Irreversible tissue damage (necrosis, apoptosis)

Dr. Attila Zalatnai

Irreversible tissue damage

Necrosis	<u>Apoptosis</u>
Not programmed	Genetically programmed
Does not require energy	Energy requirement
Ruptured membrane structrures	Intact membrane structures
Accompanied by inflammation reaction	No inflammation around
	<u>Two major mechanisms:</u> - death receptors - mitochondrial route

The same agent may produce either apoptosis or necrosis, depending on its concentration

Circumscribed death of tissue/organ within a living organism

<u>Cause:</u> The strength of the harmful factor exceeds the compensatory capacity of the given tissue

a./ endogeneous causes:

- vascular causes (obstruction of arteries, veins) thrombosis, embolia
- neural effects (Raynaud-phenomenon, diabetes mellitus)
- immunological causes (immune complexes, C3-activation)
- mechanical causes (prolonged compression) decubitus

b./ exogeneous causes:

- chamicals (cytostatic drugs)
- irradiation
- electricity
- freezing
- biological agents
- toxins

karyopyknosis karyorrhexis karyolysis

demarcation zone

Necrosis

Coagulative

• Infarct

anemic (heart, liver, spleen, kidney...) hemorrhaghic (lung, small bowel, testicle) gangrene (dry – wet)

- Caseation (cheesy necrosis) tbc
- Crust formation (large bowel)
- Fibrinoid necrosis (vessel walls, stomach)
- Waxy necrosis of Zenker
- In the center of neoplasms

<u>Colliquative</u> (liquefactive)

primary:

emollition (brain)

secundary:

myomalacia

Lung, hemorrhaghic infarction

Thromboembolia in the Ist/2nd branches of pulmonary arteries

Sources:

- deep veins of the leg
- femoral, iliac veins
- periprostatic veins
- parametric veins
- renal veins
- hepatic veins
- right atrium, right auricle
- jugular veins
- subclavian veins
- dural sinuses

Apoptosis

Physiologic role:

- disappearance of buccopharyngeal membrane
- thymic involution
- -disapparance of primitive kidney

APOPTOSIS INDUCTION IS AN IMPORTANT THERAPEUTIC GOAL IN CASES OF MALIGNANT TUMORS

Necrosis and apoptosis are sometimes biologically negative, sometimes very useful