
HEMATOPATHOLOGY

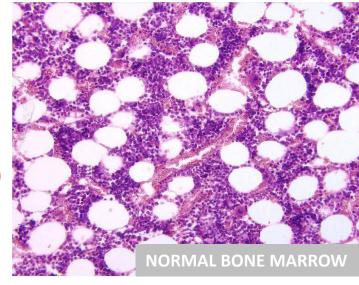
2017/2018 2nd semester

http://iatreum.com/what-are-lymphomas-and-malt-lymphomas.html

Leukemia \rightarrow derives from the bone marrow

Totally immature blast cells (acute) or more matured progenitors (chronic)

- * <u>replace</u> normal haematopoiesis
- * after a while they get into circulation

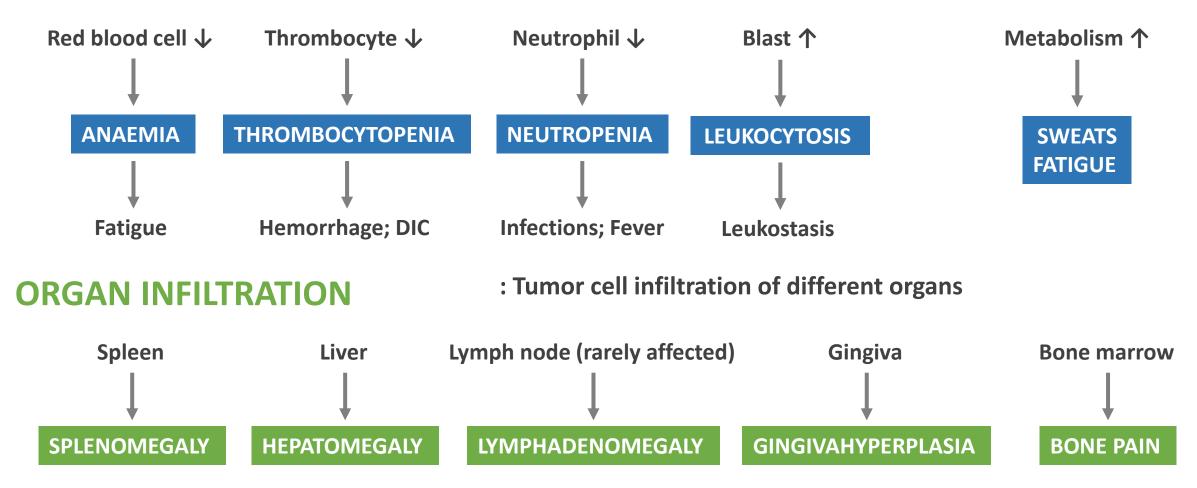

Bone marrow

- Blast < 5% → normal
- Blast > 20% → acute leukemia

SYMPTOMS: Rapid development

In children days / 1-2 weeks

Slow development


https://img.tfd.com/medical/Davis/Tabers/th/m03.jpg http://www.histology-world.com/photoalbum/displayimage.php?album=65&pid=2283

GENERAL SYMPTOMS:

BONE MARROW FAILURE

: Tumor cells <u>replace</u> normal hematopoiesis

Acute leukemia – Separation

LYMPHOID

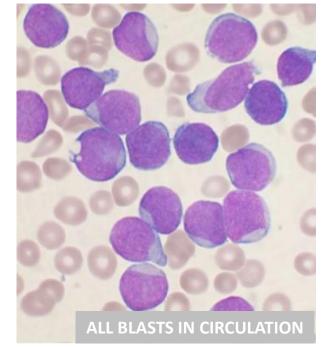
S

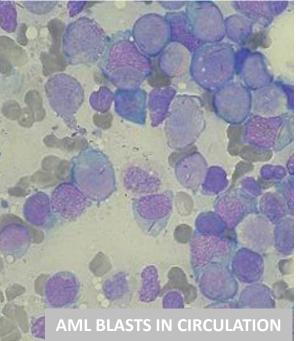
MYELOID / MONOCYTAER

TdT :DNA polymerase

✓ lymphoblast

🗴 lymphocyte


🗴 myeloblast


MPO :myeloperoxidase Auer rod (HE) – crystallized MPO NSE :non-specific esterase

Nuclear staining

Cytoplasmic staining

N.B.: Not 100% specificity TdT can be expressed by any blast cell, but it is more characteristic in lymphoid cells MPO do not present in all AML forms

Acute lymphoid leukemia

80% of childhood leukemias are ALL

Useful information: 30% of acute leukemias are ALL, 70% are AML 75% of ALL present under the age of 6 80% of childhood leukemias are ALL 85% of ALLs are B-ALL, 15% are T-ALL Recovery rate in children is 80% in adults is 50%

B-ALL (85%) : markers: Ig, CD10, CD19, CD20

Currently used WHO classification depends on genetic alterations

pl.:t(12;21)- ETV6-RUNX1; good prognosis; usually in childrent(9;22) = Ph+- BCR-ABL1; poor prognosis; usually in adults

T-ALL (15%) : markers: CD3, CD4, CD8

T-Lymphoblastic Leukemia/Lymphoma

Teenagers; Thymus/mediastinal widening

Formerly: FAB classification based on cytomorphology no prognostic or therapeutic consequence <u>not</u> used anymore

Acute myeloid leukemia

Median age at the time of diagnosis: 68 y.o.

WHO classification (not obligatory to learn)

• AML with recurrent genetic abnormalities

- AML with t(8;21)(q22;q22); RUNX1-RUNX1T1
- AML with inv(16)(p13.1q22) or t(16;16); CBEB-MYH11
- Acute promyelocytic leukemia (APL) with t(15;17); PML-RARA
- AML with t(9;11); MLLT3-MLL
- AML with t(6;9); DEK-NUP214
- AML with inv(3) or t(3;3); RPN1-EVI1
- AML (megakaryoblastic) with t(1;22); RBM15-MKL1
- Provisional entity: AML with mutated NPM1
- Provisional entity: AML with mutated CEBPA
- AML with myelodysplasia-related change
- Therapy-related myeloid neoplasms
- AML NOS (not otherwise specified):
- Myeloid sarcoma
- Myeloid proliferations related to Down syndrome
- Blastic plasmacytoid dendritic cell neoplasm

Useful information:

- 30% of acute leukemias are ALL, 70% are AML
- AML most commonly: between the age of 50 and 70
- Cytomorphologic classification is also changed by cytogenetic classification (FAB vs WHO)
- Genetic aberrations predict prognosis: good – intermediate – poor prognosis

Poor prognostic factors:

- Older age
- FLT3 mutation (tyrosine kinase); del chr 5/7
- Association with MDS or therapy (chemo/radio)

FAB classification (see. slide 2-3) (not obligatory to learn)

FAB	Name	Adult patients (%)
MO	Min. differentiated acute myeloblastsic leukemia	5%
M1	Acute myeloblastic leukemia without maturation	15%
M2	Acute myeloblastic leukemia with maturation 25%	,)
M3	Acute promyelocytic leukemia	10%
M4	Acute myelomonocytic leukemia	20%
M4eos	Acute myelomonocytic leukemia with bm. eosinophilia	5%
M5	Acute monocytic leukemia	10%
M6	Acute erythroid leukemia	5%
M7	Acute megakaryocytic leukemia	5%

Acute myeloid leukemia

Acute promyelocytic leukemia (APL) tumor cells with Auer rods!

Success story of leukemia therapy Worst prognosis until the `70s

 \rightarrow rapid progression, fatal hemorrhages (DIC)

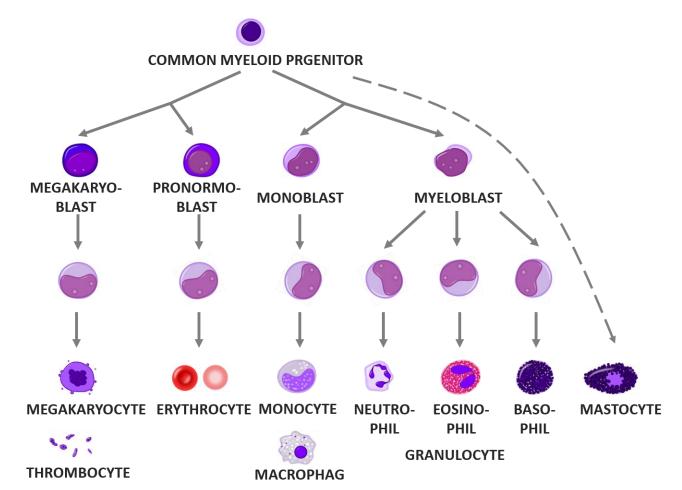
1977 – discovery of $t(15;17) \rightarrow PML$ -RARA fusion protein blocks differentiation

<u>Th.</u>: **ATRA** + chemo – induce the differentiation of promyelocytes, complete remission in 95%

Acute monocytitic leukemia

Increased number of monoblasts Gingival hyperplasia!

Acute megakaryoblastic leukemia


Associated with **Down syndrome** under the age of 5

RARA = retinoid receptor α ATRA = all-trans retinoic acid PML = promyelocytic leukemia gene

https://commons.wikimedia.org/wiki/File:AMLCase-66.jpg

Chronic myeloproliferative diseases

Chronic megakaryocytic leukemia = idiopathic myelofibrosis (MF)

Essential thrombocytaemia (ET)

Polycythemia vera (PV)

Chronic neutrophil leukemia Chronic eosinophil leukemia Chronic basophil leukemia

CML

Myelodysplasia

Ineffective hemopoesis; pancytopenia

Chronic myeloid leukemia (CML)

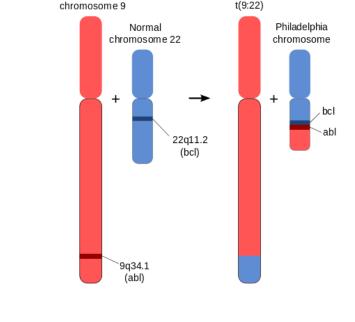
Median age at the time of diagnosis: 66 y.o.

Low prevalence in younger age group, usually presents in a more aggressive form

Specific genetic alteration

t(9;22) = Philadelphia chromosome → BCR-ABL fusion gene → BCR-ABL fusion protein presents in >90% of CML · Intensive tyrosine-kinase activity

The exact pathomechanism is unclear


Norma

- 1. Chronic (proliferation of more mature cells; 90% in asymptomatic)
- 2. Accelerated (further cytogenetic alterations)
- 3. Blast crisis (totally immature blast cells)

Therapy (much better prognosis)

- 1. Imatinib (TKI)
- 2. Allogenic stem cell transplantation

Translocation

https://commons.wikimedia.org/wiki/File:Schematic_of_the_Philadelphia_Chromosome.svg

Useful information:

- 20% of leukemia in adulthood are CML
- Median age at the time of diagnosis: 66 y.o.

Chronic lymphoid leukemia (CLL)

Clonal proliferation of nearly mature **B cells** No or impaired Ig production

hypogammaglobulinaemia

autoimmune hemolytic anemia immune thrombocytopenia Useful information:

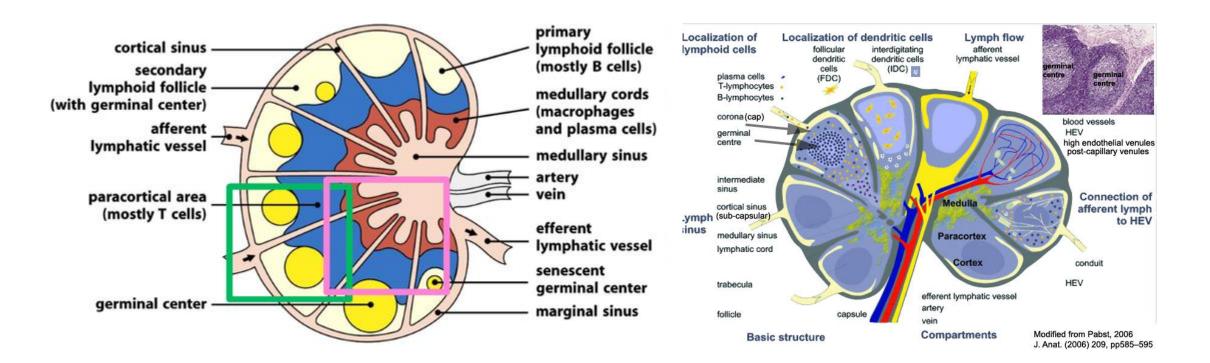
- Most common leukemia in adulthood
- Median age at the time of diagnosis: 72 y.o.

In the case of multiple lymph node involvement leukocytosis do not present:

CLL = SLL (small lymphocytic lymphoma)

+ It can transform to large B cell lymphoma (Richter transformation)

Cells are "fragile" \rightarrow they crush when smear is made = smudge cells


<u>Markers</u>: CD19+, CD20+, CD5+, CD23+, CD38+, Zap70+, γ or δ lg chains; CD10-, cyclinD-

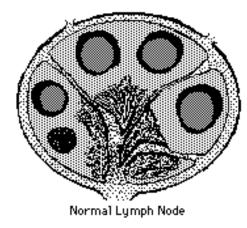
<u>Pathogenesis</u>: 13q14 del. \rightarrow miR-15, miR-16 del. \rightarrow bcl2 overexpression \rightarrow anti-apoptosis

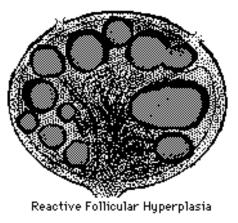
Therapy

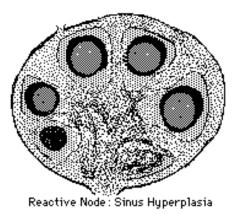
- **1. Incurable** (elderly patients, bone marrow transplantation have high mortality rate)
- 2. The therapeutic goal is the asymptomatic condition, ex. biological therapies rituximab (anti-CD20)
- 3. Indolent cases do not need any therapy

Structure of normal lymph node

Reactive lymphadenopathy


Benign, reversible, secondary enlargement of lymph nodes - hyperplasia Morphological patterns (can refer to etiology)


1. Follicular hyperplasia

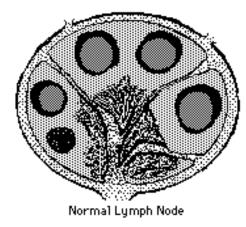

B cell response Follicles with various size and shape Enlarged germinal centers with prominent mantle zone Small and large B-lymphocytes in the germinal center→ centrocytes, centroblasts Mitotic figures Tingible body macrophages No dominance of any cells type Preserved subcapsular sinus

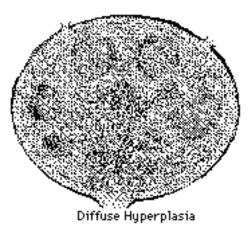
2. Sinus histiocytosis

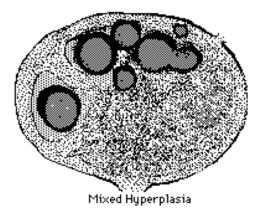
Dilated sinuses with groups of **histiocytes/macrophages**

Reactive lymphadenopathy

Benign, reversible, secondary enlargement of lymph nodes - hyperplasia Morphological patterns (can refer to etiology)

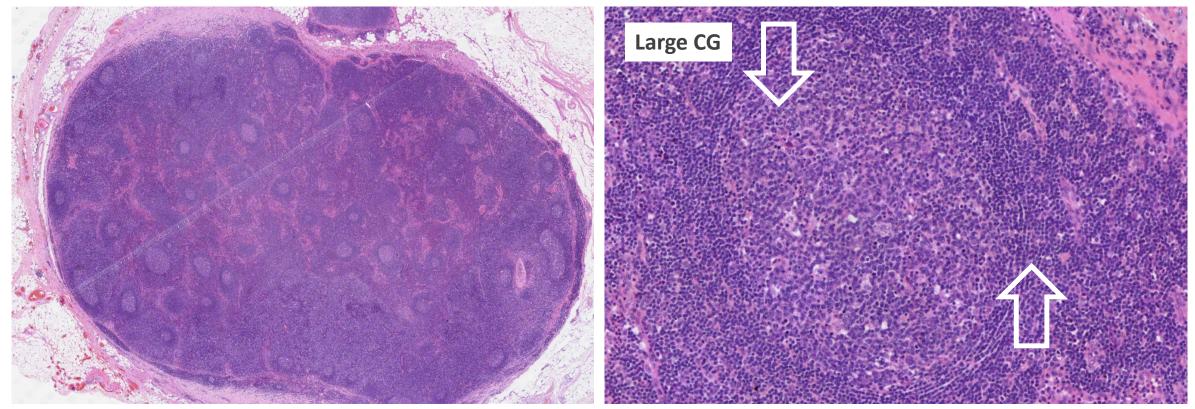

3. Diffuse paracortical hyperplasia

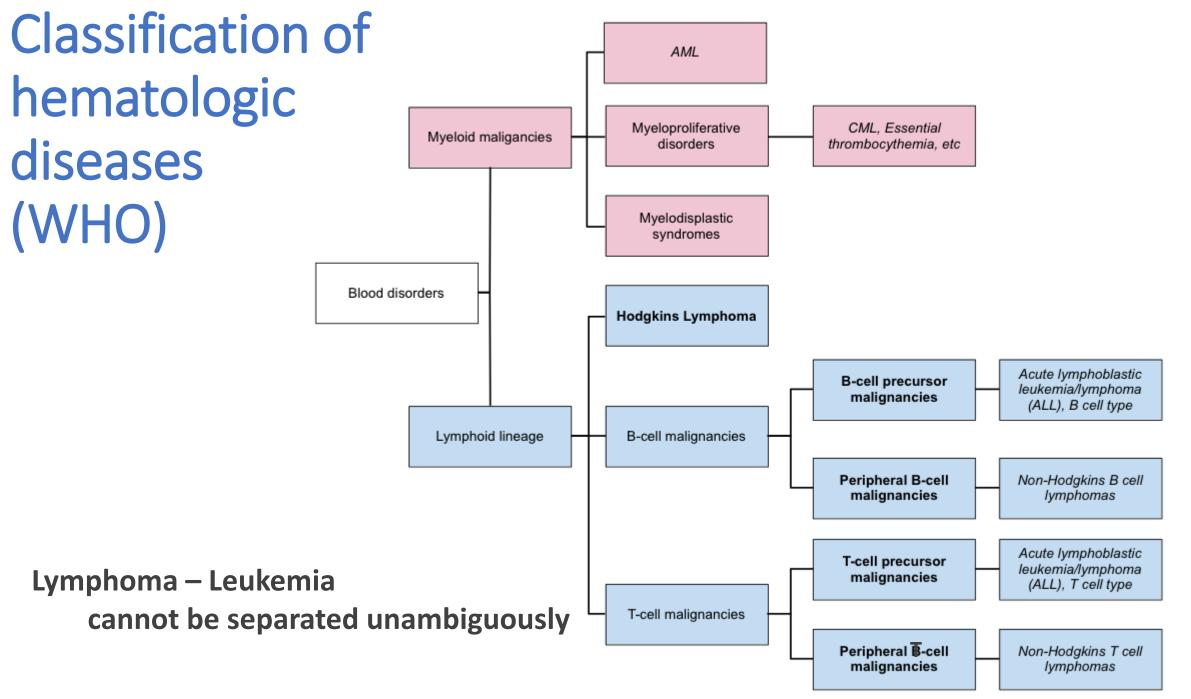

T cell response Expansion of paracortical and interfollicular zones Heterogenic cell population, no dominance of any cell type Proliferation of HEV venules


4. Mixed

5. Acute lymphadenitis

The lymph node is infiltrated by **neutrophil granulocytes** They present in the sinuses, in severe cases the whole lymph node is necrotic




https://www.med-ed.virginia.edu/courses/path/innes/wcd/reactive.cfm

Morphology of reactive lymphadenopathy – slide

- Enlarged lymph node, but it has normal shape (not roundish)
- Lots of transformed follicles = follicular hyperplasia

Normally stratified MZ

http://iatreum.com/what-are-lymphomas-and-malt-lymphomas.html

Hodgkin lymphoma

Malignant, clonal, derives from <u>B cells</u>

Bimodal age distribution: Most common types: 1st peak: age of 25-30 → nodular sclerosis 2nd peak: age of 50-70 → mixed cellularity

Etiology:

Male > Female

EBV

immunodeficiency (pl. HIV, chemo, transpl.) autoimmune diseases (pl. RA, sarcoidosis)

<u>Staging: I – IV</u>

one ore more lymphn. / extralymph organ below and/or above the diaphragm B symptoms +/-

5 year survival: 80-90%

Clinical presentation:

Painless enlargement of lymph nodes cervical lymphn. 60-70% axillary lymphn. 20-30% inguinal lymphn. 10-20% mediastinal involvement hepatosplenomegaly B symptoms: night sweats weight loss fever Pel-Ebstein fever

Alcohol induced pain of lymph nodes

Laboratory:

WBC count \uparrow/\downarrow eosinophilia, anemia, LDH \uparrow , vitD & Ca²⁺ \uparrow

Therapy:

chemoradiotherapy the first successfully treated neoplasia

Lymphomas 85% – NHL 15% – HL

Hodgkin lymphoma – Histology

Histological classification (WHO)

CLASSIC Hodgkin lymphoma (CHL)

Nodular sclerosis (NSHL)

most common subtype (> 60%); good prognosis
Localization: mostly mediastinal and cervical

Mixed cellularity (MCHL)

<30%; slightly poorer prognosis Localization: mostly abdominal lyphn. and spleen

Lymphocyte-rich (LRHL)

rare; good prognosis Localization: mostly cervical and axillary

Lymphocyte-depleted (LDHL)

very rare (< 1%); worst prognosis Localization: mostly below the diaphragm

NODULAR LYMPHOCYTE-PREDOMINANT (NLPHL)

Rare (5%); best prognosis

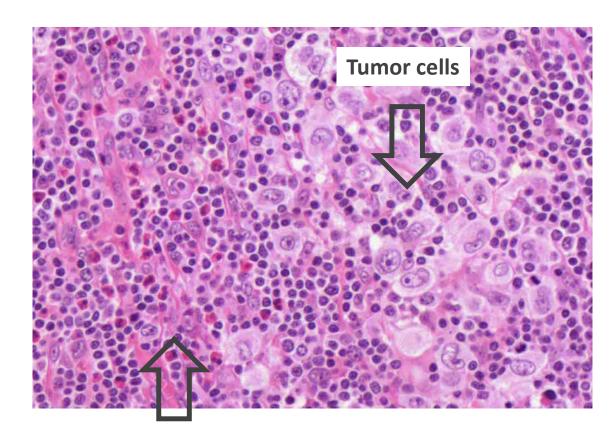
Morphology

- = Reed-Sternberg cell (multinucleate)
- = Hodgkin cell (uninucleate)

CD15+, CD30+, CD25+ CD45-, CD20-

Inflammatory background: eosinophils, neutrophils, macrophages,

lymphocytes, plasma cells, fibroblasts


Granuloma formation can occur

= popcorn cell (multilobulated nucleus) CD15-, CD30-, CD20+ ØRS cell

Morphology of HL (nodular sclerosis) – slide

- Partial or complete involvement of lymph nodes
- Tumor cells with characteristic morphology! (ratio of tumor cells <10%)
- Accompanying sclerosis

Reactive cells (many eosinophils)

Hodgkin lymphoma – Reed-Sternberg cells

https://commons.wikimedia.org/wiki/File:Hodgkin_Disease,_Reed-Sternberg_Cell.jpg

Non-Hodgkin lymphoma

6th most common neoplasm (85% of all lymphomas)

Increasing incidence worldwide

```
Incidence grows by age \rightarrow peak: >50 y.o.
```

Risk factors:

Immunological (pl. autoimmune (pl. Hashimoto, Sjögren)) Infectious (pl. HTLV, EBV, HIV, HCV, H. pylori) Genetic (pl. Klinefelter's sy, SCID) Environmental (pl. smoking, pesticide, herbicide)

Malignant, monoclonal B or T cell proliferation

N.B.: reactive, non-tumorous lymphoid proliferation is polyclonal!

<u>Presentation</u>: **Nodal** and/or → lymph node Extranodal

 \rightarrow skin, GI system, CNS, testicle, ...

<u>Growth patterns</u>: Follicular or Diffuse

Survival (if not treated): Low grade \rightarrow 6-10 years High grade \rightarrow months

Poor prognostic markers: Older age Involved regions个 LDH 个 β2-microglobulin 个

B cell NHL (85%)

☺ indolent☺ aggressive

T cell NHL (15%)

Precursor B cell lymphoblastic leukemia/lymphoma

Precursor t cell lymphoblastic leukemia/lymphoma

N.B.: acute lymphoblastic leukemia (ALL) = lymphoblastic lymphoma (LBL), same biological entities, different presentation

- Mature B cell lymphoma
 - Follicular lymphoma 🙂
 - Diffuse large B cell lymphoma 😕
 - Burkitt lymphoma 🟵
 - MALT lymphoma 😳 / extranod. marg. zone lymphoma
 - Hairy cell leukemia 🙂
 - Mantle cell lymphoma 😕
 - Lymphoplasmocytic lymphoma / Waldenström
 - B-CLL/SLL (small lymphocytic) lymphoma 😳

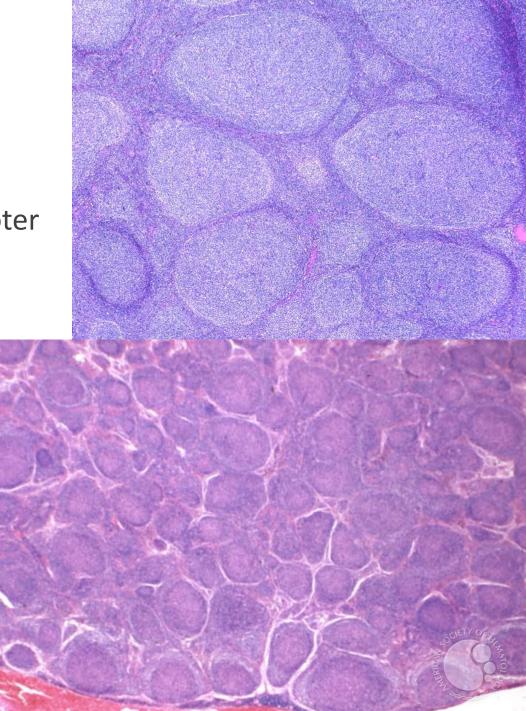
Mature T cell lymphoma

Peripheral T cell lymphoma 😕

Adult T cell leukemia/lymphoma 🟵

Mycosis fungoides 🙂 / Sezary-sy 😕

Follicular lymphoma


2nd most common NHL

Most common indolent NHL

Centrocyte origin

t(14;18) bcl-2 gene translocation behind the Ig-promoter inhibition of apoptosis Malignant follicles loose their polarity (no light-dark zones) Absent or thin mantle zone

http://www.wikicell.org/index.php/Follicular_Lymphoma https://imagebank.hematology.org/image/2050/follicular-lymphoma--1?type=upload

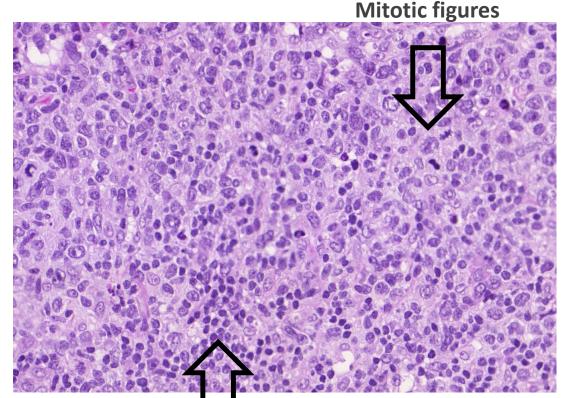
Diffuse large B cell lymphoma (DLBCL)

- Most common NHL (20% OF NHLs)
- Most common aggressive NHL
- Development: de novo

from other type of lymphomas by transformation (Richter transformation)

• Clinical presentation:

painless enlargement of lymph nodes in one or more regions or extranodal mass


→ stomach, Waldeyer ring, skin, soft tissue, brain, later bone marrow

• Rapid progression and fatal outcomes without therapy; 60-80% complete remission with therapy

Morphology of DLBCL - slide

- Diffuse growth pattern the basic structure of the lymph node disappears
- centroblast, immunoblast-like tumor cells (ratio of tumor cells>90%)
- Many mitotic figures apoptoses (not in germinal centers but diffusely)

Residual lymphocytes

Mantle cell lymphoma

Aggressive NHL

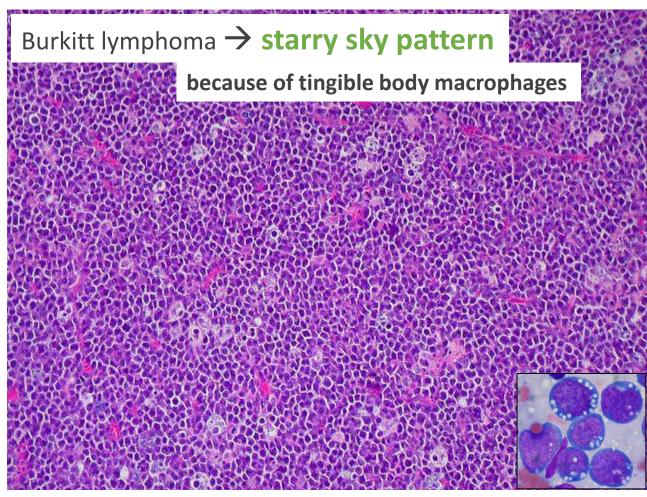
Mantle zone origin

t(11;14) translocation of bcl-1/cyclinD1 gene behind the Ig-promoter

stimulation of cell proliferation

Burkitt lymphoma

highly aggressive NHL


Centroblast origin

t(8;14) translocation of myc gene behind

the Ig-promoter stimulation of cell proliferation

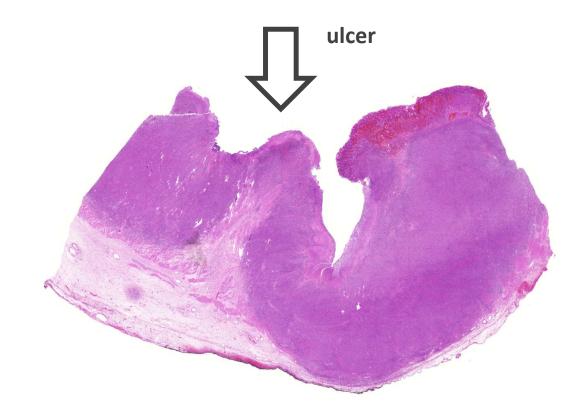
Presentation:

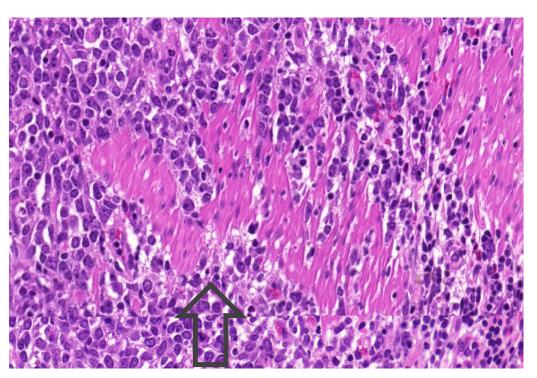
endemic: extranodal → jaw Africa; EBV association sporadic: nodal → abdominal less association with EBV Characteristic histology: " starry sky pattern"

Marginal zone lymphoma

Indolent NHL Marginal zone origin Subtypes:

- Nodal
- Splenic
- MALT-lymphoma (most common extranodal lymphoma)
 - Mucosa Associated Lymphoid Tissue
 - Most common localization: stomach


<u>cause</u>: chronic gastritis caused by **H. pylori**


remission after eradication of H. pylori (in 55-75%)!

- Transformation: **DLBCL**

Stomach lymphoma morphology -slide

- Diffuse growth pattern in the stomach wall (ddg: diffuse type gastric cancer)
- Predominance of blasts, many mitotic figures = DLBCL

Infiltration of tumor cells in gastric wall

T cell lymphomas

Peripheral T cell lymphoma

Heterogenous group of diseases Mostly disseminated

Adult T cell leukemia/lymphoma

Japan, Caribbean, Middle-Africa- endemic Associated with **HTLV-1**

Mycosis fungoides

CD4 helper T cell origin Involvement of dermis and epidermis → Pautrier microabscesses Most common lymphoma of the skin

Indolent

Progression = Sezary syndrome

Figure 1: Clinical manifestations of mycosis fungoides—Image (A) shows typical early patch with erythema and mild scale; (B) shows a typical plaque, with raised, palpable borders, central clearing, and overlying scale; (C) shows a large tumor with necrosis and ulceration; and (D) shows generalized erythroderma. Reprinted with permission from Figure 1 in Smith B, Wilson L: Oncology (Williston Park) 17:1281-1288, 2003.[63]