Pathology of the endocrine system

Endocrine system

A. Endocrine organs

- 1. Pituitary gland
- 2. Pineal gland
- 3. Thyroid gland
- 4. Adrenal glands
- 5. Parathyroid glands

B. Organs with partial endocrine functions

- 1. Pancreas
- 2. Gonads

C. Diffuse neuroendocrine system

(endocrine cells with diffuse localization; gastrointestinal tract, bronchi)

Thyroid gland

Cells:

- Follicular epithelial cells
- Parafollicular C-cells located sparsely between the follicles

Pathology of the thyroid gland

- Functionally:
 - Hyperfunction = Hyperthyroidism
 - Hypofunction = **Hypothyroidism**
- Morphologically:
 - Hyperplasia: goiter (diffuse or multinodular)
 - Inflammatory diseases thyreoiditis
 - Infective rare
 - Autoimmune (Hashimoto, Graves) common
 - Other etiology (palpation)
 - Neoplasms (benign, malignant)

Hyperthyroidism

- Hyperfunction of the thyroid
- Primary hyperthyroidism causes:
 - Graves disease
 - Multinodular goiter
 - Hyperfunctional adenoma
 - (Early phase of Hashimoto thyroiditis)
- Secondary hyperthyroidism causes :
 - TSH producing pituitary gland tumor, iatrogenic
- Characteristic symptoms
 - Variable enlargement of the thyroid gland \rightarrow no strict correlation with the size of the thyroid
 - Increased metabolism, sympathicotonia
 - Palpitation

Hypothyroidism

- Hypofunction of the thyroid
- Primary, secondary and tertiary causes
 - Primary:
 - •Late phase of Hashimoto thyroiditis
 - •latrogenic (resection, irradiation, drugs)
 - •Other (hemochromatosis, amyloidosis, sarcoidosis)
 - Secondary: absence of TSH (pituitary diseases)
 - Tertiary: absence of TRH (hypothalamic diseases)
- Clinical presentations:
 - Myxedema (adults)
 - Cretinism (infants)

Hyperplasia- Goiter

Multinodular goiter

- Predominantly in elderly patients
- Permanent increase of TSH levels (ex. iodine deficiency)
 Follicular epithelial cells have varying responsiveness to TSH, in different areas there
 is different intensity of hyperplasia
- As the TSH levels are changing hyperplasia and involution present alternately
- Degenerative changes are characteristic (hemorrhage, scarring, calcification, cystic degeneration)
- Functionally, most commonly normofunctional
- Sometimes some of the nodules is hyperfunctional toxic multinodular goiter – *Plummer's disease*

Hyperplasia- Goiter

Diffuse goiter

- Functionally, it can be euthyroid, hyperthyroid or hypothyroid
- Graves disease:
 - Most common
 - Autoimmune thyroiditis
 - Hyperfunction
- Endemic goiter:
 - Due to decreased iodine intake permanent TSH hypersecretion occurs with diffuse hyperplasia
 - normofunction or hypofunction
- Enzymopathies
 - Hypofunction

de Quervain's thyroiditis

- Subacute granulomatous thyroiditis
- Diffuse enlargement
- Viral etiology
- Young and middle-aged women
- Painful! Can be accompanied with transient fever
- In acute phase microabscesses, follicular damage present colloid gets into the interstitium
- Later lymphoplasmocytic infiltration, histiocytes foreign body reaction to the colloid – granulomas, giant cells
- Spontaneous healing

Graves disease

- Autoimmune disease
- Autoantibodies to TSH receptors
- Most common between the age of 20 and 40
- More common in women
- Genetic factors play an important role in pathophysiology: associated with HLA-B5 and DR3 haplotypes

Graves disease

- Enlarged, firm, hyperemic thyroid
- Hypertrophy and hyperplasia of follicular epithelia
- Bulging of hyperplastic follicular epithelium into the follicular lumen: Sanderson polster papillary structures without fibrovascular core (←→papillary cc.)
- High, cylindrical follicular epithelial cells
- Lymphocytic aggregates

Hashimoto thyroiditis

- Functionally, in early phase transient hyperfunction is followed by normofunction eventually hypofunction develops
- Most commonly in middle-aged patients
- More common in women
- Anti-Tg and anti-TPO autoantibodies (humoral immune response)
- T-cell dysfunction (cellular immune response)
- HLA-DR3 and DR5 association

Hashimoto thyroiditis

- The thyroid is normal in size, pale in color
- Lymphocytic aggregates with germinal centers, lots of plasma cells
- The amount of colloid and the number of epithelial cells decrease
- The cytoplasm of remaining epithelial cells gets acidophilic. Oncocytic cells – *Hurthle cells* (increased number of mitochondria)
- After long term progression interstitial fibrosis occurs with atrophy
- In Hashimoto thyroiditis thyroid neoplasms more frequently occur: follicular adenoma, follicular carcinoma, papillary carcinoma, B-cell lymphoma!

Neoplasms of the Thyroid Follicular neoplasms

- Majority are benign: follicular adenomas
- Solitary, spherical, encapsulated lesion, well demarcated
- Size, colour (gray-white to red-brown), cut surface appearance(hemorrhage, fibrosis, cystic change) varies
- Microscopical appearance also varies: macro- and microfollicular type, Hürthle cell adenoma, atypical and papillary (rare) type adenomas
- Criteria of malignancy not cytologic!!:
 - Loss of capsule integrity and/or vascular invasion = follicular carcinoma

Malignant neoplasms Papillary carcinoma

- Tumor cells are derived from the thyroid follicular epithelium
- Most common form of thyroid cancer, most often occurs in young adults (women)
- Good prognosis
- Often multifocal
- Lymphogenic metastasis (cervical lymph nodes) can develop early on, but can be treated surgically
- Macroscopic appearance: gray-white nodule with ill-defined margins
- Histological criteria cytomorphology!!!
 - Nuclear features:
 - Enlarged nuclei containing finely dispersed chromatin, optically clear appearance (Orphan Annie eye nuclei)
 - Nuclei are overlaping, arranged with long axes in parallel alignment
 - Invaginations of the cytoplasm: intranuclear pseudo-inclusions and grooves (coffee bean nucleus)
 - Structure:
 - Contains papillary and follicular architecture in variable proportions
 - Branching papillae, having a fibrovascular stalk, psammoma bodies are often present

Malignant neoplasms Papillary carcinoma

Malignant neoplasms Anaplastic carcinoma

- Elderly patients
- Very poor prognosis
- Rapidly enlarging mass, infiltrates adjacent neck structures
- Extensive metastasis
- Variable morphology, highly anaplastic cells

Malignant neoplasms Medullary carcinoma

- Derived from the parafollicular C cells
- Small, neuroendocrine tumorcells
- Solitary nodule
- Amyloid deposits are often present
- Present individually or with other endocrine tumors (always present in MEN2syndrome → preventive thyreoidectomy in childhood)

Examination of a soliter nodule

Risk of malignancy

The Bethesda System for Reporting Thyroid Cytopathology Edmund S. Cibas, MD,1 and Syed Z. Ali, MD2

Adrenal glands

Consist of cortex (mesodermal origin) and medulla (neuroectodermal origin)

Cortex:

Zona glomerulosa: mineralocorticoids regulated by *RAAS*

Zona fasciculata: glucocorticoids regulated by *ACTH*

Zona reticularis: sex steroids regulated by ACTH

Medulla:

Part of the sympathetic nervous system Secretes catecholamines Chromaffin cells containing catecholamines Dispersed ganglion cells

Pathology of adrenal cortex

Functional

• **Hyper**function

- glucocorticoids: Cushing-sy.
- mineralocorticoids: Conn-sy.
- androgenes: adrenogenital syndromes

• **Hypo**function:

- chronic: Addison disease autoimmune disease
- acute (rapid withdrawal of steroids, necrosis e.g. Waterhouse- Friedrichsen sy.)

Pathology of adrenal cortex

Morphologic

- Atrophy (endogenous ACTH suppression)
 - Exogenous cortisol
 - Functioning (cortisol secreting) benign and malignant neoplasms of the adrenal cortex
- Hyperplasia
- Neoplasms
 - Benign (adenoma)
 - Malignant
 - Primary: carcinoma (very rare)
 - Secundary: carcinoma of the lung, stomach, esophagus, liver and biliary tracts, kidney (often)

Adrenocortical hyperplasia

Diffuse hyperplasia

- Cortex is diffusely thickened, sulfur yellow
- Cause:
 - ACTH-dependant Cushing-sy

Nodular hyperplasia

- Hyperplastic nodules
- Not encapsulated
- causes:
 - ACTH-independent
 - Bilateral idiopathic hyperaldosterinism
 - Congenital adrenal hyperplasia

Benign neoplasms Adrenocortical adenomas

- <u>Unilateral</u>
- Spherical nodule
- Functional and nonfunctional forms
- Sulfur yellow

Adrenal medulla - Phaeochromocytoma

- Adrenal phaeochromocytoma cells are derived from chromaffin cells (extraadrenal: paragangliomas)
- Synthesize and release catecholamines
- Sympaticotonia
 - Hypertension (secunder hypertension, paroxysmal episodes)
 - Tachycardy
 - Elevated blood sugar levels
- Diagnosis: increased urinary excretion of metanephrines
- 90 % benign, without metastasis
- 90 % sporadic, 10% familiar
- MEN sy
- NF-1
- Struge-Weber sy
- Von Hippel Lindau sy

