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Abstract: From the late 1980s
onward, the term ‘‘bioinformatics’’
mostly has been used to refer to
computational methods for com-
parative analysis of genome data.
However, the term was originally
more widely defined as the study
of informatic processes in biotic
systems. In this essay, I will trace
this early history (from a personal
point of view) and I will argue that
the original meaning of the term is
re-emerging.

Early History: Bioinformatics, a
Work Concept

In the beginning of the 1970s, Ben

Hesper and I started to use the term

‘‘bioinformatics’’ for the research we

wanted to do, defining it as ‘‘the study of

informatic processes in biotic systems’’.

(Although several public sources [see

below] trace the origin of the term to

publications by us that appeared in 1978

[1,2], in fact we were using it as early as

1970, proposing the definition above in an

article in Dutch that is not generally

accessible [3].)

It seemed to us that one of the defining

properties of life was information process-

ing in its various forms, e.g., information

accumulation during evolution, informa-

tion transmission from DNA to intra- and

intercellular processes, and the interpreta-

tion of such information at multiple levels.

At a minimum, we felt that that informa-

tion processing could serve as a useful

metaphor for understanding living sys-

tems. We therefore thought that in

addition to biophysics and biochemistry,

it was useful to distinguish bioinformatics

as a research field (or what we termed a

‘‘work concept’’).

Indeed, at the birth of molecular

biology it was recognized that a central

research theme should be how living

systems gather, process, store, and use

information [4]. This focus on concepts

related to information is, for example,

reflected in the terminology ‘‘genetic

code’’, the central dogma as the unidirec-

tional flow of information, etc. A nice

monograph entitled ‘‘From Deoxyribonu-

cleic Acid to Protein: Transfer of Genetic

Information’’ [5] summarized the state of

the art in molecular biology before the

‘‘sequence age’’, unraveling for me the

essential processes that, at the time in

genetics undergraduate texts, were buried

in ‘‘bead genetics’’. It seems that recently,

after a dormant phase, such information-

centric terminology has become more

prevalent again (e.g., in terms of identify-

ing a distinct research field [4] and

focusing on such processes as sensing the

environment [6] and dynamic phosphor-

ylation and methylation codes [7,8]).

We were embedded then within theo-

retical biology. At the time, after general

systems theory [9,10] had come and gone,

theoretical biology was in a mild resur-

gence in acceptance. The series of books

entitled ‘‘Towards a Theoretical Biology’’,

edited by Waddington [11] (reprints of

which are underway), had appeared a few

years earlier. In 1972, the main topic at a

meeting organized by BSRC (Biological

Science Research Council) Developmental

Biology in collaboration with the Society

for Experimental Biology was mathemat-

ical models of development.

Stuart Kaufman was there, presenting

his work on random Boolean networks,

which introduced the concept of large-

scale transcription regulation networks

and viewed a cell type as an attractor in

a multidimensional dynamical system

[12]. It is striking that in the year 2000,

Huang and Ingber reintroduced these

concepts to the experimental molecular

biology community [13] and later beauti-

fully illustrated their power by demon-

strating alternative trajectories to neutro-

phil differentiation on the basis of

temporal gene expression data of 2,773

genes [14].

At this same meeting, models and

experiments in such areas as oscillatory

enzyme dynamics (e.g., [15,16]), positional

information [17], and bi-stability in gene

regulation [18] were presented and hotly

discussed. Spatial pattern formation was

one of the central topics, contrasting

Turing systems [19] with gradient-based

systems [17]. Francis Crick, who in that

period published some papers on gradients

in development [20], attended the meet-

ing. Skeptical about the emphasis Turing

Patterns were (still) receiving, Crick quoted

Turing as saying in reaction to enthusiasm

about his work: ‘‘Well, the stripes are easy

but what about the horse part?’’ To go

‘‘for the horse part’’, i.e., to go beyond

pattern formation to multilevel models of

development and morphogenesis, became

one of the long-term goals of our nascent

work concept ‘‘bioinformatics’’.

Also at about that time, John Maynard

Smith gave a lecture in Utrecht and posed

a similar challenge with respect to evolu-

tionary biology as Turing’s challenge

relative to developmental biology. While

evolutionary models mainly dealt with

invasion of mutants and changing allele

frequencies, the question of how evolution

leads to complex organisms was not

addressed. As Maynard Smith expressed

it: ‘‘As good evolutionary biologists we

should go once a year to the zoo and visit

the elephant. We should greet it and say

‘Elephant, I believe you got about by

random mutation’’’. To meet the chal-

lenge of a ‘‘constructive evolutionary

biology’’ became another long-term goal

of bioinformatics as we envisioned it.

Research in artificial intelligence at this

time was exploring new representations of

information processing systems, often in-

spired by biological systems, e.g. neural

network models for learning and pattern

recognition [21,22], genetic algorithms

[23] for optimization, ‘‘actors’’ [24] for
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semi-independent parallel processing, and

‘‘turtle geometry’’ [25,26], demonstrating

the power of an individual self-centered

approach to generating and/or under-

standing more global structures.

We felt that the re-introduction of

biologically inspired computational ideas

back into biology was needed in order to

begin to understand biological systems as

information processing systems. In partic-

ular, a focus on local interaction leading to

emergent phenomena at multiple scales

seemed to be missing in most biological

models.

At the time, molecular biology was of

course not a heavily ‘‘data-driven’’ science,

as it would become with the advent of

massive sequencing projects. Indeed, data-

driven science was looked down upon,

both in molecular biology and in theoret-

ical biology. However, data-driven re-

search was being done in the more

traditional parts of biology, ecology, and

taxonomy. I had just finished a data

collection survey on water plant vegetation

in India, Czechoslovakia, and The Nether-

lands and had become dissatisfied by the

local state of the art of data processing,

which comprised shuffling large tables by

hand. At the same time, pattern recogni-

tion methods had already been introduced

as ‘‘numerical taxonomy’’ [27], as well as

in ecology [28,29]. Although modeling

and pattern analysis were (and still often

are) seen as separate endeavors, we felt

that for bioinformatic research they were

both needed and should be combined:

first, to analyze patterns of variation at

multiple levels in organisms; second, to

detect emergent phenomena in models;

third, to compare the outcome of such

models with ‘‘real’’ data; and finally, and

most profoundly, because the relationship

between genotype, phenotype, behavior,

and environment itself can be seen as a

type of pattern recognition or pattern

transformation [30,31], and understand-

ing these processes was the core of

bioinformatic research.

In short, under the heading of bioinfor-

matics we wanted to combine pattern

analysis and dynamic modeling and apply

them to the challenge of unraveling

pattern generation and informatic process-

es in biotic systems at multiple scales.

Bioinformatics before the Data
Deluge

But what could actually be done given

the scarcity of data and paucity of

computing power?

In fact, many of the basic pattern

analysis methods now used in bioinfor-

matics were pioneered in the 1960s (for a

nice historical overview see [32]) and

further developed in the 1970s. However,

with respect to methods and data it was

still a matter of everyone for themselves, as

no easy exchange was possible. A notable

exception was, of course, the work of

Dayhoff to make protein sequences avail-

able through the yearly printed atlases of

protein sequences and structure (from [33]

to [34]). Accordingly, we spent much time

in developing BIOPAT, an integrated set

of supervised and nonsupervised pattern

analysis methods, though at the same time

we strenuously argued that methods de-

velopment was NOT what bioinformatics

was about.

We used the pattern analysis methods to

study both ‘‘real’’ data and data derived

from modeling studies. Our questions

revolved around relating patterns of var-

iation at different levels of organization.

This included a first foray into non-linear

genotype/phenotype mapping [35], using

the developmental ‘‘grammars’’ intro-

duced by Lindenmayer [36,37], to dem-

onstrate that the pattern of variation at the

level of the genotype (the developmental

rules) and at the level of the phenotype

(the generated ‘‘morphemes’’) does not

necessarily coincide (as implicitly assumed

in phylogenetic studies based on morpho-

logical data). We developed cluster analy-

sis methods with iterative character

weighting [38] to tease apart intermingled

patterns of variation. Thus we could, for

example, untangle morphological varia-

tion due to lineage differences and due to

polyploidy [38]. In hindsight, it is inter-

esting to recall the surprise (and dismay of

the editors) when we found that isozyme

variation was not correlated with lineage

but with climatic conditions [39]. The

general expectation was that, the closer to

the genome, the closer to the ‘‘real’’

evolutionary relationships.

In the 1970s and 1980s, not only were

pattern analysis methods developed, but

novel modeling formalisms also were

actively explored. Nonlinear systems start-

ed to become analyzable due to computer

modeling, and new developments, for

instance phase plain analysis, bifurcation

diagrams, and deterministic chaos, were

linked to biological applications (e.g., the

logistic growth model is a prototype for

deterministic chaos [40]).

Moreover, event-based modeling for-

malisms were developed; most well-known

is the Gillespie algorithm developed for

simulating chemical kinetics [41]. Our

interests being on information processing

and micro-macro transitions (emergent

phenomena), we focused on the use and

development of modeling formalisms im-

plementing local interactions. Thus, we

introduced cellular automata as a model-

ing formalism in ecology [42] and evolu-

tion [43], and developed event-based,

individual-oriented (now usually called

agent-based) simulation approaches.

Because of the often surprising and

counterintuitive results of such models,

we emphasized a bottom-up modeling

methodology. Instead of designing a

model to explain a priori well-defined

results, in such a bottom-up modeling

methodology known (or assumed) basic

interactions are implemented, and the

resulting dynamics are analyzed in multi-

ple ways and at multiple levels. If and only

if various seemingly unrelated and unfore-

seen consequences of the model corre-

spond to the modeled system, this gives

truly novel insight (and confidence in the

model) [44,45]. To analyze such models,

pattern analysis methods can be indispens-

able to relate the outcome of the models to

‘‘real’’ data. For example, this allowed us

to demonstrate that the behavioral pat-

terns, division of labor, and adaptation to

the environment observed in bumble bee

colonies were emergent properties of local

interaction of simple entities that ‘‘do what

there is to do’’ [46–48].

Data-Driven Bioinformatics

I recall the excitement when, in 1982,

the first European Molecular Biology

Laboratory sequence tape was delivered.

Typing in data (on punch cards) from the

Dayhoff atlases was cumbersome, even

though many aligned sequences were

provided. But what to do with this ‘‘mess’’

of data? Just for fun, we clustered species

on nucleotide and dinucleotide content.

To our surprise (and actually, dismay), a

more or less decent classification emerged!

This, in spite of our mantra that simple

‘‘amounts’’ would not take us very far in

biology and we needed to look at patterns/

information. But now we were back in the

situation of almost a decade before: people

trying to make sense of data by shuffling it

around and finding by ‘‘eye/hand’’ some

optimal arrangement, now with respect to

aligning sets of sequences.

By developing an iterative guide tree-

based multiple alignment method [49], we

opened up this rich resource for our

bioinformatic research. We pursued our

earlier themes of coding structures and

genotype/phenotype mapping through

the study of RNA primary and secondary

structure. It is gratifying that some of the

multiple coding issues we studied are now

being re-examined and that patterns we
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gleaned from the sparse data available at

that time are now being verified through

large-scale data analysis and direct high-

throughput experiments. For example, we

found that selection pressure on mRNA is

not only related to protein coding but also

to its secondary structure [50,51], and

inferred that ‘‘synonymous’’ mutations are

therefore not necessarily neutral. Recently

[52], it was inferred that conflicting

selection pressures on synonymous codon

use suggest just such selection pressure on

secondary structure. As another example,

we showed that a common pattern in

mRNA secondary structure was a loosely

folded 59end in eukaryotic mRNA [53],

apparently to facilitate translation initia-

tion, a finding that has now been firmly

established [54–56].

Propelled by the exponential increase of

sequence data, the term bioinformatics

became mainstream in the late 1980s,

coming to mean the development and use

of computational methods for data man-

agement and data analysis of sequence

data, protein structure determination,

homology-based function prediction, and

phylogeny. But the rich insights obtained

from the massive sequencing projects, and

the related bioinformatic analysis to un-

ravel function and evolution, is not really

the ‘‘roots of bioinformatics’’, but rather

the ‘‘trunk of bioinformatics’’, and not the

subject of this article.

Back to the Future

In 2002, I received a surprising e-mail

from Oxford University Press: ‘‘It appears

that you may be responsible for the term

‘bioinformatics’. I am preparing an entry

for the word in the Oxford English

Dictionary, and in this connection am

investigating its history. . .’’ This led to our

1978 papers on chaotic dynamics in

ecological models [1], and genotype phe-

notype mapping in growth models [2]

being credited as the source of the term

(though, as noted, our usage of it dated

back to 1970). But was our definition of

bioinformatics as the study of informatic

processes in biotic systems at multiple

levels just an historical quirk, to be

superseded by the common meaning of

the term as denoting the development and

use of computational methods for com-

parative analysis of genome data?

The set of fully sequenced genomes

(including human) was expanding, and

high-throughput ‘‘omics’’ data entered the

field, adding new dimensions to data-

driven comparative research. Organisms

were no longer just a ‘‘bag of genes or

proteins’’ but also, e.g., a ‘‘bag of tran-

scriptomes’’, ‘‘a bag of interactomes’’, and

‘‘a bag of metabolomes’’. Integrating these

various data is a marvelous opportunity

and great challenge for bioinformatics in

whatever sense of the word!

Indeed, the insight has again taken hold

that organisms are not just a bag full of

anything, but rather complex dynamical

systems, and that an understanding of their

functioning requires dynamical modeling.

Under the heading ‘‘systems biology’’,

modeling efforts have been revived, and

some of these efforts reflect the problems

and dilemmas encountered already in the

1970s. How far can models be simplified

and still be relevant? (Recall Einstein’s

dictum that ‘‘models should be as simple

as possible but not more so’’.) How can

models be sensibly scaled up so as to meet

the complexity revealed by the genomic

data and still be manageable? As was the

case in the 1970s with respect to ‘‘whole

ecosystem’’ modeling [57], scaling up to the

‘‘whole cell’’ level appears most feasible for

energy flow models [58–61], while large-

scale kinetic models often suffer from the

‘‘parameter curse’’. (The parameter curse

was known in the 1970s as the ‘‘Loch Ness

monster syndrome’’ after the existence of

the creature was ‘‘proven’’ through popu-

lation modeling showing that a large super-

predator was apparently missing.) One way

out of this dilemma might be to use

evolutionary models [62].

Individual-based (agent-based) bottom-

up modeling is still rare, but the detailed

agent-based models of cell division [63]

and locomotion [64] of Odell and co-

workers are promising examples. The

latter paper contains a nice discussion

contrasting such detailed modeling with

much simpler models that might equally fit

the data (even if possibly for the wrong

reasons), stressing that the power of such

detailed models is to reveal novel counter-

intuitive consequences of the modeled

interactions, as well as the surprising

bonus that if detailed local interactions

are modeled, robustness with respect to

parameter choice often ensues.

So what about the long-term goals we

set for bioinformatics in the 1970s, i.e.,

what of the ‘‘horse part’’ and the ‘‘ele-

phant’’? Some progress has been made in

modeling morphogenesis in a strict sense

(the ‘‘horse part’’), through the use of cell-

based models that incorporate some of the

physical properties of cells [65]. In partic-

ular, the simple but biophysically reason-

able representation of a cell in the CPM

modeling formalism [66,67] allows the

scaling up to ‘‘computing an organism’’

[68] (e.g., the life cycle of Dictyostelium

[69,70]). But, as Segel emphasized, ‘‘the

importance of linking changing gene

expression with cell movement means that

this achievement (i.e., computing an orga-

nism) is not the beginning of the end but

rather the end of the beginning’’ [68].

Indeed, there lies the current challenge.

Constructive models of evolution (‘‘the

elephant’’) have progressed from studies on

the evolutionary consequences of non-linear

‘‘physical’’ genotype/phenotype mapping

as exemplified by RNA folding [71–74] to

the evolved genotype/phenotype mapping

in the form of metabolic networks [75,76],

regulatory networks [77–80], and chromo-

some organization [81–83], and in ‘‘virtual

cells’’ [84,85]. These models shed light on

the evolution of robustness and evolvability,

and the interplay between neutrality and

selection. Interestingly, the surprisingly

large gene content of common ancestors

as inferred from phylogenetic analysis of

fully sequenced genomes and the major role

of gene loss in the differentiation of lineages

(cf. [86]) appear to be ‘‘normal’’ features in

constructive models of evolution (T. Cuy-

pers and P. Hogeweg, unpublished data;

[87]). A general conclusion that can be

drawn from these studies is that the multi-

level nature of biological systems makes the

evolutionary process through mutation and

selection ‘‘easier’’ because of self-organiza-

tion at many levels. However, here again

the outstanding challenge is the closer

integration of what does evolve in the

models to what did evolve in nature, as

gleaned from the bioinformatic analysis of

genomic data.

As I am writing this, a video of Nobel

laureate Paul Nurse has been posted in the

science supplement of the Guardian news-

paper [88]. Emphasizing self-organization

and the resulting counterintuitive results,

he argues that the next ‘‘quantum leap’’ in

biology will come through studying infor-

mation processing in biological systems. I

conclude by asserting that, whether bioin-

formatics in the wider sense of studying

information processing in biotic systems is

a quirk or a quantum leap, it is certainly a

mighty interesting quest!
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