

Medizinische Fakultät Institut für Anatomie, Histologie und Embryologie

Institutsleiter

Dr. med. Alán Alpár Professor

Mikroskopische Anatomie und Embryologie II. - Unterrichtsgang - DM-II. Gr1-20. 2025/2026.

Woche	Vorlesung, Vortragende <u>online</u>	Praktikum Histologie Räume (City Corner Gebäude, Üllői út 25.) Dick geschrieben (z.B. 40): Prüfungspräparat K: Konsultationspräparat
1. Woche 08.09-12.09	1. Nervengewebe - Dávid 2. Entwicklung des Neuralrohres, kraniokaudale und dorsoventrale Differenzierung. Aufbau des ZNS - Csillag	Nervengewebe; Histologie des PNS: 40, 41, 203, 204, 205, 206, 6 (Demonstrationspräp.: 200, 201, 202, 207, 208)
2. Woche 15.09-19.09	3. Entwicklung der Neuralleiste und vom Plakodektoderm -Altdorfer 4. Struktur des Rückenmarkes. Reflexbogen des Rückenmarkes, Rezeptoren, Effektoren, Reflexe - Magyar	Mikroskopie des ZNS: Konsultation I. Rückenmark+Reflexe: 211, 209 (Demonstrationspräp.: 212, (+K), 210)
3. Woche 22.09-26.09	5. Hirnbahne - Neurotransmitter - neuronale Regelungsnetzwerke - "connectomics" ZNS – Alpár 6. Zentrales vegetatives Nervensystem. Biogene aminerge und cholinerge Neurone und Hirnbahne. "Ascending reticular activating system" – Alpár	Nervengewebe; Histologie des ZNS Konsultation II. Hirnrinde: 213 (+K), 214,215 (+K) (K: 216,219)
	7.Das somatosensible System. Spinale und trigeminale sensible Bahnen, die Rolle vom Thalamus, sensible Hirnrinde – Altdorfer 8. Viscerosensibles System. Die Rolle von Formatio reticularis, Thalamus, Insula und der präfrontalen Hirnrinde in der viszeralen Wahrnehmung. – Dávid	Mikroskopie des zentralen Nervensystems: Konsultation III. Beschprechung der sensiblen Systeme
5. Woche 06.10-10.10	9. Neuroanatomie des Schmerzes. Ausstrahlender Schmerz. Mechanismus der zerebralen Hemmung von Schmerzempfindung - Magyar 10. Neuroanatomie der Motorik I. motorische Hirnareale, Bewegungsplanung und -programmierung, motorische Hirnbahne - Csillag	Mikroskopie des zentralen Nervensystems: Konsultation IV. Beschprechung der motorischen Systeme
6. Woche 13.10- <mark>18.10</mark> <mark>am Samstag:</mark> Unterricht	11. Neuroanatomie der Motorik II. Die Rolle der Basalganglien in der Durchführung von Bewegungen Altdorfer 12. Neuroanatomie der Motorik III. Die Rolle des Kleinhirnes in der Koordination der Bewegungen. Die Steuerung des Gehens - Altdorfer	Kleinhirn: 217,218 Vorbereitung für die Demonstration am Samstag: Demonstration für Gr7-12 (ab 12.30) und für Gr13,15,16,17 (ab 14.45) weil 23-24.10 Feiertage sind
7. Woche 20.10-22.10 <mark>23-24.10: Feiertage</mark>	13. Das viszeromotorische System. Die Steuerung des Wasserlassens. Spezielle vegetative Reflexe – Bódi 14. Äußeres Ohr, Mittelohr - Baksa	1. Demonstration (Mikroskopie des ZNS, Embryologie des ZNS und PNS)
8. Woche 27.10-31.10	15. Innenohr. Knöchernes und häutiges Labyrinth. Entwicklung des Hörorgans - Baksa 16. Organon spirale Corti, Hörbahn. Neuroanatomie des Hörens, Verstehens und des Sprechens - Altdorfer	Histologie des Hörorgans: 220,221 Demonstrationspräp.:32

Medizinische Fakultät Institut für Anatomie, Histologie und Embryologie

Institutsleiter

Dr. med. Alán Alpár Professor

9. Woche 03.11-07.11	17. Struktur des Labyrinthes, vestibuläre Bahne. Kontrolle des Gleichgewichtes, der Kopf- und Augenbewegungen und der Körperhaltung. Positionserkennung – Csillag 18. Die Hüllen des Augapfels. Tunica fibrosa, Uvea. Tränendrüse, Tränenapparat – Szabó	Histologie des Sehorgans I.: 230,232 Demonstrationspräp.: 231
10. Woche 10.11-14.11	19. Retina. <i>Entwicklung des Sehorgans -</i> Szabó 20. Neuroanatomie des Sehens. Sehbahn, Erkennung. Neuroanatomie des Lesens und Verstehens. – Alpár	Histologie des Sehorgans II.: 233,234 Demonstrationspräp.: 235 Besprechung: Sehbahn
11. Woche 17.11-21.11	21. Endokrines System I. Hypothalamus, hypothalamo- hypophyseales System, Epiphyse - Lendvai 22. Endokrines System II. Schilddrüse, Nebenschilddrüse, Nebenniere - Bódi	Haut: 207,64,12 Endokrine Organe I.: 240 (+K),241 Demonstrationspräp.: 242,243
12. Woche 24.11-28.11	23. Neuroanatomie von Energiehaushalt, Nahrungsaufnahme, Geschmackssinn, Riechen. Die Struktur und Bedeutung des Belohnungssystems. – Alpár 24. Limbisches System. Amygdala, Hippocampus - Dávid	2. Demonstration: Sinnesorgane, Haut, hypothalamo-hypophyseales System. Endokrine Organe II.: 210, 245, 246, 142a, 247 181a-b (Wiederholung) Demonstrationspräp.:244
13. Woche 01.12-05.12	25. Neuroanatomie von Tagesrythmus, Schlaf- und Wachzustand, Erholung und Aktivation - Alpár 26. Verhalten, Motivation: Neuroanatomie der Emotion, Empathie, Allgemeinbefinden, Aggressivität, Angst, Druck und Depression – Alpár	Limbisches System. Hippocampus: 250 (+K) (K: 251)
14. Woche 08.12-12.12	27. Kognitive Hirntätigkeiten: Neuroanatomie von Entschluss, Planung, Aufmerksamkeit, Lernen, Gedächtnis, Persönlichkeit, Bewusstsein, Kreativität – Alpár 28. Histologie – Zusammenfassung - Altdorfer	Wiederholung

Medizinische Fakultät Institut für Anatomie, Histologie und Embryologie

Institutsleiter
Dr. med. Alán Alpár
Professor

04.09.2025

Mikroskopische Anatomie und Embryologie II. (DM II.)

Lehrstoff des Semesters:

- 1) Histologie und Embryologie des Nervensystems, Histologie, Anatomie und Embryologie der endokrinen Organe und der Sinnesorgane
- 2) Mikroskopische Neuroanatomie

Bekanntmachung

Die Teilnahme an den Praktika ist **obligatorisch**. Sie dürfen nur an **25% der Praktika (inkl. Demonstrationen) fehlen**, das Nachholen von Praktika ist nicht möglich. <u>Verspätung</u> über 5 Min zählt als Fehlstunde.

Die Demonstrationen (obligatorische Testate) sind nur an den angegebenen Terminen zu absolvieren. Die

Bedingungen für den Erwerb der Semesterunterschrift:

- 1) Die aktive Teilnahme an mindestens 75% der **Praktika** ist obligatorisch. Die Teilnahme an den Praktika wird von den Praktikumsleitern kontrolliert und registriert.
- 2) Erfolgreiche Demonstrationen: Studierende müssen <u>die beiden Demonstrationen erfolgreich</u> bestehen (mind. mit einer Note "genügend", 2), um die Semesterunterschrift zu erhalten. Während des Semesters bestehen zwei Möglichkeiten, die unerfolgreiche/n Demonstration/en zu verbessern. Die Ergebnisse der Demonstrationen werden auf Ihren Karteiblättern eingetragen.

Demonstrationen (obligatorische Testate):

- 1. <u>Demonstration:</u> 6. Studienwoche, am Samstag, am 18.10.2025 für Gr7-12 ab 12.30 und für Gr13,15,16,17 ab 14.45 ---- alle anderen Gruppen: 7. Studienwoche, am Anfang des Praktikums; elektronisch, im Moodle-System. Thema: Mikroskopie des ZNS, Entwicklung des Nervensystems.
 - Nachholdemonstrationen: 8. Woche und 13-14. Wochen.
- **2.** <u>Demonstration</u> (12. Studienwoche, elektronisch, im Moodle-System, während des Praktikums), Thema: Sinnesorgane, Haut, hypothalamo-hypophyseales System.
 - Nachholdemonstrationen: 13. Woche und 14. Woche.

Medizinische Fakultät Institut für Anatomie, Histologie und Embryologie

Institutsleiter

Dr. med. Alán Alpár Professor

Thema des Rigorosums: Lehrstoff des 1. und des 2. Semesters von Mikrosk. Anatomie und Embryologie I. und II.

Das Rigorosum beginnt mit einer schriftlichen theoretischen Prüfung (im Moodle-System). Nach dem Test setzt sich die Prüfung mit einem mündlichen, praktischen Teil mit einer Frage aus der Mikroskopie des zentralen Nervensystems (*Fragenkatalog: unten*) und 2 histologischen Präparaten und dazu gehörigen theoretischen Fragen fort.

Studienwettbewerb

An dem Wettbewerb dürfen alle Studierenden teilnehmen, die mit einem (nicht aufgerundeten) Durschnitt der Demonstrationsnoten 4,0 oder besser erhalten haben. Wenn der schriftliche Wettbewerb mit einer 4 (ab 80%) oder 5 (ab 90%) bestanden wird, kann diese Note als Teilnote im Rigorosum anerkannt werden (=**Befreiung vom** Computertest). Dadurch besteht das Rigorosum nur aus einem mündlichen Teil (ohne Computertest).

Sollte das Rigorosum nicht bestanden (Note 1) werden, bleibt der Bonus für alle Wiederholungsprüfungen *im aktuellen Semester* bestehen (das gilt bis zum Ende der Prüfungsphase).

Dr. med. Károly Altdorfer außerordentlicher Professor, Unterrichtsbeauftragter

Medizinische Fakultät Institut für Anatomie, Histologie und Embryologie

Institutsleiter

Dr. med. Alán Alpár Professor

"Mikroskopische Anatomie und Embryologie2" – DM II.

1. Demonstration

Termin:

6. Studienwoche, am Samstag, am 18.10.2025 für Gr7-12 ab 12.30 und für Gr13,15,16,17 ab 14.45;

alle anderen Gruppen: 7. Studienwoche, am Anfang des Praktikums.

Ort: in den Histologie-Räumen. Elektronisch, im Moodle-System.

Thema: Mikroskopie des ZNS, Entwicklung des Nervensystems.

Ablauf: Die Demonstration wird elektronisch (an den Computern der Histologie-Räume) über das E-Learning-System durchgeführt (vergessen Sie Ihr **Kennwort von SeKa** nicht!).

Die Demo besteht aus (Single-Choice und Multiple-Choice) Fragen (theoretische Fragen und Fragen mit schematischen Abbildungen auch). Das Ergebnis wird am Ende des Tests sofort vom Computer berechnet. Bestehensgrenze: 50 %.

Um den **Stoff der Demonstration zu üben**, werden wir Übungsfragen /Probedemo/ zum Moodle-System hochladen.

Themenliste - Mikroskopische Anatomie und Embryologie II. – 1. Demonstration

Nervensystem, Entwicklung der Sinnesorgane

- o Frühentwicklung und Differenzierung des Neuralrohres
- o Entwicklung der Hirnbläschen
- o Entwicklung des peripheren Nervensystems; Neuralleiste, Plakode

Mikroskopie des zentralen Nervensystems

- o Mikroskopische Struktur des Rückenmarkes
- o Propriozeptiver Reflexbogen, Nocizeptiver Reflexbogen, Vegetative Reflexe
- o Rezeptoren und Effektoren. Interneuronale Synapsen
- o Hirnbahne Neurotransmitter neuronale Regelungsnetzwerke "connectomics" im ZNS
- zentrales vegetatives Nervensystem. Biogene aminerge und cholinerge Neurone und Hirnbahne. "Ascending reticular activating system" (ARAS)
- Das somatosensible System. Spinale und trigeminale sensible Bahnen, die Rolle vom Thalamus, sensible Hirnrinde
- Viscerosensibles System. Die Rolle von Formatio reticularis, Thalamus, Insula und der pr\u00e4frontalen Hirnrinde in der viszeralen Wahrnehmung.
- Neuroanatomie des Schmerzes
- Motorische Hirnareale, Bewegungsplanung und -programmierung, motorische Hirnbahne
- Die Rolle des Kleinhirnes und der Basalganglien in der Durchführung von Bewegungen.
 Die Steuerung des Gehens
- Das viszeromotorische System. Die Steuerung des Wasserlassens. Spezielle vegetative Reflexe.

Medizinische Fakultät Institut für Anatomie, Histologie und Embryologie

Institutsleiter
Dr. med. Alán Alpár
Professor

"Mikroskopische Anatomie und Embryologie2" – DM II.

2. Demonstration

Termin: 12. Studienwoche, nur am Anfang des Praktikums (schriftlich, elektronisch im Moodle e-learning System); in den Histologie-Räumen (vergessen Sie Ihr **Kennwort von SeKa** nicht!).

Thema: Sinnesorgane, Haut, hypothalamo-hypophyseales System (Vorlesungen, Praktika, theoretische Kenntnisse).

Die Demonstration besteht aus (Single-Choice und Multiple-Choice) Fragen über die, während der Praktika gelernten Organe/Präparate und dazu gehörende theoretische Fragen; es gibt Textfragen und Fragen mit histologischen *Mikrofotos* oder schematischen Abbildungen auch). Das Ergebnis wird am Ende des Tests sofort vom Computer berechnet. Bestehensgrenze: 50 %.

Um den **Stoff der Demonstration zu üben**, werden wir *Probedemo* zum Moodle-System hochladen.

Themenliste - Mikroskopische Anatomie und Embryologie II. – 2. Demonstration

- o Ohrmuschel, äußerer Gehörgang; Trommelfell
- o Mittelohr (Paukenhöhle: Wände, Verbindungen, Blutversorgung, Nerven), Gehörknöchelchen (Struktur, Verbindungen)
- o knöchernes und häutiges Labyrinth
- o Corti-Organ, Cochlea; Hörbahn
- o Entwicklung des Hörorgans
- o Neuroanatomie des Hörens, Verstehens und Sprechens
- o Rezeptoren des Vestibularsystems; Vestibularkerne und -bahnen
- o Vestibulookulare Reflexe; Koordination von Kopf- und Augenbewegungen; Blickzentren
- o Aufbau des Auges
- o Zirkulation des Kammerwassers
- o Augenlid, Tränenapparat
- o Retina
- o Entwicklung des Sehorgans
- o Sehbahn, visueller Kortex, Sehreflexe (Pupillenlichtreflex, Korneareflex)
- o Neuroanatomie des Erkennens, Lesens und Verstehens
- o Hypothalamo-Hypophyseales System
- o Haut, Hautanhangsgebilde

Mit freundlichen Grüßen

Dr. med. Károly Altdorfer außerordentlicher Professor, Unterrichtsbeauftragter

Medizinische Fakultät Institut für Anatomie, Histologie und Embryologie

Institutsleiter

Dr. med. Alán Alpár Professor

PRÄPARATELISTE - DM 2025

40. Peripherer Nerv (Quer- und Längsschnitt) – N. ischiadicus – Mensch – HE

41. Ganglion coeliacum – Mensch - Silberimprägnierung nach Bielschowsky

203. Ganglion submandibulare (Glandula submandibularis) – Mensch – HE

204. Rückenmark + Spinalganglion - menschlich - Luxol - Fastblau + Kresylviolett

205. Motorische Endplatte – Cholinesterase Enzymhistochemie

206. Meissner-Körperchen – Fingerbeerenhaut – Mensch – Immunhistochemie für Neurofilament + H

6. Vater-Pacini-Lamellenkörperchen – Fußsohlenhaut – Mensch – HE

Demonstrationspräparate, Übungspräparate:

200. Peripherer Nerv (Quer- und Längsschnitt) – N. ischiadicus – Mensch – Trichrom

201. Peripherer Nerv – N. medianus (Querschnitt) – Mensch - Osmiumtetroxid

202. Peripherer Nerv – Remak-Bündel – Fingerbeerenhaut – Mensch – Immunhistochemie für Neurofilament + H

207. Meissner-Körperchen – Hohlhandhaut – Mensch – HE

208. Meissner-Körperchen – Fingerbeerenhaut – Mensch - Elastikafärbung nach Verhoeff

211. Rückenmark – Luxol Fastblau + Kresylviolett 209. Muskelspindel – M. lumbricalis – Mensch – HE

Demonstrationspräparate, Übungspräparate:

210. Muskelspindel – Glandula thyroidea und M. sternothyroideus – Mensch – HE

212. Rückenmark – Bielschowsky-Silberimpregnierung

213. Großhirnrinde (Cortex cerebri), Gyrus prae- und postcentralis – Mensch – Kresylviolett

214. Großhirnrinde (Cortex cerebri) – Mensch –Imprägnierung nach Bodian

215. Substantia nigra - Mesencephalon – Mensch - Luxol Fastblau + Kresylviolett (Präparat von Dr. M. Kálmán)

Demonstrationspräparate, Übungspräparate:

216. Substantia nigra - Mesencephalon – Mensch - Luxol Fastblau + Kresy

219. Medulla oblongata – Mensch – Picrosirius-grün Färbung

217a. Kleinhirnrinde – Mensch – HE

218. Kleinhirnrinde (Cortex cerebelli) – Katze – Neurofilament – Immunhistochemie (Präparat von Dr. J. Takács)

Demonstrationspräparat, Übungspräparat:

217b. Kleinhirnrinde – Mensch – pan-neuronale Neurofilament-ImmunfärbungHE

220. Cochlea – Meerschweinchen – Semidünnschnitt – Toluidinblau

221. Macula – Meerschweinchen – Semidünnschnitt – Toluidinblau

Demonstrationspräparat, Übungspräparat:

32. Ohrmuschel (Auricula) – Mensch –Elastikafärbung nach Verhoeff

Medizinische Fakultät Institut für Anatomie, Histologie und Embryologie

Institutsleiter

Dr. med. Alán Alpár Professor

230. Augapfel - Mensch - HE

232. Retina – Mensch – Semidünnschnitt – Toluidinblau (Präparat von Dr. A. Szabó)

Demonstrationspräparat, Übungspräparat:

231. Augapfel – Hund – HE

233. Augenlid – Mensch – HE

234. Glandula lacrimalis – Mensch – HE

Demonstrationspräparate, Übungspräparate:

235. Nervus opticus – Mensch – HE

207. Hohlhandhaut – Mensch – HE (Präparat von Dr. M. Kálmán)

64. Digitus minimus manus – Nagel - Arteriovenöse Anastomose – Mensch – HE

12. Kopfhaut – Mensch – HE (Präparat von Dr. M. Kálmán)

240. Hypothalamus – Mensch – Chrom-Hämatoxylin nach Gömöri

241. Hypophyse – Mensch – Chrom-Hämatoxylin nach Gömöri (Präparat von Dr. M. Kálmán)

Demonstrationspräparate, Übungspräparate:

242. Hypophyse – Mensch – HE (Präparat von Dr. M. Kálmán)

243. Hypophyse – Mensch – ACTH – Immunohistochemie + H

210. Schilddrüse - Mensch - HE

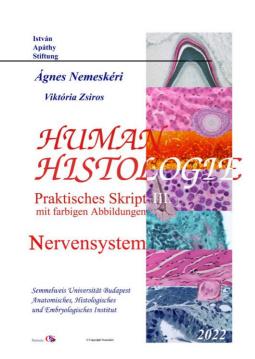
245. Nebenschilddrüse - Mensch - HE

246. Nebenniere – Mensch – HE

142a. Pankreas - Mensch - HE

247. Epiphyse (Corpus pineale) - Mensch - HE

181a-b. Corpus luteum - Mensch - HE


Demonstrationspräparat, Übungspräparat:

 $244.\ Schilddr\"{u}se-Mensch-Calcitonin-Immunohistochemie+H$

250. Hippocampus + Plexus choroideus - Mensch - Kresylviolett

Demonstrationspräparat, Übungspräparat:

251. Bulbus olfactorius – Mensch – Kresylviolet

Medizinische Fakultät Institut für Anatomie, Histologie und Embryologie

Institutsleiter

Dr. med. Alán Alpár Professor

Mikroskopische Anatomie und Embryologie II. DM II. 2025/2026.

Mündliche Rigorosumsfragen

Entwicklung des Nervensystems

- 1. Frühentwicklung und Differenzierung des Neuralrohres
- 2. Entwicklung der Hirnbläschen
- 3. Entwicklung des peripheren Nervensystems; Neuralleiste, Plakode

Mikroskopie des zentralen Nervensystems

- 1. Gehirnnervkerne
- 2. Mikroskopische Struktur des Rückenmarkes
- 3. Propriozeptiver Reflexbogen, nocizeptiver Reflexbogen
- 4. Zentrales vegetatives Nervensystem, vegetative Reflexe
- 5. Biogene aminerge und cholinerge Neurone und Hirnbahne.
- 6. Thalamus (Kerne, Funktionen, Verbindungen)
- 7. Das somatosensible System. Spinale und trigeminale sensible Bahnen
- 8. Viscerosensibles System. Die Rolle von Formatio reticularis, Thalamus, Insula und der präfrontalen Hirnrinde in der viszeralen Wahrnehmung.
- 9. Neuroanatomie des Schmerzes, ausstrahlender Schmerz. Mechanismus der zerebralen Hemmung von Schmerzempfindung
- 10. Motorische Hirnareale, Bewegungsplanung und -programmierung, motorische Hirnbahne
- 11. Die Rolle des Kleinhirnes und der Basalganglien in der Durchführung von Bewegungen.
- 12. Das viszeromotorische System. Die Steuerung des Wasserlassens. Spezielle vegetative Reflexe.
- 13. Hörbahn. Neuroanatomie des Hörens, Verstehens und des Sprechens
- 14. Vestibuläre Bahne. Kontrolle des Gleichgewichtes, der Kopf- und Augenbewegungen und der Körperhaltung.
- 15. Neuroanatomie des Sehens. Sehbahn, Erkennung. Neuroanatomie des Lesens und Verstehens.
- 16. Limbisches System. Amygdala, Hippocampus
- 17. Neuroanatomie von Tagesrythmus, Schlaf- und Wachzustand, Erholung und Aktivation
- 18. Verhalten, Motivation: Neuroanatomie der Emotion, Empathie, Allgemeinbefinden, Aggressivität, Angst, Druck und Depression
- 19. Kognitive Hirntätigkeiten: Neuroanatomie von Entschluss, Planung, Aufmerksamkeit, Lernen, Gedächtnis, Persönlichkeit, Bewusstsein, Kreativität.
- 20. Neuroanatomie von Energiehaushalt, Nahrungsaufnahme, Geschmackssinn, Riechen.

Medizinische Fakultät Institut für Anatomie, Histologie und Embryologie

Dr. med. Alán Alpár Professor

<u>Arbeits-, Umwelt- und Infektionsschutz</u>

Allgemeine Regelung:

- Essen und Trinken im Lernräumen (Hörsaal, Seziersaal, Histologie, Museum) sind verboten
- 2. Beim Husten und Niesen verwenden Sie Papiertaschentücher. Gebrauchte Papiertaschentücher sollen in den Abfall.
- 3. Kappen, Hüten sind in den Histo-Räumen verboten.

Spezielle Verordnungen im Histopraktikumssaal

1. **Kaugummi, Essen und Trinken** im Histopraktikumssaal sind verboten.

<u>Brandschutzregeln:</u> Beim vollständigen Beachten der Brandschutzregelung der Universität sind die nachfolgenden örtlichen Regeln zu beachten:

- 1. Auf dem ganzen Gelände des Institutes ist das Verwenden von offenem Feuer und **das Rauchen VERBOTEN!**
- 2. Im Brandfall hört man eine Alarmklingel. Beim Feueralarm soll das Gebäude organisiert, unter Verfolgung der Anweisungen der/des Praktikumsleiter/s auf dem vorgeschriebenen Fluchtweg schnellstmöglich verlassen werden. Fluchtwege sind auf jedem Stock an mehreren Orten gekennzeichnet.
- 3. Im Brandfall Aufzug nicht benutzen!
- 4. Im Brandfall die obere Türe des Hörsaales können mit dem im neben der Tür eingestellten Feuerkisten befindlichen Schlüssel aufgemacht werden.
- 5. Alle Brandfälle bzw. darauf hinweisende Ereignisse sollen unverzüglich der/dem Praktikumsleiter gemeldet werden.
- 6. Die eingestellten elektrischen Instrumente (z.B. Computer, Mikroskop) dürfen nicht an einem anderen Ort eingesteckt werden. Ausschließlich einwandfrei funktionierende elektrische Einrichtungen dürfen betrieben werden.