Relationship between Insulin Resistance and Left Ventricular Diastolic Dysfunction

Ph.D. dissertation

Gani Bajraktari, M.D.

Supervisor: Prof. Ferenc Horkay, M.D., Ph.D.

Budapest, Hungary, 2006
DM- diabetes mellitus
WHO - World Health Organization
CAD - coronary artery disease
IR - Insulin resistance
FPG - fasting plasma glucose
IGT - impaired glucose tolerance
NGT - normal glucose tolerance
HOMA-IR - Homeostasis Model Assessment of Insulin Resistance
QUICKI - Quantitative Insulin Sensitivity Check Index
MMP-matrix metalloproteinase
TIMP-tissue inhibitor of matrix metalloproteinase
SR-sarcoplasmic reticulum
Tn-C – troponin C
Tn-I – troponin I
HDL - high density lipoproteins
LDL - low density lipoproteins
VLDL - very low density lipoproteins
OGTT - oral glucose tolerance test
RIA - radioimmunoassay
E - maximal early filling velocity
A - maximal late (atrial) filling velocity
E/A - ratio between E and A waves
DT-E - deceleration time of E wave
LV - left ventricle
BMI- body/mass index
SBP-systolic blood pressure;
DBP-diastolic blood pressure
TGF-ß1- transforming growth factor beta-1
1. INTRODUCTION

1.1 Diabetes mellitus

Diabetes mellitus (DM) is one of the most prevalent metabolic disorders in the world, and in fact in many regions in the world it is actually the most common metabolic disorder (1). It comprises a group of common metabolic disorders that share the phenotype of hyperglycemia, due to absolute or relative deficiency of insulin (2, 3). It is estimated that that the number of diabetic patients worldwide has already exceeded 200 million (4). Global estimates for the year 2010 predict a further growth of almost 50% (5). In more developed societies, the prevalence of DM has reached the level of about 6% (6). Poorly controlled or undiagnosed disease may be associated with so called late complications of DM, such as accelerated atherosclerosis, blindness, renal insufficiency, stroke and vascular diseases (1, 2). The overwhelming complications of diabetes mellitus are mostly macrovascular and microvascular diseases as a consequence of accelerated atherogenesis. Cardiovascular morbidity in patients with type 2 diabetes is two to four times greater than that of non-diabetic people (5). Diabetes is also associated with a decrease of life expectancy (1, 5). These facts make diabetes a major health problem. There are two main forms of diabetes: type 1 and type 2 diabetes (2, 3). Diabetes mellitus is diagnosed on the basis of World Health Organization (WHO) recommendations from 1999, incorporating both fasting and 2-h after glucose load (75g) criteria (7).

1.2 Type 2 diabetes

Type 2 diabetes is prevalent in about 90% of diabetic individuals, previously known as non-insulin dependent diabetes mellitus (4, 5). Type 2 diabetes is characterized by the presence of two abnormalities: impairment of insulin secretion and decrease in insulin sensitivity (8). Although lifestyle and overeating seem to be the triggering pathogenic
factors, genetic elements are also involved in the pathogenesis of type 2 diabetes (9). Individuals with positive family history have 2-4 fold increased risk for type 2 diabetes, whereas 15-20% of first-degree relatives of patients with type 2 diabetes develop impaired glucose tolerance or diabetes (10). If one parent had type 2 diabetes, the lifetime risk (at age 80 years) for type 2 diabetes has been calculated to be 38% (10), whereas the prevalence of type 2 diabetes in the offspring is estimated to approach 60% by the age of 60 years, if both parents are affected (11).

1.2.1 Pathophysiology of hyperglycaemia

Insulin is the key hormone for regulation of blood glucose and, generally, normoglycaemia is maintained by the balanced interplay between insulin action and insulin secretion. Insulin was discovered in 1921 by Dr. Banting (a surgeon from Toronto), assisted by medical student Best, and under the supervision of McLeod, Professor of Carbohydrate Metabolism. They administered chilled saline extracts of pancreas intravenously to dogs rendered diabetic by pancreatectomy and observed lowering of blood glucose (12). Before this, in 1889 German scientists Minkowski and von Mering noted, from their experimental work with animals, that total pancreatectomy led to the development of severe diabetes (13). In 1928, insulin was found to be a polypeptide with its amino acid sequence identified in 1952. It is in fact a di-polypeptide, containing A and B chains respectively, linked by disulphide bridges, and containing 51 amino acids, with a molecular weight of 5802. Its iso-electric point is pH 5.5 (14). The A chain comprises 21 amino acids and the B chain 30 amino acids. The A chain has an N-terminal helix linked to an anti-parallel C-terminal helix; the B chain has a central helical segment. The two chains are joined by 2 disulphide bonds, which join the N- and C-terminal helices of the A chain to the central helix of the B chain. In pro-insulin, a connecting peptide links the N-terminus of the A chain to the C-terminus of the B chain (15). Insulin is coded on the short arm of chromosome 11 and synthesized in the β cells of the pancreatic islets of Langherhans as its precursor, proinsulin (16). Proinsulin is synthesized in the ribosomes of the rough endoplasmic reticulum (RER) from mRNA as pre-proinsulin. Pre-proinsulin is formed by sequential synthesis of a signal
peptide, the B chain, the connecting C-peptide and then the A chain comprising a single chain of 100 amino acids. Removal of the signal peptide forms proinsulin, which acquires its characteristic 3 dimensional structure in the endoplasmic reticulum. Secretory vesicles transfer proinsulin from the endoplasmatic reticulum to the Golgi apparatus, whose aqueous zinc and calcium rich environment favours formation of soluble zinc-containing proinsulin hexamers. As immature storage vesicles form from the Golgi apparatus, enzymes acting outside the Golgi apparatus convert proinsulin to insulin and C-peptide. Insulin forms zinc-containing hexamers which are insoluble, precipitating as chemically stable crystals at pH 5.5. When mature granules are secreted into the circulation by exocytosis, insulin, and an equimolar ratio of C-peptide are released. Proinsulin and zinc typically comprise no more than 6% of the islet cell secretion. Increased levels of glucose induce the “first phase” of glucose-mediated insulin secretion by release of insulin from secretory granules in the β cell. Glucose entry into the β cell is sensed by glucokinase, which phosphorylates glucose to glucose-6-phosphate (G6P), generating ATP. Closure of K+-ATP-dependent channels results in membrane depolarization and activation of voltage dependent calcium channels leading to an increase in intracellular calcium concentration; this triggers pulsatile insulin secretion. Augmentation of this response occurs by both a K+-ATP channel-independent Ca2+-dependent pathway and K+-ATP channel-independent Ca2+-independent pathways of glucose action. Other mediators of insulin release include activation of phospholipases and protein kinase C (e.g. by acetylcholine) and by stimulation of adenylyl cyclase activity and activation of β cell protein kinase A, which potentiates insulin secretion. In healthy individuals, pancreatic secretion has biphasic pattern after glucose stimulation. Intravenous administration of glucose is associated with a rapid “first phase” of insulin release within 1 minute, peaking at 3-5 minutes, and lasting about 10 minutes; the slower onset “second phase” of insulin secretion begins shortly after the glucose bolus but is not apparent until 10 minutes later, lasts the duration of the hyperglycaemia and is to the glucose administration. The first phase of insulin secretion represents release of insulin already synthesized and stored in secretory granules; the second phase represents secretion of both stored and newly synthesized insulin. Overall insulin secretion relates to the total
dose of glucose and its rate of administration; maximal pancreatic response occurs with 20 g of glucose given intravenously over 3 minutes in humans (21). Insulin is the pivotal hormone regulating cellular energy supply and macronutrient balance, directing anabolic processes of the fed state (22). Insulin is essential for the intra-cellular transport of glucose into insulin-dependent tissues such as muscle and adipose tissue. Signaling abundance of exogenous energy, adipose tissue fat breakdown is suppressed and its synthesis promoted. In muscle cells, glucose entry enables glycogen to be synthesized and stored, and for carbohydrates, rather than fatty acids (or amino acids) to be utilized as the immediately available energy source for muscle contraction. Insulin therefore promotes glycogen and lipid synthesis in muscle cells, while suppressing lipolysis and gluconeogenesis from muscle amino acids. In the presence of an adequate supply of amino acids, insulin is anabolic in muscle (23).

Importantly, the normal pancreatic β-cell can adapt to changes in insulin action - ie, a decrease in insulin action is accompanied by upregulation of insulin secretion and vice versa (2, 3, 9, 24). The curvilinear relation between normal β-cell function and insulin sensitivity is illustrated in Figure 1.

Figure 1. Hyperbolic relation between β-cell function and insulin sensitivity. In people with normal glucose tolerance (NGT) a quasi-hyperbolic relation exists between β-cell function
and insulin sensitivity. With deviation from this hyperbola, deterioration of glucose tolerance (impaired glucose tolerance [IGT] and type 2 diabetes occurs.

Deviation from this hyperbola, such as in patients with impaired glucose tolerance and type 2 diabetes in Figure 1, occurs when β-cell function is inadequately low for a specific degree of insulin sensitivity. Thus, β-cell dysfunction is a critical component in the pathogenesis of type 2 diabetes (25).

When insulin action decreases the system usually compensates by up-regulating β-cell function. However, at the same time, concentrations of blood glucose at fasting and 2 h after glucose load will increase mildly (26). This increase may well be small, but over time becomes damaging because of glucose toxicity, and in itself a cause for β-cell dysfunction. Thus, even with unlimited β-cell reserve, insulin resistance paves the way for hyperglycaemia and type 2 diabetes (9).

1.3 Insulin resistance

Insulin is a peptide hormone secreted by the β-cells of the pancreatic islets of Langerhans and maintains normal blood glucose levels by facilitating cellular glucose uptake, regulating carbohydrate, lipid and protein metabolism and promoting cell division and growth through its mitogenic effects (27).

Insulin resistance (IR) is a state in which a given concentration of insulin produces a less than normal biological response, and since one of insulin’s major effects is to promote overall glucose metabolism, abnormalities of this action of insulin can lead to a number of important clinical and pathophysiological states (28-30). Insulin resistance can be due to three general categories or causes: (1) an abnormal β-cell secretory product, (2) circulating insulin antagonists, or (3) a target tissue defect in insulin action (31). From the discussion of these mechanisms, it is apparent that insulin resistance can be categorized as the result of changes in insulin resistance, responsiveness, or both. Indeed, in vivo IR is usually defined as a decreased ability of a constant plasma insulin concentration to stimulate overall
glucose disposal under steady-state conditions where the hormonal effect has plateaued (32). Insulin resistance is characteristic feature of patients with impaired glucose tolerance (33, 34) and patients with NIDDM (34, 35, 36). Insulin resistance, as a prevalent medical condition, accompanies not only NIDDM, but also obesity, hypertension, metabolic syndrome and polycystic disease (37).

Insulin resistance is not a disease in itself, but a physiological abnormality that increases the likelihood that one or more of the abnormalities listed in Table 1 will be present.

Table 1. Abnormalities associated with insulin resistance/compensatory hyperinsulinemia

- Some degree of glucose intolerance
 - Impaired fasting glucose
 - Impaired glucose tolerance
- Dyslipidemia
 - ↑ Triglycerides
 - ↓ HDL-C
 - ↓ LDL-particle diameter (small, dense LDL particles)
 - ↑ Postprandial accumulation of triglyceride-rich lipoproteins
- Endothelial dysfunction
 - ↑ Mononuclear cell adhesion
 - ↑ Plasma concentration of cellular adhesion molecules
 - ↑ Plasma concentration of asymmetric dimethylarginine
 - ↓ Endothelial-dependent vasodilatation
- Procoagulant factors
 - ↑ Plasminogen activator inhibitor-1
 - ↑ Fibrinogen
- Hemodynamic changes
 - ↑ Sympathetic nervous system activity
 - ↑ Renal sodium retention
- Markers of inflammation
 - ↑ C-reactive protein, white blood cell count, etc.
- Abnormal uric acid metabolism
 - ↑ Plasma uric acid concentration
 - ↓ Renal uric acid clearance
- Increased testosterone secretion (ovary)
- Sleep-disordered breathing

HDL-C, high-density lipoprotein cholesterol; LDL, low-density lipoprotein.
Furthermore, because these abnormalities occur more commonly in insulin-resistant individuals, these individuals are at increased risk to develop the clinical syndromes listed in Table 2.

Table 2. Clinical syndromes associated with insulin resistance

- Type 2 diabetes
- Cardiovascular disease
- Essential hypertension
- Polycystic ovary syndrome
- Nonalcoholic fatty liver disease
- Certain forms of cancer
- Sleep apnea

Patients with impaired glucose tolerance have relatively mild IR, whereas patients with NIDDM have more severe IR (33, 34). The frequency of the IR increases with the worsening of the degree of carbohydrate intolerance (34). Thus, most of patients with impaired glucose tolerance are insulin resistant, while essentially every NIDDM patient with significant fasting hyperglycemia displays this abnormality. Obesity is a well-known condition which also leads to the development of IR. Since most of NIDDM patients are overweight, obesity-induced IR is thought to be a contributing factor in the hyperglycemia of these patients. However, obesity does not account for all of the IR in this type of diabetic patients, since the IR exceeds that caused by obesity alone, and non-obese patients with NIDDM are also insulin-resistant (33, 38, 39).
1.4. Diabetic cardiomyopathy

Diabetes mellitus, both insulin-dependent and non-insulin-dependent, is a major independent risk factor for coronary artery disease (CAD). The patients with type 2 diabetes usually have many genetically interlinked risk factors for coronary atherosclerosis, such as arterial hypertension, dyslipidaemia, android obesity and hyperinsulinaemia with insulin resistance (26, 37). It is suggested that each of these is a risk factor for diastolic dysfunction (40). Subjects with type 2 diabetes have a two- to four-fold higher risk of CAD than non-diabetic subjects of the same age (41). Diastolic heart failure has been introduced as a separate clinical entity estimated to be responsible for approximately 1/3 of all cases with heart failure (42, 43).

Over the last three decades, a number of epidemiological, autopsy, animal, and clinical studies have proposed the presence of diabetic heart disease as a distinct clinical entity (44-46). “Diabetic cardiomyopathy” as an entity was originally described in 1972 on the basis of observations in four diabetic patients who presented with heart failure without evidence of hypertension, CAD, valvular or congenital heart disease (46). The increasing recognition of this additional cardiac pathology is supported by data from epidemiological, molecular and more refined diagnostic studies. The Framingham study demonstrated the increased incidence of congestive heart failure in diabetic males (2.4:1) and females (5:1) independent of age, hypertension, obesity, CAD and hyperlipidaemia (47). Other prospective studies also showed that diabetic patients have a significantly increased lifetime risk of developing heart failure (48), and increased mortality from both Q-wave and non-Q-wave myocardial infarction (49,50). The previous studies have shown a link between dilated cardiomyopathy and diabetes (51). This finding suggests that there is an additional pathological process to diabetic myocardium which predisposes it to more extensive damage and subsequent failure (52).

Diabetic cardiomyopathy has been proposed as an independent cardiovascular disease. The development of diabetic cardiomyopathy is likely to be multifactorial. Alleged mechanisms include metabolic disturbances, myocardial fibrosis, small vessel disease,
autonomic dysfunction, and insulin resistance (53). However, the exact causes and mechanisms of diabetic cardiomyopathy still remain unclear (46, 54, 55).

1.5. Left ventricular diastolic dysfunction

Diastolic heart failure is a clinical syndrome characterized by the symptoms and signs of heart failure, a preserved ejection fraction, and abnormal diastolic function. From a conceptual perspective, diastolic heart failure occurs when the ventricular chamber is unable to accept an adequate volume of blood during the diastole, at normal diastolic pressures and at volumes sufficient to maintain an appropriate stroke volume (56). Diastole encompasses the time period during which the myocardium loses its ability to generate force and shorten and returns to an unstressed length and force. By extension, diastolic dysfunction occurs when these processes are prolonged, slowed, or incomplete (56). The measurements that reflect changes in this normal diastolic function generally depend on the onset, rate, and extent of ventricular pressure decline and the relationship between pressure and volume or stress and strain during diastole (56, 57, 58). The responsible mechanisms for the diastolic function abnormalities that cause the development of diastolic heart failure can be divided into intrinsic (myocardial) and extrinsic factors of the myocardium (extramyocardial) as are shown in Table 3 (59).
Table 3. Diastolic Heart Failure Mechanisms

Extramyocardial

Haemodynamic load: early diastolic load, afterload

Heterogenity

Pericardium

Myocardial

Cardiomyocite

- Calcium homeostasis
- Calcium concentration
- Sarcolemal and SR calcium transport function
- Modifying proteins (phosphalamban, calmodulin, calsequestran)

Myofilaments

- Tn-C calcium binding
- Tn-I phospholiration
- Myofilament calcium sensitivity
- α/β myosin heavy chain ATPase ratio

Energetics

- ADP/ATP ratio
- ADP and Pi concentration

Cytoskeleton

- Microtubules
- Intermediate filaments (desmin)
- Microfilaments (actin)
- Endosarcomeric skeleton (titin, nebulin)

Extracellular matrix

- Fibrillar collagen
- Basement membrane proteins
- Proteoglycans
- MMP/TIMP

Neurohormonal activation

- Renin-angiotensin-aldosteron
- Sympathetic nervous system
- Endothelin
- Nitric oxide
- Natriuretic peptides

Abbreviations: MMP-matrix metalloproteinase; TIMP-tissue inhibitor of matrix metalloproteinase; SR-sarcoplasmic reticulum; Tn-C – troponin C; Tn-I – troponin I;
The changes in the cardiac muscle cells themselves can cause diastolic dysfunction. These include the changes in calcium homeostasis, which can result in increased cytosolic calcium concentration, prolongation of the calcium transient, and delayed and slowed diastolic decline in cytosolic calcium concentration. These changes have been shown to occur in cardiac disease and cause abnormalities in both active relaxation and passive stiffness (60). Modification of any of the steps during relaxation in the myofilament contractile proteins, or the ATPase that that catalyzes them, can alter diastolic function (61, 62). Changes in some of the cytoskeletal proteins (desmin, actin, titin, nebulin, α-actinin, myomesin, and M-protein), have been shown to alter diastolic function, too (63, 64, 65). Previous studies have shown that a chronic alteration in collagen metabolism result in alteration of diastolic function (66, 67). Neurohumoral and cardiac endothelial activation and/or inhibition have shown to alter diastolic function. Acute activation or inhibition of neurohumoral and cardiac endothelial systems has been shown to alter relaxation and stiffness (68). Chronic activation of renin-angiotensin-aldosterone system has been shown to increase fibrillar collagen of the extracellular matrix and to be associated with increased stiffness (59).

The noninvasive assessment of diastolic dysfunction mainly relies on Doppler studies of transmirtal inflow, measuring mitral inflow velocities, deceleration time, isovolumic relaxation time, and assessing flow patterns (Fig. 2).

As diastolic function worsens, early diastolic LV filling (E wave) is reduced, and the patient demonstrates a delayed relaxation pattern. However, as left atrial pressure increases, the E wave returns to normal, producing a mitral pattern indistinguishable from normal (pseudonormal), until the development of a restrictive filling pattern, which reflects a high left atrial pressure, usually to the extent that symptoms of left heart failure appear.

The preload dependence of these techniques means that measurements in the same patient may change from one category to the next as left atrial pressure is increased or decreased (69).
Fig. 2. Left ventricular filling patterns derived from assessment of transmitral flow. Worsening of LV function leads initially to delayed relaxation, characterized by reduction of the E wave and prolongation of the deceleration time (horizontal vector or diagonal marked on each frame). The process is reversed by elevation of LV filling pressure increasing E wave velocity and shortening deceleration time pseudonormal and restrictive).

Tissue Doppler imaging, which uses Doppler to quantify the velocity of tissue rather than blood, has been available as a clinical tool for over a decade (70). Early diastolic mitral annular velocity (E’) measured by Doppler tissue imaging has been reported to be a preload independent index of myocardial relaxation (71), and LV filling pressures can be estimated by combining mitral inflow (early filling [E]) and E’ (72). The tissue Doppler imaging appears to be much less influenced by preload in an impaired ventricle, and does not pseudonormalise in the same way as the transmitral flow (73).

1.6. Diastolic dysfunction in diabetic patients

Changes in diastolic function are a widely reported finding in diabetic animals (74, 75) and diabetic patients without evidence of heart disease caused by other factors (76-87). In experimental diabetes, papillary muscles from animal hearts have shown prolongation of relaxation and considerable slowing in relaxation velocity (88, 89), and isolated perfused
hearts from type II diabetic rats showed prolonged isovolumic relaxation time and increases in late mitral inflow velocity and LV end-diastolic pressure (90). Diastolic function parameters in diabetic patients are analogous to those in animal studies. Diastolic inflow patterns are frequently abnormal, reflecting underlying abnormalities in relaxation and/or reduced myocardial compliance. LV diastolic dysfunction appears to be quite common in well-controlled type II diabetic patients without clinically detectable heart disease (54, 86, 87, 91-95).

Several studies have examined the clinical correlates of diastolic function changes in diabetes. In a study, which included diabetic patients without known heart disease, these abnormalities were unrelated to sex, age, duration of diabetes, or the presence or extent of complications (54).

Studies that have examined both systolic and diastolic dysfunction in both type I and type II diabetes suggest that the latter is more susceptible to preclinical changes. In a study, including patients with type I and type II diabetes, without hypertension and coronary artery disease, the ratio of mitral early peak diastolic velocity and late peak velocity were more severely decreased in type II than type I diabetics (96). These findings have been confirmed in a subsequent study, in which ventricular filling was impaired more significantly in the type II diabetic patients than in the type I diabetic patients, especially the peak early filling velocity E (97). However, not all studies show the presence of diastolic dysfunction in diabetic patients (98, 99).

1.7. Insulin resistance and diastolic dysfunction

Insulin resistance (IR) is a characteristic feature of human obesity and type 2 diabetes. The close association between IR and obesity has made it difficult to establish whether IR per se is independently associated with various components of the cardiovascular dysmetabolic syndrome (100). Insulin resistance is associated with hypertension (101), coronary artery disease (102, 102), and diabetes (104, 105).
Previous studies, however, have suggested that IR might be an independent cardiovascular risk factor in non-diabetic subjects (106, 107) and in patients with type 2 diabetes (108). Greater left ventricular mass and reduced arterial compliance are reported to be associated with insulin resistance (109). The increase in left ventricular ejection fraction by insulin infusion after submaximal exercise has been reported to be lower in diabetic patients than in healthy subjects, a finding that could be explained by IR (110). No significant differences regarding the diastolic volumes and mean blood pressure were reported in this study (110). Insulin resistance has been linked to LV early diastolic abnormalities in hypertension, independently from the influence exerted by increased blood pressure levels, overweight, and LV hypertrophy (111, 112). Moreover, Nagano et al. found no correlation between left ventricular systolic and diastolic parameters and IR in hypertensive patients (113). Other investigators have reported an independent association between IR and carotid intima-medial thickness (an early indicator of atherosclerosis) among hypertensive patients (114, 115) and normotensive pre-menopausal women (116). Therefore, the role of IR in cardiovascular diseases deserves further investigation.
2. AIMS OF THE STUDY

The main objective of this thesis is to explore whether there is an association between IR and left ventricular diastolic dysfunction in patients with impaired glucose tolerance (IGT) and type 2 diabetes mellitus. Well-accepted laboratory and echocardiographic criteria were used to estimate IR and left ventricular diastolic function. We aimed at selecting a group of patients with IGT or diabetes with minimal confounding factors that may interfere with the diastolic function of the left ventricle. Given the confounding effect of arterial hypertension and ischaemic heart disease which have a disproportionately high incidence in patients with diabetes compared with subjects without diabetes and which interfere (are determinant of) with left ventricular diastolic function patients with these morbid conditions were excluded from the study.
3. METHODS

3.1. Patients

A total of 119 subjects without clinical evidence for cardiovascular diseases were enrolled in our study. Based on the World Health Organization (WHO) criteria (117) for diagnosis of diabetes using fasting plasma glucose (FPG) and 120 min plasma glucose, subjects were divided into 3 groups: 1) Subjects with normal glucose tolerance (NGT), defined as fasting plasma glucose < 7.0 mmol/L and 120 min plasma glucose < 7.8 mmol/L; 2) Subjects with IGT, defined as fasting plasma glucose between < 7.0 mmol/L and 120 min plasma glucose between ≥ 7.8 mmol/L and < 11.1 mmol/L; 3) Patients with diabetes were defined by fasting plasma glucose ≥ 7.0 mmol/L and 120 min plasma glucose ≥ 11.1 mmol/L. In patients known to have diabetes, the diagnosis was based on the previous history of diabetes and 120 min PG ≥ 11.1 mmol/L. The subjects of all groups were matched for age and sex. At the time of inclusion in the study 42 patients were known as diabetic patients. They were under treatment with glibenclamide (18 patients), gliclazide
(11 patients) and diet (13 patients). The remaining 28 patients diagnosed with diabetes at the time of inclusion in the study and subjects with NGT and IGT were not on drug therapy.

Insulin resistance was assessed using Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and Quantitative Insulin Sensitivity Check Index (QUICKI) (118, 119).

Exclusion criteria were: arterial hypertension, ischemic heart disease (detected by meticulous anamnesis, surface electrocardiogram, exercise testing and presence of left ventricular wall abnormalities in echocardiographic examination), cardiac arrhythmias, congenital or acquired valvular heart disease, infiltrative heart disease, pericardial disease, chronic renal failure and pregnancy, age greater than 75 years, insulin therapy and subjects with poor echocardiographic window. All subjects and patients were examined and included in the study during the same time period. All subjects gave informed consent for participation in the study. The study protocol conformed to the Declaration of Helsinki. The study protocol was presented, revised and accepted by ethics committee of the Internal Medicine Clinic of University Clinical Center of Kosova, in Prishtina, Kosovo.

3.2. Data collection

In all subjects included in the study, the weight, height, waist and hip were measured with subjects wearing light clothing without shoes, and body-mass index (BMI) waist-to-hip ratio were calculated. In patients with diabetes, the information on the duration of diabetes and current medical treatment was carefully collected. Routine biochemical measurements were performed including lipid profile (total cholesterol, high density lipoproteins [HDL], low density lipoproteins [LDL], very low density lipoproteins [VLDL] and triglycerides), as well as serum creatinine and urea.

A standard (75 g) 2 hours oral glucose tolerance test (OGTT) was performed in all subjects. In diabetic patients hypoglycemic agents were stopped 3 days before OGTT. All subjects consumed a diet containing at least 200 g carbohydrate for 3 days before the test. After overnight fasting, the 75 g glucose was given orally within 5 minutes. Blood samples for the determination of plasma glucose and insulin were drawn at 0, 10, 20, 30, 60 and 120
min after intake of glucose. Serum glucose was measured by the glucose oxidase GOD-PAP method. Insulin was determined by radioimmunoassay (RIA) method using a commercially available kit.

Insulin resistance was assessed by using Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and Quantitative Insulin Sensitivity Check Index (QUICKI). The HOMA-IR was calculated with formula $\text{HOMA-IR} = \text{glucose}_0 \times \text{insulin}_0 / 22.5$ (118). QUICKI was calculated with formula $\text{QUICKI} = 1 / \left[\log(\text{insulin}_0) + \log(\text{glucose}_0) \right]$ (insulin in mU/mL, glucose in mg/dL) (119).

3.3. Echocardiographic examinations

All patients underwent echocardiographic examination with echocardiographic machine equipped with multi-frequency probes from 2.5 - 5 MHz (Agilent Image-Point, Hewlett Packard). Echocardiographic examination was performed using standard views. Diastolic function of the left ventricle was assessed by pulsed Doppler. The pulsed Doppler sample volume was positioned at the tips of the mitral leaflets. We registered the maximal early filling velocity (E wave), maximal late (atrial) filling velocity (A wave), from which the E/A ratio was derived, and the deceleration time of E wave (DT-E). An E/A ratio < 1 was considered as a criterion for diastolic dysfunction of the left ventricle (LV). Echocardiographical examinations were performed by operators unaware of the presence of diabetes or IR status. All patients and healthy subjects underwent stress test ergometry in the period of less than a week from the echocardiographic examination.

3.4. Statistical analysis

Data are expressed as mean ± SD or mean ± SEM for continuous variables and as percentages for discrete variables. Continuous variables were compared with Kruskal-Wallis test. Discrete variables were compared with chi-square test. Multiple linear regression analysis was used to identify the independent correlates of diastolic dysfunction (E/A ratio). Differences were considered to be statistically significant for P values <0.05.
4. RESULTS

4.1. Baseline Data

There were 29 subjects with NGT, 20 subjects with IGT and 70 patients with diabetes. Twenty-eight of the patients with diabetes were detected by OGTT whereas 42 patients were known diabetic patients. Duration of diabetes in these patients was 4.1 ± 4.4 years. Plasma glucose and insulin response to OGTT are shown in Figure 3.

Baseline clinical and laboratory data are shown in Table 4. The majority of demographic and clinical data did not show significant differences among patients in different groups. Significant differences were observed regarding fasting plasma glucose, 2-hour plasma glucose as well as 2 models used to assess the IR (HOMA-IR and QUICKI; Table 4).
Figure 3. Plasma Glucose (Upper panel) and Insulin levels (lower panel) during OGTT in Subjects with Normal Glucose Tolerance (NGT), Impaired Glucose Tolerance (IGT) and Type 2 Diabetes. Data are mean ± SEM.
Table 4. Clinical and Laboratory Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>NGT (n=29)</th>
<th>IGT (n=20)</th>
<th>Type 2 diabetes (n=70)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (male)</td>
<td>8</td>
<td>6</td>
<td>19</td>
<td>0.969</td>
</tr>
<tr>
<td>Age (years)</td>
<td>52.00±6.07</td>
<td>54.65±6.69</td>
<td>54.61±6.54</td>
<td>0.086</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>84.90±19.06</td>
<td>86.40±12.52</td>
<td>80.89±12.32</td>
<td>0.233</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>164.69±12.55</td>
<td>161.88±6.52</td>
<td>161.57±8.91</td>
<td>0.796</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>31.26±6.99</td>
<td>32.91±4.90</td>
<td>30.30±6.20</td>
<td>0.278</td>
</tr>
<tr>
<td>Waist perimeter (cm)</td>
<td>101.17±18.22</td>
<td>101.45±9.16</td>
<td>100.43±11.77</td>
<td>0.723</td>
</tr>
<tr>
<td>Hip perimeter (cm)</td>
<td>111.10±18.18</td>
<td>107.45±8.38</td>
<td>107.15±9.39</td>
<td>0.071</td>
</tr>
<tr>
<td>Waist/hips ratio</td>
<td>0.92±0.13</td>
<td>0.94±0.05</td>
<td>0.93±0.08</td>
<td>0.722</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>127±10</td>
<td>131±9</td>
<td>129±11</td>
<td>0.103</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>86±7</td>
<td>86±8</td>
<td>87±10</td>
<td>0.251</td>
</tr>
<tr>
<td>Urea (mmol/L)</td>
<td>5.64±1.62</td>
<td>5.72±1.39</td>
<td>5.74±1.60</td>
<td>0.944</td>
</tr>
<tr>
<td>Creatinine (µmol/L)</td>
<td>69.93±14.99</td>
<td>72.55±13.50</td>
<td>74.20±15.52</td>
<td>0.299</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>1.96±1.27</td>
<td>1.69±0.42</td>
<td>2.11±1.99</td>
<td>0.235</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>4.81±1.51</td>
<td>4.90±1.12</td>
<td>5.20±1.61</td>
<td>0.557</td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td>1.36±0.63</td>
<td>1.24±0.22</td>
<td>1.22±0.47</td>
<td>0.140</td>
</tr>
<tr>
<td>LDL (mmol/L)</td>
<td>2.57±0.98</td>
<td>2.90±1.13</td>
<td>2.83±1.88</td>
<td>0.408</td>
</tr>
<tr>
<td>VLDL (mmol/L)</td>
<td>0.87±0.59</td>
<td>0.76±0.30</td>
<td>0.90±0.61</td>
<td>0.988</td>
</tr>
<tr>
<td>FPG (mmol/L)</td>
<td>4.95±0.64</td>
<td>5.88±1.15</td>
<td>7.80±0.88</td>
<td><0.001</td>
</tr>
<tr>
<td>2-hr PG</td>
<td>5.81±1.06</td>
<td>9.24±1.05</td>
<td>16.28±2.95</td>
<td><0.001</td>
</tr>
<tr>
<td>Fasting insulin (µmol/L)</td>
<td>18.64±7.51</td>
<td>24.76±15.32</td>
<td>25.15±17.98</td>
<td>0.427</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>4.20±1.20</td>
<td>6.45±3.83</td>
<td>8.70±6.26</td>
<td><0.001</td>
</tr>
<tr>
<td>QUICKI</td>
<td>0.54±0.11</td>
<td>0.49±0.08</td>
<td>0.47±0.08</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Data are number of patients or mean ± SD
Abbreviations: NGT-normal glucose tolerance; IGT-impaired glucose tolerance; BMI-body/mass index; SBP-systolic blood pressure; DBP-diastolic blood pressure; HDL – high density lipoproteins; LDL – low density lipoproteins; VLDL – very low density lipoproteins; FPG-fasting plasma glucose; 2-hr PG – 2 hr postprandial glucose; HOMA-IR – homeostasis model assessment of insulin resistance; QUICKI – quantitative insulin sensitivity check index.

4.2. Echocardiographic Data

Echocardiographic data are shown in Table 5. There were not significant differences between the groups regarding left ventricular end-diastolic and end-systolic dimension, left ventricular fractional shortening and ejection fraction, thickness of interventricular septum and posterior wall, left atrium and aorta. Significant differences between groups regarding the pulsed Doppler transmitral variables: E wave (0.72±0.16 m/s in the group with NGT, 0.62±0.13 m/s in the group with IGT and 0.58±0.17 m/s in the group with diabetes; p<0.001); A wave (0.61±0.13 m/s in the group with NGT, 0.62±0.11 m/s in the group with IGT and 0.71±0.14 m/s in the group with diabetes; p=0.006) and E/A ratio (1.22±0.33 in the group with NGT, 1.02±0.24 in the group with IGT and 0.85±0.26 in the group with diabetes; p<0.001, Table 4). The proportion of patients with a ratio E/A<1 was 27.6% (8 of 29 subjects with NGT), 55% (11 of 20 subjects with IGT) and 75.7% (53 of 70 patients with diabetes) (P<0.001). Deceleration time of E wave did not differ significantly between groups. The E/A ratio, an index of diastolic function, correlated with indexes of IR: HOMA-IR (r = -0.30, P=0.001) and QUICKI (r=0.37, p<0.001; Figure 4).
Table 5. Echocardiographic Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>NGT (n=29)</th>
<th>IGT (n=20)</th>
<th>Type 2 diabetes (n=70)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV end-diastolic dimension (cm)</td>
<td>5.26±0.48</td>
<td>5.23±0.43</td>
<td>5.12±0.46</td>
<td>0.251</td>
</tr>
<tr>
<td>LV end-systolic dimension (cm)</td>
<td>3.59±0.54</td>
<td>3.53±0.29</td>
<td>3.45±0.49</td>
<td>0.251</td>
</tr>
<tr>
<td>Fractional shortening (%)</td>
<td>33.9±4.93</td>
<td>32.5±3.75</td>
<td>32.6±5.66</td>
<td>0.383</td>
</tr>
<tr>
<td>Ejection fraction (%)</td>
<td>68.28±7.37</td>
<td>66.60±7.42</td>
<td>64.84±9.13</td>
<td>0.181</td>
</tr>
<tr>
<td>Interventricular septum (cm)</td>
<td>0.93±0.11</td>
<td>10.05±0.09</td>
<td>9.54±0.10</td>
<td>0.908</td>
</tr>
<tr>
<td>Posterior wall of LV(cm)</td>
<td>0.86±0.10</td>
<td>0.91±0.10</td>
<td>0.89±0.11</td>
<td>0.330</td>
</tr>
<tr>
<td>Left atrium (cm)</td>
<td>3.84±0.34</td>
<td>3.82±0.32</td>
<td>3.77±0.32</td>
<td>0.602</td>
</tr>
<tr>
<td>Aorta (cm)</td>
<td>3.12±0.39</td>
<td>3.33±0.26</td>
<td>3.16±0.34</td>
<td>0.057</td>
</tr>
<tr>
<td>E (m/s)</td>
<td>0.72±0.16</td>
<td>0.62±0.13</td>
<td>0.58±0.17</td>
<td><0.001</td>
</tr>
<tr>
<td>A (m/s)</td>
<td>0.61±0.13</td>
<td>0.62±0.11</td>
<td>0.71±0.14</td>
<td>0.006</td>
</tr>
<tr>
<td>E/A</td>
<td>1.22±0.33</td>
<td>1.02±0.24</td>
<td>0.85±0.26</td>
<td><0.001</td>
</tr>
<tr>
<td>E/A ratio <1</td>
<td>8 (27.6%)</td>
<td>11 (55%)</td>
<td>53 (75.7%)</td>
<td><0.001</td>
</tr>
<tr>
<td>DT-E (ms)</td>
<td>161.49±29.6</td>
<td>151.33±18.4</td>
<td>148.22±31.7</td>
<td>0.217</td>
</tr>
</tbody>
</table>

Data are mean ± SD

Abbreviations: NGT-normal glucose tolerance; IGT-impaired glucose tolerance; LV – left ventricle; DT – deceleration time.
Figure 4. Correlations between E/A ratio and indexes of IR HOMA-IR (upper panel) and QUICKI (lower panel).
Multiple linear regression model was used to identify the independent correlates of diastolic dysfunction (E/A ratio). The following variables were entered into the model: age, sex, body-mass index, waist-to-hip ratio, QUICKI, creatinine, low density lipoprotein level, triglyceride level, high density lipoprotein level, fasting glucose, 2-hour glucose, basal insulin level, interventricular septum thickness, left ventricular posterior wall thickness, left ventricular ejection fraction and left atrial dimension. The dependent variable (E/A ratio) was entered into the model as a continuous variable. The model showed that age (P<0.001), triglyceride level (P=0.01), low density lipoprotein level (P=0.01) 2-hour glucose (P=0.01) and QUICKI (P=0.034) correlated independently with the E/A ratio (index of diastolic function). The overall R² of the model was 0.48.
Clinically, left ventricular dysfunction associated with diabetes in the absence of other predisposing factors has been termed diabetic cardiomyopathy. Diabetic cardiomyopathy was described in diabetic patients who had no evidence of coronary artery disease, arterial hypertension or valvular heart disease (26, 55, 120-122). Clinical evidence of left ventricular involvement in patients with diabetes including left ventricular systolic and diastolic dysfunction has been noted in patients with insulin-dependent diabetes mellitus and to a lesser degree in patients with non-insulin-dependent diabetes. Abnormal systolic function has been evidenced by various parameters or tests including abnormal left ventricular ejection fraction (123), abnormal stroke volume (124), response to exercise (125) and abnormal systolic time intervals (126). On the other hand, diastolic inflow patterns in diabetic patients are frequently abnormal, reflecting underlying abnormalities in relaxation and/or reduced myocardial compliance. Diastolic left ventricular dysfunction has been evidenced by prolongation of the isovolumic relaxation period (127), rapid filling period (128) and reduced extent of early diastolic filling (129, 130). A general consensus is that diastolic dysfunction may be evidenced early in the course of the disease and earlier than systolic dysfunction. The exact causes of the occurrence of heart failure in diabetic patients remain unclear (55, 131, 132). However, numerous pathological findings such as myocardial hypertrophy, circumvented areas of perivascular and interstitial fibrosis, endothelial proliferation, narrowing and distortions of small arterioles and capillary microaneurisms, deposition of glycoprotein materials in interstitium have been reported in patients with diabetes and congestive heart failure with no evidence of arterial hypertension or coronary artery disease (133-135) The incidence of heart failure in patients with non-insulin dependent diabetes is higher than in control subjects, and diastolic heart failure seems to be one of its main causes (136-138). Previous studies yielded conflicting results regarding the prevalence of left ventricle functional abnormalities (systolic and diastolic dysfunction) in asymptomatic patients with non-insulin dependent diabetes (87, 106, 108, 117, 139, 140). It is widely accepted, however, that diastolic dysfunction is the most
prominent defect associated with diabetic cardiomyopathy. Numerous cellular and molecular mechanisms linking diabetic status with left ventricular diastolic dysfunction have been proposed. A major factor for the high prevalence of diastolic dysfunction in patients with diabetes is myocardial fibrosis. As the Strong Heart Study has reported, there is a close relationship between frequency of left ventricular diastolic dysfunction and level of HbA1c (141, 142). Advanced glycosylation end products (AGEs) are often implicated as factors that promote myocardial stiffness and reduced diastolic function in diabetic patients (143). Accumulation of AGEs in the myocardium of diabetic patients results in endothelial basement membrane damage via increased expression of their receptor and increased production of collagen and increased cross linking of collagen and myocardial fibrosis and diastolic dysfunction (144). Intracellular myocardial glycation alters calcium homeostasis leading to slowed cytoplasmic calcium removal and slowed myocyte relengthning and diastolic dysfunction (145, 146). In a previous study, we have shown that in patients with non-insulin dependent diabetes mellitus without evidence of structural heart disease or arterial hypertension, diastolic LV dysfunction is a frequent finding in nearly two thirds of the patients (65.8%) and non-insulin dependent diabetes mellitus is an independent correlate of left ventricular diastolic dysfunction (87). Furthermore, in this study we observed the existence of an inverse correlation between duration of the diabetes and the magnitude of E/A ratio, an index of left ventricular diastolic function (87).

Echocardiographic examination has made it easier to detect initial abnormalities in the left ventricular diastolic dysfunction before their clinical appearance. Doppler echocardiography has become a well-accepted, reliable noninvasive tool to study the left ventricular diastolic dysfunction. In this study, we used Doppler echocardiography to assess the left ventricular diastolic function and correlated these findings with IR estimated by HOMA-IR and QUICKI indexes.

The current study offers solid evidence on the existence of a close relationship between IR and left ventricular diastolic dysfunction. The principal finding of the present study was that IR is an independent correlate of left ventricular diastolic dysfunction in subjects with IGT and patients with type 2 diabetes without arterial hypertension. The association between IR and diastolic dysfunction of the left ventricle was observed, both in
univariate and after adjustment in the multivariate model. A significantly greater proportion of subjects/patients with echocardiographic evidence of left ventricular diastolic dysfunction were observed in subject with IGT and patients with diabetes compared with subjects with NGT. Specifically, a progressive decrease in the magnitude of E/A ratio and a progressive increase in the proportion of patients with an E/A ratio < 1 were observed from subjects with normal glucose tolerance to subjects with impaired glucose tolerance and to patients with diabetes. Furthermore, both HOMA-IR and QUICKI become gradually more indicative of IR from subjects with normal glucose tolerance to those with impaired glucose tolerance and patients with diabetes. We found a good correlation between indexes of IR and diastolic dysfunction of the left ventricle. To our knowledge this is the first study to have reported such an association in a population of predominantly diabetic patients. In multivariate analysis IR was an independent correlate of left ventricular diastolic dysfunction even after adjustment for potentially confounding variables including obesity assessed by body-mass index and waist-to-hip ratio. This finding is of special importance particularly when the intricate relationship between IR and obesity is considered (106). On the other hand patients with arterial hypertension, another frequent associate of diabetes and obesity, are not included in this study so that the potential confounding effect of arterial hypertension in the left ventricular diastolic function has been eliminated. Although, from clinical point of view, arterial hypertension is a frequent associate of diabetes with intricate links between them and a contributor to left ventricular diastolic dysfunction, the exclusion of patients with arterial hypertension is important in a sense that we avoided the confounding effects of co-existent arterial hypertension on left ventricular diastolic function. Arterial hypertension \textit{per se} promotes or exacerbates cardiac dysfunction seen in patients with diabetes through left ventricular hypertrophy and metabolic dysfunction. Thus our data demonstrate that in a group of patients without arterial hypertension, IR \textit{per se} is associated with impaired left ventricular diastolic function. Regarding the relationship between systolic and diastolic dysfunction we found that diabetic patients without arterial hypertension or clinical evidence of structural heart disease have reduced left ventricular diastolic function in the presence of preserved systolic function of the left ventricle (42, 107, 108, 140). Thus our study confirms that isolated diastolic dysfunction (without
echocardiographic evidence of left ventricular systolic dysfunction) may be found in patients with diabetes. Our findings are consistent with and corroborate those studies that have suggested that the impairment of left ventricular diastolic function in patients with diabetes occurs earlier than the impairment of left ventricular systolic function.

The finding of a close association between IR and the impaired left ventricular diastolic function seems to be clinically relevant. A recent population-based study in subjects free of congestive heart failure at the time of recruitment for the study has unequivocally proven that IR predicts the development of congestive heart failure independent of traditional risk factors including diabetes mellitus (147). Furthermore this study suggested that previously described association between obesity and congestive heart failure in fact may be mediated largely by IR (147). A numerous mechanisms through which IR could promote congestive heart failure, among them, accumulation of AGEs and increased collagen-cross linking and myocardial stiffness and diastolic heart failure (148, 149), growth factor properties of insulin leading to increased myocardial mass (150), increased sodium leading to decompensation in subjects with subclinical congestive heart failure (151), increased sympathetic activation (152) and increased sensitivity to angiotensin II (153) leading to myocardial hyperthrophy and fibrosis have been proposed (147).

5.1. Mechanisms of Association between Insulin resistance and Diastolic Dysfunction

The exact mechanisms that explain the association between IR and diastolic dysfunction of the left ventricle have not been fully elucidated. Earlier in this section the importance of AGEs in the increased cross-linking between collagen molecules leading to myocardial stiffness with potential consequence impaired diastolic lengthening of myocardial fibers has been discussed. Increased myocardial fibrosis is a widely accepted contributor to diastolic dysfunction in patients with diabetes. It is well known that impaired relaxation is one of the earliest manifestations of cardiac involvement in various diseases. A recent experimental study demonstrated that metabolic abnormalities in the pre-stage of type 2 diabetes result in left ventricular fibrosis (154). Additionally, this study
demonstrated increased levels of transforming growth factor beta-1 (TGF-ß1) receptor in the rat left ventricular myocytes and suggested that metabolic abnormalities including hyperglycemia, hyperinsulinemia and IR may be involved in the onset of cardiac fibrosis (154). Other studies have demonstrated that insulin exerts a growth-stimulating effect on cardiac myocytes and increases collagen production from fibroblasts (155, 156). Another potential factor that may impair left ventricular filling is impairment in the calcium homeostasis by hyperinsulinemia due to IR leading to delayed cytoplasmic removal of calcium which may lead to prolonged action potential duration and impairment of early left ventricular filling (153). In fact this could be one of the earliest manifestations of the IR with an impact on the left ventricular diastolic dysfunction. In the real life conditions of patients with diabetes, the presence of arterial hypertension and coronary artery disease are important factors leading to, or exacerbating the impairment of, diastolic function. Although these mechanisms may point to the involvement of IR in the genesis of diastolic dysfunction, full explanation of the mechanisms through which IR promotes left ventricular diastolic dysfunction remains largely unknown.

5.2. Limitations of the Study

This study has some limitations. Coronary angiography was not performed in patients included in this study. Instead, coronary artery disease was excluded based on the lack of anamnestic and clinical data including surface electrocardiogram and absent regional abnormalities in the echocardiogram as well as negative exercise testing. However, latent subclinical coronary atherosclerosis could not be entirely ruled out. However, we do not believe that subtle coronary atherosclerosis without clinical manifestations including exercise-induced myocardial ischemia could have impacted the findings of this study to any considerable degree. The proportion of female patients in this study was uncommonly high. An important factor that resulted in such a high proportion of female patients in this study is related to exclusion of patients with ischemic heart disease who were mostly men. Tissue Doppler may be another accurate method of assessing left ventricular function, particularly in the presence of pseudonormalization of the left ventricular diastolic function. By
exclusion of patients with coronary artery disease and arterial hypertension we supposed that conditions for pseudonormalization were markedly reduced. In this situation conventional transmitral pulsed-Doppler accurately assesses the left ventricular diastolic function. Glucosylated hemoglobin (HbA1c), a marker of metabolic control was not available to all of the patients of our study. Thus a relationship between the metabolic control as reflected by HbA1c level and left ventricular diastolic function could not be assessed by the present study. Finally, although IR was shown to be an independent correlate of left ventricular diastolic dysfunction in asymptomatic patients, the information regarding the influence IR on the future development of congestive heart failure or coronary artery disease cannot be provided by this study.
6. CONCLUSIONS

This study confirmed the existence of a close association between insulin resistance and impaired left ventricular diastolic function. Specifically, in asymptomatic non-hypertensive subjects with impaired glucose tolerance and in non-hypertensive patients with diabetes and no clinical evidence for ischemic heart disease, insulin resistance was found to be independently associated with impaired diastolic function of the left ventricle. Future studies are needed to investigate mechanisms by which insulin resistance leads to impairment in the diastolic function of the left ventricle.
Aim: The aim of this study was to explore the relationship between insulin resistance (IR) and the left ventricular diastolic function in patients with type 2 diabetes and subjects with impaired glucose tolerance (IGT).

Methods: The study included 119 subjects who underwent oral glucose tolerance test (OGTT). Insulin resistance was assessed using Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and Quantitative Insulin Sensitivity Check Index (QUICKI). Left ventricular diastolic function was assessed using trans-thoracic Doppler echocardiography.

Results: Based on the OGTT results, 29 subjects had normal glucose tolerance (NGT), 20 subjects had impaired glucose tolerance (IGT), and 70 patients had type 2 diabetes. There were significant differences among the patients in groups with NGT, IGT and diabetes regarding HOMA-IR (4.20±1.20 vs. 6.45±3.83 vs. 8.70±6.26; P<0.001) and QUICKI (0.54±0.11 vs. 0.49±0.08 vs. 0.47±0.08; P<0.001). In subjects with NGT, IGT and patients with diabetes the pulsed Doppler transmitral variables were: E wave (0.72±0.16cm/s vs. 0.62±0.13cm/s vs. 0.58±0.17cm/s; P<0.001), A-wave (0.61±0.13cm/s vs. 0.62±0.11cm/s vs. 0.71±0.14cm/s; P=0.006) and E/A ratio (1.22±0.33 vs. 1.02±0.24 vs. 0.85±0.26; p<0.001). The proportion of subjects with an E/A ratio <1 was 27.6% in the group with NGT, 55% in the group with IGT and 75.7% in the group with diabetes (P<0.001). The E/A ratio correlated with HOMA-IR (r=-0.30, p=0.001) and QUICKI (r=0.37, p<0.001). Multiple linear regression model showed that IR (assessed by QUICKI) was an independent correlate of diastolic dysfunction (P=0.034).

Conclusions: In subjects with impaired glucose tolerance and patients with type 2 diabetes, insulin resistance is associated with impaired diastolic function of the left ventricle.
8. ÖSSZEFoglaló

Cél: A tanulmány célja, hogy kapcsolatot keressen az inzulin rezisztencia (IR) és a bal kamra diasztolésvízfunkciójá között 2-es típusú diabétesz betegeknél illetve csökkent glukóz tolerancia esetén.

Módszer: A tanulmány 119 személyre terjedt ki, ők átestek a terheléses vércukor vizsgálaton (OGTT). Az inzulin rezisztenciát a homeosztázis modell becslési módszerrel (HOMA-IR) és a mennyiségi inzulin érzékenységi ellenőrző módszerrel (QUICKI) mérünk.

A bal kamrai diasztolódísfunkciót a transthoracic Doppler échocardiográfiával mértük.

Eredmények: A vércukor vizsgálat (OGTT) 29 esetben normál glukóz toleranciát (NGT), 20 esetben csökkent glukóz toleranciát (IGT), míg 70 esetben 2-es típusú diabéteszt mutatott ki. Lényeges különbségek mutatkoztak az NGT, az IGT és a diabétesz csoport pácienseinek eredményei között a HOMA index (4.20±1.20 vs. 6.45±3.83 vs. 8.70±6.26; P<0.001) és a QUICKI index esetében (0.54±0.11 vs. 0.49±0.08 vs. 0.47±0.08; P<0.001).

A pulzatilis Doppler transzmitrális változók az NGT, az IGT és a diabétesz csoportban a következő voltak: E hullám (0.72±0.16 cm/s vs. 0.62±0.13 cm/s vs. 0.58±0.17 cm/s; P<0.001), A hullám (0.61±0.13 cm/s vs. 0.62±0.11 cm/s vs. 0.71±0.14 cm/s; P=0.006) és E/A hányados (1.22±0.33 vs. 1.02±0.24 vs 0.85±0.26; p<0.001). Az E/A hányados<1 eredménnyel rendelkezők aránya az NGT csoportban 27.6%, az IGT csoportban 55%, míg a diabétesz csoportban 75.7% volt (P<0.001). Az E/A hányados korrelált a HOMA (r=-0.30, p=0.001) és a QUICKI mutatóval (r=0.37, p=0.001). A többváltozós regressziós modell azt mutatta, hogy az inzulin rezisztencia (QUICKI méréssel) a diasztolés funkciózavarnak (P=0.034) egy független korrelációja.

Következtetések: Csökkent glukóz tolerancia esetén, 2-es típusú diabéteszes pácienseknél az inzulin rezisztencia a bal kamra csökkent diasztolés funkciójával összefüggésben van.
9. REFERENCES

83. Raev DC. Left ventricular function and specific diabetic complications in other
target organs in young insulin-dependent diabetics: an echocardiographic study.
84. Park JW, Ziegler AG, Janka HU, Doering W, Mehnert H. Left ventricular relaxation
and filling pattern in diabetic heart muscle disease: an echocardiographic study.
85. Zarich SW, Arbuckle BE, Cohen LR, Roberts M, Nesto RW. Diastolic
abnormalities in young asymptomatic diabetic patients assessed by pulsed Doppler
86. Bajraktari G, Rexhepaj N, Bakalli A, Elezi S. Reduced left ventricular diastolic
function in asymptomatic patients with non-insulin-dependent diabetes mellitus.
87. Bajraktari G, Qirko S, Rexhepaj N, Bakalli A, Beqiri A, Elezi S, Ndrepepa G. Non-
Insulin Dependent Diabetes as an Independent Predictor of Asymptomatic Left
88. Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH.
Overexpression of the sarcoplasmic reticulum Ca(2+)- ATPase improves
89. Brown RA, Filipovich P, Walsh MF, Sowers JR. Influence of sex, diabetes and
ethanol on intrinsic contractile performance of isolated rat myocardium. Basic Res
Cardiol 1996; 91: 353-60.
Douglas PS. Abnormal cardiac function in the streptozotocin-induced non-insulin-
dependent diabetic rat: noninvasive assessment with Doppler echocardiography
91. Poirier P, Bogaty P, Garneau C, Marois L, Dumesnil JG. Diastolic dysfunction in
normotensive men with well-controlled type 2 diabetes: importance of maneuvers in
echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care
2001; 24: 5-10.

120. Yudkin JS. The United Kingdom Prospective Diabetes Study - everything you needed to know about diabetes but were afraid to ask?. Eur Heart J 1999; 20:781-783.

10. ACKNOWLEDGEMENT

This research study would have been impossible without a generous help and encouragement offered from many people, professors, colleagues and, last but not least, my own family.

At the outset, however, my deep feelings of sorrow for the late Professor Maria Zsofia Koltai force me to express the most sincere condolences for her, her family and the Faculty where I met her for the first time back in 2000. Then, she accepted to be my mentor and supervise my work. I could not imagine that she would not be present at my last moments completing the work. It has been her personal contribution the very title and the frame of my study. I remain eternally indebted to her. I will never forget her voice pronouncing advises and giving the directions of my work. She ever spared a minute of her time to share it with me, to be throughout the framing process of my work. I would certainly owe her the most hearfelt apologies for her precious time she devoted to me and the work I was doing while she was still alive. May she rest in peace with my love and affections, and the appreciation of my family for her gentle, correct and subtle approach to myself as a foreigner.

Many thanks and very kind regards go for Professor Ferenc Horkay, my second supervisor of this study for having patience to revise this thesis with admirable excellence and speed. His constructive comments were highly useful and I do appreciate throughout my work.

My family friend, Professor Gjin Ndrepepa, deserved special thanks for his unreserved help, professional comments and scholarly devotion to my work any time I asked that from him. It is fir sure that without Professor Ndrepepa, a renown scholar from Muncih in Germany, my study would have had divergent destiny and shape. It is equally sure that quality of my work would have been of dubious nature.

In line with this, I have to say many thanks to one more family friend of mine, Prof. Spiro Qirko, a respected professor at the Faculty of Medicine, University of Tirana, who
encouraged me to continue this study and PhD. His advice has been a guideline for my work and an encouragement worth anything.

My colleague and peer, Dr. Shpend Elezi deserves special thanks for his readiness to be with me for any advise and help I needed. I admit I have misused our private friendship overly, but this study would have not been completed without his endorsement of my hard efforts during the work.

I also owe my utmost sincere gratitude to the entire staff of the Second Division of Cardiology, Internal Medicine Clinic, and the Department of Physiology, in from the University Clinical Centre of Kosova in Prishtina for showing an understanding, and for their supporting, towards my research work.

I express my appreciation to Dr. Robin Chung from Brompton Royal Hospital, London, UK, for revising and editing the English version of my work.

The patients and their families who participated in these studies are cordially thanked for having shown such understanding for research work thus making this work possible.

I thank all my friends for sharing their views with me and for their support during these years.

My parents, my brothers and sisters, and relatives are warmly thanked for their unconditional love, wisdom of life and also practical help with my work.

Last but not least, my deepest and warmest gratitude I wish to express to my close family, my wife Kumrije and my dear children Artan and Ermir, who have given me more joy than I ever imagined, making possible and giving a real meaning to my life. I am sure that I would have not been able to complete this work without their help, encouragement, patience, love and devotion for myself and my work. They all showed a high sense of sacrifice for my work. I do feel indebted eternally for them, their time and efforts devoted to my success.
11. LIST OF PUBLICATIONS

Publications in peer review journals, related to the Ph.D. thesis

Publications in peer review journals, not related to the Ph.D. thesis

Publications in non-peer review journals

3. **Bajraktari G.** Nura A, Rexhepaj N, Bakalli A. Effect of fasting glucosae level on Left Ventricular Diastolic Function in Asymptomatic Patients with Non-Insulin-Dependent Diabetes Mellitus. 3rd Congress of Cardiologists and Angiologists of

Abstracts not related to the Ph.D. thesis published in peer review journals

Lectures as invited speaker in International Meetings

