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• Biomarkers capable to predict response to platinum and taxane combination treatment in ovarian tumors were identified.
• Proteins including NCOR2, TFE3, AKIP1 and AKIRIN2 were among the most significant genes validated in an independent cohort.
• The integrated database with available treatment and response data can be mined to validate new biomarker candidates.
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Objective. The first-line chemotherapy for ovarian cancer is based on a combination of platinum and taxane.
To date, no reliable predictive biomarker has been recognized that is capable of identifying patients with pre-
existing resistance to these agents. Here, we have established an integrated database and identified themost sig-
nificant biomarker candidates for chemotherapy resistance in serous ovarian cancer.

Methods. Gene arrays were collected from the GEO and TCGA repositories. Treatment response was defined
based on pathological response or duration of relapse-free survival. The responder and nonresponder cohorts
were compared using the Mann-Whitney and receiver operating characteristic tests. An independent validation
set was established to investigate the correlation between chemotherapy response for the top 8 genes. Statistical
significance was set at p b 0.05.

Results. The entire database included 1816 tumor samples from 12 independent datasets. From analyzing all
the genes for platinum + taxane response, we identified the eight strongest genes correlated to chemotherapy
resistance: AKIP1 (p = 1.60E-08, AUC = 0.728), MARVELD1 (p = 2.70E-07, AUC = 0.712), AKIRIN2 (p =
2.60E-07, AUC = 0.704), CFL1 (p = 8.10E-08, AUC = 0.694), SERBP1 (p = 8.10E-07, AUC = 0.684), PDXK
(p = 1.30E-04, AUC = 0.634), TFE3 (p = 7.90E-05, AUC = 0.631) and NCOR2 (p = 1.90E-03, AUC = 0.611).
Of these, the independent validation confirmed TFE3 (p = 0.012, AUC = 0.718), NCOR2 (p = 0.048, AUC =
0.671), PDXK (p = 0.019, AUC = 0.702), AKIP1 (p = 0.002, AUC = 0.773), MARVELD1 (p = 0.044, AUC =
0.675) and AKIRIN2 (p = 0.042, AUC = 0.676). An online interface was set up to enable future validation and
ranking of new biomarker candidates in an automated manner (www.rocplot.org/ovar).

Conclusions.We compiled a large integrated databasewith available treatment and response information and
used this to uncover new biomarkers of chemotherapy response in serous ovarian cancer.

© 2020 Published by Elsevier Inc.
Department of Bioinformatics,

.hu (B. Győrffy).
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1. Introduction

Ovarian cancer is the secondmost common cause of death related to
gynecologic malignancies in women. In 2018, the number of new cases
worldwide was estimated to be 295,414 and the number of deaths was
estimated to be 184,799 [1]. The incidence and mortality rates of the
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disease vary by region andhave shown an increasing trend in developed
countries in the last decade [2]. Almost 90% of ovarian malignancies are
of epithelial origin. From a histopathological point of view, epithelial
ovarian cancer (EOC) can be divided into serous, endometroid, mucin-
ous and clear-cell histology subtypes. Of these, high-grade serous carci-
noma is the most frequently diagnosed type [3].

Early diagnosis of ovarian cancer is difficult because most patients
are asymptomatic in the early stages, and therefore, many tumors are
detected only in the advanced stages. The recommendations of The Na-
tional Comprehensive Cancer Network (NCCN) for advanced ovarian
cancer treatment comprise surgery followed by systemic chemo-
therapy using cisplatin/paclitaxel (www.nccn.org). Although more
than 80% of the patients initially respond to first-line treatment,
most will have a recurrence within two years that progresses to ad-
vanced disease [4].

The most established biomarker for ovarian cancer is serum CA125,
which is the gold standard for disease monitoring. A correlation be-
tween CA125 and chemotherapy response was proposed earlier [5],
but it has not yet reached clinical application. Conversely, there is cur-
rently no validated predictive biomarker for ovarian cancer, although
there is an urgent need to identify patients who are unlikely to benefit
from platinum and taxane combination therapy.

To deliver personalized treatment decisions, a clear understanding
of the exact mechanisms of drug resistance is required; resistance can
be caused by multiple independent mechanisms, some of which have
been extensively studied in patient samples and cell culture model sys-
tems. We and others have shown previously that resistance mecha-
nisms against platinum-based agents include decreased drug
accumulation [6], drug inactivation by glutathione and glutathione S-
transferases [7], increased autophagy [8], and increased levels of DNA
repair [9]. Taxane resistance can result from overexpressed efflux
pump genes [10], modulated microtubule dynamics [11], altered ex-
pression of β tubulin isotypes [11] and enhanced epithelial-to-
mesenchymal transition [12]. Multiple studies have described gene ex-
pression alterations that are associated with drug resistance in ovarian
cancer. Higher expression of IGF2BP [13], LIN28B [13] and MSLN [14]
were reported in paclitaxel- and platinum-treated nonresponder tis-
sues. Upregulated CHI3L1 inhibited paclitaxel-induced apoptosis in
nonresponder cell lines [15]. The higher expression of FOXM1 increased
cell cycle progression in platinum-treated drug-resistant tissue samples
[16,17]. In cisplatin-resistant cell lines, upregulated CSF-1R [18] and
downregulated OXCT1 facilitated the inhibition of apoptosis [19,20].

In the present study, our aim was to establish a framework to un-
cover and validate gene expression-based predictive biomarkers of
therapy resistance by mining large, publicly available transcriptomic
datasets of ovarian cancer patients with known treatment protocols
and available clinical follow-up data. Furthermore, we also performed
an independent sample collection of ovarian cancer specimens and per-
formed RT-PCR using RNA from these tumor samples to validate the
best performing biomarker candidates for predicting platinum and
taxane resistance.
2. Methods

2.1. Database construction

We searched GEO (http://www.pubmed.com/geo) and TCGA
(http://cancergenome.nih.gov) repositories to identify datasets suitable
for the analysis. In this search, the keywords “ovarian”, “cancer”, “treat-
ment”, “response”, and “survival” were used. Only publications with
available raw microarray gene expression data, clinical treatment, re-
sponse or survival information, and at least 20 patients were included.
Only three closely related microarray platforms, GPL96 (Affymetrix
HG-U133A), GPL570 (Affymetrix HG-U133 Plus 2.0), and GPL571/
GPL3921 (Affymetrix HG-U133A 2.0), were considered.
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2.2. Preprocessing

First, the raw .CEL files wereMAS5 normalized in the R statistical en-
vironment (www.r-project.org) using the Affy Bioconductor library
[21]. This was followed by a second scaling normalization to set the av-
erage expression of the 22,277 identical probe sets in each chip to 1000
[22]. Normalized gene expression and clinical data were integrated into
a PostgreSQL relational database.
2.3. Statistical computations

The tumor samples were divided into responder and nonresponder
cohorts based on their clinical characteristics. For cases with available
pathological response (PR), we classified the patients as published by
the authors (PR dataset). If the pathological response was not available,
the classificationwas based on the duration of the progression-free sur-
vival. Those with a relapse-free survival shorter than six months were
compared to those without a relapse before six months. Patients cen-
sored before six months were excluded from the analysis.

The two cohorts were compared using the Mann-Whitney test and
the receiver operating characteristic test in the R statistical environment
(www.r-project.org) using Bioconductor libraries (www.bioconductor.
org). The cutoff for p values was set at p b 0.05. False Discovery Rate
(FDR) was calculated using the q value package (http://github.com/
jdstorey/qvalue), and only results with a FDR b 5% were accepted as
significant.
2.4. Clinical sample collection

In total, 81 fresh frozen ovarian tissue sampleswere collected during
surgery from patients with ovarian cancer at the National Institute of
Cancer (OOI) Budapest, Hungary (OOI set). Samples were stored in
RNA later (Thermo Fisher Scientific, USA) at−80 °C until RNA isolation.
An institutional ethics committee (Országos Onkológiai Intézet, Intézeti
Kutatásetikai Bizottság - OOI IKEB) approved the study with the refer-
ence number OOI-Ált-9444-1/2013/59. Anonymized clinical data were
obtained from medical and pathological records.
2.5. RNA isolation and cDNA synthesis

Total RNA was isolated using the AllPrep DNA/RNA Kit (Qiagen,
Germany) following the manufacturer's protocol. The quality of RNA
was assessed by UV spectrophotometry (NanoDrop, Thermo Fisher Sci-
entific, USA). For quantitative PCR analysis, 1 μg of total RNAwas reverse
transcribed in a final volume of 20 μl using the Maxima First Strand
cDNA Synthesis Kit for RT-qPCR, and dsDNase was used to remove any
potential DNA contamination (Thermo Fisher Scientific, USA).
2.6. Quantitative PCR analysis

Quantitative PCR was performed in a CFX384 real-time PCR instru-
ment (Bio-Rad Laboratories, USA) using the SensiFAST SYBR No-ROX
Kit (Bioline Reagents, UK). Primers were designed for the same exons
targeted by the microarray probes of each selected gene. GAPDH and
ACTBwere employed as endogenous controls for normalization. The re-
actionswere performed in 10 μl containing 1 μl of cDNA, diluted 25-fold,
and 250 nM of each primer. After an initial denaturation step for 2 min
at 95 °C, 36 cycles with three stepswere performed: 95 °C for 10 s, 62 °C
for 10 s and 72 °C for 20 s. Each sample was measured in triplicate, and
the threshold cycle (Ct) was determined for all genes using Bio-Rad CFX
Maestro software (Bio-Rad Laboratories, USA). Relative gene expression
values were analyzed using the ΔCt method.
ers of platinum and taxane resistance using the transcriptomic data of
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2.7. Validation

For the validation, we selected a set of the best performing genes
from the taxane- and platinum-treated samples. Similar to the discov-
ery set, the Mann-Whitney test and ROC analyses were performed to
compare the expression of each investigated gene in the responder
and nonresponder cohorts. Statistical significance was set at p b 0.05.
Fig. 1. Overview of the ovarian cancer databases included in the study. (A) Flowchart for the s
National Institute of Oncology.
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3. Results

3.1. Database

Overall, 10,283 patients in 134 GEO and TCGA datasets met our
search criteria (Fig. 1A). After eliminating sampleswith insufficient clin-
ical data, we maintained 1816 ovarian cancer samples. Of these,
etup of the discovery datasets. (B) Clinical characteristics of each included dataset. OOI =
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Table 2
Overview of treatments administered to patients included in the discovery datasets.

Treatment Relapse-free survival at 6 months Pathological response

Platinum 1209 961
Taxane 888 851
Platinum & taxane 871 834
Docetaxel 97 99
Paclitaxel 869 828
Gemcitabine 126 121
Topotecan 118 108
Avastin 50 47
Total 1347 1022
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pathologic response was available for 1022 patients (PR dataset) and
relapse-free survival at 6 months was obtainable for 1347 patients
(RFS dataset). We selected the RFS dataset for further analysis because
this included the larger patient cohort. Aggregate clinical characteristics
of the cohorts are presented in Table 1 and Fig. 1B.

3.2. Treatment cohorts

Most of the patients in the RFS cohort received platinum therapy
(n = 1209), and more than 50% of the patients were administered
taxane (n = 888). Other groups of patients received gemcitabine
(n = 126), topotecan (n = 118), paclitaxel (n = 869), docetaxel
(n = 97), or Avastin (n = 50). Treatment cohorts in the RFS and PR
datasets are summarized in Table 2.

3.3. Predictive biomarker candidates

We filtered for patientswho received platinumand taxane combina-
tion therapy. Furthermore, as the number of available samples from
endometrioid (n = 24) and clear cell (n = 8) histology subtypes were
limited, we retained only samples with serous histology and then per-
formed the Mann-Whitney test and ROC analysis for all genes in the
RFS datasets. The top eight genes with the highest area under the
curve (AUC) values were selected for further validation. The selected
genes were AKIP1 (p = 1.60E-08, AUC = 0.728), MARVELD1 (p =
2.70E-07, AUC = 0.712), AKIRIN2 (p = 2.60E-07, AUC = 0.704), CFL1
(p = 8.10E-08, AUC = 0.694), SERBP1 (p = 8.10E-07, AUC = 0.684),
PDXK (p = 1.30E-04, AUC = 0.634), TFE3 (p = 7.90E-05, AUC =
0.631) and NCOR2 (p = 1.90E-03, AUC = 0.611). Detailed results are
presented in Table 3 and Fig. 2.

An independent analysis was performed using only patients with
platinum monotherapy. Although there were 335 such patients, only
137 of these had RFS data, and only 109 of these were measured using
the plus2 arrays. In this cohort, AKIP1 (p = 4.01E-03, AUC = 0.693),
MARVELD1 (p = 1.96E-03, AUC = 0.708), AKIRIN2 (p = 4.48E-04,
AUC = 0.735) and CFL1 (p = 8.02E-03, AUC = 0.667) reached signifi-
cance while SERBP1, PDXK, TFE3, and NCOR2 were not significant.

3.4. Validation

The top potential biomarker candidates from the in-silico analysis
were selected for further validation by RT-PCR in the OOI cohort of ovar-
ian cancer patients. Table 4 lists the primer sequences used in the PCR
validation. From the 81 fresh-frozen ovarian tissue samples, we ex-
cluded 15 samples due to insufficient follow-up data (n = 7), lack of
chemotherapy (n = 1) and conflicting histological diagnosis (n = 8).
From the remaining 66 samples, 47 samples were categorized as re-
sponders, and 19 samples were categorized as non-responders based
on the RFS duration as described in the validation cohorts. All patients
Table 1
Summary of the clinical characteristics of the datasets included in the analysis. PCR: pathologic

Dataset Platform Sample size Histology

PCR RFS 6 Serous/endometrioid/clear cel

GSE14764 GPL96 80 80 68/7/−
GSE15622 GPL571 35 35 31/−/−
GSE26712 GPL96 – 291 79/8/6
GSE30161 GPL570 55 53 45/−/−
GSE32062 GPL570 10 10/−/−
GSE51373 GPL570 28 28 28/−/−
GSE63885 GPL570 – 75 70/1/−
GSE65986 GPL570 – 51 16/14/22
GSE9891 GPL570 230 272 252/19/1
GSE23603 GPL96 28 – 28/−/−
GSE3149 GPL96 116 – −/−/−
TCGA GPL3921 450 452 452/−/−
Total 1022 1347 1079/49/29
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in the validation set had cancer of the serous subtype. The clinical char-
acteristics of the specimens are presented in Fig. 1C.

In the validation, six genes reached a statistically significant correla-
tion with response. All biomarker candidate genes were overexpressed
in the nonresponder phenotype. These were TFE3 (p = 0.012, AUC =
0.718), NCOR2 (p = 0.048, AUC = 0.671), PDXK (p = 0.019, AUC =
0.702), AKIP1 (p = 0.002, AUC = 0.773), MARVELD1 (p = 0.044,
AUC= 0.675) and AKIRIN2 (p= 0.042, AUC= 0.676). Detailed results
for these genes are presented in Fig. 3.

The relative expression values in comparison to GAPDH and ACTB,
including clinical information for each sample, are presented in Supple-
mental Table 1.

3.5. Web application

Finally, to enable the independent validation of our results and the
analysis of novel gene candidates, the previously established ROC Plot-
ter web application [23] was extended to include the ovarian cancer
datasets described above. The registration-free web interface can be
accessed at www.rocplot.org/ovar.

4. Discussion

Chemoresistance is a key problem in cancer treatment and is re-
sponsible for the poor prognosis of ovarian cancer patients. The identi-
fication of drug resistance-related genes enabling personalization of
treatment selection is of utmost importance. The primary aim of this
study was to identify potential predictive biomarkers that could predict
the response to the most commonly used combination treatment, plat-
inum and taxane, in serous ovarian tumors. Second, we aimed to vali-
date these findings in an independent set of clinical specimens. Our
final taskwas to extend our freely accessible online tool to enable the in-
vestigation of gene expression-based predictive biomarkers in ovarian
cancer.

Overall, we identified eight genes capable of classifying platinum
and taxane drug responses. The independent validation results
al response; RFS: relapse-free survival at 6 months.

Grade Stage Debulk

l 1/2/3/4 I/II/III/IV Proportion of optimal debulking

3/23/54/− 8/1/69/2 93%
−/7/28/− −/−/26/9 –
7/33/67/− 20/11/59/17 44%
2/19/30/− −/−/50/5 43%
−/3/7/− −/−/6/4 40%
−/−/−/− −/5/19/3 –
−/9/48/18 −/2/63/10 20%
−/−/−/− 23/4/11/9 –
19/93/156/− 21/17/208/22 70%
2/8/18/− −/−/−/− 48%
4/55/53/1 −/1/95/19 54%
5/60/378/1 11/24/349/66 73%
42/310/839/20 83/65/955/166 59%

ers of platinum and taxane resistance using the transcriptomic data of
0.01.006

http://www.rocplot.org/ovar
https://doi.org/10.1016/j.ygyno.2020.01.006


Table 3
Top 8 gene expression-based biomarker candidates of platinum+ taxane combined chemotherapy response in the RFS discovery dataset.

Affymetrix ID Gene symbol n AUC AUC p-value Mann-Whitney test p-value False discovery rate Median fold change

242515_x_at AKIP1 336 0.728 1.60E-08 3.40E-07 1.68E-05 1.37
223095_at MARVELD1 336 0.712 2.70E-07 2.20E-06 1.62E-04 1.64
223144_s_at AKIRIN2 336 0.704 2.60E-07 4.90E-06 1.59E-04 1.77
200021_at CFL1 818 0.694 8.10E-08 8.10E-08 7.21E-05 1.47
227369_at SERBP1 336 0.684 8.10E-07 4.00E-05 3.22E-04 1.48
218019_s_at PDXK 818 0.634 1.30E-04 2.20E-04 8.16E-03 1.46
212457_at TFE3 818 0.631 7.90E-05 3.00E-04 5.82E-03 1.24
207760_s_at NCOR2 818 0.611 1.90E-03 2.00E-03 4.36E-02 1.22
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confirmed 6 of these genes. Some of these genes, namely, TFE3, NCOR2,
PDXK and MARVELD1, were previously related to platinum- or taxane-
based therapy resistance. Of these, TFE2, NCOR2, and PDXK were not
significant in the platinum monotherapy cohort suggesting that these
are markers linked to response to the combination therapy.

The translocation of the transcription factor E3 (TFE3)with different
fusion partners was described in renal carcinomas and alveolar soft part
sarcomas [24]. It is overexpressed in head and neck squamous carci-
noma treated with cisplatin-based chemotherapy. Higher expression
of TFE3 indicated a poorer response to treatment [25]. Consistent with
these findings, we observed elevated expression of TFE3 in the nonre-
sponder cohort.

The nuclear receptor corepressor 2 (NCOR2) is the repressor of the
pregnane X receptor (PXR). PXR is a nuclear receptor that plays a role
in themetabolism of different xenobiotics and endobiotics andwas pre-
viously linked to cancer pathogenesis [26]. NCOR2-overexpressing head
and neck cancer cell lines showed increased resistance to paclitaxel, cis-
platin and 5-FU [27]. Our results also suggest that elevated expression of
NCOR2 is one of the top biomarkers of resistance.

Pyridoxal kinase (PDXK) is the key gene in the synthesis of
pyridoxal-5-phosphate during B6 vitaminmetabolism. Previous studies
reported the key role of B6 vitamin in the uptake of cisplatin in A549
lung cancer cells, and high PDXK expression was associated with better
disease outcome in lung cancer patients; however, the latter finding
was unrelated to the patient's chemotherapy treatment [28]. In our
Fig. 2. ROC curves and boxplots of the top four biomarker candidates involved in platinum +
histology and those treated with platinum and taxane combined therapy were included in the

Please cite this article as: J.T. Fekete, Á.Ősz, I. Pete, et al., Predictive biomark
1816 ovaria..., Gynecologic Oncology, https://doi.org/10.1016/j.ygyno.202
clinical cohort, the elevated expression of PDXK was associated with a
nonresponder phenotype, which seems to be a new feature of PDXK.

The Marvel domain containing 1 (MARVELD1) protein is a mem-
ber of the MARVEL domain containing proteins. These proteins are
involved in cell cycle progression, chemotactic activity and endocy-
tosis. Higher expression of MARVELD1was associated with increased
chemosensitivity to epirubicin and 10-hydroxycamptothecin in he-
patocellular carcinoma cells [29]. The inhibition of MARVELD1 re-
pressed paclitaxel and cisplatin resistance in lung cancer cells [30].
In contrast, elevated MARVELD1 expression inhibited arsenic-
trioxide-induced apoptosis in liver cancer cells and was significantly
related to worse overall survival of liver cancer patients [31]. Here,
higher expression of this protein in ovarian cancer samples increased
chemoresistance to platinum and taxane combination therapy.

Two additional biomarker candidate genes (AKIP1 and AKIRIN2)
have not been previously reported as potential resistance genes in
platinum- and taxane-based chemotherapy. The A-kinase interacting
protein 1 (AKIP1) is a nuclear protein that plays a role inNF-κB signaling
[32]. Previously, higher expression of AKIP1 was described in breast
cancer samples, and the higher expression correlated with worse sur-
vival [33]. In another study, AKIP1 was identified as a regulator of
WNT/β-catenin signaling activation, which promotes themetastatic re-
lapse of hepatocellular carcinoma [34]. Our results confirm the positive
relationship between high AKIP1 expression and poor prognosis. Akirin
2 (AKIRIN2) is another nuclear protein that functions in B cell activation
taxane resistance identified using the RFS at 6 months cohort. Only samples with serous
analysis.

ers of platinum and taxane resistance using the transcriptomic data of
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Table 4
Quantitative PCR primers for the selected and reference genes.

Gene symbol NCBI nucleotide sequence ID Primer sequence (5′ → 3′) Length (bp)

TFE3 NM_006521.5 F: GCTCCGAATTCAGGAACTAGAAC 102
R: CTGTCAGAAGCCGAAGTCGT

NCOR2 NM_006312.5 F: CCACCCTCTGTCTCCTCAGT 122
R: AGGGGGTTGTAGGGGAATGG

PDXK NM_003681.4 F: ATCCAGTGTGCAAAAGCCCA 186
R: CAGGGACAAACACGGAGACA

AKIP1 NM_020642.3 F: TTCTGTCACTGTGGGCTCAA 85
R: GAAGACCAGGTCCACGCTTT

MARVELD1 NM_031484.3 F: GGGCCTGTAAGGTTTCCATGT 148
R: CCCCTACTGCCAGTGAAGAC

CFL1 NM_005507.2 F: AAGAAGCTGACAGGGATCAAGC 138
R: GCCAGAAGGGGCTCACAAA

AKIRIN2 NM_018064.3 F: ACAGCCTGCTAGCTATGTTTCA 182
R: AACCAGTTGCTGCTGCCTAA

SERBP1 NM_001018067.1 F: GCAGGACCGACAAGTCAAGT 79
R: GCATCCAGTTAAGCCAGAGC

GAPDH NM_002046.6 F: AAATCAAGTGGGGCGATGCT 86
R: CAAATGAGCCCCAGCCTTCT

ACTB NM_001101.5 F: CTGTGGCATCCACGAAACTA 200
R: AGTACTTGCGCTCAGGAGGA

6 J.T. Fekete et al. / Gynecologic Oncology xxx (xxxx) xxx
and humoral immune responses [35]. In a previous study, the gene was
overexpressed in human cholangiocarcinoma cell lines and tumor tis-
sues, and its elevated expression was associated with cell proliferation,
Fig. 3. ROC curves and boxplots of RT-PCR-validated genes in the serous histology subtype clin
taxane combined therapy were retained for validation.
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migration, invasion, and angiogenesis [36]. AKIRIN2 knockdown led to
decreased chemoresistance in temozolomide-treated glioblastoma cell
lines [37]. Based on our study, the elevated expression of AKIRIN2 may
ical specimens. Only samples with serous histology and those treated with platinum and

ers of platinum and taxane resistance using the transcriptomic data of
0.01.006

ncbi-n:NM_006521.5
ncbi-n:NM_006312.5
ncbi-n:NM_003681.4
ncbi-n:NM_020642.3
ncbi-n:NM_031484.3
ncbi-n:NM_005507.2
ncbi-n:NM_018064.3
ncbi-n:NM_001018067.1
ncbi-n:NM_002046.6
ncbi-n:NM_001101.5
https://doi.org/10.1016/j.ygyno.2020.01.006


7J.T. Fekete et al. / Gynecologic Oncology xxx (xxxx) xxx
also have an impact on the response to platinum-taxane combination
therapy.

The genes MARVELD1, AKIP1 and AKIRIN2 were also significant
when performing the analysis in the platinummonotherapy treated co-
hort – these could be markers of resistance for both treatment settings.
However, a limitation of this analysis is that only 109 patients were
available for the platinum monotherapy cohort and an independent
analysis in patients who received taxane only was not possible due to
a very low sample number (n = 17).

There are two notable limitations of the database utilized as a
discovery set in our study: first, the number of patients is limited
for some treatment cohorts, including those with targeted or
second-line therapy. For this reason, we could only select the
platinum-taxane combination for further validation. Second, the
database contains incomplete clinical annotations for some of the
samples. These limitations can be abridged by a future extension
of the database.

In summary, we collected 1816 ovarian cancer gene expression mi-
croarray samples with clinical information, including treatment and re-
sponse data. Mining of this database has the potential to identify new
predictive biomarkers, as we demonstrated here for platinum and
taxane combination treatment. We validated a limited set of biomarker
candidates by RT-PCR and identified six genes (TFE3, NCOR2, PDXK,
AKIP1, MARVELD1 and AKIRIN2) with significant correlations with
chemoresistance. The extended online analysis platform available at
www.rocplot.org/ovar enables the discovery, validation and ranking of
further predictive biomarker candidates in ovarian cancer.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ygyno.2020.01.006.
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