Győri et al. Arthritis Rheumatol 2014

Figure S1

Pharmacological inhibition of PI3K^β blocks development of murine and human osteoclasts

A-B) Representative images of TRAP-stained wild type mouse bone marrow-derived (A) or human blood mononuclear cell-derived (B) osteoclasts cultured for 3 (A) or 14 (B) days in the presence of 50 ng/ml M-CSF, 50 ng/ml RANKL and the indicated concentrations of TGX221 or 0.1% ethanol (Vehicle). Osteoclasts were defined as TRAP-positive cells with 3 or more nuclei. Images are representative of 20 (A) or 4 (B) independent experiments. Quantification of the results are shown in Figure 1.

Győri et al. Arthritis Rheumatol 2014

Figure S2

Effect of PI3K_β inhibition on osteoclast development and function at low cytokine levels

Quantification of TRAP-stained cell cultures (A,C) of, and *in vitro* resorption pit formation (B,D) by, wild type mouse bone marrow-derived (A-B) or human blood mononuclear cell-derived (C-D) osteoclasts cultured for 3 (A), 11 (B) or 14 (C-D) days in the presence of 20 ng/ml M-CSF, 20 ng/ml RANKL and the indicated concentration (or, in (B) and (D), 50 nM) PI3-kinase inhibitors or 0.1% vehicle. Resorption pits appear as lighter areas. Osteoclasts were defined as TRAP-positive cells with 3 or more nuclei. *In vitro* resorption was defined as the percentage of resorbed area. Bar graphs show mean and SEM of data from 3 independent experiments.

Győri et al. Arthritis Rheumatol 2014

Figure S3

PI3K β is required for in vivo bone homeostasis in mice of different age groups

Quantitative micro-CT analysis of the trabecular bone architecture of wild tpe (WT) and PI3K $\beta^{-/-}$ female and male mice of the indicated ages. Data were obtained from a total of 26 mice per genotype. Error bars represent SEM. BV/TV, percent bone volume (bone volume/total volume).

Győri et al. Arthritis Rheumatol 2014

Effect of PI3KB deficiency on osteoclast development and function at low cytokine levels

A-C) Quantification of TRAP-stained cell cultures (A-B) of, and in vitro resorption pit formation on artificial hydroxyapatite (C) by, wild type (WT) and PI3K $\beta^{-/-}$ mouse bone marrow-derived osteoclasts cultured for 3 (A-B) or 11 (C) days in the presence of 20 ng/ml M-CSF and 20 ng/ml RANKL. Bar graphs represent mean and SEM of data from 3 independent experiments. **, p < 0.01; ***, p < 0.002.

Győri et al. Arthritis Rheumatol 2014

Figure S5

Snapshots of *F*-actin dynamics in wild type and $PI3K\beta^{-/-}$ osteoclast cultures Snapshots of Supplementary Videos 1 and 2 showing Lifeact-EGFP fluorescence of wild type (WT; Video 1) and $PI3K\beta^{-/-}$ (Video 2) mouse bone marrow-derived osteoclasts cultures, taken at the indicated time points after addition of RANKL. See description of the videos for further details.

Győri et al. Arthritis Rheumatol 2014

Figure S6

Pharmacological inhibition of PI3K β after osteoclast formation blocks resorptive activity and actin ring maintenance

A) Representative images and quantification of *in vitro* resorption pit formation by wild type mouse bone marrow-derived osteoclasts cultured on an artificial hydroxyapatite layer for 8 days in the presence of 50 ng/ml M-CSF and 50 ng/ml RANKL, with 50 nM TGX221 or 0.1% ethanol (vehicle) present during the last 5 days. Resorption pits appear as lighter areas. **B)** Representative fluorescence images and quantification of wild type mouse bone marrow-derived osteoclasts differentiated in the presence of 50 ng/ml M-CSF and 50 ng/ml RANKL for 3 days, treated with 50 nM TGX221 or 0.1% ethanol (vehicle) in the continued presence of cytokines for 6 additional hours, and then stained with rhodamine-conjugated phalloidin. Images in A-B are representative of 3 independent experiments. Quantitative data show mean and SEM from 3 independent experiments. **, p < 0.01; ****, p < 0.0004. C) Snapshots of Supplementary Videos 3 and 4 showing fluorescence of 0.1% ethanol (vehicle; Video 3) and TGX221 (Video 4) treated Lifeact-EGFP expressing mouse bone marrowderived osteoclasts cultures. See description of the videos for further details.

SUPPLEMENTARY VIDEOS

Győri et al. Arthritis Rheumatol 2014

Supplementary Video 1 and 2

F-actin dynamics in wild-type (Video 1) and PI3K $\beta^{-/-}$ (Video 2) osteoclast cultures

Visualization of actin ring formation by Lifeact-EGFP expressing wild type (WT) and PI3K $\beta^{-/-}$ mouse bone marrow-derived osteoclasts cultured in the presence of 50 ng/ml M-CSF and 50 ng/ml RANKL. Lifeact-EGFP: green. The videos are representative of 3 independent experiments. Time-lapse imaging was performed using an Essen BioScience IncuCyte Zoom imaging system. Supplementary videos 1 and 2 are available on the Arthritis & Rheumatology web site at http://onlinelibrary.wiley.com/doi/10.1002/art.38660/suppinfo.

Supplementary Video 3 and 4

F-actin dynamics in wild-type osteoclast cultures treated with vehicle (Video 3) and TGX221 (Video 4)

Visualization of actin ring formation by Lifeact-EGFP expressing wild type mouse bone marrowderived osteoclasts differentiated in the presence of 50 ng/ml M-CSF and 50 ng/ml RANKL for 3 days, then treated with 0.1% ethanol (vehicle) or 50 nM TGX221 in the continued presence of cytokines for an additional 8 hours. Lifeact-EGFP: green. The videos are representative of 2 independent experiments. Time-lapse imaging was performed using a Nikon BioStation IM-Q imaging system. Supplementary videos 1 and 2 are available on the Arthritis & Rheumatology web site at <u>http://onlinelibrary.wiley.com/doi/10.1002/art.38660/suppinfo</u>.