examination:
practical grade

Form of the semester-end examination:
written (computer test)

Scientific, course related researches, publications, assays:
The educational materials are available at http://dei-cloud.semmelweis.hu. Username and password are announced at the first class.
Clinical Pharmaceutics (theory+practice)

Full name of the subject: Klinikai gyógyszerészet (elmélet+gyakorlat)
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Clinical Pharmaceutics (theory+practice)
German name of the subject: Klinische Pharmazie (Vorlesung+Praktikum)

Neptun code of the subject: GYEGYKLGE1A
Type of registration: obligatory
Responsible Department: Semmelweis University, University Pharmacy Department Of Pharmacy Administration

Responsible tutor: Dr. Ágnes Mészáros associate lecturer, PhD, Dr. Habil
Phone: 206632460
E-Mail: meszaros.agnes@pharma.semmelweis-univ.hu

Classes per week: 1 lecture, 1 practice
Credit point: 1

Professional content, intent of acquirement and it’s function in order to implement the goals of the program:
Practice-oriented presentation of the tasks of a clinical pharmacist; to provide information about essential topics of clinical pharmacy.

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>Autumn semester</td>
<td>–</td>
</tr>
</tbody>
</table>

Program of semester

Topics of theoretical classes (pro week):
1-2. Clinical Pharmacy and Medication reconciliation
3-4: Anaesthesia and surgery
5-6: Essentials in Paediatrics
7-8: Essentials in Cardiology
9-10: Essentials in Oncology

Topics of practical classes (pro week):
1-2. Clinical Pharmacy and Medication reconciliation
3-4: Anaesthesia and surgery
5-6: Essentials of therapy in Paediatrics
7-8: Essentials of therapy in Cardiology
9-10: Essentials in Oncology, cytotoxic infusion production

Course requirements

Prerequisites:
Pharmacology and Toxicology II. GYGYHHATE2A GYGYHHATG2A,
Pharmaceutical Technology IV. GYKGYI126E4A GYKGYI126G4A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
According to the university’s Study and examination regulations

Requirements of signature: attending 75% of the practices

Type of the semester-end examination: semi-final
Form of the semester-end examination: written
Pharmaceutical Ethics and Sociology (theory+practice)

Full name of the subject: Gyógyszerészi etika-szociológia
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Pharmaceutical Ethics and Sociology (theory+practice)
German name of the subject: Pharmazeutische Ethik und Soziologie (Vorlesung+Praktikum)
Neptun code of the subject: GYMAGGESE1A
Type of registration: obligatory
Responsible department: Institute of Behavioural Sciences of Semmelweis University
Responsible tutor: Dr. József Kovács
Contact information: 210-2953
kovacs.jozsef@med.semmelweis-univ.hu
Title, academic degree: MD, PhD, (Head of the Department of Bioethics)

Name of the persons responsible for the teaching of the subject:
Dr. József Kovács MD, PhD, (Head of the Department of Bioethics)
Dr. Zsuzsa Győrffy PhD, associate professor
Dr. Edmond Girasek PhD Assistant Professor
Bence Döbrössy MSc assistant lecturer

Classes per week: 1 lecture, 1 practice
Credit point: 1

Professional content, intent of acquirement and its function in order to implement the goals of the program:
a.) To enable students to recognize ethical issues when encountered in everyday clinical practice and research
b.) To provide students with a conceptual-logical system, which helps them to address ethical questions and to resolve ethical dilemmas in an efficient way
c.) To introduce students to a body of knowledge, which helps them to understand, respect and protect the rights of patient research subjects and fellow health care professionals
d.) To help the would be health care professional to understand the responsibility of the individual, of the health care system and of the society as a whole in maintaining health
e.) To gain a solid foundation for future studies in any social subject related to pharmacy
f.) To enhance competence in designing, undertaking and evaluating research involving human subjects
g.) To enhance communication skills useful in dispensaries or in hospitals

Brief course summary:
The course is designed to give a broad overview of the field of bioethics, including concepts, theory, and research.
Regarding sociology, the usage of medications became an integrated practice in modern societies which has several social connotations. Pharmacists will encounter the social problems connected with discovering, producing, distributing and consuming medicines on an everyday basis. The course aims to provide understanding of all these processes based on introducing some, selected sociological concepts

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: Principles of Medical Ethics (Jozsef Kovacs)
3. week: Informed consent II. Confidentiality and Medical Records (Jozsef Kovacs)
4. week: End of Life Issues (Jozsef Kovacs)
6. week: Introduction to sociology. Basic Concepts The pharmaceutical Aspects of Illness Behaviour (Bence Döbrössy)
7. week: Inequalities in Health (Edmond Girasek)
8. week: The pharmaceutical Aspects of Intercultural (Bence Döbrössy)
9. week: Technology and Society (Zsuzsa Győrffy)
10. week: Healthcare Systems (Edmond Girasek)

Topics of practical classes (pro week):
1. week: Principles of Medical Ethics (Jozsef Kovacs)
3. week: Informed consent II. Confidentiality and Medical Records (Jozsef Kovacs)
4. week: End of Life Issues (Jozsef Kovacs)
6. week: Introduction to sociology. Basic Concepts The pharmaceutical Aspects of Illness Behaviour (Bence Döbrössy)
7. week: Inequalities in Health (Edmond Girasek)
8. week: The pharmaceutical Aspects of Intercultural (Bence Döbrössy)
9. week: Technology and Society (Zsuzsa Győrffy)
10. week: Healthcare Systems (Edmond Girasek)

Course requirements

Prerequisites:
Pharmacology and Toxicology (theory) II. GYGYHHATE2A
Pharmacology and Toxicology (practice) II. GYGYHHATG2A
History of Sciences, Propedeutics GYEGYTTPE1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Students are expected to attend regularly the course and participation list will be recorded at the end of every lecture. Participating on at least 75% of the total number of lectures is a prerequisite for getting the signature needed to absolve the course. The maximum number of absences permitted: three absences from the classes

Requirements of signature:
Participation on at least 75% of the total number of classes is a prerequisite for getting the signature needed to absolve the course
Type of the semester-end examination:
Written final of the sociology component of the course
Written test on the ethics component of the course
Form of the semester-end examination: written

Scientific, course related researches, publications, essays:

List of teaching materials: (List of textbooks, hand-outs, scripts, etc.)
 MHID 1-25-964121-X
2. The textbook is available in the following bookshop: Medicina könyvesbolt, Budapest, IX. Üllői út 91/a (tel: 06-1-215-3786)
3. Graham Scrambler (ed) Sociology as Applied to Health and Medicine, Palgrave Macmillan 2018
 Lectures: The power point slides of the lectures can be found at:
 http://semmelweis.hu/magtud/en/education/faculty-of-pharmacy
 The lecture slides are also available on Moodle
10. SEMESTER 2021/2022/2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture</th>
<th>Practice (hour/sem.)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice II. GYSZGSZVG2A</td>
<td>–</td>
<td>40</td>
<td>16**</td>
<td>Compulsory Practice I. GYSZGSZVG1A</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense GYSZDDIVE1A</td>
<td>1/sem.</td>
<td>–</td>
<td>10**</td>
<td>Diploma Work II. GYSZDSDKG2A</td>
<td>final*</td>
</tr>
<tr>
<td>Principles of Professional Ethics II. GYKANG071E2A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>1/sem.</td>
<td>40</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
EVALUATION OF PROGRESS

Grading system
a) Five-scale
 excellent (5)
 good (4)
 average/fair (3)
 satisfactory/pass (2)
 unsatisfactory/fail (1)

b) Three-scale
 excellent (5)
 fair (3)
 fail (1)

Types of evaluation
1. Practical course grade (gyakorlati jegy) (according to either the 5-scale or the 3-scale grading system)
2. Semi-final examination (kollokvium) Evaluation of a one-semester subject matter (1–5 grading system)
3. Final examination (szigorlat) Evaluation of the whole subject matter (1–5 grading system)
4. Obligatory practice at hospital (3-scale grading system)

Average Results
When the student has taken all the compulsory examinations and fulfilled every other obligation during the examination period, the semester will be validated in the student’s lecture book by the Dean’s signature.

The student’s average results are:
- Outstanding (kitűnő) if the average is 5.00
- Excellent (jeles) if the average is 4.51–4.99
- Good (jó) if the average is 3.51–4.50
- Satisfactory (közepes) if the average is 2.51–3.50
- Pass (elégséges) if the average is 2.00–2.50

EXEMPTION

Exemption from courses and examinations may be granted on the basis of the student’s previously documented studies or additional credit-by-examinations stipulated by the departments. The student must submit all relevant documents at the departments concerned. Exemption may be granted by the Educational Board of each Faculty on the basis of the department’s written prior approval. “Checking” exams can be prescribed by the departments. PE exemption: Only under condition the diagnosis is checked by a licensed Hungarian health care practitioner, too.

Application deadline: Prior to registration to the first and the second semester!

No reduction of tuition fee is granted in case of exemptions.
REQUIREMENTS FOR APPLICATION AND ADMISSION

Application Criteria

Applicants must be at least 18 years of age by the end of the calendar year of application, and preferably under the age of 30. Applicants are requested to either have completed high school/senior secondary school before the time of application, or to currently attend the last year of high school/secondary school. In the latter case, the Matriculation / School Leaving Certificate has to be uploaded into SEMAPHOR by the 21st of August the year of application.
Semmelweis University seeks students who possess a strong background and interest in natural sciences (particularly in biology and chemistry), a good command of English, and a strong motivation to study and practice medicine, dentistry, pharmaceutical sciences or other health care professions.
Applications should be submitted online in SEMAPHOR (Semmelweis Application Handling and Online Review) system at https://semaphor.semmelweis.hu until the 31st of May.
The following documents are required to be uploaded (original, or as certified copies, in English or in the original language with a certified English translation).

1. **Matriculation / School Leaving Certificate** from an accredited high school / senior secondary school. Registration number of documents should be indicated. If you are in your final year and have not yet received this certificate, you can still apply and take the entrance examination. The final deadline for uploading the Matriculation Certificates is the 21st of August.
2. **Curriculum Vitae** (Resume) in English.
3. **Motivation letter**
4. **Copy of passport (or ID card for citizens of Schengen Area member countries)** with your personal data.
5. **Passport photo**.

Medical Certificate – Certification that the applicant is physically and mentally able to complete higher educational studies, and does not suffer from chronic or infectious diseases is requested from the successful applicants for the acceptance of an offered admission. The certificate downloaded from the University's website (http://semmelweis.hu/english/files/2019/01/Medical_certificate_sample_20190_SEMAPHOR.pdf) should be issued within 90 days before the date of uploading.

Applicants have to register (sign up) for the entrance examinations in SEMAPHOR after having submitted a valid application (and paid the Admission Procedure Fee). Registrations can only be withdrawn before the deadline for registration to the given examination. The absence of a registered applicant at the entrance examination is not considered as the withdrawal of registration but as an examination attended without valuable result.
COST OF THE PROGRAM FOR TWO SEMESTERS

Tuition fee for the 2021/2022 academic year

<table>
<thead>
<tr>
<th>Program</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicine</td>
<td>USD 9,100 / semester</td>
</tr>
<tr>
<td>Dentistry</td>
<td>USD 9,100 / semester</td>
</tr>
<tr>
<td>Pharmaceutical Sciences</td>
<td>USD 6,000 / semester</td>
</tr>
</tbody>
</table>

The first year tuition fee (+ the enrollment fee – USD 220 payable in the 1st semester) should be paid in two installments (unless the Hungarian Visa regulations have different conditions):

<table>
<thead>
<tr>
<th>Program</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicine</td>
<td>USD 9,320</td>
</tr>
<tr>
<td>Dentistry</td>
<td>USD 9,320</td>
</tr>
<tr>
<td>Pharmaceutical Sciences</td>
<td>USD 6,220</td>
</tr>
</tbody>
</table>

Before February 1

<table>
<thead>
<tr>
<th>Program</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicine</td>
<td>USD 9,100</td>
</tr>
<tr>
<td>Dentistry</td>
<td>USD 9,100</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>USD 6,000</td>
</tr>
</tbody>
</table>

Dentistry students pay additional material fee:

- years 3, 4 & 5: USD 3,600
- first semester: USD 1,800
- second semester: USD 1,800

Please note: the material fee is subject to change; also 2nd year students taking clinical subject(s) from the 3rd year have to pay material fee. 3rd, 4th and 5th year students may apply for exemption from paying the material fee under certain conditions. Please inquire about the rule regarding eligibility for exemption at the English Secretariat.

Students admitted to the 1st year are obliged to pay a deposit fee of USD 2000 to confirm their seat. The deposit fee is non-refundable.

Students failing a year or after passive status pay the sum of the year they join after the failure/passive status.

Transfer students pay the highest tuition fee in force in the actual academic year.

Application fee for transfer students: USD 350 (non-refundable)

Enrollment fee for transfer students: USD 220 (payable together with the tuition fee)

The student admitted delaying the commencement of his/her studies is obliged to pay the tuition fee of that academic year when he/she starts his/her studies.
Payment Details

Payments can be made by bank transfer in USD to the bank account of Semmelweis University:
- Account name ("account with institution"): Semmelweis University
- Account (IBAN) Number: HU67 1000 4012 1000 8016 0051 4534
- Bank name: Magyar Államkincstár (Hungarian State Treasury)
- Bank address: 4. Hold Street, H-1054 Budapest, Hungary
- Swift/BIC code: HUSTHUHB (correspondent Swift/BIC code: MANEHUHB)

Note: The money transfer sheet should include the name of the student as it is written in the passport and the remark invoice ID number.
Personal checks and money orders are not accepted.
Please note that the above mentioned net amounts have to arrive to the account – the bank commission charges have to be paid by the student.

The bank account at the Hungarian National Treasury is not a classic bank account. There is absolutely no personal administration of payments in that institution, and they do not have a cashier, so going there to pay fees personally is pointless.
Please understand that it is only the recipient institution of Semmelweis University's tuition fees, and not a bank.

Important: If the tuition fee is not credited to our bank account by the above deadlines, students have to pay a default charge to the university and may be suspended/dismissed.

OTHER MEDICAL UNIVERSITIES IN HUNGARY

University of Szeged, Hungary
H-6720 Szeged, Dugonics square 13.
Phone: (+36-62) 544-000
Fax: (+36-62) 546-371
Foreign Students’ Secretariat
Head: Andrea Lehocki-Balog
office.fs@med.u-szeged.hu
Tel.: +36 62 545-458

University of Pécs, Medical School
H-7624 Pécs, Szigeti út 12., HUNGARY
General Medicine in English
Dentistry in English
Pharmacy
Lívia Csídei (Ms.)
Head of the English Student Service Center
Tel.: +36 72/ 536-018
Fax: +36 72/ 536-110
E-mail: studentservice.center@aok.pte.hu

University of Debrecen Medical and Health Science Center
International Education Center
Address: Nagyerdei krt. 98.
4032 Debrecen
Hungary
E-mail: info@edu.unideb.hu
Tel.: +36 52 258-051, + 36 52 258-052
VISA AND RESIDENCE PERMIT INSTRUCTIONS

Application for Entry Visa & Residence Permit

Foreign nationals (under visa obligation) wishing to pursue studies in Hungary are required to apply for entry visa & residence permit (exceeding 90 days) in their home countries and enter the country on the entry visa issued by the Hungarian Embassy or Consulate. The entry visa is valid for a single entry and up to 30 days of stay in Hungary. Within 3 DAYS upon arrival, you will have to register your address and within 30 DAYS you have to submit your application for the residence permit to the Immigration Office in Budapest.

The following documents are required for the application for the entry permit:

- A wholly and legibly completed Application for Residence Permit (+ INSET 14 – Purpose of Study or Student Mobility)
- a valid passport (valid for at least eighteen months at the time of submitting the application)
- two passport size color photos (not older than six months)
- Letter of Acceptance from the University
- proof of payment of the tuition fee* (you get it from the University after your tuition fee has arrived)
- proof of financial means ensuring livelihood in Hungary (bank statement about the balance of your credit card, cash, or a declaration by the parents that they will provide the funds for all your expenses in Hungary)
- an application fee of 60 EUR
- the Hungarian Embassy may ask for your flight reservation and air ticket
- the address of your residence in Hungary
- certification of valid medical insurance coverage in Hungary

REGISTRATION PROCEDURE FOR EU AND EEA CITIZENS

Citizens of the member states of the European Union and the European Economic Area are not required to obtain a student visa in order to enter Hungary for the purpose of studies. They will, however, be required to register their stay with the Immigration Office not later than 93 days, following their entry into Hungary.

The following documents are required for registration:

- completed Data Sheet for the Issuance of Registration Certificate and for the Registration of Residence
- school certificate in Hungarian from the secretariat of your college / university
- your ID card or your valid travel document
- lease contract (lakásbérlési szerződés) for the apartment (It has to specify the landlord’s and your personal data – date and place of birth, mother’s maiden name, permanent address, landlord’s ID number, your passport number. The contract has to be signed by two witnesses.)*

If you stay with an acquaintance or a relative as a guest, a statement of admission (befogadói nyilatkozat) has to be attached by the owner of the apartment that you stay with them as a guest. If the apartment is your property, a property sheet (tulajdoni lap) has to be attached to verify it. If you rent the apartment through an agency and you signed a contract with the agency, the agency should provide the authorization received from the owner of the apartment.

- The administrative service fee charged for the issue of a registration certificate is HUF 1,000, payable by credit card at the Immigration office
- proof of funds to cover your expenses (bank statement for 3 months) – You may also be required to hand in maintenance statement signed by your parents.

* Citizens of countries in Africa, Asia, Eastern Europe (under visa obligation) and the Middle East are required to transfer the tuition fee for the first academic year in full before applying for the entry permit.
If you are the holder of the bank account (opened in your home country or in Hungary), it is sufficient to enclose a bank statement on the current balance. If the holder of the account is a parent or a relative, you should document that you have exchanged or drawn funds from ATMs in the amount of at least approx. USD 800 and enclose a photocopy of the bank card.

- copy of a valid medical insurance coverage in Hungary (EHIC card, contract with a private medical insurance company or a valid health insurance policy), but take the original too with you.

If you meet all conditions for residence in Hungary for a period longer than three months, the immigration authority will issue a Registration Certificate to you that contains the address of your first residence in Hungary. You will receive your ID card on spot and Address Card by mail. Please see below for how to reach the Immigration Office.

Application for residence permit for students from non-EU countries with a permanent residence visa

Within 30 days of your arrival in Hungary, you have to go to the Immigration Office to Clients’ Service II. ("II. sz. Kirendeltség") to receive your residence permit and to register your accommodation in Hungary.

The following documents are required:

- your passport with your visa inside
- 1 passport-size photo
- your lease contract
- completed address registration form (signed by the owner of the property).

Please see below for how to reach the Immigration Office.

Application for residence permit for students from Non-EU countries with a permanent residence visa

After arriving in Budapest

Within 30 days on arrival in Hungary, you have to go to the Immigration Office to Clients’ Service II. ("II. sz. Kirendeltség") to receive your residence permit and to register your accommodation in Hungary.

The following documents are required:

- your passport with your visa inside
- 1 passport-size photo
- your lease contract
- completed address registration form (signed by the owner of the property)
Application for residence permit for citizens of Non-EU countries arriving without visa

You are required to submit your application for residence permit to the Immigration Office within 90 days after your arrival.

Documents required for the residence permit:
- passport valid for at least 3 more months longer than the period you are applying for (about 15 months)
- application form (Application for Residence Permit + INSET 14 – Purpose of Study or Student Mobility)
- address registration form („lakcímbejelentő”) signed by the owner(s) or an authorized person
- lease contract for the apartment (It has to specify the landlord’s and your personal data: date and place of birth, mother’s maiden name, permanent address, landlord’s ID number, your passport number. The contract has to be signed by two witnesses.)
- 1 passport-size photo
- the administrative service fee charged for the issue of a registration certificate is HUF 18,000 payable by credit card at the Immigration office
- proof of funds to cover your expenses
- certification of valid medical insurance coverage in Hungary
- school certificate in Hungarian from the secretariat of your college /university.

Please see below for how to reach the Immigration Office.

Application for extension of residence permit for citizens of Non-EU countries

You are required to submit your application for extension of residence permit to the Immigration Office at least 30 days prior to the expiry of your present one.

Documents required for extension of residence permit:
- passport valid for at least 3 more months longer than the period you are applying for (about 15 months)
- application form (Application for Residence Permit + INSET 14 – Purpose of Study or Student Mobility)
- address registration form („lakcímbejelentő”) signed by the owner(s) or an authorized person
- lease contract for the apartment (It has to specify the landlord’s and your personal data: date and place of birth, mother’s maiden name, permanent address, landlord’s ID number, your passport number. The contract has to be signed by two witnesses.)
- 1 passport-size photo
- the administrative service fee charged for the issue of a registration certificate is HUF 10,000 payable by credit card at the Immigration office
- proof of funds to cover your expenses
- certification of valid medical insurance coverage in Hungary
- school certificate in Hungarian from the secretariat of your college /university.

Please see below for how to reach the Immigration Office.

How to reach the Immigration Office in Budapest

The Immigration Office is located at the Twin Office Center Office Building, Szegedi út 35-37, 1135 Budapest (13th district), Hungary. Within the building, the Immigration Office is located at the Ground Floor, Clients’ Service II. ("II. sz. Kirendeltség")

Office hours:
- Monday 8:30 am to 1:00 pm
- Tuesday 1:00 pm to 5:00 pm
- Wednesday 8:30 am to 12:00 noon
- Thursday 8:30 am to 1:00 pm
- Friday 8:30 am to 12:00 noon

E-mail: bp2@bah.b-m.hu (It is possible to book an appointment in advance.)

To get there, please take buses number 20E, 30, 30A or 32 from the Keleti Railway Station („Keleti pályaudvar”) and get off at the bus stop named ‘Szegedi út’.
REDUCTION OF TUITION FEE

1. Students may apply for a reduction after completing the first semester of the first academic year if their semester weighted average results were above 4.51. From the third semester the reduction is granted under an extra condition: from the end of the second semester, all their semester weighted average results have to be continuously above 4.51, including the weighted average of the second semester. The reduction is 10% of the tuition fee with average results above 4.51 and 15% with average result of 5.00. Students may apply for a reduction after completing each semester on condition they meet the above requirements, and in case they have completed all the obligatory semester subjects, and gained minimum 20 credits in each semester. No reduction is given in case of exemption from one or more subjects (except from PE). No reduction is given during retaken semesters on account of subjects already completed. Students eligible for the tuition fee reduction pay with 10-15% reduced tuition fee in the next semester.

Application deadlines:
- first semester: until the 15th of September
- second semester: until the 15th of February

2. Students taking just either one normal or one exempted “FM” course (regardless plus how many exam courses “CV”) in a semester pay 50% of their semester tuition fee. Signing up solely for one or more exam courses “CV” also entitles for the 50% reduction. (Note: The permission can be granted upon the student’s written request that has to be handed in at the English Secretariat before starting the semester!)

3. Tuition fee for the 6th year:
In case the student completes all the rotations regardless whether the 1 week Transfusion course is completed at Semmelweis University or abroad, he/she has to pay 80% of the tuition fee valid in the academic year. The relevant acceptance letters should be handed in latest until December 15, 2021. Otherwise the student is not entitled for the reduction!

Please write a letter of request addressed to the Director of the Directorate of International Studies when applying for the 20% reduction!
HOW TO GET A CERTIFICATE WHICH PROVES THAT THE DIPLOMA ISSUED BY SEMMELWEIS UNIVERSITY IS IN CONFORMITY WITH THE EU REQUIREMENTS, AND A CERTIFICATE OF GOOD STANDING

Compiled by The National Healthcare Service Center (Állami Egészségügyi Ellátó Központ; ÁEEK)
This brochure aims to briefly summarize the procedures of the ÁEEK that are needed to access the healthcare profession granted by your diploma, either in Hungary or abroad.

After graduation your University has 30 calendar days to report the diploma details of the newly graduated students to the ÁEEK’s Department of Registration in order to get them listed in the National Basic Register of the Healthcare Professionals. (The register is publicly available: https://kereso.enkk.hu/)

Once you have your diploma listed in the Basic Register, you should decide if you intend to
- **leave Hungary and work abroad** (see point A) OR
- **stay and work in Hungary** (see point B)

We hope you find the information provided in this publication to be informative and helpful.

National Healthcare Service Center
Directorate General of Human Resources Development

A) I INTEND TO WORK ABROAD

If you intend to work abroad, your Hungarian diploma has to be recognised by the Host Country’s competent authority and thereafter you will be required to get further registrations or licences depending on the host country’s regulation.

It is highly recommended to contact the host country’s authority first to get detailed information on the recognition procedure, including the list of the necessary documents and the confirmation if licence to practice (operational registration) in Hungary is needed or not. Amongst the requested documents there can be multiple certificates that are issued by the National Healthcare Service Center (ÁEEK). The most frequently requested certificates are the certificate of conformity and good standing. The procedure takes maximum 30 calendar days. Normally the certificates can be issued between 8-15 calendar days. Your patience is highly appreciated.

(You can visit the ÁEEK’s website for further information on all types of certificates:
www.enkk.hu (switch to the English menu / Department of Recognition and Monitoring)

CERTIFICATE OF CONFORMITY

It attests that your diploma (in medicine, dentistry, pharmacy, nursing or midwifery) satisfies the training requirements laid down in European Parliament and Council Directive 2005/36/EC on the recognition of professional qualifications.
CERTIFICATE OF GOOD STANDING

It attests that the professional
– has a clean criminal record, and is not under the effect of a non-appealable sentence imposed for a criminal offence suspending the health care activity concerned on the day of issue of this certificate;
– is not under the effect of a non-appealable sentence imposed for the violation of the professional ethical rules;
– is entitled or not to pursue healthcare activities in Hungary.

The entitlement (right to practice) basically depends on the membership in the professional chamber (Hungarian Medical Chamber (MOK), Hungarian Pharmaceutical Chamber (MGYK), Hungarian Chamber of Health Care Professionals (MESZK) and on the Operational Registration.*

PROCEDURE IN RELATION TO THE CERTIFICATES

In order to get the necessary certificates (required by the host country’s authority), the following documents have to be submitted to the ÁEKK’s Department of Recognition and Monitoring via e-mail to recognition@aeek.hu (or by post or in person)
– request form (available on www.enkk.hu at Department of Recognition and Monitoring / Certificates for recognition in a foreign country
– scanned copy or photo of your passport or ID card,
– scanned copy of photo of any official document that proves your current address in Hungary or abroad (if available)
– scanned copy or photo of your diploma,
– transfer receipt about the fee of the procedure.(15 000 HUF/requested type of certificate)

CONTACT DETAILS OF THE DEPARTMENT OF RECOGNITION AND MONITORING

E-mail:
recognition@aeek.hu

Telephone:
(+36)-1-919-3336 (Mon-Thu: 8.30-16.00; Fri: 8:30-13:30)

Address of personal consultation:
1085 Budapest, Horánszky utca 24. (ground floor)

Opening hours:
Tuesday: 8.30-12.00. and 13.00-15.30

Postal address:
National Healthcare Service Center
Directorate General of Human Resources Development
Department of Recognition and Monitoring
1444 Budapest Pf.: 270.

* From 1st January 2017, if the healthcare professional with foreign citizenship declares that he or she does not intend to pursue healthcare activities in Hungary (currently), he or she can apply for the operational registration without the membership of the chamber. (For further info please see Subsection 3 of point B) or contact the Department of Registration in e-mail: omn@aeek.hu)
Bank account details:
Állami Egészségügyi Ellátó Központ
10032000-01490576
From foreign account:
National Healthcare Service Center
Swift code: HUSTHUHB
IBAN number: HU06 1003 2000 0149 0576 0000 0000
Bank: Hungarian National Bank

Please note that the fee of the transfer and the exchange is also your cost!

B) I INTEND TO WORK IN HUNGARY

In order to start working as a health professional in Hungary, the following steps have to be taken:

1. **Basic Register (automatic), medical stamp for doctors and dentists (by request)**
 After the graduation the University has 30 calendar days to report the diploma details of the newly graduated students to the ÁEEK’s Department of Registration in order get them listed in the National Basic Register of the Healthcare Professionals. Once you are registered in the Basic Register, you will have a unique registration number, which can be checked at the public database: https://kereso.enkk.hu/)
 In case of doctors and dentists the ÁEEK’s Department of Registration ex ofício notifies the National Health Insurance Fund of Hungary (Nemzeti Egészségügyi Alapkezelő; NEAK) about the professionals personal details, address and basic registration number in order to prepare the professionals’ medical stamps.
 Despite the notification, the medical stamp will not be prepared unless you apply for it by submitting a request form to the NEAK.
 (web: http://neak.gov.hu/; e-mail: neak@neak.gov.hu; stamp request form can be downloaded: http://www.oep.hu/nyomtatvanytar/
 Kérelem az első névre szóló orvosi bélyegző kiállítása iránt)

2. **Membership to the competent professional chamber (by request)**
 Membership of the competent professional chamber is compulsory for those, who are intending to work in Hungary. For the details of the procedure (form, fees, etc.), please contact your chamber:
 – **doctors, dentists**: Hungarian Medical Chamber (www.mok.hu; Magyar Orvosi Kamara)
 – **pharmacists**: Hungarian Chamber of Pharmacists (www.mgyk.hu; Magyar Gyógyszerészi Kamara)
 – **healthcare professionals (physiotherapists, nurses, midwives, etc.):** Chamber of Hungarian Healthcare Professionals (www.meszk.hu; Magyar Egészségügyi Szakdolgozói Kamara)

3. **Operational Registration (‘működési nyilvántartás’) (by request)**
 In order to provide healthcare services unsupervised, - besides the chamber membership - the professional has to hold a valid operational registration. The application should be submitted to the ÁEEK’s Department of Registration and Training.
 Further information can be found on the ÁEEK’s website (www.enkk.hu / English menu / Deapartment of Registration and Training) or you can contact our colleagues.

 PROCEDURE in relation to the operational registration
 For your first operational registration, please be informed that you need to submit the following documents:
 – filled out and signed application form
 The registration to the Operational Register is only possible upon request, therefore applicants are required to fill out the application form and submit it either by post (as a registered letter) or in person (at our customer service) (Download: www.enkk.hu – Department of registration and training (basic and operational registry/application forms or available at the customer service)
 – transfer receipt of the administrative fee
Upon first registration 3,000.– HUF administrative fee has to be paid by bank transfer to the bank account held by ÁEEK (bank account number: 10032000-01490576-00000000).
(The acknowledgment of the payment shall be attached to the application.)

- Either the proof of membership of the chamber (if you are intending to work in Hungary) Or the declaration form for foreign citizens (if you are intending to work abroad and the Hungarian registration is required by the Host Country)

Membership of the competent professional chamber is compulsory for those, who are intending to work in Hungary!
If you are a healthcare professional with foreign citizenship who do not intend to work in the area of healthcare currently in Hungary and the license for the healthcare activity – certificate of the Hungarian operational registration – is only necessary for the recognition of your professional qualification abroad, it is not obligatory to have the membership of the chamber.

As indicated above, healthcare professionals can obtain operational registration without the membership of the chamber, provided that the Hungarian or English version of the Declaration for foreign citizens has been attached to the application form. CONTACT DETAILS OF THE DEPARTMENT OF REGISTRATION AND TRAINING

Address:
1085 Budapest, Horánszky utca 24. (ground floor)

Opening hours:
Monday to Thursday 8.30-15.30

E-mail:
omn@aeek.hu

Telephone:
(+36)-1-411-1146 (Mon-Thu: 8.30-15.30)

4. Working as a self-employed (by request)
If you intend to provide healthcare services as a self-employed, you are required to have an operational licence (‘működési engedély’) too, for which you can apply at the Policy Administration Service of Public Health of the territorially competent Government Office. (Contact details of the regional offices: http://www.kormanyhivatal.hu/hu/elerhetosegek)

5. Entering a specialist training programme
In case you have plans to enter a specialist training programme in Hungary, for detailed information (such as language requirements, training costs, opportunities for financial support) please contact the Continuing Education Center of your University.
REQUEST concerning the issue of a certificate to be used in the recognition of the diploma, qualification in another country

I’m ... (name) applying for the following certificate(s) that I need to get my diploma, qualification recognised in .. (name of the host country).
(Please put an X before the requested certificates):
☐ certificate of conformity issued for doctors, specialists in medicine, dentists, specialists in dentistry, pharmacists, nurses, midwives (with reference to Article 24., 25., 28., 29., 31., 34., 35., 40-41., 44. of Directive 2005/36/EC)
☐ certificate of acquired rights issued for doctors, specialists in medicine, dentists, specialists in dentistry, pharmacists, nurses, midwives (with reference to Article 23., 27., 30., 33., 37., 43. of Directive 2005/36/EC)
☐ certificate which attests the length of the healthcare activity pursued in Hungary
☐ certificate of good standing (Pursuant to Section. 110/A of Act CLIV of 1997)
☐ certificate which attests the level of the qualification (with reference to Article 11. of Directive 2005/36/EC)
☐ other

Personal data (Please write with capitals):
Surname: ..
Given name: ..
Name at birth: ..
Mother’s maiden name: ...
Place and date of birth: ..
Registered address: ...
Postal address: ..
Telephone: ...
E-mail: ..
Basic register number: ..

I enclose the following documents (Please put an X before the selected ones):
☐ copy of the passport/ID card
☐ copy of the proof of evidence concerning the applicant’s registered address
☐ copy of the diploma/qualification
☐ fee (by postal cheque or bank transfer)
☐ original certificate from the employer or its certified copy (in case of the certificate of acquired rights, or in case of the certificate which attests the length of the healthcare activity pursued in Hungary)
☐ other

I’d like to get the issued certificates (Please put an X before the selected one):
☐ personally
☐ by post
☐ by an authorised person (please attach an authorisation)
☐ other way:

Other remarks, requests:
I hereby declare that the information contained in my application are true, and I agree with the use of the aforementioned data by the Center with regards to my application. Furthermore, I authorise the Center to obtain the necessary information from the competent authority in connection with the Certificate of Good Standing.

Date: ..

.. signature
APPLICATION

for medical doctors, dentists, pharmacists and clinical health workers

(Kérelem orvosok, fogorvosok, gyógyszerészek és klinikai szakképesítéssel rendelkezők részére)

Before filling out the application please read the instructions first!
(Kérjük az adatlap kitöltése előtt olvassa el a kitöltési útmutatót!)

I. Personal details (*: It is obligatory to fill out)

Basic and Operational registration number:

*Name (your name in the ID card or passport):

*Surname

*Given name

*Name at birth

*Surname

*Given name

*Mother’s maiden name

* Place and date of birth

*Sex

* Nationality

* During the health activity I would like to use:

*Registered address

* Mailing address (if it is different from the registered address):

* Registered address

* Mailing address (if it is different from the registered address):

Retired

* E-mail address

Phone number (Telefonszám):

The subject of the application

The applicant’s qualification

The subject of the request (Please put an X before the requested case):

First registration

Renew the operational registration

Registration of the new qualification

Extend the operational registration (prolongation because of child-raising allowances, incapacity due to illness, etc.)

Registration after cancellation
II. Details of the qualification(s)
(Szakképesítés adatok)

Diploma

1) Title of the Diploma (Diploma megnevezése):
Number of the diploma (number/year) (Diploma száma):
Issuing body:
(Kiállító szerv)
Place and date of issue:
(Kiállítás helye, ideje)
Language of the training:
(Képzés nyelve)
Nostrificated, recognised by:
(Honosító/elismerő intézmény)
Number of recognition, nostrification:
(Honosító/Elismerő határozat száma)
Place and date of recognition, nostrification:
(Honosítás/Elismerés kiállításának helye, ideje)

2) Title of the Diploma (Diploma megnevezése):
Number of the diploma (number/year) (Diploma száma):
Issuing body:
(Kiállító szerv)
Place and date of issue:
(Kiállítás helye, ideje)
Language of the training:
(Képzés nyelve)
Nostrificated, recognised by:
(Honosító/elismerő intézmény)
Number of recognition, nostrification:
(Honosító/Elismerő határozat száma)
Place and date of recognition, nostrification:
(Honosítás/Elismerés kiállításának helye, ideje)

Specialist qualifications (Szakvizsgák adatai)

1) Name of the qualification (Szakvizsga megnevezése):
Number of the qualification (number/year) (Szakvizsga száma):
Issuing body:
(Kiállító intézmény)
Place and date of issue:
(Kiállítás helye, ideje)
Language of the training:
(Képzés nyelve)
Nostrificated, recognised by:
(Honosító/elismerő intézmény)
Number of recognition, nostrification:
(Honosító/Elismerő határozat száma)
Place and date of recognition, nostrification:
(Honosítás/Elismerés kiállításának helye, ideje)

2) Name of the qualification (Szakvizsga megnevezése):
Number of the qualification (number/year) (Szakvizsga száma):
Issuing body:
(Kiállító intézmény)
Place and date of issue:
(Kiállítás helye, ideje)
Place and date of issue:
(Kiállítás helye, ideje)
Nostrificated, recognised by:
(Honosító/elismerő intézmény)
Place and date of recognition, nostrification:
(Honosítás/Elismerés kiállításának helye, ideje)

3) Name of the qualification (Szakvizsga megnevezése):
Number of the qualification (number/year) (Szakvizsga száma):
Issuing body:
(Kiállító intézmény)
Place and date of issue:
(Kiállítás helye, ideje)
Place and date of issue:
(Kiállítás helye, ideje)
Nostrificated, recognised by:
(Honosító/elismerő intézmény)
Place and date of recognition, nostrification:
(Honosítás/Elismerés kiállításának helye, ideje)

4) Name of the qualification (Szakvizsga megnevezése):
Number of the qualification (number/year) (Szakvizsga száma):
Issuing body:
(Kiállító intézmény)
Place and date of issue:
(Kiállítás helye, ideje)
Place and date of issue:
(Kiállítás helye, ideje)
Nostrificated, recognised by:
(Honosító/elismerő intézmény)
Place and date of recognition, nostrification:
(Honosítás/Elismerés kiállításának helye, ideje)
III. Membership of the Chamber
(Kamarai tagság)

I have membership (Rendelkezem kamarai tagsággal): [] Yes (Igen) [] No (Nem)
If yes, the name of the Chamber
(Kamara megnevezése):
If yes, the beginning of the membership
(Kamarai tagság kezdete)
If yes, the end of the membership:
(Kamarai tagság vége)

If no: I am a health worker with foreign citizenship and I do not intend to work in the area of health in Hungary, the permission for the health activity – certificate of the Hungarian operational registration – is only necessary due to the recognition of professional qualification abroad. I attach the declaration for foreign citizens about working out of Hungary to the application form.
(Külföldi állampolgársággal rendelkező egészségügyi dolgozó vagyok és az egészségügyi szakképesítés megszerzését követően egészségügyi tevékenységet Magyarországon nem kívánok folytatni, az egészségügyi tevékenység végzésére való jogosultság igazolása kizárólag a szakképesítése külföldön történő elismerése miatt szükséges. Ennek megfelelően kérelmemhez csatoltam a “Nyilatkozat külföldi állampolgrok részére” elnevezésű nyomtatványt)

IV. Details of the language exam(s):
(Nyelvvizsgák adatai)

1. Language:
(Nyelv)
Level (Szint):
[] basic (alap)
[] intermediate (közép)
[] advanced (felső)

Type (Típus):
[] A [] B [] C
[] General (Általános)
[] Professional (Szakmai)

Issuing body:
(Kiállító szerv)

Issuing place and date:
(Kiállítás helye, ideje)

Number:
(Száma)

2. Language:
(Nyelv)
Level (Szint):
[] basic (alap)
[] intermediate (közép)
[] advanced (felső)
V. Declarations
(Nyilatkozat)

1. I apply for that the National Healthcare Service Center
(Kérem, hogy az Állami Egészségügyi Ellátó Központ (a továbbiakban: ÁEEK) a kérelmemben foglaltak alapján)
{ } make my first registration into the Operational Registration;
(regisztráljon a működési nyilvántartásba)
{ } renew my operational registration;
(ujítsa meg a működési nyilvántartásomat)
{ } make the registration of my new qualification
(a kérelemben megjelölt szakképesítés tekintetében bocsáson ki működési nyilvántartási igazolványt)
{ } extend my 5-year-period registration;
(hosszabbítsa meg a működési nyilvántartásomat)
{ } register me again in the Operational Registration after cancellation;
(törlést követően ismételten regisztráljon)
{ } change the informations and my datas in the operational registration database;
(addyalátvázásomat rögzíttse a működési nyilvántartásba)
1. I hereby declare that I have clean criminal record and that I am not under the effect of a non-appealable sentence imposed for a criminal offence suspending the health care activity.

2. I hereby declare that I have clean criminal record and that I am not under the effect of a non-appealable sentence imposed for a criminal offence suspending the health care activity.

3. I contribute to the National Healthcare Service Center verifies permanently the informations which mentioned previously in point 2. The National Healthcare Service Center has national and exclusive competence to demand informations from the authority of criminal registration.

4. I hereby declare that I am not under the effect of any decree declaring that I am unfit to pursue the healthcare activity permanently (due to my health condition), I am not under the effect of any authority's decision forbiding me to pursue the health care activity.

5. I contribute to the National Healthcare Service Center verifies the datas which have been declared by me in the application form.

6. I hereby declare that out of Hungary I have never worked and I am not working in the area of health; I worked in the area of health; I am working now in the area of health and according to the law of the foreign country I have clean criminal record and I am not under the effect of a nonappealable sentence imposed for a criminal office suspending the health care activity.

7. I hereby declare that the informations contained in my application are true and correct at the moment of signing.
Without the original signature the application is not valid and unacceptable.

(Eredeti aláírás hiányában a kérelem érvénytelen és elfogadhatatlan)

The application can be sent:
- by post as a required letter to the address 1444 Budapest, P.O. Box 270;
- by personal at our customer service during the opening hours
- Monday-Thursday: from 8:30 to 15:30
- Friday: from 8:30 to 13:00

Availability:
- Phone: +36-1/411 1146; Fax: +36-1/411-3768
- E-mail: omn@aeek.hu
- Account number: 10032000-01490576-00000000
- Swift code: HUSTHUHB
- IBAN number: HU06 1003 2000 0149 0576 0000 0000

DECLARATION

for foreign citizens intending to work outside of Hungary

Personal details
- Basic registration number: ...
- Surname: ..
- Given name: ...
- Name at birth: ...
- Mother's maiden name: ..
- Place and date of birth: ..
- Nationality: ..

I, .. (name) hereby declare that I am a healthcare professional with foreign citizenship and I do not intend to work in the area of healthcare in Hungary currently, the license to pursue healthcare activities – getting registered in the Operational Registry – is only necessary for the recognition of my professional qualification abroad. Due to the abovementioned it is not obligatory to have the membership of the chamber. I, furthermore, acknowledge that in case I return to Hungary to pursue healthcare activities, I will be required to become a member of the chamber.

Date: ..

... Signature
STUDENT CARD

How to order a new student card

1. To obtain a new student card, you must first have an official photo taken and provide your official signature at „Központi Okmányiroda“ (Central Document Office) Address: 13th District, 110 – 112 Visegrádi utca. You must take your residence permit and passport with you to the Központi Okmányiroda.

2. There you will be given a NEK (Nemzeti Egységes Kártyarendszer) datasheet. This form has a 16-character identification number in the upper right corner.

3. Log on to your Neptun site, go to 'Administration' and click on ‘Student Card request’ in the drop-down list. A smiley:) will warn you not to add the hyphens when typing in your 16 character NEK identifier into yellow text box!

3/a. Click on the grey tab ‘Add new’ and type your 16 character NEK identifier into the blank called ‘NEK azonosító’

3/b. then choose ‘Demand type'. Check that your permanent (home) address is correct and shows up in the ‘Street, number’ text box. Please note that you will also need your temporary (Hungarian) address written in the Neptun. This will serve for your temporary, A4-format student card you will receive at the English Secretariat.

The plastic card takes about **6-8 weeks** to be produced after being ordered from the English Secretariat. You will need to use the **temporary, A4-format certificate** until you receive your official card. Please note that the temporary certificate is valid only for **2 month**, after which time it must be renewed.

INSURANCE

By paying the tuition fee, and signing the insurance contract during - or after - registration, students are entitled to use the services offered under the insurance policy established on September 1, 2017 between Generali Biztosító Zrt and Semmelweis University.

You will receive an information sheet about the details of this insurance policy during the registration itself (or alternatively, you can also acquire the information sheet at the front desk of the English Secretariat, or online through https://semmelweiskft.hu).

Throughout the duration of your studies, this insurance will cover the medical bills of outpatient and inpatient treatments provided by the designated health care service providers, as well as emergency medical care during the active semester(s). Details about terms and conditions found in „Customer information and General Provisions Governing Insurance Policies” as well as in the „Product Information on Generali’s Fee-for-Service Health Insurance”.

Living Costs

In addition to tuition, students may have the following expenses:

- In addition to tuition, students may have the following expenses:
- Expenses related to studies (student ID card, books, photocopying, etc.) about **200 EUR/semester**
- Accommodation (depending on the size and the location of the flat, as well as on the number of students sharing it) about **250-350 EUR/month/person**
- Living expenses (food, transport, miscellaneous) **200-250 EUR/month**
FREQUENTLY ASKED QUESTIONS - FAQ-s

- Where can I find the Foreign Students’ Secretariat?
 EOK (Basic Medical Science Center) 37-47 Tűzoltó utca, 1st Floor, room 1.604

- What are the Foreign Students’ Secretariat’s office hours?
 Monday 13.00 – 15.00
 Tuesday 13.00 – 15.30
 Wednesday closed
 Thursday 9.30 – 12.00
 Friday 10.00 – 12.00

- How do I get my class schedule for the next term?
 You can check your schedule in your Neptun under Studies/Class schedule after subject registration.

- How do I get a Student card?
 – Read detailed information for the students of all faculties – Student Card Request (pdf)

- How many credits do I need to graduate?

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Medicine</td>
<td>360</td>
</tr>
<tr>
<td>Dentistry</td>
<td>300</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>300</td>
</tr>
</tbody>
</table>

- How many credits do I have to earn per semester?
 Please see your semester curriculum in the Calendar. The amount of the required credits are set out by each semester’s curriculum under the curriculum schedule.
 Attention!
 Training and Examination Regulations
 Section 26. The certificate of degree (Diploma)
 The diploma, the certificate.
 1. The credit value of subjects accomplished in other institutions of higher education and recognized by the University in a credit transfer procedure shall not exceed two-thirds of the credits required for the award of the diploma as defined by the qualification requirements.

- How can I apply for the approval of the place of the summer practice?
 1. Summer practice at an Institution/Clinic of Semmelweis University
 No approval or certificate on completion is needed in this case. The completion is recorded in the Neptun system by the host Institution/Clinic. To organize your practice and ensure you will be accepted you should contact the relevant Institution/Clinic and speak with your tutor. Please note: some Semmelweis departments require that you do a special registration via Neptun for their summer practice. About details and departmental regulations, please consult your tutor.
 2. Summer practice at an Institution/Clinic outside of Semmelweis University
 Approval of such summer practice is needed beforehand, and a certificate on completion must be submitted at registration to the next term. Please contact your registrar for details with specifics.

- When and how do I have to submit the certification on my completed summer practice?
 Certificates on a completed summer practice outside Semmelweis University should be submitted to the English Secretariat at the registration to the next term.
 Please note: students are not allowed to proceed to the next year unless the form of completion is submitted to the English Secretariat at registration.
 Please use the downloadable forms at each Faculty.
Compulsory summer practices by Faculties:

<table>
<thead>
<tr>
<th>year/Faculty</th>
<th>General Medicine</th>
<th>Dentistry</th>
<th>Pharmaceutical Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Summer Nursing Practice* (1 month) *(after 1st or 2nd year)</td>
<td>Summer Nursing Practice (2 weeks)</td>
<td>–</td>
</tr>
<tr>
<td>2nd</td>
<td>–</td>
<td>Summer Dental Laboratory Practice (2 weeks)</td>
<td>Summer Practice I. (4 weeks)</td>
</tr>
<tr>
<td>3rd</td>
<td>Summer Internal Medicine Practice (1 month)</td>
<td>Summer Dento-Alveolar Practice (1 week)</td>
<td>Summer Practice II. (4 weeks)</td>
</tr>
<tr>
<td>4th</td>
<td>Summer Surgery Practice (1 month)</td>
<td>Summer General Dentistry Practice (4 weeks)</td>
<td>–</td>
</tr>
</tbody>
</table>

How much is the tuition fee per semester?
The tuition fee is determined by the year of enrollment to the Program. Students who complete their studies continually (without failing a year) pay the same tuition fee every year (see the table below). Students who repeat a year due to failure or a passive semester, and students transferred from another university have to pay the tuition fee according to the year of enrollment at the course they are joining. Eg. a student enrolled in 2015/2016 academic year and failed a semester has to pay the tuition fee of those enrolled in 2016/2017.

<table>
<thead>
<tr>
<th>year of enrollment/ Faculty</th>
<th>General Medicine</th>
<th>Dentistry</th>
<th>Pharmaceutical Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006.</td>
<td>6 100 USD</td>
<td>5 400 USD</td>
<td>5 400 USD</td>
</tr>
<tr>
<td>2007.</td>
<td>6 100 USD</td>
<td>5 400 USD</td>
<td>5 400 USD</td>
</tr>
<tr>
<td>2008.</td>
<td>6 100 USD</td>
<td>6 600 USD</td>
<td>5 400 USD</td>
</tr>
<tr>
<td>2009.</td>
<td>7 200 USD</td>
<td>8 000 USD</td>
<td>5 800 USD</td>
</tr>
<tr>
<td>2010.</td>
<td>8 000 USD</td>
<td>8 000 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2011.</td>
<td>8 200 USD</td>
<td>8 200 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2012.</td>
<td>8 500 USD</td>
<td>8 500 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2013.</td>
<td>8 750 USD</td>
<td>8 750 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2014.</td>
<td>8 750 USD</td>
<td>8 750 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2015.</td>
<td>8 950 USD</td>
<td>8 950 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2016.</td>
<td>9 100 USD</td>
<td>9 100 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2017.</td>
<td>9 100 USD</td>
<td>9 100 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2018.</td>
<td>9 100 USD</td>
<td>9 100 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2019.</td>
<td>9 100 USD</td>
<td>9 100 USD</td>
<td>6 000 USD</td>
</tr>
</tbody>
</table>

When is my tuition fee due?

Generally:
- Fall semesters: 31st of August
- Spring semesters: 31st of January

The current deadlines of payment are announced by the registrars before the beginning of every semester.

Rules regarding tuition fee payment and penalty.
- Students have **one month** (counted from the first day of the semester) for paying the tuition fee of the given semester **without penalty**. *(Please note that students cannot get a student certificate, a valid insurance or validation of their student card until their tuition fee is completely settled.)*
- **After the semester’s first month** has passed, the tuition fee can be paid with a default penalty of 500 USD.
- The latest deadline for paying the tuition fee and penalty is the last day of the study period. *(Please note that students cannot register for any exam until their tuition fee plus penalty are completely settled.)*
• If the above final deadline is missed, i.e. the tuition fee plus penalty are not settled by the end of the study period, the tuition fee for the current semester can no longer be paid, student’s status will remain active, but every signature acquired and every grade earned by the student during the semester will be deleted.

Please take the above rules and deadlines seriously as they will be strictly enforced.

• What is my tuition per semester?
 All continuing students will remain on the same fee rate as when they first enrolled in the program. Students who take a semester off, failed a year, or transferred from another university has to pay the tuition fee of that specific year they join the program (again).

• How can I ensure full payment of the tuition fee on time by bank transfer?
 To ensure full payment, please consider that a transfer fee is usually applied when sending money by bank transfer. When transferring the exact amount for the tuition fee, a transfer fee might be deducted from that amount, rendering your tuition fee deficient. Therefore, please contact your home bank prior to transferring the tuition fee and find out whether the bank deducts a transfer fee from the transferred amount. If yes, please pay the transfer fee in addition to the tuition fee.

Payment by wire transfer:
 all payments can be made by wire transfer to Semmelweis University’s below bank account. Payments have to be made in USD.

Account details of Semmelweis University are as follows:
 Account holder: Semmelweis University
 Account Number (IBAN): HU67 1000 4012 1000 8016 0051 4534
 Bank name: Magyar Államkincstár (Hungarian State Treasury)
 Bank address: Hold utca 4, 1054 Budapest, Hungary
 SWIFT code (BIC): HUSTHUHB
 Correspondent SWIFT code (BIC): MANEHUHB

It is your responsibility to ensure timely and full payment of your tuition fee. It is important for you to keep in mind that checking whether the tuition fee has been paid properly is your responsibility. You are recommended to contact your registrar each term before the payment deadline to find out whether the tuition fee has arrived without any problem.

• Am I eligible for a reduction of the tuition fee?
 Tuition fee reduction in the following case:
 Excellent study record
 Students may apply for a reduction if they completed all the obligatory subjects and gained at least 20 credits in the semester, and their weighted average is 4,51 or above continuously started from the first or the second semester of the first year. If the weighted average is 4,51 or above in the first semester a reduction can be granted in the second semester. If the weighted average is 4,51 or above only from the second semester then the reduction can be granted from the third semester. The reduction is 10% for students having a weighted average between 4,51 and 4,99, and it is 15% for students having a weighted average 5,00. Students who have a weighted average below 4,51 during their studies after the first year are no longer eligible for a reduction of the tuition fee. No reduction is given in case of exemption from one or more subjects.

Please write a letter of request addressed to the Academic Program Director when applying for the reduction!

• How do I calculate my average?
 Study average means the weighted average, which is a way to measure a student’s academic success in school. The weighted average is calculated from the grades and the credit points belonging to each subject. For each completed course for the previous semester, the number of credit points must be multiplied with the grade received. All subjects are added up and then this amount is divided by the total number of credits collected in the semester.
Example for one semester:

<table>
<thead>
<tr>
<th>Course</th>
<th>Grade</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy:</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Basics of Biostatistics and Informatics:</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Hungarian Medical Terminology I:</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Basics of Medical Physics:</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Medical Chemistry:</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Basics of Medical Chemistry:</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Medical Terminology:</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Physical Education I.</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

∑: 27 + 12 + 20 + 15 + 24 + 15 + 10 = 123
Number of credits earned in the semester: 30
Weighted average from the first semester: 123/ 30 = 4.1

- **What is the difference between weighted average and cumulative weighted average?**
The weighted average and cumulative weighted average are based on grades given for each course taken and the number of credit hours specified for those courses over the specified period of time (one term for weighted average; more or all terms for cumulative weighted average). The difference between the two is that weighted average is calculated for one semester of the year and cumulative weighted average is based on two or more semesters of the individual.

- **What if I can’t attend an exam or class at the time scheduled?**
Students are required by university regulations to present written justification stating the reasons of their absence. Upon returning to school after an absence, students should report to the department’s office and present a doctor’s note, if their absence was caused by medical reasons. Excuses not provided within 3 days after the missed exam or class will result in the absence being marked as an unexcused absence.
It should be noted that the student will be recorded absent even if s/he is absent for a valid reason such as sickness. In the case of absence with a valid reason, an official document that proves the reason of absence should be provided. The department has the right to reject any document of questionable credibility. If you are sick and cannot take the exam or class, you should telephone your tutor immediately and leave a message for the department office even if this is not the first day of your absence.

- **Do I have to pay a fine if in case of my absence from an exam remains uncertified?**
Yes. Please see „Extra curricular fees” on the home page.

- **How do I pay my missed exam fees online?**
Go to Finances/Payment
Transcribe item
Payment titles: Service
Service type: Missed exam fee (4000 HUF)
If you choose to pay by check please visit the Foreign Students’ Secretariat to collect your check. The check must be paid at the post office.

- **Do I have to pay for exams?**
Students have to pay for their second and third retake exam (3rd and 4th exam) for a given subject. Please see „Extra curricular fees” on the home page.

- **How do I order a check for my 3rd or 4th exam in a given subject?**
Log on to your Neptun account, go to „Finances”, choose „Payment”, then „Transcribe item”. Choose „Retake exam”, choose „Semester” then the relevant subject from the list and finally click on „Create item”.
You can choose to pay your retake exam fees online via the Neptun system or by check. To pay online you will have to select ‘Payment by credit card’ from the two payment options offered to you.
If you choose to pay by check please visit the Foreign Students’ Secretariat to collect your check. The check must be paid at the post office, the check stub is to be presented on site prior to the exam.
EXEMPTION

- **Should I go directly to the department when applying for an exemption?**
 Yes, except in case of Physical Education, summer practices and First Aid. Physical education medical certificates and certificates/degree proving the completion of summer practices/first aid course must be submitted to the Foreign Students’ Secretariat by registration to both semesters each year. For a physical education exemption you must also submit a letter of request describing your problem in a few words and apply for a permission to be exempted from the subject. The request letter must be addressed to the Foreign Students’ Secretariat. For other subjects you must first get a blank exemption form from the Foreign Students’ Secretariat. Then, you must show the form and certificate of your previous studies to the competent department, which will be reviewed before granting an exemption from the subject. You need to get your exemption form signed and stamped at the department. Important: the teacher must indicate the grade for the subject on the form. After having the form completed and stamped, you have to return it to the Foreign Students’ Secretariat for processing. If everything is OK with the form, your registrar will enter the given grade into the Neptun system and indicate it in your grade book. If you successfully complete the above, you have no further obligations regarding that particular subject.

 Approved exemptions must be submitted to the Foreign Students’ Secretariat by the start of the semester!

- **Can I be exempted from Physical Education if I have a gym membership?**
 No. You will not be exempt because of your gym membership so please do not apply for an exemption on these grounds.

- **What is the process of submitting a doctor’s note for Physical Education exemption?**
 If you are requesting an exemption from physical education due to medical complications that inhibit you from partaking in physical activity for an indefinite time; you then must submit evidence to the Foreign Students’ Secretariat in Hungarian or in English language from a licensed health care practitioner that documents a diagnosis of a temporary physical or mental disability.

- **What do the so-called CV and FM exams mean?**
 CV and FM are abbreviations. CV stands for the Hungarian term „Csak Vizsga”, meaning „Exam only”. The term indicates that the student has already received the signature for taking the course, that is, fulfilled the semester requirements and only the exam is missing, which can be taken in the following semester.

 FM stands for the Hungarian term „Felmentett”, meaning „Exempt”. This term also indicates that the subject requirements have been fulfilled and student only needs to take the exam. The student is not obliged to take the course again, however since the subject is offered again, he/she can decide to do so. (Should the student decide to attend the course again, even though he/she has already fulfilled the requirements, the same rules shall apply to him/her as to those attending the class for the first time (Absence, attendance at classes, etc.))

- **Do I have to fail a course at least once in order to be allowed to take the CV course in the next term?**
 No. You can roll over all 3 exam opportunities to the following semester and take them as a CV course.

- **How many retake opportunities do I have in a semester and in an academic year?**
 There are 3 exam opportunities in each subject per semester (1 exam, and 2 retakes) when the subject is offered as a normal or FM course. In the following semester – when the subject is offered as a CV course – only the remaining chances left from the previous semester can be used. There is a special 4th try once a year (the 3rd retake), which may be used exclusively in 1 chosen subject. After using this 4th exam opportunity in one subject, the student shall not have a 4th try in any other subjects; they also will not be granted “special permission” for a 5th opportunity. Please count your remaining exam opportunities carefully!

 For example, if you use 2 exam opportunities for Biophysics II in the 2nd semester, you will have only one remaining opportunity for the retake in the following semester (plus the one extra (4th) chance, if you haven’t used it already in that specific academic year in another subject).

- **What is a prerequisite?**
 Prerequisites are courses that must be taken before another course. For example, Medical Chemistry is a prerequisite for Medical Biochemistry, Molecular and Cell Biology 1.

 Students must successfully complete Medical Chemistry before registering for Medical Biochemistry, Molecular and Cell Biology 1. Please note that prerequisites are clearly listed in the curriculum.
• **What is a corequisite?**
Corequisites are courses that must be taken at the same time as normal courses. Registration for corequisites must be done prior to registration for normal courses in the given term. Corequisites are marked with a star symbol in the Calendar of each semester's curriculum affected (e.g. 3rd and 4th year)

• **What do I need to do if I am planning to take a leave of absence?**
If you take a semester off you will need to email your registrar and register for a ‘passive’ semester via the Neptun system during the registration period for the next semester.
For details, please see the Neptun manual/ Registration in the beginning of the Calendar

• **What do I need to do if I am returning from a leave of absence?**
Contact your registrar for procedures regarding returning from an official leave of absence and check your Neptun account on a regular basis. Make sure your tuition fee is paid by the relevant deadline.

TRANSCRIPT

• **What is a transcript? How do I request my transcript?**
The transcript is an official statement of all results achieved through study at Semmelweis University as of the date of printing. You cannot have a transcript until all grades are posted in the Neptun student information system by the departments and your grade book is submitted to the Foreign Students’ Secretariat with all results. It is the department’s responsibility to upload the exam results to the Neptun system.
Transcript requests must be made in writing. To make your request, you may stop by the Foreign Students’ Secretariat or send it via e-mail. You can indicate in your request if you would like us to forward the transcript to your email address. Processing of transcript requests takes approximately 5 business days. However, during certain times of the year there will be a slight delay, 2-3 days, due to the heavy volume of requests. The fee for the transcript must be paid for prior to the issuance of the transcript(s). Please be sure to allow sufficient processing time for your request.

Please note: the university may discontinue or suspend this service at any time without notice if the fee for the transcript is not paid.
STUDENT COUNSELLING

The Institute of Behavioural Sciences at Semmelweis University is providing student counselling in English and German as well. Coming to university can be a very exciting and rewarding time. It can also be a time of change and stress, especially if you study in Budapest, left your home country and have to face a new culture, language and environment. There may be a whole range of difficulties and dilemmas affecting your life and studies.

These may be the result of either past or present experiences. The University Counselling Service is one of the services which are there to help. One way of starting to with things is to see a counsellor. This involves meeting with a trained person to talk about the issues that are important for you.

There are a number of ways in which counselling can help, such as:

- Dealing with a crisis or immediate concern
- Support with longer term difficulties
- Getting access to specialist help
- Referring on to other resources

Counselling is an active process that is designed to give you the time, space and encouragement to explore and understand the issues you bring. The counsellor will be able to help you think about your problems from a different perspective. Their role is to provide you with a secure framework in which to reflect upon your circumstances. The aim is, that in time this will increase your awareness of yourself, your situation, and the choices that are open to you. Coming for counselling can take courage as it involves facing yourself and asking someone else for help.

Counselling provides a safe place, separate from your daily life, where you can explore issues or feelings which are causing you difficulty. The counsellor will aim to relate to you in a supportive and purposeful manner and assist you in the task of finding your own way forward. Your use of counselling remains confidential to the service within the limits agreed with your counsellor.

Emotional and psychological problems encountered by student counselling services include:

- anxieties about aspects of study including exams and presentations
- general stress and anxiety
- depression
- relationship difficulties
- eating problems
- bereavements and parental separations
- loneliness and homesickness
- lack of self confidence or low self esteem
- managing transitions
- making difficult decisions
- traumatic experiences including rape, assault and abuse
- difficulties with alcohol or drugs
- issues around sex, sexual orientation and sexuality
- self-injury
- suicidal thoughts
- anger management
- worries about appearance
- any other topic or problem you wish to talk about

Contact:
If you have any question, need to talk to someone on the phone in advance, or want to book an appointment to see a counsellor, just send us an email and we will get back to you within 48h:
Dr. János Kollár
E-mail: studentcounselling@net.sote.hu
Home page: http://behsci.hu/health/student-counselling
Institute of Behavioural Sciences
Nagyvárad tér 4, 20th floor,
1089 Budapest
Appointments are available between Monday and Friday (16-20 o’clock) upon request (via mail)
ERASMUS Program

http://semmelweis.hu/english/education/erasmus/

Office Hours and Contacts

Office Hours
- Monday: 9 a.m. – 12 p.m.
- Tuesday: 1 p.m. – 3 p.m.
- Wednesday: 9 a.m. – 12 p.m.
- Thursday: 1 p.m. – 3 p.m.
- Friday: CLOSED

For the efficient and continuous work of the office, we kindly ask that you respect our office hours! In case of an urgent matter, please contact the ERASMUS office either by phone or email, in order to obtain a personal appointment.

Address
H-1085 Budapest, Ulloif út 26. Room 202

Contact Information
Ms. Katalin F. Tóth
ERASMUS Institutional Coordinator
Tel: (+36 1) 459-1500, ext. 55827
Fax: (+36 1) 459-1588
E-mail: erasmus@semmelweis-univ.hu

Ms. Márta Honvéd
Coordinator Assistant
Tel: (+36 1) 459-1500, ext. 55828
Fax: (+36 1) 459-1588
E-mail: erasmus@semmelweis-univ.hu
SEMIELWEIS ALUMNI

http://alumni.semmelweis.hu/eng/semmelweis-alumni

Mission Statement

Semmelweis Alumni’s mission is to help build long-lasting and mutually beneficial relationships between the University and its current students, alumni, faculty and researchers.

Membership

To become a member of Semmelweis Alumni, you need to complete a registration form. Registration is free of charge and memberships remain valid indefinitely.

You may become a member if you meet any of the following criteria:

● You are currently a student at Semmelweis University and have successfully completed at least four semesters;
● You are a former student of Semmelweis University or one of its legal predecessors and successfully completed at least four semesters;
● You are currently a faculty member or researcher at Semmelweis University
● You were formerly a faculty member or researcher at Semmelweis University

INTERNATIONAL STUDENT ASSOCIATION - ISSA

It is an association made up of students from different faculties at Semmelweis University in different years with very different nationalities and backgrounds. Their aim is to give voice to the international student community at Semmelweis University and support them in different methods. Their reach includes but is not limited to the following:

1. Organizing international student events two of which is the Freshmen’s Day event for the incoming students every year and also the Semmelweis Carnival
2. Creating a bridge between the students and staff (teaching and non-teaching) through conducting interviews
3. Listening to students concerns through Student Affairs and handling case by case
4. Creating a magazine dedicated to international student committee Review which is full of information for the students and also from students
5. and many more…

The association is actively working to create a pleasant life for the students at Semmelweis University and give voice to their needs. Our mission statement is as follows:

– **Learning** – We compliment and enhance the academic experience.
– **Service** – We are dedicated to serving students and our broader community. We provide good customer service and resources for events/event planning and offer leadership development opportunities.
– **Advocates** – We strive to serve as student advocates.
– **Balance** – We strive for wellness and balance in our activities and events.
– **Ethical Decision Making** – We believe in honesty and integrity during all interactions.
– **Stewardship** – We strive to use all resources effectively and efficiently.
– **Community** – We strive to build a supportive and inclusive office environment/campus community where everyone feels welcome.

The **Student Affairs Committee (SAC)** is a student-run organization within ISSA. Our express goal is to improve lines of communication between students and members of faculty, as well as advocate on behalf of students’ opinions and interests. The backbone of the Student Affairs Committee is the representatives from each year and faculty (Dentistry, Medicine, Pharmaceutical Sciences). Representatives are responsible to both their classmates and their fellow committee members. They are the first to be approached should any issues arise among students within their year. They then bring these problems to the committee so that the SAC team may resolve them. At times, the representative may be responsible for resolving the problems themselves; at times they will be charged with handing over the responsibility to a higher up. Class reps may also be called on to speak with members of the administration, something they are able to do with confidence and professionalism.
STUDENTS’ SCIENTIFIC ASSOCIATION (TDK)

A unique feature of Hungarian universities is that undergraduate students have the opportunity to be involved in top-level scientific research starting in their undergraduate years. To facilitate this, students maintain their own organisation, the Students’ Scientific Association (in Hungarian: Tudományos Diákkör – TDK). TDK activities, which include organising scientific conferences, are overseen by the TDK Council. During the last ten years, the number of students involved in scientific research has grown twofold, while the number of lecturers attending TDK conferences has increased threefold. Currently, over 1000 Semmelweis University students pursue science in addition to their regular studies, more than 400 of whom present their research results at the annual TDK conferences.

The University’s students often receive great honours at national and international conferences and many of them publish scientific research articles in international journals as either first or co-authors. Each year, the ten best graduating students receive the “Outstanding TDK Student of Semmelweis University” distinction.

It is pleasing to see that the University is attracting ever more students who had started doing research during their high school years. To encourage the continuation of this practice, the TDK Council promotes the involvement of students in scientific research from their very first year at university.

The TDK Council also promotes close contacts with fellow TDK organisations abroad. Students are sent to international TDK conferences and cooperate with the Hungarian Medical Students’ International Relations Committee (HuMSIRC), through whom longer study tours can be organised.

TALENT SUPPORT PROGRAM OF SEMMELWEIS UNIVERSITY

To support the talented and gifted students the Senate of Semmelweis University initiated a Talent Support Program named after the former professor of our University, Ödön Kerpel-Fronius.

Participants of the program will be recruited after a personal assessment interview of the students on the Excellency List organized by the Talent Support Council of the University.

The Excellency List contains not more than the best 5% of the students of the university.

Application for the inclusion in the Excellency List is possible by filling in the Application Form, which can be downloaded from the kerpel.sote.hu/kivalosagi_listara_kerules_szabalyrendszere or kerpel.sote.hu/kivalosagi_lista web-sites.

Applications should be sent electronically to the tehetsegpont.se@gmail.com email address as an attached file until March of each year.

Students on the Excellency List will be called for an interview by the Talent Support Council of the Semmelweis University and approximately half of them will be included to the Kerpel-Fronius Ödön Talent Support Program.
General information on Ph.D. studies, resident training and postgraduate studies for foreign applicants
In principle, there is no possibility to continue medical (or dental) studies at Semmelweis University with an undergraduate degree obtained at a foreign university, due to the differences in the structure of the curriculum and that of the degree system. It must be noted that there is no Bachelor level in the medical (and dental) education in Hungary and therefore such foreign degrees do not enjoy automatic acceptance in our country.

The general medical education in Hungary is a single, 6-year-long full time course that is divided into three modules: the basic medical sciences module (2 years), the preclinical module (1 year) and the clinical module (2 years). The sixth year of education is an internship year. After successfully completing the sixth year and passing all the exams, medical students in Hungary obtain the Doctor of Medicine (MD) degree.

Against this background, holders of Bachelor-level degrees are not entitled to study at Semmelweis University as postgraduate students. However, one may sit for the entrance examination for the first academic year and after being accepted and enrolled, one may ask for exemptions on the documented previous studies and examinations of his/her Bachelor-level course.

For further information on our English language undergraduate programmes please visit the website at http://semmelweis.hu/english/education/english-language-program/

Those who already hold a Doctor of Medicine (MD) degree and wish to continue their studies in order to obtain a Ph.D. degree, may send an application to the School of Doctoral Studies. For further information please visit http://phd.semmelweis.hu/en/

School of Ph.D. Studies
Phone: +36 1 266-7483 és +36 1 266-2343
Fax: +36 1 317-4888 (only fax!)
Office hours:
Monday: closed
Tuesday, Thursday, Friday: 8.30-12.00
Wednesday: 13.00-16.00

Those persons who hold a Doctor of Medicine degree obtained at a non-Hungarian university and wish to join a medical Residency Training at Semmelweis University have to go through a special application procedure. Please note that a good command of the Hungarian language is a precondition to join the Residency Training. Further information can be obtained from http://semmelweis.hu/english/education/continuing-education/

Directorate of Continuing Education
Phone: +36-1-210-1784, +36-1-459-1446
Address: 1091 Budapest, Üllői út 25. (City Corner Office Block)
Mailing address: 1085 Budapest Üllői út 26.
E-mail: szakestovabbkepzes@semmelweis-univ.hu

Postgraduate Courses at Faculty of Dentistry
Address: 1088 Budapest, Szentkirályi u. 47. VII/751.
Phone: 36 1 266 7006
E-mail: szkepz@dent.semmelweis-univ.hu
Office hours:
Thursday: 09.00-11.00

Postgraduate Courses at Faculty of Pharmaceutical Sciences
Address: 1092 Budapest, Hőgyes Endre u. 7-9. B
Phone: +3 61 266 8411
E-mail: szakkepzes@pharma.semmelweis-univ.hu
Office hours:
Monday, Tuesday, Thursday: 13.00 - 15.00
Wednesday: 10.00 - 13.30
Friday: 09.00 - 12.00
We are happy to announce, that from this year the famous Spring Training of IÖCS (Instruktör Öntvékeny Csoport – Group of Unprompted Instructors) is open for international students as well. It is one of the oldest student association of the university, and certainly the one with most members. We help organising most of the biggest events for Freshmen like the Summer Camp and the Ball, we also take a huge part in the Carnival and many others. It is a strictly non-profit organisation; our greatest reward is the time and fun we spend together.

What can you expect from the spring training?

- Meetings every other week, where you will learn about the association, our structure and programs, you can improve your social skills, get to know an immense amount of new people and form a strong group together.
- Teambuilding games, workshops.
- Spend a weekend together with every newcomer in the organisation at the end of the training, it’s a lot like a mini Freshmen’s Camp.
- Eventually you will be an Instructor, you can take part in all of our events, work together and welcome the freshmen at the university so we can help them finding their way in this big community.

Lóránt Csehi (csehi.lorant@iocs.hu)
FACULTY OF HEALTH SCIENCES
Brief History of the Faculty of Health Sciences

The University’s second largest Faculty is the Faculty of Health Sciences. The Faculty started its first academic year in 1975 with the aim of training highly accomplished, skilled, committed and open-minded health care professionals. This was the first higher-level school in Hungary that trained dietitians, health visitors, physiotherapists, public health and epidemiology inspectors, vocational teachers and paramedics. During the past years both the structure of education and the curriculum have undergone changes in the spirit of modernization. The Faculty continuously expands the range of its Hungarian and English language training programmes. To its prospective students, the Faculty offers study rooms, lecture halls, specialist laboratories, demonstration rooms and a public library that are all equipped with state-of-the-art technology, as well as a great variety of opportunities for an active student life, and a motivating environment. Following graduation, students of the Faculty can immediately be involved in various areas (ex.: health care, tourism, education, sociology) and they are able to have a positive impact on their close and broad environment.

Facts and Figures

The Faculty of Health Sciences celebrated its 40th anniversary in 2015. Since its foundation, more than 30,000 students graduated from the Faculty and today about 3,200 students are studying at this institution. The Faculty is very proud of its library containing more than 50,000 volumes.

During the last four decades the Faculty has developed extensive international relations, and as a result, we have connections with about 50 higher educational institutions throughout Europe, Asia and America. Many students and staff members have the opportunity to take part in short- and long-term exchanges in the framework of the Erasmus+ programme in our partner institutions.

The Faculty’s Asian relations have also been largely extended by establishing a fruitful relationship with Shanghai Jiao Tong University School of Medicine (SJTU) and with Heilongjiang University of Chinese Medicine (HLJUCM), that launched its off-campus BSc Traditional Chinese Medicine training at our Faculty. In the framework of the programme, students study in Hungary during the first 4 years, while they can get acquainted with the practical aspects of Chinese Medicine at the Chinese university in the last year in China.

We are also proud of having operated our bilingual (Italian and English) B.Sc. Physiotherapy training in Lugano, Switzerland since 2009. So far, over 250 students participate in our programme there. The extent of our international relationships is growing on a daily basis and we accept several groups of students from different countries on our 2-3 weeks advanced programmes mainly from the USA, China and Japan. In these programmes our students have the opportunity to participate in, and to build international professional connections.
Leadership, Dean’s Office

Address: H-1088 Budapest, Vas utca 17.

Phone: +(36-1)486-5910
Fax: +(36-1)486-5913
E-mail: student@se-etk.hu
Home Page: https://semmelweis.hu/etk

Dean
College Professor Dr. Gabriella Dörnyei PhD

Vice Deans
College Professor Dr. Klára Gadó PhD – Deputy General Dean
College Professor Dr. István Vingender PhD – Vice Dean Responsible for Academic Affairs
College Professor Dr. Zoltán Balogh PhD – Vice Dean Responsible for Clinical Relations

Director of the English Language Programmes

Professor Alán Alpár MD, PhD, Vice Rector Responsible for International Training Programmes

Dean’s Office

Ms. Marianna Kakuk – Head of Dean’s Office
Phone: +(36-1)486-5912 e-mail: kakuk.m@se-etk.hu

Mr. Benedek Horváth – Secretary
Phone: +(36-1)486-5911 e-mail: horvath.benedek@se-etk.hu

Ms. Nóra Oltvölgyi – Erasmus+ Coordinator
Phone: +(36-1)486-4893 e-mail: erasmus.etk@se-etk.hu

Ms. Éva Kámán – Coordinator of International Affairs
Phone: +(36-1)486-5917 e-mail: kaman.eva.maria@se-etk.hu

Foreign Students’ Secretariat

Fax: +(36-1)486-5913 room: 129
Ms. Mónika Trencsényi – Administrator
Phone: +(36-1)486-4970 e-mail: trencsenyi.monika@se-etk.hu
Fax: +(36-1)486-5913 room: 129
Ms. Orsolya Neszt – Administrator
Phone: +(36-1)486-5916 e-mail: neszt.orsolya@se-etk.hu
Fax: +(36-1)486-5913 room: 129
Information about the B.Sc. and M.Sc. programmes

Training system

Hungary, as a member of the European Union, belongs to the unified European Higher Education Area, which in principal follows the multi-cycle (bachelor, master and doctorate) training system. In this system it is much easier for students, lecturers and researchers to travel and build international relations, moreover, as citizens of the European Union they can continue their studies and plan their future as employees or entrepreneurs in any of the member states. These opportunities open up a wider field for non-European citizens studying in Hungary as well, since the possibilities of internal mobility inside the unified Europe are based on the training channels and close relationships between countries in the labour market and among institutions.
Programmes of the Faculty

I. Bachelor of Science (B.Sc.) Programmes

1. Nursing and Patient Care B.Sc. Programme

Specialized programmes: Physiotherapy (Hungarian, English), Nursing (Hungarian, English), Midwifery (Hungarian, English), Dietetics (Hungarian, English), Paramedics (Hungarian), Voice, speech and swallowing therapy (Hungarian)

Physiotherapy

Physiotherapists act as autonomous practitioners who are able to perform functional examinations, identify impairments, functional limitations, abilities and disabilities by using clinical decision-making processes. Physiotherapists treat patients with therapeutic exercises, manual techniques and other therapeutic modalities as the professionals’ chief task is to improve the functions of the musculoskeletal system. The therapists develop movement therapies and apply electrotherapeutic treatment, therapeutic ultrasound, and various manual and massage treatments for the sake of healing and rehabilitation or for the prevention of health damage. Graduates take part in healing locomotor (orthopaedic, rheumatologic, traumatologic), cardiovascular, obstetrical, gynaecological, neurological and psychiatric disorders. Prevention and health promotion belong to the specialists’ profession, too. Physiotherapists plan, explain, carry out, and adapt an examination-based treatment, draw conclusions from the examination as a whole and rank the main problems according to priority.

Qualification

Physiotherapist

Nursing

The occupation of nurses is a vocation that is pursued for the sake of health preservation, promotion and patient healing. Nurses observe patients in the hospital and continuously monitor their needs, take part in disease prevention and act as active contributors to the process of the patient’s recovery and rehabilitation. They help patients absorb and understand the information on their health status. Nurses holding a B.Sc. degree can organise, manage and supervise all their internal medical, surgical, obstetric-gynaecological, psychiatric, intensive nursing and primary care tasks in every area of health care. They are responsible for conducting the healing-nursing activities prescribed by the physician, and help the patient and the physician perform certain examinations. Graduates of the speciality are able to provide health care treatment for each age group from premature infants to elderly patients, explore the special needs of the patient and the person cared for, prepare nursing diagnoses and perform the tasks professionally on the basis of priorities, participate in planning, developing and implementing health care and social services.

Qualification

Nurse

Midwifery

Midwives fulfil caring and nursing tasks during pregnancies, in the postpartum period and on the occasion of gynaecological problems. Their responsibilities are to monitor pregnancies, labours and the postpartum progress while cooperating with other health care professionals in order to achieve the best possible outcome for each family. From the start of the parturition, midwives prepare and continuously support and encourage the woman during labour, monitor the process of delivery and the mother-infant connection, assess and register their observations. Midwives individually assist deliveries, take care of the pro-
tection of the perineum and of the treatment of the woman and the new-born baby during the post-delivery period. Graduate midwives look after, nurse and care for female patients and perform the required specialised treatment. State of the art skill laboratories help the preparation of the students for their future profession.

Qualification

Midwife

Dietetics

Dietitians deal with the questions of human nutrition and possess knowledge about healthy diet and diseases caused by unhealthy nutrition. Graduates are able to practise diet therapy independently, or perform dietetic and catering tasks as members of a therapist team. The specialist’s tasks include individual and group counselling, preventing nutrition related chronic and non-contagious diseases, organising diet plans according to the client’s sensitivity and disease type. They manage catering units: lead the catering service, organise catering work procedures, and establish appropriate and acceptable conditions for catering. Dietitians play an important role in teaching how to lead a preventive and healthy life as they can also develop and implement programmes for health promotion.

Qualification

Dietitian

Paramedics

Graduates are able to approach professionally and safely patients or victims in prehospital emergency care (oxylogy), able to perform triage, on an individual basis and during a catastrophic event. On the scene, paramedics familiarise themselves with the nature of the emergency, examine the patient, and make a primary diagnosis. They stabilise and care for the patient, decide on the possibilities of leaving the patient on the scene. Paramedics observe and monitor the patient during transport, communicate appropriately with the patient and his/her relatives, complete the necessary interventions, and provide psychological support for the suffering patient. Paramedics holding a BSc degree also complete standby on-call duties, organise teamwork in the system of emergency care within health institutions, teach First Aid, and participate in the further training of emergency nurses and ambulance car drivers. Paramedics work in close alliance with the control staff, ambulance assistants, physicians, and health care professionals of hospital emergency care.

Qualification

Ambulance Officer (Paramedic)

Voice, speech and swallowing therapy

Voice, speech and swallowing therapists perform diagnostic and therapeutic tasks in otolaryngology, phoniatries, neurology, paediatrics, geriatrics and rehabilitation units as well as in outpatient services and can treat certain functional disorders in private practice. Their responsibilities include the functional examination and therapy of phoniatries, articulation, speech-language abilities, nutrition intake (chewing, swallowing). Graduates are able to treat the disorders of two fundamental functions of human life: the disorders of communication and of food intake. They are able to contribute to the rehabilitation of persons suffering from these functional disorders, thus enabling them to manage their social responsibilities and to integrate into society. Graduates are able to participate in preventive, curative, nursing and rehabilitating professional work on any level of the health care and/or social care system.

Qualification

Voice, speech and swallowing therapist
2. Health Care and Disease Prevention B.Sc. Programme

Specialized programmes: Health Visitor (Hungarian, English), Public Health Care Inspector (Hungarian, English)

Health Visitor
The health visitor is present in the families’ life during the most important steps of life: during pregnancy, reception of the new-born baby, formation of family life and at the time of enrolment to nursery and elementary school. Graduates are able to provide counselling concerning family planning and parenthood, help and provide nursing care to the pregnant woman, and perform screening tests. After childbirth, the health visitor teaches the mother the ways of breastfeeding and her tasks related to the child. They monitor the health condition and development of neonates, provide community health care for children (aged 3-18), aid in the prevention of behavioural disorders and bad habits, solve the problems of teenagers and direct them to the appropriate professional. Health visitors give mental hygiene support to families and organise vaccinations. Health visitors take part in planning, organising and conducting health development and promotion programmes for individuals and communities. They perform their duties either independently or in cooperation with doctors and other medical experts.

Qualification
Health Visitor

Public Health Care Inspector
A public health inspector deals with epidemiological tasks that consist of the organisation of public health investigations and the analysis of data retrieved during the investigations. Graduates of the speciality are able to perform public health related municipal activities, conduct appropriate municipal supervision based on current regulations, initiate, plan and manage epidemiological tasks, analyse, interpret, use and critically apply the results of epidemiological examinations, process and realize local and central health policies in order to improve the health status of the population. Public health supervisors plan and realize nosocomial surveillance, monitor the health status of the population, plan, organize, realize and evaluate preventive programmes.

Qualification
Public Health Supervisor

3. Medical Diagnostic Analysis B.Sc. Programme

Specialized programmes: Optometry (Hungarian, English), Radiography (Hungarian)

Optometry
Optometrists are able to utilise their optic, optometric, measuring and clinical knowledge gained during the training programme, conduct the examination and correction of the eye individually and prescribe optical aids (eyeglasses, contact lenses) with the aim of attaining the optimal visual acuity in patients. The professionals are able to estimate the refractive medium, refractive ability, errors of refraction, the way eye muscles function, and the ability of heterophoria and convergence. Professionals examine binocular vision, the chamber of the eye, crystalline lens, vitreous humour and the eye fundus with the help of a slit lamp, and they estimate ocular tension. Optometrists utilize their clinical and nursing knowledge during their daily activities, actively participate in improving the culture of vision of individuals, communities and the population. Through examinations, the optometrist recognises and evaluates the disorders of the eye and so contributes to the immediate receipt of specialised care.
Qualification
Medical Diagnostic Analyst (Optometrist)

Radiography
Medical diagnostic analysts individually operate modern diagnostic imaging appliances (e.g. X-ray, ultrasound, computer tomography /CT/) while keeping the related regulations and procedures. They process, evaluate and archive diagnostic imaging information, establish a daily contact with patients and prepare them for diagnostic imaging therapies. The specialists observe patients during examinations, perceive pathological situations, participate in therapeutic examinations, recognize health damaging effects as results of radiological interventions, and other technological errors, and they prevent them.

Qualification
Medical Diagnostic Analyst (Radiographer)

4. Health Care Management B.Sc. Programme

Specialized programme: Health Tourism Management (Hungarian)

Health Tourism Management
Graduates of the training take part in organising and managing health promotion activities, prepare projects that aim at developing health tourism and strengthening international cooperation, and they participate in the implementation of tourism development programmes of the European Union. The health care manager is a versatile professional who is proficient both in health care processes and in the field of tourism. Their acquired knowledge comprises information on health, tourism and business, therefore they are not only able to see through, organise and coordinate the operation of health care institutions but with appropriate business knowledge they are able to market and manage them, too. The speciality provides the necessary knowledge to create health tourism, health preservation, curative and rehabilitation programmes.

Qualification
Health Care Manager (Health Tourism Management)

Traditional Chinese Medicine B.Sc. Programme – in cooperation with Heilongjiang University of Chinese Medicine

Heilongjiang University of Chinese Medicine organizes its Traditional Chinese Medicine B.Sc. training programme in Hungary at Semmelweis University Faculty of Health Sciences.

The programme based on traditional Chinese medicine is a unique training in Hungary as it is a 5-year bachelor training programme. In this framework, students study in Hungary during the first 4 years, while they can get acquainted with the practical aspects of Chinese Medicine at the Chinese university in the last year. Students who successfully complete the programme receive the B.Sc. degree of the university of Harbin.

Qualification
Bachelor of Chinese Medicine – Accupuncture, Moxibustion and Tuina
II. Master of Science (M.Sc.) Programmes

Physiotherapy M.Sc. Programme

Master’s level physiotherapists develop therapeutic procedures and protocols based on their extensive national and international knowledge and skills, recognise and analyse physical, anatomical, physiological and pathological factors affecting physical ability and capacity. They participate in solving scientific problems in physiotherapy, and finding new skills and knowledge in their expertise. The specialists perform scientific evaluation of the effectiveness of physiotherapeutic methods, organise and realise clinical research in physiotherapy, publish new scientific results and act as leaders in hospital units of physiotherapy, apply fundamental regulations and quality control principles in the management of health institutions and private enterprises. The promotion of health education on local, community, national and international levels also belongs to the tasks of a physiotherapist.

Qualification

Physiotherapist

Languages

Hungarian, English

Nursing M.Sc. Programme

Master’s level nurses characterise the health status of the population, formulate problems, priorities and aims in public health. They conduct research and analyse technical literature, interpret the results of modern statistical methods, perform tasks of organisation and management related to the nursing process. They are able to perform human resource management tasks related to nursing. Planning budget and writing tenders, planning, realising and evaluating programmes, and establishing cooperation between institutions and individuals belong to the tasks of nurses, too. The health care professionals are acquainted with the role and the possibilities of the improvement of health sciences in the life of society, and they are able to characterise the health status of the population. Master’s level nurses formulate problems, priorities and aims in public health, they take part in solving the scientific problems of nursing, in finding new and constructing ideas about the profession and in the promotion of their practical usage.

Specialisations within the Nursing M.Sc. programme

Emergency Nursing (Hungarian)
Geriatric Nursing (Hungarian)
Community Nursing (Hungarian, English)

Qualification

Nurse

Languages

Hungarian, English
Nutritional Sciences M.Sc. Programme (Joint training of Semmelweis University and Hungarian University of Agriculture and Life Sciences)

Nutritionists develop quality food, functional food, food supplements, special nutrients, eco products and organic food. They develop food industrial innovations, determine food qualities considering hygienic aspects, take part in professional and counselling tasks in the field of nutrition sciences and catering. Master-level dietitians determine the composition of food and diets for healthy people and those with different diseases, perform innovative research and development work preferred by the support system of the European Union. Master's level dietitians are able to understand and solve professional problems assertively, come up with reform ideas, and carry out innovative activities. The nutrition specialist plans and compiles healthy diets in the field of health industry, wellness, medical tourism and hotel industry. Nutritionists promote the achievements of nutrition science in order to improve public health figures, work as highly qualified nutritionists, researchers, advisors and health educators.

Qualification
Nutritionist

Language
Hungarian

Teacher of Health Sciences and Health Care M.Sc. Programme

Master’s level health care teachers are capable of educating people about healthy lifestyle using their knowledge gained in the fields of health sciences and pedagogy. For the sake of improving the quality of life of people, professionals plan, develop and adopt prevention programmes in the specialist training, suggest problem solving and up-to-date life models in accordance with the altered health statuses. They give advice on career orientation, career choices and career planning. While applying health education methods, the teachers are able to recognize those negative effects that arise from harmful environment or poor social situation and lifestyle. In specialised health related interpersonal relationships, their activity is characterised by high communication standards and didactic preparedness. Master’s level health care teachers possess the ability to educate, and to demonstrate good example while teaching, moreover, they are able to recognize the relationship and development opportunities between the training institutions, the economy, the labour market and the social environment.

Qualification
Teacher of Health Sciences and Health Care

Language
Hungarian
III. Postgraduate specialist training courses

Addictology Counselling (Hungarian)
Special Translation and Interpretation in Health Sciences (Hungarian)
English Language Medical Communicator (Hungarian)
Podiatrist (Hungarian)
DEPARTMENTS

Department of Nursing

Address
H-1088 Budapest, Vas u. 17., room 152
Phone: +(36-1)486-5929
E-mail: apolastan@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
Professor Zoltán Balogh RN, PT, M.Sc., PhD

Contact person
Senior lecturer Dr. Veronika Rajki PhD
Phone: +(36-1)486-5836
e-mail: rajki.veronika@se-etk.hu

Background
The Department was founded in 1975 as a part of the College of Health Care of the Postgraduate Medical School (now Semmelweis University Faculty of Health Sciences). It was the first college in Hungary to award degree to health care teachers in 1977. Academic level training of nurses began with part-time courses in 1989/90; since 1990/91 a full-time course has been offered as well. The College of Health Care was also the first to introduce a four-year baccalaureate certificate programme in nursing. The Masters-level programme in nursing was introduced in Academic Year 2002/2003.

Education
B.Sc. in Nursing is an eight-semester programme, either a full-time or part-time, which provides students a general knowledge of science related to nursing, health and social sciences. The Nursing B.Sc. programme is based on the Directive 2005/36/EC of the European Parliament and the one of the European Council of 7 September 2005 on recognition of professional qualifications. Our programme has been running in English since the 2011/2012 academic year.

M.Sc. in Nursing is a three-semester part-time programme based on a former bachelor degree in nursing. During their studies, students learn the planning of nursing in all areas of health care, the organisation of the nursing work, the teaching of the basics of nursing and health care, the organisation of research projects in nursing, and the supervision of quality assurance in nursing care.

Research
The previous members of the Department’s staff supported projects such as the development of a nursing curriculum with the introduction of distance education methodology into nursing training programmes (in collaboration with Columbia University, School of Nursing (USA) in 1995-98 and a Hungarian-Canadian nursing programme for a methodology and model of prior learning assessment and recognition (PLAR) of nurse-candidates (Douglas College, Canada) in 1999-2000.

In co-operation with the Chamber of Hungarian Health Care Professionals, the present members of the Department performed investigative research into the Hungarian situation with regard to needle-stick injuries in 2006, 2008, 2013, 2018 among health care professionals. The objectives of the study were twofold: to reveal the trend in the extent to which health workers are affected, and to draw the attention of economic and education decision-makers to the importance and prevalence of the issue.
The other research programme aims to explore from an international perspective the meaning of care from the point of view of nurses and patients and to find common and shared definitions between these partners of caring. In addition, it aims to identify the relationship between nurse caring and patient satisfaction and to clarify the opinion of nurses and patients on individualized nurse caring. In this study (2008-2014), participants from 6 EU countries: Cyprus, Czech Republic, Finland, Greece, Hungary and Italy united their efforts in order to achieve the aims of the study. Europe faces severe population ageing in the near future. A new positive vision of ageing and promotion of possibilities in older age is needed. The challenge is how to transfer this vision into practice. Higher Education Institutes and associations agreed to launch a project. Funding was received from Lifelong Learning Program-Erasmus Academic Networks for a project for the years 2013-2016.

Department of Clinical Studies in Obstetrics and Gynaecology

Address
H-1088 Budapest, Vas u. 17., room 144

Phone: +36-1)486-4890
Fax: +36-1)486-4891
E-mail: szuleszeti.tanszek@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
Professor János Rigó MD, PhD, DSc

Contact person
Senior lecturer Dr. Eszter Borján PhD
Phone: +(36-1)486-4893
e-mail: borjan.e@se-etk.hu

Background
The Department of Clinical Studies in Obstetrics and Gynaecology was founded in 2014. Earlier, the training of midwives was performed by the Division of Midwifery of the Department of Nursing. Academic level training of nurses began through part-time courses in 1989/90; since 1990/91 a full-time training programme is offered as well. Additional programmes have been introduced in recent years, including the training of midwives (2002) and a masters-level programme in nursing (2003). The English language midwifery training programme was introduced in the 2011/12 academic year.

Education
The B.Sc. midwifery training programme can be completed on either a full-time or part time track. Those who receive a midwifery degree upon successful completion of this programme are able to carry out communicational/informational/documentation activities, provide a safe and hygienic environment, complete general midwifery tasks, and provide first aid, complete tasks related to antenatal care, conduct deliveries, care for female patients, and care for the new-born and the postpartum mother. The Midwifery B.Sc. programme is based on the Directive 2005/36/EC of the European Parliament and of the European Council of 7 September 2005 on the recognition of professional qualifications. Duration of the training: 8 semesters, number of credits: 240 ECTS.
Research

Members of the Department’s staff support projects and conduct research in different fields of health care and health care education, e.g.: health behaviour of practising midwives, simulation education and curriculum development, and the impact of maternal depression on pregnancies and early attachment.

Department of Physiotherapy

Address
H-1088 Budapest, Vas u. 17., room 305

Phone: +(36-1)486-5980
Fax.: +(36-1)486-5981
E-mail.: fizioterapia@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
Professor Dr. Mónika Horváth PhD

Contact person
Master teacher Ms. Zsuzsanna Gerencsér
Phone: +(36-1)486-5984
e-mail: gerencserzs@se-etk.hu

Background

Underwater therapy equipment was used in the Császár baths as early as 1891. The first physiotherapy training in Hungary, which was more like an artistic movement therapy, was started by Alice Madzsar in 1912. The need for physiotherapy arose during the time of the Poliomyelitis epidemic, resulting in the foundation of a proper physiotherapy school in Budapest in 1955. At this time, the training was two years long, the duration of studies increased to four years only in 2000.

Education

The Department’s aim is to train physiotherapists who can be valuable members of a health care team of prevention, care and rehabilitation. The Physiotherapy undergraduate programme consists of 240 credits, which corresponds to the requirements of a Bachelor’s degree. The Department also offers the Master’s Programme for another 90 credits in 3 semesters. Each term consists of courses corresponding to 30 credits. Courses are divided into theoretical and practical units, each unit covering a particular field of physiotherapy. At the B.Sc. programme the supervised clinical practice takes place from the 1th to the 7th semester (two to three weeks), and in the 8th semester (12 weeks) at a variety of medical centres. The physiotherapy programme comprises an independent graduate project corresponding to 1152 clinical practice hours, which is equal with 48 credits. The Master’s programme’s last semester can be divided into two halves. At the beginning the students have theoretical and practical courses and in the last 8 weeks they attend specialised clinical practice and scientific research.
Successful completion of the programme requires that students:
- acquired sufficient knowledge and skills to be able to work independently as physiotherapists;
- acquired knowledge and skills of physiotherapeutic methods of assessment and treatment, as well as knowledge of the connection between science and long-established experience;
- developed their self-recognition and capacity for empathy, thereby paying attention to ethical considerations;
- and familiarised themselves with conditions in society which affect people’s health, and gained an ability to initiate and take part in the health-promoting and preventive efforts.

Biomechanical Lab

The biomechanical lab is equipped with the latest technology. With these modern pieces of equipment we can perform dynamic and kinematic measurements to demonstrate the discrepancies of musculoskeletal, neurological and other problems, moreover, we can compare the physiological and pathological movement patterns. The use of these devices helps us to test the validity of traditional physiotherapy examination methods, as well as measuring the effectiveness of the therapies by objective data. In addition, our laboratory with the new visual stimulation biofeedback equipment can be used not only to analyse the walking but to correct and develop it. So now it is suitable for therapeutic interventions. Both the B.Sc. and M.Sc. programmes’ curriculum include subjects that instruct the students how to use these devices for their thesis, dissertation research and for projects in the Students’ Scientific Association.

Research

Some areas of research interests at the Department:
- the biomechanical characteristics of standing stability and balance maintenance, testing by biomechanical equipment and therapeutic possibilities with physiotherapy;
- examination of posture with ultrasound-based 3D movement analyser equipment, correction of posture by physiotherapy;
- treatment of incontinence with complex physiotherapy methods;
- effects of positive end-expiratory pressure in cystic fibrosis;
- conservative therapeutic options of the knee-instabilities;
- chest physiotherapy in cystic fibrosis with the specific features of childhood;
- clinical features of paraneoplastic syndrome in the musculoskeletal system;
- the effect of exercise in cardiac rehabilitation;
- the effect of exercise in musculoskeletal rehabilitation;
- gait analysis according to the ultrasound-based 3D method.
Division of Physical Education

Contact person:
Head: Mr. Gábor Soós
Phone: +(36-1)486-5850
e-mail: testneveles@se-etk.hu

The Division of Physical Education teaches the 4-semesters long criteria subject, the Physical Education (PE) for each full-time B.Sc. student. PE classes enable students to several opportunities for sport (swimming, volleyball, handball, basketball, football, floorball, conditioning, aerobic) in different locations (gym, swimming pool).

Apart from the PE course, therapeutic swimming that is highly demanded by our students is also launched as a selective subject in each semester.

Colleagues of the Division participate in the operation of the Student Sport Association (DSE). Primarily, the Association provides student participation in the university’s system of sport competitions.

Department of Dietetics and Nutrition Sciences

Address
H-1088 Budapest, Vas u. 17., room 39
Mailing address: H-1085 Budapest, Úllói út 26.
Phone: +(36-1)486-4820
Fax: +(36-1)486-4830
E-mail: dietetika@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
College Professor Dr. Márta Veresné Bálint PhD

Contact person
College Associate professor Dr. Éva Csajbókné Csobod
Phone: +(36-1)486-4823
e-mail: csajbokne@se-etk.hu

Background

Education of dietetics in Hungary dates back to the 1920s and was initiated by Aladár Soós. The Department of Dietetics was founded in 1975 as part of the newly established College of Health Care (now Semmelweis University Faculty of Health Sciences). The main task of the Department is the undergraduate and graduate training of dieticians while providing courses on nutritional sciences and dietotherapy for other health professionals educated at the Faculty. The Department of Dietetics and Nutrition Sciences is responsible also for the training of Masters of nutrition and food sciences. The programme is carried out in collaboration with Magyar Agrár-és Élettudományi Egyetem.

Education

Over the last 40 years, as many as 2000 dietitians completed their studies here. The undergraduate training course consists of eight semesters, with a total number of 240 ECTS, of which 40% is devoted to theoretical training and 60% to practice. During the education students are taught about each scope of dietetic practice such as clinical, administrative and public health/community dietitians. Graduate students can be employed in different areas of public health nutrition and nutritional research fields. Postgraduate training programmes are also available for dietitians.
In the 2009/2010 academic year a new training programme, the Master of Nutrition and Food Sciences was launched. Students are taught by experienced teachers who are recognized as experts in the field of nutrition and food technology as well as in research methodology. The duration of the training is 4 semesters with a total number of 120 ECTS. Graduate students can be employed in different areas of public health nutrition and nutritional research fields. Postgraduate training programmes are also available for dieticians. Graduating as Masters of nutrition and food sciences allows students to continue their studies at PhD level at Semmelweis University Doctoral School in Health Sciences.

The Department of Dietetics and Nutrition Sciences has collaborative partnership with the European Federation of the Associations of Dietitians (EFAD).

Research

The Department has been involved in several projects sponsored by, for example, the EU: the “Ageing Nutrition” project (2004-06, organised by the Department), the “PORGROW” project (2004-06), furthermore, the Department participated as partner institution in the thematic network called DIETS1, „Dietitians Improving the Education and Training Standards (2006-09)” and DIETS2, ‘Dietitians ensuring education, teaching and professional quality’ (funded by the EACEA 2010-13). The Department is involved in the preparation of the Hungarian version of EPLODE Project collaborating with the Association of Hungarian Dieticians (2014).

Members of the Department’s staff are involved in the PhD education as tutor teachers.

Research area:

- Food production by fermentation for patients with food allergy and intolerance
- Nutrition Science Analysis and Diethoterapic Interventions
- Innovation in public catering
- Disease Specific Nutrition Therapy and Communication Method
- Examination of the nutrition and nutritional status of the elderly

Fields of scientific interest are:

- Investigation of biologically active component of vegetable and fruit during cultivation, post harvesting, food technology and food preparation
- Determination of mycotoxin contamination in foodstuffs
- Monitoring of allergen contamination of equipment, tools and food preparation process
- Role of food labelling in order to improve informed and safe food choice of people with special dietetic needs
- Monitoring of different groups’ nutritional status and nutrient intake for the purpose of health preservation and to identify risk factors of diet-related diseases
- Assessment and analysis of the fluid consumption habits, attitudes and product choice preferences and education of theme for the purpose of health preservation
- Teaching correct dietary habits in children’s catering, development of eating behaviours
- Members of the Department’s staff are actively involved in the boards of various professional organizations in the field of nutrition, such as Hungarian Society of Nutrition, Association of Hungarian Dieticians, Hungarian Food Allergy and Food Intolerance Databank, College of Health Dietetics and Human Nutrition Council, National Association of Catering Managers.
- Moreover, they hold positions in the editorial boards of several professional periodicals.
Department of Oxyology and Emergency Care

Address
H-1088 Budapest, Vas u. 17., room 148

Phone: +36-1-486-5840,
Fax: +36-1-486-5841
E-mail: oxiologia@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department:
Associate Professor Dr. Andrea Székely MD, PhD

Contact person:
College Associate Professor Dr. István Hornyák
Phone: +36-1-486-5842
e-mail: hornyaki@se-etk.hu

Background
Oxyology – the science of rapid intervention as described by the famous Hungarian physician Aurel Gabor - is a specialisation that has been recognized since 1975. The main task of the Department of Oxyology and Emergency Care is the training of paramedics at the highest possible level. It is our mission to qualify health care providers not only for the National Ambulance Services but also for the national emergency departments. The department is also responsible for the first aid teaching at the Faculty of Medicine in English and German language, and for first aid classes held at the Faculty of Dentistry. Besides theoretical and practical B.Sc. trainings, we offer postgraduate specialist trainings for qualified nurses and paramedics, and regular accredited courses in various areas of acute care for physicians and nurses. We have been participating in the training of the Doctoral School of the Faculty with an independent research subject since 2009, while regularly offering advanced education for the students of Semmelweis University’s School of PhD Studies.

The Department manages its tasks with four full-time members and a number of highly qualified consulting teachers. Practical teaching is organized with the co-operation of the National Ambulance Service, hospital practices are completed in accredited teaching hospitals.

Education
- Regularly provides vocational and postgraduate trainings.
- Is closely connected with the new University Emergency Centre where practical teaching takes place.
- Has an established relationship with the University of Massachusetts, Department of Emergency Medicine in the area of research and development.
- Members of the Department participate in numerous professional and societal organizations of acute care and hold leading positions in the Society of Emergency Medicine and Oxyology.
- The leader of the Department is an active Examiner in Emergency Medicine for the European Board of Emergency Medicine.
- Students can join the PhD School offering participation and thesis work on “Point-of-care technologies in emergency medical care”.
- An M.Sc. training programme targeting the intrahospital emergency care has been started resulting in the qualification of advanced practice nurses (APN), those capable health care professionals who work in the emergency departments under the supervision of the lead physician.
We have launched a monthly meeting named OxyNox for trainee and graduate paramedics. This event is held in the Vas utca building where a well-known representative of prehospital care is invited as guest speaker followed by case discussions from everyday practice.

The Paramedic Day is organised each May, where students demonstrate their practical skills during a competition.

Research

PhD research topic:
- Point of Care technologies in emergency medical care.

Students' Scientific Association research topics:
- Acute Coronary Syndrome;
- First aid training;
- Position and activities of paramedics in the Emergency Department;
- Care of the multiple injured patients;
- Shock management;
- Mental aspects of rescue/emergency work;
- Complex cardiopulmonary resuscitation;
- Communication in emergency situations;
- Role players and standardized patients in HiFi simulation.

Department of Family Care Methodology

Address
H-1088 Budapest, Vas u. 17., room 245

Phone: +(36-1)486-4840
Fax: +(36-1)486-4845
Email: csaladgondozas@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department:
College Associate Professor Dr. Lajos Attila Réthly MD, PhD, med. habil.

Contact person:
College Associate Professor Dr. Lajos Attila Réthly MD, PhD, med. habil.

Phone: +(36-1)486-4841
e-mail: rethy.lajos@se-etk.hu
Background

Academic level training of health visitors (similar to district or family nurse) started in 1975 in Hungary.

Education

The aim of this eight-semester programme is to train health visitors who can give assistance to children and pregnant women in social care and in the prevention of illnesses. Practical training takes place under clinical and real-life circumstances (e.g. in hospitals and district consulting rooms).

The basic subjects (e.g. anatomy, physiology, pathology, biology) are followed by special studies in paediatrics, nursing, obstetrics, sanitation and nursing methodology. Pedagogy, psychology, health education, social sciences and information sciences are integrated into the curriculum. After submitting a thesis, students are tested in theoretical, practical and professional skills before attaining their diploma. Upon completion of the programme health visitors are entitled to work in municipal primary health care facilities, or in schools and in the area of primary preventive medical services. They can perform their duties either independently or in cooperation with doctors and other medical experts.

Research

- Preventive/visiting nurse system in Europe
- The characteristics of childhood onset depression according to depressive symptoms, co-morbidities and quality of life
- Influence of smoking during pregnancy on preterm-birth and low birth-weight
- Connection between childhood obesity, IDDM and physical activity

Department of Public Health Sciences

Address

H-1088 Budapest, Vas u. 17., room 1268
Phone: +(36-1)486-4870
E-mail: kozeg@se-etu.hu
Website: https://semmelweis.hu/etk

Head of Department

College Associate Professor Dr. Tamás Pándics

Contact person

College Associate Professor Dr. Tamás Pándics
Phone: +(36-1)486-4862
e-mail: pandics.tamas@se-etu.hu

Background

The overall duty of the Department of Public Health Sciences, the legal successor of the Department of Epidemiology, is to provide appropriate training for health practitioners in the field of public health and carry out different research projects. Our aim is to equip students with the knowledge and skills to make valuable contribution to public health.
The Department offers undergraduate degree programmes at B.Sc. level and a master programme will be introduced in the near future.

Courses of disease prevention and health promotion are available in English for full time students of physiotherapy. The Department for Epidemiology offers a wide range of research topics with professional assistance for students, and they also contribute to the improvement of our doctoral degree programme.

A well-equipped laboratory belongs to the Department for laboratory practices of microbiology and infection control investigations.

Education

Within epidemiology, students are taught both general and specific aspects of pest control and disinfection techniques, including insect and rodent control. Following the fourth and sixth semesters, students take part in four-week practice sessions, and during the eighth semester they participate in a thirteen-week practicum.

Research

Infection Control Centre

In order to prevent nosocomial and healthcare associated infections, the Department forms an infection control centre in collaboration with external public health partners.

The key elements of active laboratory surveillance system:

- molecular biology methods for comparison/characterization of strains isolated from different sources;
- monitoring infections;
- computer data analysis of bacterial isolates including antimicrobial-resistance patterns.

Burial customs and funeral practices

- Treatment of dead persons according to the law and the process of mourning
- Dead people – from a public health and cultural historical view
- Characteristics and forms of burial from an intercultural perspective

Research Projects for the Students’ Scientific Association

- Epidemiology and prevention of infectious diseases
- Epidemiology of diseases of civilization
- Profile of secondary prevention in Hungary and in the EU
- Appropriate food hygiene practice, infestation of food, food poisoning
- Probiotics and their effects on the human body
- The impact of climate change on food safety
- Research on natural antimicrobial proteins
Department of Clinical Studies

Address
H-1088 Budapest, Vas u. 17., room F/9
Mailing address: H-1085 Budapest, Úllői út 26.
Phone: +36-1-486-5970
Fax: +(36-1)486-4860
E-mail: gadok@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
College Professor Dr. Klára Gadó PhD, MD

Contact person
Professor Dr. Klára Gadó PhD, MD
Phone: +36-1-486-5970
e-mail: gadok@se-etk.hu

Background
The tasks of the Department of Clinical Studies are: instruction of clinical knowledge in the frame of the bachelor and master degree programmes of the Faculty of Health Sciences, and participation in health sciences programmes of Semmelweis University’s School of PhD Studies as consultant or reviewer.

Education
- The Department’s educational activities include:
 - transmission of evidence-based, modern, medical-clinical knowledge, and familiarization with the etiology and pathomechanism of different diseases;
 - enabling students to recognize the signs of diseases, evaluate symptoms, and complete adequate patient care based on competences;
 - providing basic pharmacological knowledge, therapeutic possibilities and effects, side effects, therapeutic responses;
 - helping students to gain insights into the clinical significance of most important laboratory, radiological and endoscopic examinations, into the methods of clinical problem-solving, and into the pharmacological basis of medical therapy;
 - preparation for the assistance in advanced diagnostic and therapeutic methods, the understanding of current medical science, and the acquirement of the competences required for health practitioners;
 - the development of the solid approach of prevention-remedy-nursing-care-rehabilitation.

- The Department actively participates:
 - in the preparation of student-focused didactical strategies;
 - in the development of new subjects and training programmes;
 - in the preparation of textbooks and lecture books;
 - and in special didactical and applied clinical researches.
Research
- Hemostasis changes in pregnancies
- Diagnosis and therapy of thrombophilias
- The methodology of teaching clinical knowledge
- Fitting the level of higher education to the European Qualification Framework
- Development of validation processes in higher education
- Family planning, family care
- Social and cultural background of health care employees
- The support of parents expecting their first child; application of the APP model (PhD research)
- Family planning and maternity plans of Health Visitor students
- Anaesthesiology and Intensive therapy – patient security/safety, monitoring
- Clinical nutrition and its management with pharmaceutical aspects
- Risk screening, nutritional assessment, oral nutrition support, enteral and parenteral nutrition,
- Parenteral nutrition compatibility and incompatibility
- Methods of examination of TPN emulsions, physicochemical stability of TPN
- Role of nutrition team

Department of Clinical Ophthalmology

Address
H- 1088 Budapest, Vas u. 17., room 20
Mailing address: H-1085 Budapest, Úllói út 26.
Phone: +(36-1)486-5855
Fax: +(36-1)486-5858
E-mail: szemeszeti.tanszek@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
Associate Professor Dr. Illés Kovács MD, Ph.D

Contact persons
Master teachers:
Ms. Kata Réz
Phone: 0+(36-1)486-5858
e-mail: kata_rez@se-etk.hu

Dr. Beáta Tapasztó MD
e-mail: tapaszto.beata@se-etk.hu

Background
The education of optometry started in 1992 in Hungary at the College of Health Care (now Semmelweis University Faculty of Health Sciences). The Department of Clinical Ophthalmology was established in 2008. Prior to this, the education of optometry belonged to the tasks of the Department of Clinical Studies. The Department is responsible for training optometrists. This includes developing the curriculum of the optometry training, organising clinical and optical trainings for students, and keeping connection with educators and institutions who participate in the practical training.
Education

The training is the one and only optometry training in Hungary and runs as a part time training programme. The undergraduate training programme consists of eight semesters and 240 ECTS with a total number of 1062 of contact hours and 6138 individual hours, of which 40% is devoted to theoretical training and 60% to practice.

Graduate training programmes are also available after completion of the basic training.

Research

The Department conducts scientific research activities in two ways:

1. **In cooperation with the Department of Ophthalmology at the University in the following fields:**
 - Femtolaser in the surgery of cataracts;
 - Development of a new intraocular lens in surgery of cataracts.

2. **The Department’s individual scientific work is carried out in the following fields:**
 - Correction of presbyopia with contact lens;
 - Screening of the visual acuity and ametropia of children of age 7 to 14;
 - Contact lens related dry eye;
 - Contact lens wearing in childhood;
 - Computer Vision Syndrome and its connection with ametropies.

Department of Imaging and Medical Instrumentation

Address
H-1088 Budapest, Vas u. 17., room 348
Phone: +(36-1)486-5960
Fax: +(36-1)486-5961
E-mail: kepalkoto@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
Associate Professor Dr. Attila Doros MD, PhD

Contact person
Associate Professor Dr. Attila Doros MD, PhD
Phone: 36-(1)486-4916
e-mail: doros.attila@se-etk.hu

Background

The Department of Imaging and Medical Instrumentation conducts teaching, scientific and supplemental activities. The Department is responsible for the education of imaging diagnostic analyst specialists corresponding to the task of training highly qualified radiographers who are experienced in every sub-field of radiology.
Education

In the four-year part-time B.Sc. education, the first three basic semesters are followed by specialist courses (Conventional radiology, US, MRI, Nuclear Medicine, Interventional therapy, Radiation therapy). Students attaining the degree are able to use imaging tools to plan and perform examinations on their own, and to process and apply the obtained information.

Teaching is performed by leading radiologists and radiographers, mainly of Semmelweis University and of large teaching hospitals. Practical training takes place in these hospitals as well.

The Medical Engineering group teaches “Basics of Biophysics and Medical Technology” and “Info-Communication” to dietitian, nurse, health visitor, physiotherapist, paramedics and public health supervisor students.

The Department continuously produces innovative books, image collections and other teaching materials necessary for the education. For this purpose, the Department works in collaboration with the other 3 similar departments in the country to harmonize the teaching materials and the requirements.

An emphasized task of the Department is the graduate teaching of radiographers including the organisation of courses.

Research

The professors of the Department have leading positions in associations of radiology, radiography and medical technology inside and outside Hungary, and they are in the editorial boards of various scientific papers. The focus of the researchers is on clinical decision support, medical informatics, self-monitoring, on developing an immersive learning environment, or a virtual learning environment. Significant focus is put on emergency care systems, on the reduction of supply times and on successful cooperation with emergency departments.

Moreover, the Department joined the European Association of Radiographers.

Department of Applied Psychology

Address

H-1088 Budapest, Vas u. 17., room 343/A
Phone: +(36-1)486-4919
Fax: +(36-1)486-4912
E-mail: pszichologia@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department

Professor Dr, Ildikó Baji PhD

Contact person

College Professor Dr. Ildikó Baji PhD
Phone: +(36-1)486-4920
e-mail: bajilidiko@se-etk.hu
Education

The main task of the Department is to offer basic psychological knowledge for all departments of the Faculty of Health Sciences in four modules which are as follows:

- **Basics of Psychology** – theoretical course including general psychology, developmental psychology, theories of personality.
- **Social Psychology** – theoretical course including group dynamics, social phenomena, attitudes, prejudices, attributes, stereotypes.
- **Communication and Personal-Development** – We use structured exercises to develop skills in the following fields: enhance group cohesion, basic communication skills, assertive communication, emphatic communication, stress managing methods, conflict management, and profession-specific communication strategies.
- **Health Psychology** – Health psychology is the field within psychology devoted to understanding psychological influences on how people stay healthy, why they become ill, and how they respond when they do get ill. It focuses on health promotion and maintenance; prevention and treatment of illness; the ethology and correlates of health, illness, and dysfunctions; and improvement of the health care system and the formulation of health policy. Health psychologists’ fields of work: behavior risk factors/“pathogens” (possibilities of intervention for correction of risk behavior) behavior health preservation / „immunogenic“. Conducting research into what are the views, opinions, attributes of health and illness among everyday people. Communication, cooperation, decision-making (health professional – patient interaction). The environment of treatment (how the work environment influences the health worker). Psychology of patients with chronic diseases (disabled, dying).

Division of Applied Pedagogy

Another task of the Department is promoting the basic knowledge of theoretical and practical health education and prevention for students in B.Sc. and M.Sc. trainings; emphasising the pedagogical aspects of patient-care; improving the indispensable skills in counselling and education in paramedical professions; teaching methods of health promotion, and the possibilities of development of health culture, lifestyle and health behaviour.

Research

Since the Department’s scope is necessarily broad, staff members have been participating in research activities of various psychological fields:

- Nutritional and sport habits of students;
- Stress among the Professional helpers;
- The exploration of the learning attitude among 19-26 years old students;
- The relationship between burn out, emotion regulation and empathy among health professionals;
- Assessment of ethical and legal issues regarding professional tasks of doctors and nurses working in perinatal centres from the point of view of dilemmas related to the beginning and the end of life.
Department of Addictology

Address
H-1088 Budapest, Vas u. 17., room 325
Phone: +36-1-486-4919
Fax: +36-1-486-4912
E-mail: addiktologia@se-etk.hu
Web: https://semmelweis.hu/etk

Head of Department
Professor Dr. József Rácz MD, PhD, DSc

Contact person
Senior lecturer Dr. Máté Kapitány-Fővény PhD
Phone: +36-1-486-5990
e-mail: kapitany.foveny@se-etk.hu

Background
The Department of Addictology coordinates the educational and research activities of the Faculty related to addictive disorders. Some of our fields are the symptomatology, therapy, and prevention of addictive problems. Addiction medicine is present at every specialization of our Faculty; secondary topics like intravenous drug-use, models of preventive medicine are especially practical and optional courses. Our students are involved in many of our research programmes in collaboration with other institutions in Hungary or abroad. The new fields of addiction medicine like gambling and Internet-addiction are also present in our teaching and research activities.

We have close contacts with therapeutic and rehabilitation institutions in Hungary, preventive and outpatient centers (Blue Point Center).

Education
Our Department coordinates the „Addiction Counsellor” specialization, which is the first and only opportunity to study addiction counselling in our country. The most important specialists of this field are our invited teachers. Our counsellors are also taught economics and management, which are necessary for their everyday work as coordinators of therapeutic and financial processes. They are also able to organize preventive courses on alcohol and illegal drug abuse fields.

Research
Our research interests include the application and adaptation of counselling methods in the health and social care of alcohol and drug abusers, the analytic epidemiological study of deviant behaviour, biological and ethic sides of human behaviour, the social background of medical organizations, and researches about the newest therapeutical approaches for intravenous drug users and dependent patients as well as the qualitative and quantitative approaches in the study of hidden substance users (epidemiological, qualitative and quantitative studies on the users of new psychoactive substances).
Department of Morphology and Physiology

Address
H-1088 Budapest, Vas u. 17., room 345
Mailing address: H-1085 Budapest, Úllői út 26.
Phone: +(36-1)486-4940
Fax: +(36-1)486-4942
Email: morfologia@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
College Professor Dr. Gabriella Dörnyei PhD

Contact person
Senior lecturer Dr. Judit Kiss PhD
Phone: +(36-1)486-4945
e-mail: kissj@se-etk.hu

Background
The Department of Morphology and Physiology as a unit of the Institute of Basic Health Sciences has been operating at Semmelweis University Faculty of Health Sciences since its foundation in 1975. The Department participates in the education of the full time English language physiotherapy B.Sc. programme since 2005. The full time English language training of nurses and midwives was introduced in the 2011/2012 academic year.

Education
The Department’s educational tasks include the teaching of core and optional subjects to students participating in the full- and part time trainings of the Faculty, as well as to students taking part in the Master’s level programmes, in the doctorate courses and in vocational trainings. Members of the Department’s staff contribute to different medical and health care research projects, too.

The Morphology Working Group teaches Anatomy and Applied Biology, whilst the Physiology Working Group teaches Physiology-Pathophysiology, Chemistry and Biochemistry in the first, second and third semesters. The following optional subjects are offered in English language:
- Biology of stem cells;
- From classical genetics to epigenetics;
- Chapters of venous circulation and hemodynamics;
- The genetic basis of muscle disorders;
- Functions of hormone receptors: scientific research and clinical practice, health and disease,
- Applied sport physiology and sport health sciences.

Research
The main research areas of the teaching staff are as follows:
- Maintaining of functional abilities and prevention of falls among older adults;
- The examination of decreased function due to low back pain with validated, self-reported questionnaires;
- The examination of posture balance and talent parameters of high school student age group;
- Signalling pathways and autophagy in cancer;
- Stem cells: prospects and challenges;
- Statistical analysis of Hungarian twin data;
- Signal transduction pathways in maternal-fetal interactions in normal and complicated pregnancies;
- A possible model of venous varicosity in rats;
- Effects of hormones on vascular remodelling;
- Roles of G protein-coupled receptor signalling in the vascular function;
- Roles of physical activity in prevention of chronic diseases;
- Signs of cardiovascular sport adaptation;
- Gerontokinesiology – translational animal models: organization of motor control and cognitive functions;
- Walking assessment and dementia prediction;
- Prevention of falling and fracture in elderlies;
- Movement/sport nutrition;
- Active and passive exercise (experimental and human studies);
- Bariatric and metabolic surgery in rats;
- Neurocardiological aspects of exercise-driven rehabilitation in rats;
- Survey of environmental factors influencing ADHD symptoms among elementary school children.

Department of Social Sciences

Address
H-1088 Budapest, Vas u. 17., room 332
Phone: +(36-1)486-4910
Fax: +(36-1)486-4912
E-mail: tarstud@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
Habil. College Professor Dr. Judit Helga Feith PhD

Contact person
Habil. College Professor Dr. Judit Helga Feith PhD
Phone: +(36-1)486-4910
email: h.feith@se-etk.hu

Background
The Department of Social Sciences belongs to the Institute of Basic Health Sciences, furthermore it has a specialised unit, the Division of Foreign Languages and Communication. The role of the Department is to support all students to recognize and to prepare for the social, cultural and economic embeddedness of their future health care professions. Our Department offers theoretical and practice-oriented knowledge – discussing general and special health care related problems – in the fields of Sociology, Social Anthropology, History of Health Sciences, Law, Ethics, Scientific Research Methods, as well as Medical Economy and Management. These modules – as essentials in health care labour market – are to improve conscious employee
competencies and social responsibility. Our Department actively participates in an extended Europe-wide network, CO-HEHRE, by delegating one of the council members for its management who serves as vice president of the organization. The members of the Department of Social Sciences occupy leading positions in several professional and social organizations and take part in their work (Hungarian Association of Medical History, Public Body of Hungarian Academy of Sciences, Hungarian Sociological Association, American Anthropological Association, The European Association for the History of Medicine and Health (EAHMH), Hungarian Association of Sport Studies). Furthermore, our colleagues have a hand in the edition of different scientific journals, such as Development and Financing, Central European Studies, Kaleidoscope – Journal of History of Culture, Science and Medicine, and the newly initiated Developments of Health Sciences.

Education

The Department takes part in the educational development of all B.Sc. and M.Sc. programmes of the Faculty and in the elaboration of curricular directives. As a participant of full time and part time trainings in Nursing and Patient Care, Health Care and Disease Prevention, and Medical Laboratory Diagnostic Imaging programmes, the Department is responsible for teaching the following subjects: Health and Society, Introduction to Health Care Economics, Health Care Management, Health Care Law, Bioethics and Professional Ethics, Philosophy of Health, Thesis Methodology. Additionally, the Department has been organizing the Health Care Project Manager postgraduate course (in Hungarian) since 2008, which enables graduates of the course to successfully (project) manage tasks and situations in every area of the health system. As a result of an educational cooperation between Semmelweis University Faculty of Health and Public Services, Semmelweis University Faculty of Health Sciences and the Budapest Metropolitan University, the Health Care Management B.Sc. started in Hungarian language (with Health Tourism Management speciality) in a form of part time programme in September 2014. The programme is supervised by the Faculty of Health and Public Services (the programme supervisor is Dr. Miklós Szócska). Our Department is involved in the coordination and teaching work related to the programme.

The Health Care Management B.Sc. programme enables graduates of the course to successfully design and construct client-centred health tourism programs, to analyse statistical data related to tourism, and to coordinate touristic and health touristic projects with the implementation of knowledge about the system of health care and touristic institutions.

One of the main concerns of the Department is to provide adequate and flexible knowledge in the most suitable ways, therefore we devote special attention to the innovation of our methods of instruction. To keep a continuous interdisciplinary discussion about this topic, we have organized eight ‘Professional Days on Teaching and Research Methodologies’ so far. Most of our staff have experience in teaching abroad, which has broadened our perspectives and made us more conscious about the approaches we apply.

Research and professional forums

With the aim of building networks of knowledge relating to social sciences and health, the Department of Social Sciences highly engaged with the creation of forums for interdisciplinary and inter-professional discussion. As a result, the Department hosted various professional days and conferences in the past years.

As a result of this work, in 2016 the Department organized the 5th Professional Day and Conference on Patient Rights. The next edition of this bi-yearly event was in the fall of 2018. The aim of the conference was to examine the current ethical and legal issues arising in the everyday practice of health care with the involvement of a wide circle of scientific and professional audience. The highlighted topics of the conference are the ethical and legal questions of health care for children, the dilemmas related to informed consent and communicational gaps during health care delivery, the questions of legal liability in emergency care and the opportunities for implication patients’ rights during health care delivery.

In 2018, the Department gave place for the Professional Day on Health Tourism. The programme of the event put emphasis on the facilitation of discussion about the opportunities, weak points, results and possible legal regulation of health tourism. With the initiation of the Faculty of Health Sciences, Department of Social Sciences a conference has been organized since 2017 with the title of ‘Harmful/Protective Society’. The conference is a fruit of cooperation between three organizational units of Semmelweis University: the Faculty of Medicine Institute of Behavioural Sciences, the Faculty of Health and Public
Service, Institute of Mental Health and the Faculty of Health Sciences Department of Social Sciences. The primary aim of the conference is to build a scientific community for those researchers who work on better understanding of the interconnectedness of health and society. The programme of the conference represents the results of ongoing research projects in the fields of Medical Sociology and Sociology of Health, with the emphasis on the mental, physical, and social dimension of health. Furthermore, the participants may share their experiences about challenges of teaching social sciences in health care training programmes.

Main research areas of the Department include: labour migrants in the health care sector; health and social care of migrants and minorities in Europe; comparative analysis of archive sources, legal sources on health care of the 18-19th centuries; epistemology of interpretive anthropology; developing intercultural competences; minority education and its effects on cultural connectedness; comparative analysis of dentistry business income producing capability; typology of ancient votive uterus-representations; analysis of the archival sources related to the birth-control and the midwife training; ethical and legal dilemmas in the practice of perinatal intensive care from the point of view of the beginning and the end of life; the socio-economic status of nurses and its sociocultural context; modern pedagogical approaches of Hungarian health promotion by peer education (TANTUdSZ Programme).

Our department provides external review and evaluation for the Healthy Diversity project, which is an international consortium of 7 different organisations aiming at developing training materials for health care professionals in VET sector.