
EDITORIAL

Ten simple rules for biologists learning to

program

Maureen A. Carey1, Jason A. Papin2*

1 Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,

Charlottesville, Virginia, United States of America, 2 Department of Biomedical Engineering, University of

Virginia, Charlottesville, Virginia, United States of America

* papin@virginia.edu

Introduction

As big data and multi-omics analyses are becoming mainstream, computational proficiency

and literacy are essential skills in a biologist’s tool kit. All “omics” studies require computa-

tional biology: the implementation of analyses requires programming skills, while experimen-

tal design and interpretation require a solid understanding of the analytical approach. While

academic cores, commercial services, and collaborations can aid in the implementation of

analyses, the computational literacy required to design and interpret omics studies cannot be

replaced or supplemented. However, many biologists are only trained in experimental tech-

niques. We write these 10 simple rules for traditionally trained biologists, particularly graduate

students interested in acquiring a computational skill set.

Rule 1: Begin with the end in mind

When picking your first language, focus on your goal. Do you want to become a programmer?

Do you want to design bioinformatic tools? Do you want to implement tools? Do you want to

just get these data analyzed already? Pick an approach and language that fits your long- and

short-term goals.

Languages vary in intent and usage. Each language and package was created to solve a par-

ticular problem, so there is no universal “best” language (Fig 1). Pick the right tool for the job

by choosing a language that is well suited for the biological questions you want to ask. If many

people in your field use a language, it likely works well for the types of problems you will

encounter. If people in your field use a variety of languages, you have options. To evaluate ease

of use, consider how much community support a language has and how many resources that

community has created, such as prevalence of user development, package support (documen-

tation and tutorials), and the language’s “presence” on help pages. Practically, languages vary

in cost for academic and commercial use. Free languages are more amenable to open source

work (i.e., sharing your analyses or packages). See Table 1 for a brief discussion of several pro-

gramming languages, their key features, and where to learn more.

Rule 2: Baby steps are steps

Once you’ve begun, focus on one task at a time and apply your critical thinking and problem

solving skills. This requires breaking a problem down into steps. Analyzing omics data may

sound challenging, but the individual steps do not: e.g., read your data, decide how to interpret

missing values, scale as needed, identify comparison conditions, divide to calculate fold

change, calculate significance, correct for multiple testing. Break a large problem into modular

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005871 January 4, 2018 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Carey MA, Papin JA (2018) Ten simple

rules for biologists learning to program. PLoS

Comput Biol 14(1): e1005871. https://doi.org/

10.1371/journal.pcbi.1005871

Editor: Scott Markel, Dassault Systemes BIOVIA,

UNITED STATES

Published: January 4, 2018

Copyright: © 2018 Carey, Papin. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

Jason A. Papin is co-Editor-in-Chief of PLOS

Computational Biology.

https://doi.org/10.1371/journal.pcbi.1005871
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005871&domain=pdf&date_stamp=2018-01-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005871&domain=pdf&date_stamp=2018-01-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005871&domain=pdf&date_stamp=2018-01-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005871&domain=pdf&date_stamp=2018-01-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005871&domain=pdf&date_stamp=2018-01-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005871&domain=pdf&date_stamp=2018-01-04
https://doi.org/10.1371/journal.pcbi.1005871
https://doi.org/10.1371/journal.pcbi.1005871
http://creativecommons.org/licenses/by/4.0/


tasks and implement one task at a time. Iteratively edit for efficiency, flow, and succinctness.

Mistakes will happen. That’s ok; what matters is that you find, correct, and learn from them.

Rule 3: Immersion is the best learning tool

Don’t stitch together an analysis by switching between or among languages and/or point and

click environments (Excel [Microsoft; https://www.microsoft.com/en-us/], etc.). While learn-

ing, if a job can be done in one language or environment, do it all there. For example, import-

ing a spreadsheet of data (like you would view in Excel) is not necessarily straightforward;

Excel automatically determines how to read text, but the method may differ from conventions

in other programming languages. If the import process “misreads” your data (e.g., blank cells

are not read as blank or “NA,” numbers are in quotes indicating that they are read as text, or

column names are not maintained), it can be tempting to return to Excel to fix these with

search-and-replace strategies. However, these problems can be fixed by correctly reading the

data and by understanding the language’s data structures. Just like a spoken language [1, 2],

immersion is the best learning tool [3, 4]. In addition to slowing the learning curve, transfer-

ring across programs induces error. See References [5–7] for additional Excel or word process-

ing–induced errors.

Eventually, you may identify tasks that are not well suited to the language you use. At that

point, it may be helpful to pick up another language in order to use the right tool for the job

Fig 1. The “one tool to rule them all” (or: how programming languages do not work).

https://doi.org/10.1371/journal.pcbi.1005871.g001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005871 January 4, 2018 2 / 11

https://www.microsoft.com/en-us/
https://doi.org/10.1371/journal.pcbi.1005871.g001
https://doi.org/10.1371/journal.pcbi.1005871


Table 1. A noninclusive discussion of programming languages. A shell is a command line (i.e., programming) interface to an operating system, like

Unix operating systems. Low-level programming languages deal with a computer’s hardware. The process of moving from the literal processor instructions

toward human-readable applications is called “abstraction.” Low-level languages require little abstraction. Interpreted languages are quicker to test (e.g., to

run a few lines of code); this facilitates learning through trial and error. Interpreted languages tend to be more human readable. Compiled languages are pow-

erful because they are often more efficient and can be used for low-level tasks. However, the distinction between interpreted and compiled languages is not

always rigid. All languages presented below are free unless noted otherwise. The Wikipedia page on programming languages provides a great overview and

comparison of languages.

Language Key features Documentation Sample tutorials Community groups

Bash • Most common Unix shell

• Practical for execution of

scripts written in all other

languages

• Versatile

• Easy to delete files or make

other drastic changes

• Weaknesses include

executing math and limited

data structures

• Default for macOS and

most Linux distributions

• gnu.org/software/bash/manual/

• On macOS’s terminal, type “man

<command>” to get the manual for

any command (and “q” to exit

manual page)

• The Linux Documentation

Project’s Beginner’s guide: tldp.

org/LDP/Bash-Beginners-Guide/

html/

• Ubuntu’s documentation: help.

ubuntu.com/community/

Beginners/BashScripting

• Azet’s GitHub page: github.com/

azet/community_bash_style_

guide

• Google Plus: plus.google.com/

communities/

110832059019676429606

• GitHub community resources page:

github.com/awesome-lists/

awesome-bash

Python • General purpose language

• Considered easy to learn

due to readability

• Flexible syntax considered

both a strength and

weakness

• Interpreted language

• docs.python.org • Google’s Python class:

developers.google.com/edu/

python/

• The Hitchhiker’s Guide to

Python: docs.python-guide.org/

• Python Users Group: wiki.python.

org/moin/LocalUserGroups

• Python Special Interest Groups:

python.org/community/sigs/

R • Community involvement

• Application-focused

development

• Easy to learn by coupling

basic programming and

applications

• Well-developed

visualization

• Variable package quality

• “Tidy data” community

• Interpreted language

• rdocumentation.org

• r-project.org

• cran.r-project.org

• R for cats: rforcats.net

• Books by Hadley Wickham:

hadley.nz

• R Tutorial’s introduction: r-tutor.

com/r-introduction

• Cyclismo’s R Tutorial: cyclismo.

org/tutorial/R/

• R-Ladies: rladies.org

• R Users Group: many

SAS • Statistical computing

• High-quality development

of statistical functions by

commercial and academic

developers

• Domain-specific usage

• Free for students only

• Typically a compiled

language

• support.sas.com • Boston University’s SAS

Training for Statistics: bu.edu/

stat/bu-student-chapter-of-the-

asa/sas-training/

• SAS User Groups: sas.com/en_us/

connect/user-groups.html

MATLAB • Well-developed

applications in engineering

• Maintained professionally

• Interpreted language

• Discounted academic

license

• mathworks.com/help/matlab • Cyclismo’s MATLAB Tutorial:

cyclismo.org/tutorial/matlab/

• For purchase courses offered at:

matlabacademy.mathworks.com

• MATLAB Central: mathworks.com/

matlabcentral/

Perl • General purpose language

• Handles text well

• Waning community

involvement

• Syntax modelled after

human language

• Interpreted language

• perl.org

• cpan.org

• Beginning Perl: perl.org/books/

beginning-perl/

• Perl maven’s tutorial:

perlmaven.com

• Perl::Learn: learn.perl.org

• Perl Mongers: pm.org

• Perl Monks: perlmonks.org

(Continued )

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005871 January 4, 2018 3 / 11

http://gnu.org/software/bash/manual/
http://tldp.org/LDP/Bash-Beginners-Guide/html/
http://tldp.org/LDP/Bash-Beginners-Guide/html/
http://tldp.org/LDP/Bash-Beginners-Guide/html/
http://help.ubuntu.com/community/Beginners/BashScripting
http://help.ubuntu.com/community/Beginners/BashScripting
http://help.ubuntu.com/community/Beginners/BashScripting
http://github.com/azet/community_bash_style_guide
http://github.com/azet/community_bash_style_guide
http://github.com/azet/community_bash_style_guide
http://plus.google.com/communities/110832059019676429606
http://plus.google.com/communities/110832059019676429606
http://plus.google.com/communities/110832059019676429606
http://github.com/awesome-lists/awesome-bash
http://github.com/awesome-lists/awesome-bash
http://docs.python.org
http://developers.google.com/edu/python/
http://developers.google.com/edu/python/
http://docs.python-guide.org/
http://wiki.python.org/moin/LocalUserGroups
http://wiki.python.org/moin/LocalUserGroups
http://python.org/community/sigs/
http://rdocumentation.org
http://r-project.org
http://cran.r-project.org
http://rforcats.net
http://hadley.nz
http://r-tutor.com/r-introduction
http://r-tutor.com/r-introduction
http://cyclismo.org/tutorial/R/
http://cyclismo.org/tutorial/R/
http://rladies.org
http://support.sas.com
http://bu.edu/stat/bu-student-chapter-of-the-asa/sas-training/
http://bu.edu/stat/bu-student-chapter-of-the-asa/sas-training/
http://bu.edu/stat/bu-student-chapter-of-the-asa/sas-training/
http://sas.com/en_us/connect/user-groups.html
http://sas.com/en_us/connect/user-groups.html
http://mathworks.com/help/matlab
http://cyclismo.org/tutorial/matlab/
http://matlabacademy.mathworks.com
http://mathworks.com/matlabcentral/
http://mathworks.com/matlabcentral/
http://perl.org
http://cpan.org
http://perl.org/books/beginning-perl/
http://perl.org/books/beginning-perl/
http://perlmaven.com
http://learn.perl.org
http://pm.org
http://perlmonks.org
https://doi.org/10.1371/journal.pcbi.1005871


(see Rule 1). In fact, understanding one language will make it easier to learn a second. Until

then, however, focus on immersion to learn.

Rule 4: Phone a friend

There are numerous online resources: tutorials, documentation, and sites intended for com-

munity Q and A (StackOverflow, StackExchange, Biostars, etc.), but nothing replaces a friend

or colleague’s help. Find a community of programmers, ranging from beginning to experi-

enced users, to ask for help. You may want to look for both technical support (i.e., a group cen-

tered around a language) and support regarding a particular scientific application (e.g., a

group centered around omics analyses). Many universities have scientific computing groups,

housed in the library or information technology (IT) department; these groups can be your

starting point. If your lab or university does not have a community of programmers, seek

them out virtually or locally. Coursera courses, for example, have comment boards for students

to answer each other’s questions and learn from their peers. Organizations like Software and

Data Carpentry or language user groups have mailing lists to connect members. Many cities

have events organized by language-specific user groups or interest groups focused on big data,

machine learning, or data visualization. These can be found through meetup.com, Google

groups, or through a user group’s website; some are included in Table 1.

Once you find a community, ask for help. At the beginning stages, in-person help to decon-

struct or interpret an online answer is invaluable. Additionally, ask a friend for code. You

wouldn’t write a paper without first reading a lot of papers or begin a new project without

shadowing a few experimenters. First, read their code. Implement and interpret, trying to

understand each line. Return to discuss your questions. Once you begin writing, ask for edits.

Rule 5: Learn how to ask questions

There’s an answer to almost anything online, but you have to know what to ask to get help. In

order to know what to ask, you have to understand the problem. Start by interpreting an error

message. Watch for generic errors and learn from them. Identify which component of your

error message indicates what the issue is and which component indicates where the issue is

(Figs 2–5). Understanding the problem is essential; this process is called “debugging.” Without

truly understanding the problem, any “solution” will ultimately propagate and escalate the

mistake, making harder-to-interpret errors down the road. Once you understand the problem,

Table 1. (Continued)

Language Key features Documentation Sample tutorials Community groups

Fortran • Numeric computation

• Fast

• Often used for high-

performance computing

• Limited development

• Compiled language

• fortranwiki.org • many at Fortran wiki: fortranwiki.

org/fortran/show/Tutorials

• Fortran Friends: fortran.

orpheusweb.co.uk

C/C++ • Low-level language

• Powerful, used for source

code of many other

languages

• Challenging to learn as it

requires explicit syntax

• Explicit syntax enforces

good programming habits

• Compiled language

• devdocs.io/c

• cppreference.com

• C programming’s tutorial:

cprogramming.com/tutorial/

• Learn-C’s web-based tutorial:

learn-c.org

• Standard C++ Foundation: isocpp.

org

• C/C++ Users Group (CUG): hal9k.

com/cug

https://doi.org/10.1371/journal.pcbi.1005871.t001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005871 January 4, 2018 4 / 11

http://meetup.com
http://fortranwiki.org
http://fortranwiki.org/fortran/show/Tutorials
http://fortranwiki.org/fortran/show/Tutorials
http://fortran.orpheusweb.co.uk
http://fortran.orpheusweb.co.uk
http://devdocs.io/c
http://cppreference.com
http://cprogramming.com/tutorial/
http://learn-c.org
http://isocpp.org
http://isocpp.org
http://hal9k.com/cug
http://hal9k.com/cug
https://doi.org/10.1371/journal.pcbi.1005871.t001
https://doi.org/10.1371/journal.pcbi.1005871


look for answers. Looking for answers requires effective googling. Learn the vocabulary (and

meta-vocabulary) of the language and its users. Once you understand the problem and have

identified that there is no obvious (and publicly available) solution, ask for answers in pro-

gramming communities (see Rule 4 and Table 1). When asking, paraphrase the fundamental

problem. Include error messages and enough information to reproduce the problem (include

packages, versions, data or sample data, code, etc.). Present a brief summary of what was done,

what was intended, how you interpret the problem, what troubleshooting steps were already

taken, and whether you have searched other posts for the answer.

See the following website for suggestions: http://codereview.stackexchange.com/help/how-

to-ask and [8]. End with a “thank you” and wait for the help to arrive.

Rule 6: Don’t reinvent the wheel

Rule 6 can also be found in “Ten Simple Rules for the Open Development of Scientific Soft-

ware” [9], “Ten Simple Rules for Developing Public Biological Databases” [10], “Ten Simple

Rules for Cultivating Open Science and Collaborative R&D” [11], and “Ten Simple Rules To

Combine Teaching and Research” [12]. Use all resources available to you, including online

tutorials, examples in the language’s documentation, published code, cool snippets of code

your labmate shared, and, yes, your own work. Read widely to identify these resources. Copy-

and-paste is your friend. Provide credit if appropriate (i.e., comment “adapted from so-n-so’s

X script”) or necessary (e.g., read through details on software licenses). Document your scripts

by commenting in notes to yourself so that you can use old code as a template for future work.

Fig 2. Anatomy of an error message, Part 1 (or: How to write more than one line of code). Here we show an example of the debugging process in R

using the RStudio environment, with the goal of concatenating two words.

https://doi.org/10.1371/journal.pcbi.1005871.g002

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005871 January 4, 2018 5 / 11

http://codereview.stackexchange.com/help/how-to-ask
http://codereview.stackexchange.com/help/how-to-ask
https://doi.org/10.1371/journal.pcbi.1005871.g002
https://doi.org/10.1371/journal.pcbi.1005871


These comments will help you remember what each line of code intends to do, accelerating

your ability to find mistakes.

Rule 7: Develop good habits early on

Computational research is research, so use your best practices. This includes maintaining a

computational lab notebook and documenting your code. A computational lab notebook is by

definition a lab notebook: your lab notebook includes protocols, so your computational lab

notebook should include protocols, too. Computational protocols are scripts, and these should

include the code itself and how to access everything needed to implement the code. Include

Fig 3. Anatomy of an error message, Part 2 (or: Just because it works, doesn’t mean it’s right). Here we provide more examples of the debugging

process. Examples shown in Figs 3–5 are conducted in Python using a Jupyter notebook. Environments like RStudio (in Fig 2) and Jupyter notebooks are two

examples of integrated development environments; these environments offer additional support, including built-in debugging tools. First, we show an error

that does not induce an error message, but the user must debug nonetheless.

https://doi.org/10.1371/journal.pcbi.1005871.g003

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005871 January 4, 2018 6 / 11

https://doi.org/10.1371/journal.pcbi.1005871.g003
https://doi.org/10.1371/journal.pcbi.1005871


input (raw data) and output (results), too. Figures and interpretation can be included if that’s

how you organize your lab notebook. Develop computational “place habits” (file-saving strate-

gies). It is easier to organize one drawer than it is to organize a whole lab, so start as soon as

you begin to learn to program. If you can find that experiment you did on June 12, 2011—its

protocol and results—in under five minutes, you should be able to find that figure you gener-

ated for lab meeting three weeks ago, complete with code and data, in under five minutes as

well. This requires good version control or documentation of your work. Like with protocols,

Fig 4. Anatomy of an error message, Part 3 (or: Trace your way back to the problem). Here we show an explicit error message.

https://doi.org/10.1371/journal.pcbi.1005871.g004

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005871 January 4, 2018 7 / 11

https://doi.org/10.1371/journal.pcbi.1005871.g004
https://doi.org/10.1371/journal.pcbi.1005871


Fig 5. Anatomy of an error message, Part 4 (or: Debugging a solution). Lastly, we show how to debug a solution to understand a line of code found on

the internet.

https://doi.org/10.1371/journal.pcbi.1005871.g005

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005871 January 4, 2018 8 / 11

https://doi.org/10.1371/journal.pcbi.1005871.g005
https://doi.org/10.1371/journal.pcbi.1005871


each time you run a script, you should note any modifications that are made. Document all

changes in experimental and computational protocols. These habits will make you more effi-

cient by enhancing your work’s reproducibility. For specific advice, see “Ten Simple Rules for

a Computational Biologist’s Laboratory Notebook” [13], “Ten Simple Rules for Reproducible

Computational Research” [14], and “Ten Simple Rules for Taking Advantage of Git and

GitHub” [15].

Rule 8: Practice makes perfect

Use toy datasets to practice a problem or analysis. Biological data get big, fast. It’s hard to find

the computational needle-in-a-haystack, so set yourself up to succeed by practicing in con-

trolled environments with simpler examples. Generate small toy datasets that use the same

structure as your data. Make the toy data simple enough to predict how the numbers, text, etc.,

should react in your analysis. Test to ensure they do react as expected. This will help you

understand what is being done in each step and troubleshoot errors, preparing you to scale up

to large, unpredictable datasets. Use these datasets to test your approach, your implementation,

and your interpretation. Toy datasets are your negative control, allowing you to differentiate

between negative results and simulation failure.

Rule 9: Teach yourself

How would you teach you if you were another person? You would teach with a little more

patience and a bit more empathy than you are practicing now. You are not alone in your occa-

sional frustration (Fig 6). Learning takes time, so plan accordingly. Introductory courses are

helpful to learn the basics because the basics are easy to neglect in self-study. Articulate clear

expectations for yourself and benchmarks for success. Apply some of the structure (deadlines,

assignments, etc.) you would provide a student to help motivate and evaluate your progress. If

something isn’t working, adjust; not everyone learns best by any one approach. Explore tuto-

rials, online classes, workshops, books like Practical Computing for Biologists [16], local pro-

gramming meetups, etc., to find your preferred approach.

Rule 10: Just do it

Just start coding. You can’t edit a blank page.

Fig 6. “How to exit the vim editor?” (or: We all get stuck at some point). Now viewed >1.33 million times;

see: http://stackoverflow.com/questions/11828270/how-to-exit-the-vim-editor.

https://doi.org/10.1371/journal.pcbi.1005871.g006

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005871 January 4, 2018 9 / 11

http://stackoverflow.com/questions/11828270/how-to-exit-the-vim-editor
https://doi.org/10.1371/journal.pcbi.1005871.g006
https://doi.org/10.1371/journal.pcbi.1005871


Learning to program can be intimidating. The power and freedom provided in conducting

your own computational analyses bring many decisions points, and each decision brings more

room for mistakes. Furthermore, evaluating your work is less black-and-white than for some

experiments. However, coding has the benefit that failure is risk free. No resources are wasted

—not money, time (a student’s job is to learn!), or a scientific reputation. In silico, the playing

field is leveled by hard work and conscientiousness. So, while programming can be intimidat-

ing, the most intimidating step is starting.

Conclusion

Markowetz recently wrote, “Computational biologists are just biologists using a different tool”

[17]. If you are a traditionally trained biologist, we intend these 10 simple rules as instruction

(and pep talk) to learn a new, powerful, and exciting tool. The learning curve can be steep;

however, the effort will pay dividends. Computational experience will make you more market-

able as a scientist (see “Top N Reasons To Do A Ph.D. or Post-Doc in Bioinformatics/Compu-

tational Biology” [18]). Computational research has fewer overhead costs and reduces the

barrier to entry in transitioning fields [19], opening career doors to interested researchers. Per-

haps most importantly, programming skills will make you better able to implement and inter-

pret your own analyses and understand and respect analytical biases, making you a better

experimentalist as well. Therefore, the time you spend at your computer is valuable. Acquiring

programming expertise will make you a better biologist.

Acknowledgments

Thank you to Ed Hall, Pat Schloss, Matthew Jenior, Angela Zeigler, Jhansi Leslie, and Gregory

Medlock for their feedback.

References
1. Genesee F. Integrating language and content: Lessons from immersion. Center for Research on Edu-

cation, Diversity & Excellence. 1994.

2. Genesee FH, editor Second language learning in school settings: Lessons from immersion1991: Law-

rence Erlbaum Associates.

3. Campbell W, Bolker E, editors. Teaching programming by immersion, reading and writing2002: IEEE.

4. Guzdial M. Programming environments for novices. Computer science education research. 2004;

2004:127–54.

5. Zeeberg BR, Riss J, Kane DW, Bussey KJ, Uchio E, Linehan WM, et al. Mistaken identifiers: gene

name errors can be introduced inadvertently when using Excel in bioinformatics. BMC Bioinformatics.

2004; 5(1):80.

6. Ziemann M, Eren Y, El-Osta A. Gene name errors are widespread in the scientific literature. Genome

Biol. 2016; 17(1):177. https://doi.org/10.1186/s13059-016-1044-7 PMID: 27552985

7. Linke D. Commentary: Never trust your word processor. Biochemistry and Molecular Biology Educa-

tion. 2009; 37(6):377–. https://doi.org/10.1002/bmb.20340 PMID: 21567776

8. Collado-Torres L. Recent Posts [Internet]2017. [cited 2017]. Available from: http://lcolladotor.github.io/.

Posts. Accessed on 5 April 2017.

9. Prlić A, Procter JB. Ten simple rules for the open development of scientific software. PLoS Comput Biol.

2012; 8(12):e1002802. https://doi.org/10.1371/journal.pcbi.1002802 PMID: 23236269

10. Helmy M, Crits-Christoph A, Bader GD. Ten Simple Rules for Developing Public Biological Databases.

PLoS Comput Biol. 2016; 12(11):e1005128. https://doi.org/10.1371/journal.pcbi.1005128 PMID:

27832061

11. Masum H, Rao A, Good BM, Todd MH, Edwards AM, Chan L, et al. Ten simple rules for cultivating

open science and collaborative R&D. PLoS Comput Biol. 2013; 9(9):e1003244. https://doi.org/10.1371/

journal.pcbi.1003244 PMID: 24086123

12. Vicens Q, Bourne PE. Ten simple rules to combine teaching and research. PLoS Comput Biol. 2009; 5

(4):e1000358. https://doi.org/10.1371/journal.pcbi.1000358 PMID: 19390598

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005871 January 4, 2018 10 / 11

https://doi.org/10.1186/s13059-016-1044-7
http://www.ncbi.nlm.nih.gov/pubmed/27552985
https://doi.org/10.1002/bmb.20340
http://www.ncbi.nlm.nih.gov/pubmed/21567776
http://lcolladotor.github.io/
https://doi.org/10.1371/journal.pcbi.1002802
http://www.ncbi.nlm.nih.gov/pubmed/23236269
https://doi.org/10.1371/journal.pcbi.1005128
http://www.ncbi.nlm.nih.gov/pubmed/27832061
https://doi.org/10.1371/journal.pcbi.1003244
https://doi.org/10.1371/journal.pcbi.1003244
http://www.ncbi.nlm.nih.gov/pubmed/24086123
https://doi.org/10.1371/journal.pcbi.1000358
http://www.ncbi.nlm.nih.gov/pubmed/19390598
https://doi.org/10.1371/journal.pcbi.1005871


13. Schnell S. Ten Simple Rules for a Computational Biologist’s Laboratory Notebook. PLoS Comput Biol.

2015; 11(9):e1004385. https://doi.org/10.1371/journal.pcbi.1004385 PMID: 26356732

14. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten simple rules for reproducible computational research.

PLoS Comput Biol. 2013; 9(10):e1003285. https://doi.org/10.1371/journal.pcbi.1003285 PMID:

24204232

15. Perez-Riverol Y, Gatto L, Wang R, Sachsenberg T, Uszkoreit J, da Veiga Leprevost F, et al. Ten Simple

Rules for Taking Advantage of Git and GitHub. PLoS Comput Biol. 2016; 12(7):e1004947. https://doi.

org/10.1371/journal.pcbi.1004947 PMID: 27415786

16. Haddock SHD, Dunn CW. Practical computing for biologists: Sinauer Associates Sunderland, MA;

2011.

17. Markowetz F. All biology is computational biology. PLoS Biol. 2017; 15(3):e2002050. https://doi.org/10.

1371/journal.pbio.2002050 PMID: 28278152

18. Bergman C. An Assembly of Fragments [Internet]. [cited 2017]. Available from: https://caseybergman.

wordpress.com/2012/07/31/top-n-reasons-to-do-a-ph-d-or-post-doc-in-bioinformaticscomputational-

biology/. Accessed on 5 April 2017.

19. Kwok R. Nature: Careers [Internet]: Nature Publishing Group. 2013. [cited 2017].

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005871 January 4, 2018 11 / 11

https://doi.org/10.1371/journal.pcbi.1004385
http://www.ncbi.nlm.nih.gov/pubmed/26356732
https://doi.org/10.1371/journal.pcbi.1003285
http://www.ncbi.nlm.nih.gov/pubmed/24204232
https://doi.org/10.1371/journal.pcbi.1004947
https://doi.org/10.1371/journal.pcbi.1004947
http://www.ncbi.nlm.nih.gov/pubmed/27415786
https://doi.org/10.1371/journal.pbio.2002050
https://doi.org/10.1371/journal.pbio.2002050
http://www.ncbi.nlm.nih.gov/pubmed/28278152
https://caseybergman.wordpress.com/2012/07/31/top-n-reasons-to-do-a-ph-d-or-post-doc-in-bioinformaticscomputational-biology/
https://caseybergman.wordpress.com/2012/07/31/top-n-reasons-to-do-a-ph-d-or-post-doc-in-bioinformaticscomputational-biology/
https://caseybergman.wordpress.com/2012/07/31/top-n-reasons-to-do-a-ph-d-or-post-doc-in-bioinformaticscomputational-biology/
https://doi.org/10.1371/journal.pcbi.1005871

