INTRODUCTION TO PATHOLOGICAL TECHNIQUES

1. Types of biopsy procedures

2. Special exams

Biopsy-Indications

- Diffuse/multifocal lesions
 - Etiology of the disease
 - Evaluation of tumor characteristics for systemic treatment planning
- Solitary lesions
 - Etiology, dignity assessment
 - Evaluation before surgery

Biopsy types

- Cytology sampling
 - Exfoliative (brush)
 - Liquid
 - Fine needle aspiration
- Tissue sampling
 - By excision (direct, open surgical, video-assisted)
 - Core needle biopsy
 - By endoscopy

Biopsy-Guidance

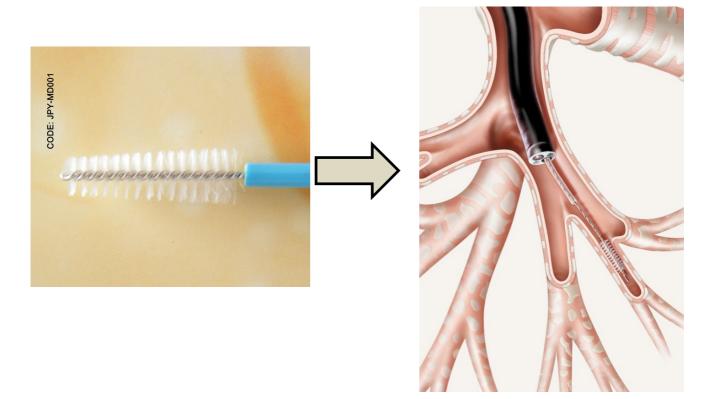
• Visual

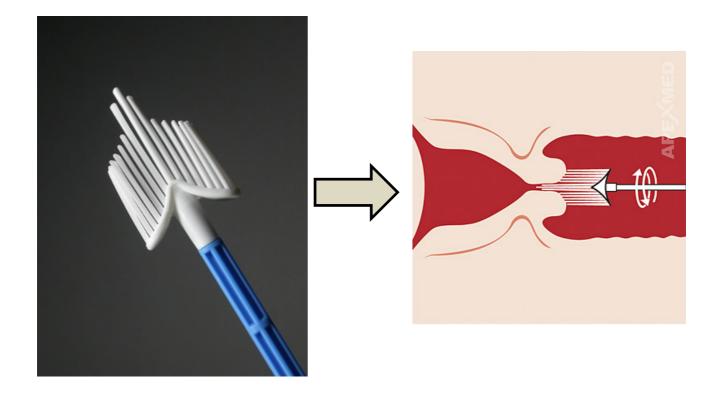
- Superficial localization, body cavities, hollow organs

• By imaging (US, CT, MRI)

Deep localization

Cytology sampling


- Result: SMEAR= cell samples spread on a glass slide
 - Cellular elements: from the lesion and surrounding tissue (their ratio depends on sampling technique, type of lesion)
 - "Background": blood, inflammatory cells, extracellular substance (mucus, colloid etc)
- Fast results (bedside diagnosis)
- Sample processing:
 - Wet fixation(alcohol)+staining (HE, Papanicolaou): preserved cellular morphology
 - Air drying+staining (Giemsa, Diff-Quik): fast and simple but alters cellular morphology


Cytology sampling- types

Exfoliative cytology (brush)

- Superficial lesions of hollow organs

 intraepitelial or invasive tumors (cervix, small bronchus, biliary duct system)
- Sample characteristics: numerous normal/reactive epithelial cells
- Limitations
 - Reactive or malignant?
 - Dysplasia or invasive tumor?

Cytology sampling- types

Cytology of Liquids

- Body cavity effusions of neoplastic or inflammatory origin, cyst content, other fluids than blood (e.g. peritoneal, pleural, pericardial, urine)
- Sample characteristics
 - Numerous normal/reactive mesothelial or epithelial cells altered by liquid environment
 - Numerous inflammatory cells (neutrophils, histiocytes)
- Limitations
 - Reactive or malignant?

Cytology sampling- types

Fine needle aspiration (FNA)

- Solitary/multifocal solid lesions
- Sample characteristics
 - Tumor cells mainly (in case of a neoplastic process)
 - Surrounding tissue cellular elements in varying proportion (e.g. lymphoid cells if sample taken from a lymph node)
 - Contamination from needle track (e.g. if biopsying an abdominal mass: intestinal epithelial cells, mesothelial cells may also be present)
- Limitations
 - Sample not representative (missed targeting, necrosis, etc.)

Fine needle aspiration (FNA)

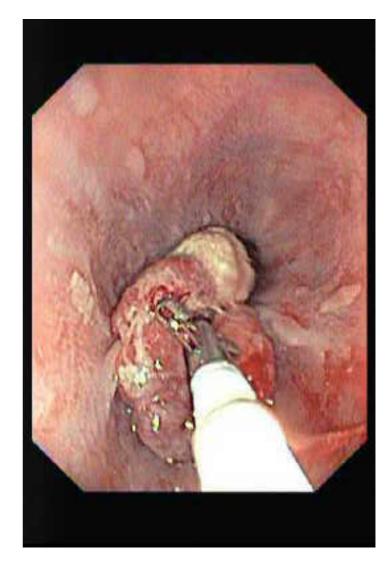
- Simple tools (needle, syringe)
- Guidance
 - US (first choice method, simple, fast, real time image)
 - EUS (lesion close to a hollow organ e.g.pancreas, hilar lymph nodes)
 - CT scan (lesion non-detectable by US, thoracic lesions, long procedure, targeting based on a still image)

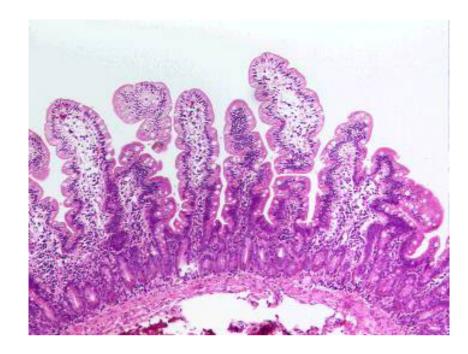
Tissue sampling

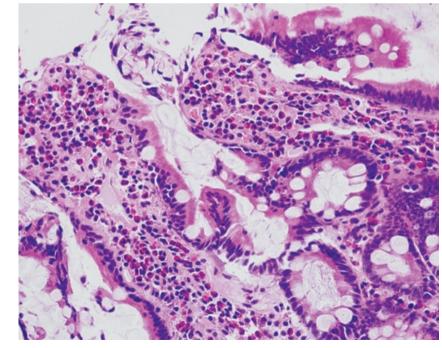
- Result: SLIDE
- Time consuming (min. 24 hours-2 days)
- Formalin fixation
 - EXCEPT:
 - fresh sample from skin or kidney sent to pathology without delay! (immunofluorescent microscopy)
 - lymphomas (ideally fresh frozen sample for molecular techniques)

Tissue sampling types

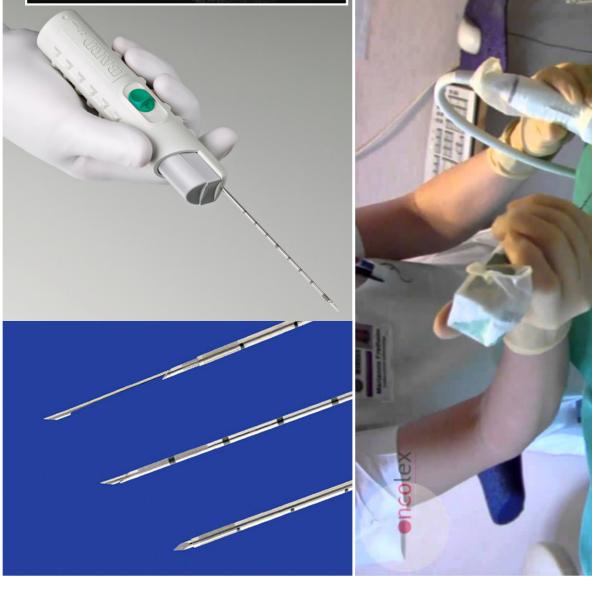
Biopsy by endoscopy

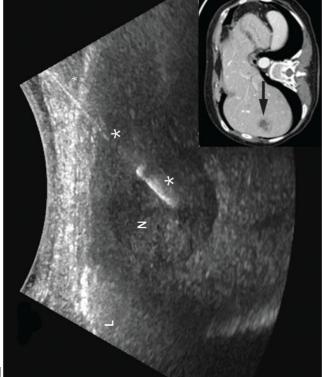

- Gastroscopy (esophagus-duodenum)
- Colonoscopy (terminal ileum-anus)
- Laryngoscopy (pharynx-larynx)
- Bronchoscopy (trachea-large bronchi)
- Cystoscopy
- Focal lesions (tumor): 2-3 representative samples, from the periphery or surface of the lesion, not from necrosis!
- Diffuse lesions (gastritis, IBD): map biopsy
 - Ideal biopsy: representative= includes muscularis mucosae also, fixation on a flat surface=better orientation of the specimen while processing...





Ideal...


Suboptimal...



Tissue sampling types

Core needle biopsy

- Focal lesion (solitary or multifocal), solid organs may be alternative/ancillary to cytology
- Diffuse lesions in solid parenchymal organs leading to structural alterations (e.g. glomerular diseases, diffuse hepatic lesions)
- Targeting: US, CT, MRI, stereotaxic

W.Oncolex.0

A core needle biopsy allows more tissue to be removed from the breast. This allows the pathologist to give a histological diagnosis as against a cytological diagnosis obtained by FNAC

Cytology vs tissue sampling

	Cytology	Histology
Advantages	 fast Simple tools Minimally invasive, complications rare 	 Several slides from the same sample Ideal if immunohistochemistry evaluation is needed
Disadvantages/limitations	 Limited sample(smear) Ancillary exams (e.g. immunohistochemistry) limited 	 Time consuming processing More expensive, lab requirements Invasive, complications may occur
Diagnostic evaluation(tumors)	 Dignity Type – main tumor type Low grade/high grade Invasion – limited 	 Dignity Type –more accurate tumor typing Grade-assessment of proliferation Invasion
Setting	 Before surgery in case of a metastatic disease clarify etiology 	 Before surgery Systemic therapy planning Some special tumors (e.g.lymphomas)

Both techniques require experience!!!! Unsatisfactory samples are not diagnostic-unnecesary invasive intervention!

Intraoperative exam

Indications

- No preoperative biopsy (e.g. pancreas, ovarium): to evaluate dignity (benign or malignant)
- In case of a known malignancy:
 - Resection margin assessment (positive or negative)
 - Sentinel lymph node biopsy (positive or negative)
 - Unrecognized lesion by preoperative imaging (e.g. liver metastasis or carcinosis)

Intraoperative exam

<u>Technics</u>

- Intraoperative cytology (FNA): by the surgeon (on palpation, US-guided)
- Intraoperative tissue sampling: quick-frozen section(cryostat), H&E staining (10-20 minutes) – morphology altered by low temperature, structure mainly preserved (invasion?, resection margins?)
- Touch prep: ancillary to frozen section: cellular morphology preserved(e.g. evaluating tumor cell nuclei)

Special exams

- Protein-based techniques: immunohistochemistry, immunocytochemistry
- Molecular pathology: DNA/RNA-based exams
 - FISH (morphology-based..)
 - Sequence analysis etc. (see lectures)

Immunohistochemical reaction Definition

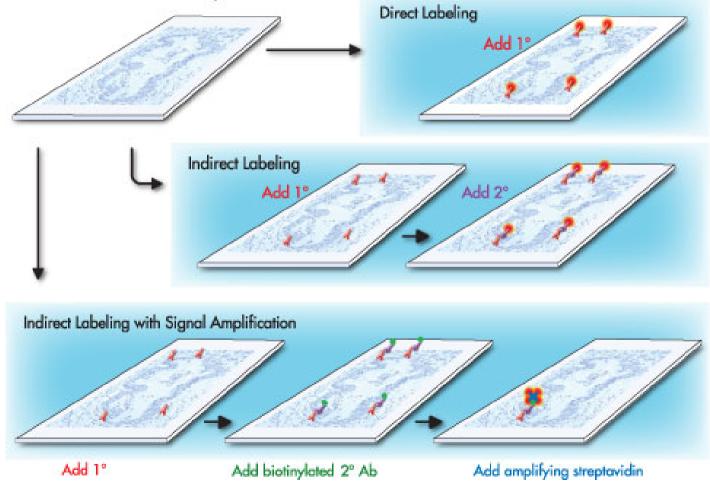
Detection of proteins or protein fragments by immunological reaction (antigen-antibody complex). Generally used in tumor pathology

- •Normal proteins which show the cellular origin of a tumor
- •Abnormal accumulation of proteins during a pathological process (malignant transformation)

Diagnostic markers

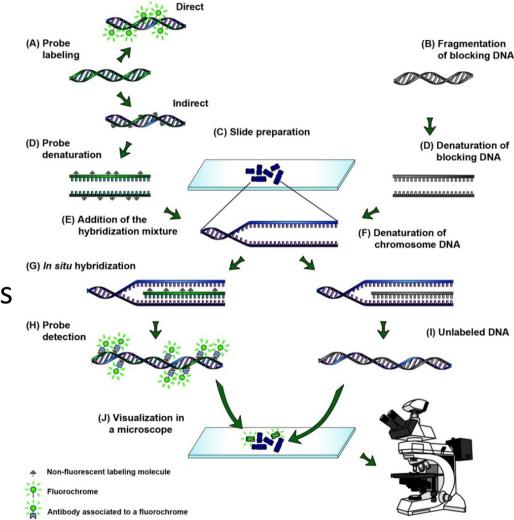
Tumor type	Marker(s)
Epithelial tumors (carcinoma)	Cytokeratin subtypes, tissue- specific markers (PSA, TTF-1, etc.)
Mesenchymal tumors	Tissue specific markers (actin, s-100, factor VIII, etc.)
Hematologic tumors	CD proteins
	(T/B cell markers, etc.)
Undifferentiated tumors	CK, vimentin, Melan-A, CD45 = LCA

Prognostic/predictive markers


Prognosis	Proliferation: Ki-67 Oncoprotein mutation, accumulation: p-53
Predictive markers (to targeted therapies)	Hormon receptors: ER Growth factor receptors: EGFR, HER2, c-KIT

Commonly used IH reactions

- Normal proteins
 - <u>Cytoskeleton (cytoplasmic reaction</u>): cytokeratin (epithelium), vimentin (mesenchymal cell), S-100 (neuron), actin (muscle) etc..
 - <u>Receptor (membrane or nuclear reaction)</u>: estrogen receptor, progesteron receptor (breast), CD proteins (hemato-lymphogen cells)
 - Cell cycle regulators (*nuclear reaction*): MIB-1/Ki-67
 - <u>Other</u> (cellular adhesions, cytoplasmic compartment, enzymes etc..)
- Abnormal protein accumulation
 - <u>Oncoproteins</u> (p-53, growth factor receptors: EGFR, HER2)
 - <u>Infective agents</u> (viral compartments)
 - <u>Other</u> (tau proteins in neurodegenerative diseases)


Method of immunohistochemistry

- Primary antibody (antigen specific)
- Secondary antibody+chromogen (visual detection) Immunohistochemistry Process

FISH (fluorescent in situ hybridisation)

- Detecting specific DNA sequences within chromosomes
- Tumor patology
 - Amplification, deletion, translocation detections
 - Predictive and diagnostic exams
- Microbiology
 - Species specific

