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Abstract

Movement disorders including Parkinson’s disease and dys-
tonia are caused by neurological dysfunction, typically result-
ing from the loss of a neuronal input within a circuit.
Neuromodulation, specifically deep brain stimulation (DBS),
has proven to be a critical development in the treatment of
movement disorders. Continuing efforts aim to improve DBS
techniques, both in how they exert their effects and in the ef-
ficacy of the mechanism involved in eliciting those effects.
While optogenetic stimulation is currently infeasible in human
patients, opto-DBS research provides an indispensible avenue
to understand the mechanisms of DBS therapeutic and
adverse effects. We review the benefits of cell-type specific
manipulations in understanding the root cause of movement
disorders and how DBS might optimally combat those causes.
We also explore new circuit-inspired applications of DBS
suggested by thorough, high-throughput optogenetic tech-
niques. Maximizing the efficacy and outcome of DBS requires
a multi-tiered approach; research employing optogenetics
provides the specificity and feasibility to uncover the mecha-
nisms that will help realize these gains in patient care.
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Introduction

Parkinson’s disease (PD) is a movement disorder
caused by the neurodegeneration of dopamine neurons
in the substantia nigra pars compacta (SNc). The
primary targets of SNc¢ dopamine neurons are the basal
ganglia — a series of subcortical nuclei that play an
important role in motor control. Neurosurgical in-
terventions targeted to the basal ganglia are highly

effective at managing the motor symptoms of PD,
particularly a neuromodulatory intervention called
deep brain stimulation (DBS) [1,2]. DBS was first
approved by the FDA for the treatment of PD for over
twenty years. Since then, it has been explored as a
treatment for a number of other neurological and
neuropsychiatric ~ disorders including depression,
addiction, Tourette syndrome, dystonia, and obsessive-
compulsive disorder [1,3].

In conventional DBS, high frequency electrical stimu-
lation is delivered continuously to a target brain area
through a surgically implanted stimulating electrode,
whose power source is a battery implanted under the
skin on the chest. Stimulation parameters are tuned
empirically through a trial-and-error process until
maximal therapeutic effects are achieved. This tuning
process can take many hours to complete and is partic-
ularly challenging when applied to diseases where
therapeutic benefits take weeks to appear (i.e. dystonia,
depression).

The effective implementation of DBS is also
compounded by that fact that its mechanisms of action
remain obscure [4], although several hypotheses have
been proposed [5,6]. Electrical stimulation applied
during DBS excites not only the cell bodies of neurons
surrounding the electrode but also any axons that
happen to pass by the electrode, even if their cell bodies
reside far outside the stimulation zone (Figure 1). This
means that stimulation, no matter how focal, will recruit
many different circuits, and this confound has obscured
past efforts to disambiguate therapeutic pathways from
ineffective pathways. In fact, several hypotheses
concerning the functional mechanism of DBS suggest
that the benefits arise not from the stimulation of the
target area, but of the fibers of passage — which may lead
to widespread prodromic and antidromic changes in
activity ([4,5], but see Ref. [10]).

Understanding the elusive mechanisms underlying how
(and why) DBS works is central to improving the effi-
cacy of current methods across the patient population as
well as increasing the potential for future applications.
But such advances cannot come from clinical trials
alone, where opportunities for experimentation are
limited by a variety of factors. Instead, improvements in
DBS are being driven by discoveries from research in
animal models, where neural circuits can be mapped and
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Target specificity of electrical and optogenetic stimulation. Neurons originating in two areas are depicted, each with a different downstream target
region. Left) Electrical stimulation, such as that used in DBS, will drive the activity of all cells in a given area, including those whose axons only pass
through the area, even though the brain region in which their cell bodies lie may be distant. These compound effects can make understanding stim-
ulation effects difficult and may lead to off-target, adverse effects. Right) Optogenetic stimulation targets a specific cell-type (the neuron expressing
ChR2, shown as light-green dots on the neuron’s surface), sparing other tissue in the stimulated area, including fibers of passage.

controlled with unparalleled specificity using a tech-
nique called optogenetics. Optogenetics refers to a
technique in which neural activity is controlled by
opsins, light-sensitive ion channels whose expression
can be directed towards neuronal populations of inter-
est. Often these genes are delivered with the aid of
adeno-associated viruses (AAV) whose pathogenic genes
have been removed and replaced with genes encoding
excitatory (e.g. channelrhodopsin, ChR2) or inhibitory
(e.g. halorhodopsin, NpHr) opsins [11]. The use of viral
vectors for gene therapy and optogenetics in humans is
an emerging field of research, but its widespread use is
still many years away.

In this review, we will focus on the application of
optogenetics as a research tool to inspire the next gen-
eration of DBS-based therapies. We will discuss how
knowledge about cell type diversity in the basal ganglia
has shaped clinical approaches to treating PD. We will
then describe how the use of optogenetics has provided
insights into the mechanisms of DBS and the circuits
underlying its therapeutic effects. Finally, we conclude
the review with a perspective on the future of opto-
genetics as a vital partner in the development of new
DBS-based therapies, in which neuromodulation will be
used to repair, rather than simply mask the function of
damaged circuits.

Circuit-inspired therapies for Parkinson’s
disease

Since the Nobel prize-winning discovery that PD
symptoms could be treated with dopamine replacement
therapy by the late Arvid Carlsson, levodopa (LL-DOPA)
has been the most commonly prescribed medication to
treat the symptoms of PD. L.-DOPA is initially quite
effective but over time, patients require higher and
higher doses of the drug and it causes a number of side
effects that can become more debilitating than the
disease itself. Attempts to improve the long-term man-
agement of PD have drawn inspiration from cell-based
models of basal ganglia function.

The most influential of these models has been the ‘rate
model’ which posits that motor symptoms of PD arise
through an imbalance in the activity of two parallel, but
opposing motor pathways in the basal ganglia: the pro-
kinetic ‘direct’ pathway and the anti-kinetic ‘indirect’
pathway [12,13]. A landmark discovery in 1990 [14]
found that the direct and indirect pathways originate
from genetically dissociable populations of spiny pro-
jection neurons (SPNs) in the striatum (Figure 2).
"Taking advantage of genetic differences in dopamine
receptors (D1 vs. D2) in these neurons, among other
genetic differences, researchers have aimed to directly
test the rate model of PD. In a mouse model of PD,

www.sciencedirect.com

Current Opinion in Biomedical Engineering 2018, 8:14—19


www.sciencedirect.com/science/journal/24684511

16 Neural Engineering/Novel Biomedical Technologies: Neuromodulation

Figure 2

\& STN-projecting
cortical neuron

Girasole 2018
Yitri 2016
Kravitz 2010

% DYSK-SPN

\ /
“% Di-SPN

D2-SPN

8/ PV-GPe
¢ Lhxe-GPe

Thalamus, brainstem, etc.

Sanders 2016

Gradinaru 2009

Mastro 2017

SNr/GPi

Current Opinion in Biomedical Engineering

Summary of cell types whose relevance for PD therapeutics has been explored using optogenetics. Specific neuronal subpopulations are
denoted in different colors (legend), and relevant references are listed. Basal ganglia nuclei: Str, striatum; STN, subthalamic nucleus; GPe, external
globus pallidus; SNc, substantia nigra compacta; SNr, substantia nigra reticulata; GPi, internal globus pallidus. Ctx, cortex.

optogenetic stimulation of DI1-SPNs activated the
direct pathway and was sufficient to alleviate bradyki-
nesia (slowness of movement), a canonical pathology of
PD [15] (Figure 2). In healthy mice, optogenetic
stimulation of D2-SPNs activated the indirect pathway
and was sufficient to induce bradykinesia [16]. These
results illustrate how different behavioral effects can be
achieved through the activation of different cell popu-
lations, even within the same brain region.

Clinically, however, discoveries about cell type diversity
in the striatum have been slow to translate into
improved therapies for PD because the same neurons
responsible for facilitating movement, D1-SPNs, also
contribute to levodopa-induced dyskinesias (LIDs
[17,18]), one of the most debilitating side effects of PD
medications. Nearly 90% of patients on dopamine
replacement therapy (e.g. L-DOPA) develop LIDs
within 10 years [19]. Currently there are few strategies
available to dissociate the therapeutic effects of medi-
cations from their dyskinetic side effects, but new ap-
proaches are being developed, driven in large part by
discoveries about the cellular origins of LIDs, made
possible through optogenetics. In a mouse model of

LIDs, the expression of involuntary movements caused
by L-DOPA administration was greatly reduced by
inhibiting a small, but distinct subset of D1-SPNs
(DYSK-SPNs) with  NpHr [17,20] (Figure 2).
Conversely, activation DYSK-SPNs with ChR2 was suf-
ficient to produce LIDs. These results, as well as the
discovery that DYSK-SPNs exhibit a unique electro-
physiological signature compared to other D1-SPNs
[20], suggest that different subsets of neurons are
responsible for the therapeutic vs. dyskinetic effects of
medication. This discovery opens new avenues of
research into drugs or dosing regimens that will be more
selective for the therapeutic population of D1-SPNs;
but not the dyskinetic population.

Using optogenetics to understand and
improve DBS

DBS is used as a therapy in patients whose symptoms or
side effects are so severe that they can no longer be
controlled with medication alone. The efficacy of DBS,
even under these extreme conditions, speaks to its
therapeutic potential, but the route to its continued
optimization will require insights into its neuro-
modulatory mechanisms. To this end, optogenetics
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provides an invaluable research tool uncover the circuits
that provide maximal therapeutic benefit.

In PD, the most common target for DBS is the
subthalamic nucleus (STN), so it is natural to assume
that the prokinetic effects of stimulation relate to its
effect on STN neurons. But this assumption remains an
areca of debate. An alternative hypothesis is that the
therapeutic effects of STN stimulation are driven by
fibers of passage — axons from other brain areas that
happen to pass through the STN (Figure 1). Although
nearly impossible to differentiate with electrical stim-
ulation, these hypotheses can be directly tested with
optogenetics. In 2009, a study found that when excita-
tion was restricted to STN neurons with ChR2, motor
deficits could not be ameliorated [7] (Figure 2). In
contrast, optogenctic stimulation of cortex was highly
effective. Recently, these results were confirmed and
extended by a second study that showed that ChR2-
mediated excitation, restricted only to those cortical
neurons projecting directly to the STN, is sufficient to
ameliorate motor deficits and restore healthy patterns of
neural activity in both cortex and STN [8,9,21]
(Figure 2). These and similar optogenetic approaches
provide critical insights into the neural mechanisms
underlying DBS. In some cases, this could lead to the
development of more effective stimulation parameters
or better placements for electrode. In other cases, re-
sults could identify cellular biomarkers for calibrating
DBS stimulation, or driving DBS stimulation directly
(see adaptive DBS, below).

Long-lasting therapeutic effects

A significant limitation of existing PD therapies is that
they treat the symptoms of the disease, but do not
correct the underlying circuit dysfunction responsible
for the symptoms. As a result, symptoms rapidly return
once DBS stimulation is turned off.

The need for constant stimulation creates a drain on
battery power and increased risk of side effects.
Achieving the next level in therapeutic efficacy will
require the development of strategies to repair, not
simply mask, circuit dysfunction. Evidence that such a
goal can be obtained comes from the development of a
refined DBS protocol, coordinated reset (CR-DBS),
developed based on theoretical predictions about how
synaptic learning rules can be leveraged to train a
network out of a pathologically synchronized state [22—
25]. Desynchronizing electrical pulses delivered to
distributed sites within the STN produced long-lasting
prokinetic effects that persisted for days, and possibly
weeks after stimulation in both monkeys [23,25] and
human PD patients [24]. Although CR-DBS is not yet in
widespread use clinically, its early success demonstrates
the feasibility of translating discoveries from basic
research into improved therapies for PD.
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An important lesson from CR-DBS is that it is possible
to recover motor function, despite the continued
absence of dopamine. Discovering the cellular and cir-
cuit mechanisms that support this long-lasting rescue is
of obvious therapeutic value. Recently, the use of
optogenetics has uncovered populations of neurons
within the external globus pallidus (GPe), where
targeted interventions reliably induce long-lasting
motor rescue in a mouse model of PD [26] (Figure 2).
The GPe is reciprocally coupled to the STN and under
conditions of low dopamine, this coupling has been
hypothesized to generate pathological oscillations that
impair motor function [27]. The GPe contains a number
of different cell types [28—31], but the relevance of this
neuronal diversity for therapeutic applications had not
been well explored. Optogenetic perturbations in the
GPe that globally increased or decreased the activity of
all neurons simultaneously had no effect on movement
[26]. However, restricting optogenetic interventions to
particular neuronal subpopulations in the GPe produced
dramatically different results. Optogenetic stimulation
of a subset of GPe neurons, enriched in parvalbumin
(PV-GPe), induced a long-lasting recovery of movement
that persisted until the end of experiments, over 3 h
post stimulation. A similarly long-lasting behavioral
rescue was induced by optogenetic inhibition of a
different subset of GPe neurons, enriched in lim ho-
meobox 6 (Lhx6-GPe) (Figure 2). These results suggest
that neuronal subpopulations in the GPe are important
therapeutic nodes in the basal ganglia circuit, where
targeted interventions have the potential to induce
longer-lasting motor rescue than what is currently
possible using existing strategies. Such cell-specific
modulation might be challenging to obtain with elec-
trical stimulation alone, but numerous approaches to
obtain greater cell-type specificity are being developed
including stimulation combined with pharmacology
[32], cell-specific targeting of pharmacological com-
pounds [33], and improved viral vectors to deliver genes
to specific cell types without pre-existing genetic
modifications [11].

Re-training damaged circuits

Although PD is caused by the loss of dopamine neurons,
its symptoms are thought to reflect aberrant activity in
circuits. Thus, fixing incorrect patterns of neural activity
should provide a solution. The brain is adept at adjusting
patterns of activity through synaptic plasticity. Research
across human patients and model organisms suggests
that while individual cell types may often conform to a
particular role, more nuanced and therapeutic potency
may lie in plasticity mechanisms [34,35]. Dopamine,
and the neurons and neurotransmitters it modulates,
play an important role in synaptic plasticity [36,37].
This critical function, responsible for action selection
and performance, is lost in PD [36,38]. Recent work
examined the effects of plasticity in the striatal
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projection neurons. It was discovered that bradykinesia
can be induced through cell-type specific optogenetic
stimulation-mediated plasticity in the striatum [39]
(Figure 2). Indirect pathway neurons were stimulated
during only the fastest reaches performed by a mouse.

Cumulatively, and in a dopamine-dependent manner,
the average reach speed decreased and remained
decreased for tens of minutes following removal of the
stimulation condition. To verify that this bradykinetic
effect was the result of reinforcing plasticity mecha-
nism, the stimulation paradigm was switched such that
stimulation occurred on the slowest, not fastest reaches.
In this case, indirect pathway stimulation induced a
steady #ucrease in reach speed, while direct pathway
stimulation led to a bradykinetic slowing of reach speed
that was indistinguishable from that observed previously
following indirect pathway stimulation.

There is a long history of using electrical stimulation to
induce synaptic plasticity. Adjusting stimulation fre-
quency in many cases can dictate whether synaptic
strengths are potentiated or depressed. Therefore, an
important use of DBS may be to reinforce healthy pat-
terns of circuit activity in order to put the brain back
into a healthy operating state, or to prevent it from
engaging in a pathological state. Such a strategy is
already being implemented to some extent by closed-
loop DBS paradigms where timing and patterns of
electrical stimulation are driven by the neural activity
itself. Adaptive, or responsive DBS (aDBS) promises to
improve treatment outcome while decreasing battery
use and negative side effects [40—42]. This nascent
field seeks to apply stimulation in closed-loop with
physiological or behavioral signals, although it is unclear
what hallmarks will provide the greatest benefit [43,44].
In line with the series of studies outlined above, it has
been proposed that closed-loop aDBS could make use of
synaptic plasticity mechanisms. For instance, selective
stimulation of motor cortex could alleviate bradykinesia
by invoking cortico-indirect pathway neuron synaptic
plasticity [37,45]. Others have agreed that normaliza-
tion of striatal plasticity mechanisms may yield signifi-
cant improvements in disease outcome [36,46,47].
Moreover, improving plasticity may benefit the man-
agement of symptoms that are poorly understood and
treated, like PD-related dementia [34,48]. Applied in
this manner, plasticity-focused neuromodulation could
move beyond the masking of maladaptive activity to the
reinforcement of beneficial neural patterns, thereby
correcting the root circuit dysfunctions.

Conclusion

Circuits are a function of different cell types interacting
with each other. As the fields of PD and neuro-
modulation research progress, we are reminded that
more and better information about how the components

of those circuits interact can improve our application of
neuromodulation therapies to PD. The inability to apply
optogenetics in patients is therefore not a bust, but a
boon — enabling the examination of how DBS alleviates
symptoms and how unintended effects may be reduced.
Therefore, optogenetics provides an invaluable research
tool to guide clinical and translation research towards
solutions that will repair, not merely mask, damaged
circuits, for more sustainable, effective therapies in a
wide array of disorders.
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