DFT Biofizika

4. Magsugárzások

Radioaktív bomlás. Alfa-, béta- és gamma-sugárzás jellemzői. Orvosi képalkotás gamma-sugárzással: gamma-kamera, SPECT, PET.

Dr. Liliom Károly karoly.liliom.mta@gmail.com 2023. 09. 19.

Az atomok alkotórészei

Particle	Symbol	Resting Energy (MeV)	Relative Charge*	Mass (kg)	Relative Mass (AMU)**		
electron	е	0.51100	1-	9.11 × 10 ⁻³¹	5.4858X10 ⁻⁴		
proton	р	938.272	1+	1.6726X10 ⁻²⁷	1.0072765		
neutron	n	939.566	0	1.6749X10 ⁻²⁷	1.0086649		
* elektronok töltése (elemi töltés): -1.602×10^{-19} C ** Atomtömeg-egység: (¹² C) atom 1/12-ed része							

Az atommag mérete

(e-)

Atommag stabilitása

Protonok között erős az elektrosztatikus taszítás! (mi tartja egyben a magot)

Kell, hogy legyen egy vonzóerő a magon belül!

Rutherford, 1911 – magerő: rövid hatótávolságú vonzóerő, független a töltéstől és erősebb a Coulomb-erőknél.

A neutron hipotézise (Chadwick 1932, Nobel-díj 1935)

N = neutronok száma nukleon = proton vagy neutron

A mag stabilitása

$$\Delta M = [Zm_p + (A-Z)m_n] - M(A,Z)$$

Tömegdefektus: az atommag tömege kisebb, mint az alkotó protonok és neutronok tömegeinek összege! A különbség Einstein tömeg-energia egyenértékűségi elvével magyarázható:

$$\Delta E = \Delta M c^2$$

A tömegdefektus = a kötési energia tömegegységben kifejezve.

Nukleonokra eső kötési energia

- Kis tömegszámoknál gyors növekedés
- Éles csúcsok párospáros magoknál:
 ⁴₂He, ¹²₆C, and ¹⁶₈O
- Maximum kb A=56

nukleon = *proton vagy neutron*

Izotópok

Görög *isos topos = azonos hely*

Egy elem izotópjai:

- azonos protonszámúak
- különböző neutronszámúak
- különböző tömegszámúak

izotóp = azonos rendszám

Mendeleev's Periodic Table of Elements

From Russia with 💿 🐵 🛈 😑 🕲 CIVICO.eu

Atommag stabilitási diagramja

- könnyű magok stabilak, ha N = Z
- nehéz magok stabilak, ha N > Z
- a protonszám növelésével növekszik a Coulomb-féle taszítóerő, így több neutron kell a mag egyben tartására
- Nincs stabil mag, ha Z > 83

Mi történik, ha a mag nem stabil?

Radioaktív bomlás

Antoine Becquerel 1903 fizikai Nobel-díj a radioaktivitás felfedezéséért

Poper and the first which the stand of the second of the s

Becquerel fotólemeze, ami a fölé tett urániumsó sugárzása miatt exponálódott. A lemez és az urániumsó közé helyezett fém máltai kereszt jól kivehető (1896).

Radioaktív bomlás

- *Radioaktivitás:* az energia spontán kibocsájtása részecskék vagy elektromágneses sugárzás útján
- a nem stabil atommagok bomlása hozza létre
- háromféle sugárzás keletkezhet

Alfa (α) részecske Béta (β) részecske Gamma (γ) sugarak

Radioaktív bomlás jellemzői

• statisztikai folyamat – az egyedi bomlások

véletlenszerűen követik egymást

• a bomlásra képes magok száma csökken az idővel

A radioaktív bomlás jellemzői

Aktivitás:
$$\Lambda = \begin{vmatrix} \Delta N \\ \Delta t \end{vmatrix}$$
 N: még el nem bomlott
magok száma
t: idő

Aktivitás = egységnyi idő alatt elbomlott magok száma egysége: becquerel (Bq) 1Bq = 1 bomlás/s

kBq,

diagnosztika

laboratóriumi gyakorlat

GBq,

terápia

Bomlástörvények

N₀: bomlásra képes (rádioaktív) magok száma t=0-kor,N: nem elbomlott magok száma egy későbbi *t időpontban*

Az aktivitás az izotóp típusától és a kezdetben jelen lévő bomlásra képes atommagok számától is függ.

Specifikus aktivitás: egységnyi tömegű izotóp aktivitása (Bq/kg)

Felezési idők a gyógyászatban

Gamma probe measuring thyroid gland radioactivity

Radioactive iodine is ingested

Jód - 131 (¹³¹I) - $T_{1/2}$ = 8 nap pajzsmirigy kezelés

TADAM.

Technécium-99m (99m Tc) – $T_{1/2}$ = 6 óra Izotóp diagnosztika

Arany-198 (¹⁹⁸Au) - $T_{1/2} = 2,7$ nap Tumorterápia

Radioaktív bomlás típusai

Radioaktív bomlás típusai

α bomlás

α részecske: a hélium atommagja, 2 proton és 2 neutron alkotja

Nehéz magok (A > 150) tipikusan α részecske kibocsájtásával bomlanak

$$\frac{226}{88}Ra \longrightarrow \frac{222}{86}Rn + \frac{4}{2}\alpha$$

α sugárzás energia-spektruma

Az energiaszintek jellemzőek a magra

α részecskék behatolási mélysége

absorber	density	alpha range
air (STP)	1.2 mg/cm^3	3.7 cm
paper (20lb)	0.89 g/cm ³	53 µm
water (soft tissue)	1.0 g/cm^3	45 µm

α sugárzás a gyógyászatban

Diagnózis: –

Célzott rákterápia a sugárzással

beültetés tűvel

monoklonális antitest

karbon nano-cső

β bomlás

1. Neutron-felesleg: β^- bomlás

β sugárzás energia-spektruma

folytonos spektrum

DE, a β részecske energiájának van maximuma!

β^- sugárzás a gyógyászatban

Diagnózis: –

Célzott terápiák: hypertiroidizmus, pajzsmirigy, prosztata és egyéb tumorok

Brachytherapy: implants into the tumor

Endovascular irradiation

β bomlás 2. Proton-felesleg: β⁺ bomlás

Annihiláció - részecske-antirészecske párok megsemmisítik egymást

1. Lendület megmaradás törvénye: két egymással átellenesen kirepülő foton születik

2. Energiamegmaradás törvénye:

$$m_e c^2 + m_p c^2 = 2 h f$$

γ bomlás – nukleonok izomerizációja

A leánymag néha gerjesztett állapotban van α vagy β bomlást követően.

A gerjesztett mag gamma-sugárzással szabadul meg fölös energiájától.

A fél-életidő néhány órától néhány száz évig változhat.

 $^{Am}_{Z}X \rightarrow ^{A}_{Z}X + \gamma$

γ sugárzás energia-spektruma

A gamma sugárzás behatolási mélysége sokkal nagyobb, mint az α vagy β részecskéké, és nagymértékben függ a gamma foton energiájától.

Gamma fotonok akár néhány száz métert is megtehetnek levegőben és könnyedén átszelik az emberi testet.

γ sugárzás a gyógyászatban

Diagnosztika: gamma kamera, SPECT (PET)

Csontfelvétel ^{99m}Tc-jelölt foszfátvegyülettel

terápia: gamma-kés

Jó abszorpcióképességű anyagból (ólom) álló csöves/lemezes rendszer.

Csak bizonyos szög alatt érkező fotonokat enged át.

A nyílások mérete, geometriája fontos az érzékenység és a feloldóképesség szempontjából.

Az emittált fény hullámhossza – 415 nm – megfelel a PMT követelményeinek.

Sajnos törékeny, hőmérsékletérzékeny, higroszkópos.

A szcintilláció befolyásolja a lokalizációt!

Tipikusan 37-91 db, 5.1-7.6 cm átmérőjű PM-cső

A keletkező feszültségimpulzusok nagysága változatos, mert

- egy γ-foton elnyelődése nemcsak egy fotoelektronsokszorozóban indukál elektromos jelet
- nem csak fotoeffektus történik

SPECT – Single Photon Emission Computed Tomography

Több gamma kamera szkennel egy-egy réteget – adatgyűjtés 360°-ban.

Az egyes szeletekben az aktivitás eloszlását a számítógép rekonstruálja.

Szinkódolt kép-rekostrukció.

Egymást követő rétegek felvétele az x-tengely mentén.

Positron Emission Tomography PET

Koincidencia -detektálás

A PET-ben alkalmazott radionuklidok természetes szerves molekulákban is megtalálható elemek izotópjai.

Isotope	β ⁺ energy (MeV)	β ⁺ range (mm)	1/2-life	Applications
¹¹ C	0.96	1.1	20.3 min	receptor studies
¹⁵ O	1.70	1.5	2.03 min	stroke/activation
¹⁸ F	0.64	1.0	109.8 min	oncology/neurology
¹²⁴ I	2.1350/1.5323	1.7/1.4	4.5 days	oncology

A rövid felezési idő miatt a felhasználás közelében kell előállítani a PETben alkalmazott izotópokat.

Jorodeoxiglükóz (FDG) – cukor-metabolizmus ir

Global cerebral metabolic rate of glucose as an indicator of consciousness. 42% of normal cortical activity represents the minimal energetic requirement for the presence of conscious awareness (middle).

Jorodeoxiglükóz (FDG) – cukor-metabolizmus ir

3D reconstruction of tissue metabolic activity from a $[^{18}F]$ -FDG PET scan. Notably, we see increased activity along the chest walls, indicating carcinoma, as well as the supraclavicular fossa.

Information like this cannot be obtained from a

PET/CT

A PET kombinálható pontosabb morfológiai képet adó módszerrel.

