(Se<mark>jt-</mark>sejt kölcsönhatások, extracelluláris mátrix és integrinek az embrióban) Epitheliális morfogenezis: a lamina basalis szerepe a sejtmigrációban és a hám-lefűződésben

Semmelweis Egyetem, ÁOK, Anatómiai, Szövet- és Fejlődéstani Intézet Dr. Kocsis Katalin 2019.10.30.

Hámok Sejt-sejt kapcsoló struktúrák

During embryogenezis, simple epithelial sheets are converted into functional three-dimensional tissues and organs. Epithelial architecture: Epithelia form the covering of all body surfaces with specialized function. - filtration – kidney tubules absorption – intestine - secretion – exocrine glands

Az egy rétegű hámból, hogyan alakul ki a 3 dimenziós, funkcióval rendelkező szövet? Hámszövet:

s<mark>zor</mark>osan egymás mellett elhelyezkedő sejtekből áll, amelyeket sejtkapcsoló struktúrák kapcsolnak <mark>öss</mark>ze.

A test külső és belső felszínén mindenhol, specializálódott funkcióval ellátott szövettípus: - filtráció – vese - abszorpció – bélhám - szekréció – exokrin mirigyek

Polarity of the cell and cell-cell contacts Sejtek polaritása, sejtkapcsoló struktúrák

Tight junction/Zonula occludens:

Zonula adherens: MECHANIKAI KAPCSOLAT

A kompaktizáció - E-cadherin expressio fontossága

E-kadherin=uvomorulin: 54,000 D sejtadhéziós molekula

Desmosoma: erős mechanikai kapcsolat

Desmosomális rendellenességek

Naxos-szindróma

-gyapjas haj -palmoplantar keratoma -kardiomyopathia

(desmoglobin, plakoglobin mutáció)

http://commons.wikimedia.org/wiki/Image:Naxos_disease.jpg

Pemphigus vulgaris

Desmoglein1 Desmoglein3

Functions of ECM

Presents

growth

factors

to their

controls

spatial

surface

facilitates

crosstalk

between

growth factor

receptors and

ECM receptors

molecules

distribution of

ECM-bound

receptors

Functions as adhesive substrate

- tracks to direct migratory cells
- concentration gradients for haptotactic migration

Provides structure

- defines tissue boundaries
- provides integrity and elasticity to developing organs
- degraded by invasive cells during development and disease

Extracellular matrix (ECM)

- a) kollagének
- b) proteoglikánok, hyaluronsav
- c) elasztin
- d) glikoproteinek, pl.: fibronectin, laminin, tenascin

- Sequesters and stores growth factors
- allows for spatio-temporal regulation of factor release
- organizes morphogen gradients
- mediates release of factors in the presence of appropriate cell-mediated forces or proteolytic degradation

Senses and transduces mechanical signals

- defines mechanical properties permissive/ instructive to cell differentiation
- activates intracellular signaling through interaction with cell-surface receptors
- engages cytoskeletal machinery and synergizes with growth factor signaling

Cells secure their survival and regulate growth and differentiation through adhesive interaction with surrounding extracellular matrix

http://www.matrixome.co.jp/en/about/sekiguchi

Molecular complexity of the extracellular matrix: There are more than 300 proteins localized in the extracellular matrix

Extracellular Matrix as a Determinant of Tissue Architecture and Cellular Function ADAMTS OBRICK and many others..... Proliferation

Laminins Collagens Cell SPARC Thrombospondin Tenascin Fibrillin Proteoglycans Nidogen Fibronectin Agrin Fibulin Apoptosis Reelin MAEG Nephronectin

Examples of positive and negative regulation of differentiation by ECM proteins in vitro

Materia and successful first to a

Deferment

			Matrix component	Centype	Reference
			POSITIVE Laminin	epithelial conversion of kidney mesenchyme	Klein et al., 1988
				neurite outgrowth	Sanes, 1989
				albumin synthesis by hepatocytes	Caron 1990
				milk protein production by mammary epithelial cells	Streuli et al., 1991
				tubule formation by endothelial cells	Kubota et al., 1988 Grant et al., 1989
NEGATIVE Fibronectin	myoblast fusion	Podleski et al. 1979		process formation by osteoblasts	Vukicevic et al., 1990
Toroneeun		von der Mark and Öcalan, 1989		myoblast fusion von der Mark an Öcalan, 1989	von der Mark and Öcalan, 1989
	keratinocyte terminal differentiation	Adams and Watt, 1989	Thrombospondin	neurite outgrowth	Neugebauer et al., 1991 O'Shea et al., 1991
	chondrocyte differentiation	on West et al., 1979 Fibronectin	Fibronectin	ervthroblast differentiation	Patel and Lodish, 1987
	adipocyte differentiation	Spiegelman and Ginty, 1983	Collagens	mammary epithelial morphogenesis	Hall et al., 1982 Lee et al., 1985
				colonic epithelial morphogenesis	Pignatelli and Bodmer, 1988
				tubule formation by endothelial cells	Montesano et al., 1983
			Vitronectin	neurite outgrowth	Neugebauer et al., 1991
			Tenascin	neurite outgrowth	Chiquet, 1989
				chondrocyte differentiation	Mackie et al., 1987

Factors Influencing the Migration of Crest Cells

Permissive molecules

<u>dissociation of lamina</u> <u>basalis of neural tube:</u> plasminogene activator

ECM components: laminin, fibronectin, tenascin, collagene typ. IV

<u>Cell adhesion molecules:</u> (cadherin)

<u>Growth factors:</u> Mash1, endothelin-3, neurogenin, GDNF. Inhibitory molecules

F-spondin (thrombospondin)

ECM components: chondroitin-sulphate, aggrecan, versican, collagen type IX.

> Ephrin-proteins (Ephrin B2 and B1)

on Eph receptors

Thrombospondin is expressed in the anterior section of sclerotomes, and cooperates with fibronectin and laminin to promote NC migration

Figure 14-17 A, Inductive interactions during tooth development. Molecules associated with the green arrow represent components of the signal from dental lamina ectoderm to underlying neural crest mesenchyme; molecules associated with the *violet arrow* are signals from the dental papilla to the overlying ectoderm; molecules associated with the *pink arrow* are signals from the enamel knot to dental papilla. B, In vitro experiment showing that a bead releasing BMP-4 can induce dental mesenchyme to express specific markers (Msx-1, Msx-2, and Egr-1).

Carlson: Human Embryology and Developmental Biology, 4th Edition. Copyright © 2009 by Mosby, an imprint of Elsevier, Inc. All rights reserved.

- Nephron fejlődése során expresszálódó molekulák (szövettenyészet)
- Molecules expressed during the development of the nephron

Carlson: Human Embryology and Developmental Biology, 4th Edition. Copyright © 2009 by Mosby, an imprint of Elsevier, Inc. All rights reserved.

Proximalis kanyarulatos csatorna falának fejlődése Proximal convoluted tubule: development of the wall

Figure 15-26 Molecular aspects of outgrowth and branching of the respiratory tree. A, The tip of an elongating respiratory duct. FGF-10 secretion in the mesenchyme stimulates the growth of the tip of the epithelial duct toward it. B, The prelude to branching. Inhibition of FGF-10 signaling at the tip of the duct leads to stabilization of that area. C, Cleft formation.

	Туре	Molecular Formula	Polymerized Form	Tissue Distribution
FIBRIL-FORMING (FIBRILLAR)	I	$[\alpha l(l)]_2 \alpha 2(l)$	fibril	bone, skin, tendon, ligaments, cornea, internorgans (accounts for 90% of body collagen)
	11	[a1(II)] ₃	fibili -	cartilage, intervertebral disc, notochord, vitreous humor of the eye
	III	[al(III)]3	tibril	skin, blood vessels, internal organs
	V	$[\alpha 1(V)]_2 \alpha 2(V)$	fibrii (with type I)	as for type I
	XI	a1(XI)a2(XI)a3(XI)	fibri! (with type II)	as for type II
FIBRIL-ASSOCIATED	IX	al(IX)a2(IX)a3(IX) with type II fibrils	ateral association.	cartilage
	IIX	[al(XII)]3 with some type I fibril:	lateral association	tendon, ligaments, some other tissues
NETWORK-FORMING	ΓV	[a1(IV)2a2(IV)	sheetlike network	basal laminae
	VII	(a1(VII)]3	anchoring fibrils	beneath stratified squamous epithelia

Kollagének

Туре	Notes	Gene(s)
l	This is the most abundant collagen of the human body. It is present in scar tissue, the end product when tissue heals by repair. It is found in tendons, skin, artery walls, the endomysium of myofibrils, fibrocartilage, and the organic part of bones and teeth.	<u>COL1A1, COL1A2</u>
Ц	Hyaline cartilage, makes up 50% of all cartilage protein. <u>Vitreous humour</u> of the eye.	COL2A1
Ш	This is the collagen of <u>granulation tissue</u> , and is produced quickly by young fibroblasts before the tougher type I collagen is synthesized. <u>Reticular fiber</u> . Also found in artery walls, skin, intestines and the uterus	<u>COL3A1</u>
M	basal lamina; eye lens. Also serves as part of the filtration system in capillaries and the glomeruli of nephron in the kidney.	<u>COL4A1, COL4A2, COL4A3, COL4A3, COL4A4, COL4A5, COL4A6</u>
V	most interstitial tissue, assoc. with type I, associated with placenta	COL5A1, COL5A2, COL5A3
VI	most interstitial tissue, assoc. with type I	COL6A1, COL6A2, COL6A3
VII	forms anchoring fibrils in dermal epidermal junctions	COL7A1
VIII	some <u>endothelial</u> cells	COL8A1, COL8A2
IX	FACIT collagen, cartilage, assoc. with type II and XI fibrils	COL9A1, COL9A2, COL9A3
X	hypertrophic and mineralizing cartilage	<u>COL10A1</u>
XI	cartilage	COL11A1, COL11A2
ХІІ	FACIT collagen, interacts with type I containing fibrils, <u>decorin</u> and glycosaminoglycans	<u>COL12A1</u>
XIII	transmembrane collagen, interacts with integrin a1b1, <u>fibronectin</u> and components of basement membranes like <u>nidogen</u> and <u>perlecan</u> .	<u>COL13A1</u>
XIV	FACIT collagen	COL14A1
XV	-	COL15A1
XVI	-	COL16A1
<u>XVII</u>	transmembrane collagen, also known as BP180, a 180 kDa protein	<u>COL17A1</u>
<u>XVIII</u>	source of <u>endostatin</u>	COL18A1
XIX	FACIT collagen	COL19A1
XX	-	COL20A1
XXI	FACIT collagen	COL21A1
XXII	-	COL22A1
XXIII	MACIT collagen -	COL23A1
XXIV	-	COL24A1
XXV	-	COL25A1
XXVI	-	EMID2
XXVII	-	COL27A1
XXVIII	-	COL28A1
XXIX	epidermal collagen	<u>COL29A1</u>

Kollagének

Kollagének

Artist: Julian Voss-Andreae Sculpture shown: "Unraveling Collagen", 2005, stainless steel, height: 11'3' (3.40 m).

Location: Orange Memorial Park Sculpture Garden, City of South San Francisco, CA. Right panel shows the top.

Proteoglycan	Approximate Molecular Weight of Core Protein	Type of GAG Chains	Number of GAG Chains	Location	Functions
Aggrecan	210,000	cnondroitin sulfate + keratan sulfate	~130	cartilage	mechanical support; form:
Betaglycan	36,000	chondroitin sulfate dermatan sulfate	/ i	cell surface and matrix	binds TGF-β
Decorie	40,000	chondroitin sulfate dermatan sulfate	1	widespread in connective tissues	binds to type I collagen fibrand TGF-β
Perlecan	600,000	heparan sulfate	-15	basal laminae	structural and filtering fund in basal lamina
Sergiycin	20,000	chondroitin sulfate/ dermatan -ulfate	10-15	secretory vesicles in white blood ceils	helps to package and store secretory molecules
Syndecan-1	32,000	chondroitin difate + heparan sulfate	1–3	fibroblast and epithelial cell	cell adhesion; binds FGF

Table 19-3 Som. Common Proteoglycans

Proteoglikánok

Table 3.3	Repeating disaccharide units of the most common glycosaminoglycans	
	of matrix proteoglycans	

Glycosaminoglycan	Repeating disaccharide unit ^a	Distribution	
Hyaluronic acid	Glucuronic acid-N- acetylglucosamine	Connective tissues, bone, vitreous body	
Chondroitin sulfate	Glucuronic acid-N- acetylgalactosamine sulfate	Cartilage, cornea, arteries	
Dermatan sulfate	[Glucuronic or iduronic acid]- N-acetylgalactosamine sulfate	Skin, heart, blood vessels	
Keratan sulfate	Galactose-N-acetylglucosamine sulfate	Cartilage, cornea	
Heparan sulfate	[Glucuronic or iduronic acid]- N-acetylglucosamine sulfate	Lung, arteries, cell surfaces	

Figure 6.32.

Fibronectin in the developing frog embryo. (A) Fluorescent antibodies to fibronectin show fibronectin deposition as a green band in the *Xenopus* embryo during gastrulation. The fibronectin will orient the mesoderm movements of the cells. (B) Structure and binding domains of fibronectin. The rectangles represent protease-resistant domains. The fibroblast-binding domain consists of two units, the RGD site and the high-affinity site, both of which are essential for cell binding. Avian neural crest cells have another site that is necessary for them to migrate on a fibronectin substrate. Other regions of fibronectin enable it to bind to collagen, heparin, and other molecules of the extracellular matrix.

Lamina basalis, membrana basalis

membrana basalis / lamina basalis

 a hámszövetek lamina basalishoz kötődnek.

•lamina basalis sejtmentes matrix

•a lamina basalis vékony

szerepe: sejtpolaritás befolyásolása proliferáció szabályozása szűrő funkció

Lamina basalis A hámréteg basalis felszínéhez illeszkedő vékony réteg (40-120 nm vastag, fénymikroszkóppal alig, elektronmikroszkóppal jól látható).

Ln-1	α1β1γ1
Ln-2	α2β1γ1
Ln-3	α1β2γ1
Ln-4	α2β2γ1
Ln-5	α3β3γ2
Ln-6	α3β1γ1
Ln-7	α3β2γ1
Ln-8	α4β1γ1
Ln-9	α4β2γ1
Ln-10	α5β1γ1
Ln-11	α5β2γ1

(B)

100 nm

Laminin

Fig. 3. Antibodies to laminin perturb morphogenetic movements of early chick embryo. Chick embryos at the morula stage (st. X) cultured in plain Ringer solution (A) or in Ringer solution containing laminin antibodies (B) for 4 h, then cultured for 22 h in plain egg albumen (methods as in Zagris and Chung, 1990). Photomicrographs of embryos at the end of culture. a, an atypical primitive streak; ps, primitive streak. Bar = 500 μ m.

Figure 6.35. (B)

Role of the extracellular matrix in cell differentiation. Light micrographs of rat Sertoli testis cells grown for two weeks (A) on tissue culture plastic dishes and (B) on dishes coated with basal lamina. The two photographs were taken at the same magnification, 1200×.

Figure 6.36. Basement membrane-directed gene expression in mammary gland tissue. (A) Mouse mammary gland tissue divides when placed on tissue culture plastic. Cell division genes are on, and the genes capable of synthesizing the differentiated products of the mammary gland (lactoferrin, casein, whey acidic protein) are off. (B) When presented with basement membrane that contains laminin, the genes for cell division proteins are turned off, while the gene inhibiting cell division (p21) and the gene for lactoferrin are turned on. (C, D) Mammary gland cells wrap the basement membrane about them, forming a secretory epithelium. The genes for casein and whey protein are sequentially activated.

Integrinek Sejt-matrix kapcsolatok

The integrin family.

DEAN SHEPPARD Physiol Rev 2003;83:673-686

Physiological Reviews

Figure 6.37.

Two types of activation by cell adhesion molecules. (A) Cell-substrate adhesion molecules such as integrins may transmit a signal from the cytoplasmic portion of the integrin protein to the Ras G protein through a cascade involving caveolin and Fyn proteins. (B) The FGF receptors may be "hijacked" by cell adhesion molecules and dimerized. They may be brought together by the interaction of opposite cell adhesion molecules, or the "crosslinking" of FGF receptors by the apposing cell membrane may activate their kinase domains.

Figure 1. PCR amplification of β actin, integrins β 1, β 3, β 5, α 2, α 3, α 6 and α 7, ZO-1, L selectin (L sel), P selectin (P sel), DSC-2 and E-cadherin (E-cad) from cDNAs amplified from three individual embryos (1,2,3) at each of the pronucleate (PN), 2-cell (2C), 4-cell (4C), 8-cell (8C) and blastocyst stages of development.

integrins in the preimplantation embryos

Expression of cell adhesion molecules during human preimplantation embryo development. Bloor DJ¹, Metcalfe AD, Rutherford A, Brison DR, Kimber SJ. Mol Hum Reprod. 2002 Mar;8(3):237-45.

Figure 2. Confocal images of fixed human blastocysts showing protein localization of β 1 (expanded blastocyst, d6 and cavitating embryo, d5) and β 5 integrin subunits (indicating position of inner cell mass and arrowheads showing cell surface localization of β 5 on polar trophectoderm), α 6 integrin (arrowhead indicates staining on the trophectoderm at site of hatching from the zona pellucida), E-cadherin (E-cad) and ZO-1 (arrowheads indicate localisation of signal at cell junctions). Negative control images of blastocysts incubated with rat IgG (rIgG), mouse IgG (mIgG) or rabbit preimmune serum (RPI). Scale bars = 25 µm.

Figure 1: Integrin-mediated cell adhesion to the ECM. (a) Suspended cells adhere to the surface of ECM via integrins. Some of the nascent adhesion contacts grow and form mature focal adhesions (FAs). (b) Integrins function as a heterodimer composed of α - and β -chains. (c) The cytoplasmic portions of integrins recruit multiple cellular proteins and form cross-linked platforms to regulate both the actin cytoskeleton and signal transduction.

https://www.hindawi.com/journals/ijcb/2012/310616/fig1/

Focal adhesion migrating cell

Adhesion is closely coupled with the protrusions of the leading edge of the cell (filopodia and lamellipodia). Adhesions (nascent adhesions) initially form in the lamellipodium (although adhesions may also be associated with filopodia) and the rate of nascent adhesion assembly correlates with the rate of protrusion. Nascent adhesions either disassemble or elongate at the convergence of the lamellipodium and lamellum (the transition zone). Adhesion maturation to focal complexes and focal adhesions is accompanied by the bundling and cross-bridging of actin filaments, and actomyosin-induced contractility stabilizes adhesion formation and increases adhesion size.

Reference

JThomas Parsons, Alan Rick Horwitz, Martin A Schwartz **Cell adhesion: integrating cytoskeletal dynamics** and cellular tension. Nat. Rev. Mol. Cell Biol.: 2010, 11(9);633-43 <u>PubMed 20729930</u> Epithelialis transformatio, tubulus képződés különböző fajtái

Morphological Processes of Tube Formation

Wrapping: a portion of an epithelial sheet invaginates and curls until the edges of the invaginating region meet and seal, forming a tube that runs parallel to the plane of the sheet.

Budding: a group of cells in an existing epithelial tube (or sheet) migrates out and forms a new tube as the bud extends. The new tube is a direct extension of the original tube.

Cavitation: the central cells of a solid cylindrical mass of cells are eliminated to convert it into a tube. **Cord hollowing**: a lumen is created de novo between cells in a thin cylindrical cord.

Cell hollowing: a lumen forms within the cytoplasm of a single cell, spanning the length of the cell. caption

Tubulus képződés

Types of Simple Epithelial Tubes

Tube walls are formed by polarized epithelial cells with their apical membrane surface (red) facing inward toward the lumen space, and their basal surface (green) exposed to the extracellular matrix.

(A) A multicellular tube with four curved cells in the cross-section of the tube.

(B) A unicellular tube formed by a single cell, rolled up to enclose the lumen, and sealed with an autocellular junction.

(C) A unicellular tube with the lumen in the cytoplasm of the cell. There is no autocellular junction; the tube is "seamless."

http://biology.kenyon.edu/courses/biol114/Chap14/chick_scan_EM.gif

Elágazódások (branching) különböző formái

Branching morphogenesis drives the development of multiple organs.

James W. Spurlin III, and Celeste M. Nelson Phil. Trans. R. Soc. B 2017;372:20150527

© 2017 The Author(s)

Branching morphogenesis

(A) The tracheal system of a stage 15 embryo, as visualized with a luminal antibody, 2A12.

(B) In white, preparation of the lung of an adult human using acryl polyester to fill in the airways. View from behind. The left lung has been filled less than the right half. Courtesy of H. Kurz, Anatomical Museum, University of Basel, Switzerland. In red, the descending aorta is visible.
(C) Collecting ducts of an adult kidney derived from the branched ureteric bud,

filled with colored polyester. Courtesy of H. Kurz, Anatomical Museum, University of Basel, Switzerland.

(D) Branching in the mammary gland of a mouse in early pregnancy.

Branching Morphogenesis at the Cellular Level

Schematic representation of a typical branching process. In many cases, a subgroup of cells (schematically illustrated in black in [B]) of a preexisting epithelium (A) is assigned to undergo branching morphogenesis by the expression of a specific subset of transcription factors and/or signaling mediators. As a consequence of this determination step, these cells invaginate or form a primary bud (C). Branch formation is then initiated in the invaginated (or budded) structure (from [D] to [E]) and the branching process can be reiterated numerous times (F). In addition, lateral branches can be induced. After the branching process, complex processes lead to the development of specialized terminal structures, a process that is different in different branched organs. Because the development of the vascular system does not in general follow the scheme outlined in this figure, we have excluded in this review a description of how the branched aspects of the arterial and venous network arises.

Branching Morphogenesis at the Subcellular Level

Control of branch formation at the subcellular level in the Drosophila tracheal system. The FGF receptor tyrosine kinase Breathless is expressed in all tracheal cells. The activation of the receptor in the cells at the tip of the outgrowing branches, presumably due to their proximity to the localized source of the FGF ligand Branchless (blue), leads to the formation of filopodial cell extensions (A). Cells at the tip of the bud subsequently form broader cell extensions (B), and ultimately move toward the Bnl source (C and D). In (E) is shown a confocal image of a tracheal branch of a stage 14 Drosophila embryo expressing a membrane-bound version of GFP specifically in tracheal cells. One can clearly see that only the two leading cells produce filopodia (see also Sutherland et al. 1996 and Ribeiro et al. 2002).

Development of mammalian's lung

The underlying principle is again a mesenchymal-epithelial cell-cell interaction mediated by FGF. Epithelial cells, expressing *FGF receptor*, respond to the secretion of FGF from nearby mesenchyme by bud formation and bud extension towards the FGF source. Exposure of the branch tip to high concentrations of FGF induces the expression of secondary genes in the tip such as bone morphogenetic protein 4 (*BMP4*), sonic hedgehog (*Shh*) and a mammalian sprouty ortholog (*Sprouty 2*), thus, turning the tips of the bronchial branches into signaling centers. BMP4 inhibits epithelial cell proliferation limiting branch extension. Shh is proposed to inhibit *FGF10* expression in the mesenchyme near the tip, which splits *FGF10* expression promoting the next round of branching and Sprouty2 (like drosophila *sprouty*) restricts branching to the tip of the branch.

Figure 15-26 Molecular aspects of outgrowth and branching of the respiratory tree. A, The tip of an elongating respiratory duct. FGF-10 secretion in the mesenchyme stimulates the growth of the tip of the epithelial duct toward it. B, The prelude to branching. Inhibition of FGF-10 signaling at the tip of the duct leads to stabilization of that area. C, Cleft formation.

